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ENUMERATION OF GENUS-TWO CURVES WITH A
FIXED COMPLEX STRUCTURE IN P

2 AND P
3

ALEKSEY ZINGER

Abstract
The main concrete result of this paper is enumeration of genus-two curves
with complex structure fixed in P2 and P3. Along the way, rational curves
with certain simple singularities are counted as well. While the methods
described can be used to count positive-genus curves in some other cases,
the most powerful direct applications of the machinery developed are to
enumeration of rational curves with a very large class of singularities in
projective spaces.

1. Introduction

1.1 Background and results

Let (Σ, jΣ) be a nonsingular Riemann surface of genus g ≥ 2, and let
d, n be positive integers with d ≥ 1 and n ≥ 2. Denote by HΣ,d(Pn)
the set of simple holomorphic maps from Σ to P

n of degree d. Let
µ = (µ1, . . . , µN ) be an N -tuple of proper complex submanifolds of P

n

such that

l=N∑
l=1

codimCµl = d(n+ 1) − n(g − 1) +N.(1.1)
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If these submanifolds are in general position, the cardinality of the set

(1.2) HΣ,d(µ) =
{

(y1, . . . , yN ;u) : u ∈ HΣ,d(Pn);

yl ∈ Σ, u(yl) ∈ µl ∀l = 1, . . . , N
}

is finite, and its cardinality depends only on the homology classes of
µ1, . . . , µN . The group Aut(Σ) of holomorphic automorphisms of Σ
acts freely on HΣ,d(µ). For this reason, algebraic geometers prefer to
consider the ratio of the cardinality of the set HΣ,d(µ) and the order of
the group Aut(Σ). For a dense open subset of complex structures on Σ,
the cardinality of the set HΣ,d(µ) has the same order. The same is true of
the set Aut(Σ). If jΣ lies in this open subset, we denote the above ratio
by ng,d(µ). This number is precisely the number of irreducible, nodal
degree-d genus-g curves in P

n with a fixed generic complex structure on
the normalization and passing through the constraints µ1, . . . , µN .

For g = 0, 1, one can define the numbers ng,d(µ) for constraints of
appropriate total codimension by counting the number of equivalence
classes under the action of the now infinite group Aut(Σ) on the set
HΣ,d(µ) defined as in (1.2) above. It is shown in [10] that

n0,d(µ) = RT0,d(µ1, µ2, µ3;µ4, . . . , µN ),

where RT0,d(·; ·) denotes the symplectic invariant of P
n as defined in [10].

For g = 1, in [4] the difference

RTg,d(µ1;µ2, . . . , µN ) − 2ng,d(µ)

is expressed as an intersection number on a blowup of the space of
degree-d (N+1)-marked rational curves passing through the constraints
µ1, . . . , µN . This number is shown to be computable, and explicit for-
mulas are given in the n = 2, 3 cases. On the other hand, the symplectic
invariant is easily computable from the two composition laws of [10]. A
completely different approach for the n = 2, g = 1 case is given in [8].
Using this algebraic approach, [5] express n2,d in the n = 2 case in terms
of the numbers n0,d′ with d′ ≤ d.

In this paper, we extend the approach of [4] to compute the difference

RT2,d(·;µ1, . . . , µN ) − 2n2,d(µ)

in the n = 2, 3 cases. The reason for the factor of two above is that the
automorphism group of a generic genus-two Riemann surface has order
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two. The following two theorems are the main results of this paper.
The two tables list some low-degree genus-two numbers. Evidence in
support of the two formulas is described in Subsection 5.8, where more
low-degree numbers for P

3 are also given.

Theorem 1.1. Let n2,d denote the number of genus-two degree-d
curves that pass through 3d−2 points in general position in P

2 and have
a fixed generic complex structure. With nd = n0,d,

n2,d = 3(d2 − 1)nd

+
1
2

∑
d1+d2=d

(
d2

1d
2
2 + 28 − 16

9d1d2 − 1
3d− 2

)(
3d− 2
3d1 − 1

)
d1d2nd1nd2 .

d 1 2 3 4 5 6 7

n2,d 0 0 0 14,400 6,350,400 3,931,128,000 3,718,909,209,600

Theorem 1.2. If d is a positive integer and µ is a tuple of p points
and q lines in general position in P

3 with 2p+ q = 4d− 3,

2n2,d(µ) = RT2,d(·;µ) − CR(µ),

where CR(µ) is the sum of the intersection numbers of explicit tauto-
logical classes in the space of stable rational maps into P

3.

degree 4 5 6

(p,q) (3,7) (2,9) (1,11) (8,1) (0,17) (10,1)

n2,d(µ) 14,400 307,200 4,748,160 9,600 7,494,574,433,280 1,301,760

A formula for CR(µ) is given in Theorem 5.28. Intersection numbers
of tautological classes are shown to be computable in [9]. In fact, we
give a method of computing these numbers along the lines of that in [4],
which is slightly different from the method of [9]; see Subsection 5.7.

The numbers we obtain in the n = 2 case are different from the
numbers given in [5]. However, our numbers can be recovered via the
approach of [5]. In particular,

n2,d = 6
(
nKQR

2,d + τd

)
,

where τd is the number of degree-d tacnodal rational curves passing
through (3d − 2) points in general position in P

2. The factor of six is
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a minor omission on the authors’ part. The contribution of 6τd arises
from a three-component stratum [5] ruled out by their Remark 3.12,
which is stated without a proof. Details can be found in [14].

This paper combines the topological tools of Section 3 with the ex-
plicit analytic structure theorems of [13]. Together these give a general
framework that will hopefully provide a way of computing positive-genus
enumerative invariants from the symplectic ones in any homogeneous
Kahler manifold. In fact, the methods of this paper should apply, with
very little change, at least up to genus seven in P

2, to the g = 3 case
in P

3, and to the g = 2 case in P
4. Genus-three plane fixed-complex-

structure curves have been enumerated; see [15].
Along the way, we enumerate cuspidal rational curves in P

2 and two-
component rational curves connected at a tacnode in P

3; see Lemmas 5.4
and 5.5. The formula of Lemma 5.4 is not new. However, the methods
of this paper can be used to count rational curves with singularities
of “local nature.” By “local nature,” we mean that a description of
the singularities can be given that involves at most one point of each
component of the normalization of the curve. For example, a tacnode
on a one-component curve is not of “local nature,” but a tacnode at
the node common to two irreducible components of a curve is. So is
a cusp of any arbitrary pre-specified form. Unlike many approaches in
algebraic geometry, our methods are not limited to P

2 and apply just as
well to arbitrary-dimensional projective spaces. In fact, the machinery
itself can be used on other homogeneous manifolds to express counts of
singular rational curves in terms of intersections of tautological classes
on moduli spaces of rational maps. However, there is no general method
of computing these intersections for homogeneous manifolds other than
the projective spaces.

The author is grateful to T. Mrowka for pointing out the paper [4]
and many useful discussions, and G. Tian for first introducing him
to Gromov-Witten invariants. The author also thanks R. Vakil for
sharing some of his expertise in enumerative algebraic geometry, and
A. J. de Jong and J. Starr for help with understanding [5].

1.2 Summary

If ν ∈ Γ(Σ× P
n; Λ0,1π∗ΣT

∗Σ⊗ π∗
PnTP

n), let MΣ,ν,d denote the set of all
smooth maps u from Σ to P

n of degree d such that ∂u|z = ν|(z,u(z)) for
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all z ∈ Σ. If µ is as above, put

MΣ,ν,d(µ) =
{

(y1, . . . , yN ;u) : u ∈ MΣ,ν,d;

yl ∈ Σ, u(yl) ∈ µl ∀l = 1, . . . , N
}
.

For a generic ν, MΣ,ν,d is a smooth finite-dimensional oriented manifold,
and MΣ,ν,d(µ) is a zero-dimensional finite submanifold of MΣ,ν,d ×ΣN ,
whose cardinality (with sign) depends only the homology classes of
µ1, . . . , µN ; see [10]. The symplectic invariant RTg,d(;µ) is the signed
cardinality of the set MΣ,ν,d(µ).

If ‖νi‖C0 −→ 0 and (y
i
;ui) ∈ MΣ,νi,d(µ), then a subsequence of

{(y
i
;ui)}∞i=1 must converge in the stable-map topology to one of the

following:

(1) an element of HΣ,d(µ);

(2) (ΣT , y, u), where ΣT is a bubble tree of S2’s attached to Σ with
marked points y1, . . . , yN , and u : ΣT −→ P

n is a holomorphic map
such that u(yl) ∈ µl for l = 1, . . . , N , and:

(2a) u|Σ is simple and the tree contains at least one S2;

(2b) u|Σ is multiply-covered;

(2c) u|Σ is constant and the tree contains at least one S2.

By Proposition 6.6, the case (2a) does not occur if the constraints
are in general position. Furthermore, if g = 2, (2b) cannot occur either
if n = 2, 3 or if n = 4 and d �= 2. It is well-known that n2,2(µ) = 0, and
thus the case n = 4 and g = d = 2 presents no interest. Our approach
will be to take t very small and to count the number of elements of
MΣ,tν,d(µ) that lie near the maps of type (2c). The rest of the elements
of MΣ,tν,d(µ) must lie near the space HΣ,d(µ). By Proposition 3.30
in [13] and Corollary 6.5, there is a one-to-one correspondence between
the elements of HΣ,d(µ) and the nearby elements of MΣ,tν,d(µ), at least
if d ≥ 3. If d = 1, 2, HΣ,d(µ) = ∅; see the proof of Proposition 6.6.
Thus, we are able to compute the cardinality of HΣ,d(µ) by computing
the total number of elements of MΣ,tν,d(µ) that lie near the maps of
type (2c).

In Subsection 1.3, we summarize our notation for spaces of bubble
maps and vector bundle over them. For details, the reader is referred
to [13]. In Section 2, we describe an obstruction-bundle setup and state
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Theorem 2.7, which relates the elements of MΣ,d,tν(µ) lying near the
maps of type (2c) to the zero set of a map between two bundles. We
also describe the local structure of certain spaces of stable rational maps.
These spaces are very familiar in algebraic geometry, but for our com-
putations in Section 5 we need the analytic estimate of Theorem 2.8.

In Section 3, we introduce a category of mostly smooth (ms) objects
and maps and present the topological tools used in Section 4. We view
moduli spaces of rational maps as ms-manifolds, rather than as stacks.
This approach allows to study the behavior of certain bundle sections
over these topological spaces using the analytic estimate of Theorem 2.8.

In Section 4, we use the topological tools of Subsection 3.1 to show
that the number of zeros of the maps of Theorem 2.7 is the same as
the number of zeros of explicit affine maps between vector bundles over
cartesian products of spaces of rational maps with Σk. The results of
this simplification are summarized in Subsection 4.9. In Section 5, we
relate the zeros of these affine maps to the intersection numbers of spaces
of stable rational maps into P

n. We use Theorem 2.8 and Section 3 for
local excess-intersection type of computations. We conclude with the
very explicit formula of Theorem 1.1 in the n = 2 case and a somewhat
less explicit one of Theorem 5.28 in the n = 3 case.

1.3 Notation

In this subsection, we give a brief description of the most important
notation used in this paper. See Section 2 in [13] for more details.

Let qN , qS : C −→ S2 ⊂ R
3 be the stereographic projections map-

ping the origin in C to the north and south poles, respectively. Explic-
itly,

qN (z) =
(

2z
1 + |z|2 ,

1 − |z|2
1 + |z|2

)
∈ C × R,(1.3)

qS(z) =
(

2z
1 + |z|2 ,

−1 + |z|2
1 + |z|2

)
.

We denote the south pole of S2, i.e., the point (0, 0,−1) ∈ R
3, by ∞.

Let

e∞ = (0, 0, 1) = dqS

∣∣∣
0

( ∂
∂s

)
∈ T∞S

2,(1.4)

where we write z = s + it ∈ C. We identify C with S2 − {∞} via the
map qN . If N is any nonnegative integer, let [N ] = {1, . . . , N}.
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Definition 1.3.

(1) A finite partially ordered set I is a linearly ordered set if for all
i1, i2, h ∈ I such that i1, i2 < h, either i1 ≤ i2 or i2 ≤ i1.

(2) A linearly ordered set I is a rooted tree if I has a unique minimal
element, i.e., there exists 0̂ ∈ I such that 0̂ ≤ i for all i ∈ I.

If I is a linearly ordered set, let Î be the subset of the non-minimal
elements of I. For every h ∈ Î, denote by ιh ∈ I the largest element of
I which is smaller than h. We call ι : Î −→ I the attaching map of I.
Suppose I =

⊔
k∈K

Ik is the splitting of I into rooted trees such that k is

the minimal element of Ik. If 1̂ �∈ I, we define the linearly ordered set
I �k 1̂ to be the set I � {1̂} with all partial-order relations of I along
with the relations

k < 1̂, 1̂ < h if h ∈ Îk.

If I is a rooted tree, we write I � 1̂ for I �k 1̂.
If S = Σ or S = S2 and M is a finite set, a P

n-valued bubble map
with M -marked points is a tuple

b =
(
S,M, I;x, (j, y), u

)
,

where I is a linearly ordered set, and

x : Î −→ S ∪ S2, j : M −→ I, y : M −→ S ∪ S2, and

u : I −→ C∞(S; Pn) ∪ C∞(S2; Pn)

are maps such that

xh ∈
{
S2 − {∞}, if ιh ∈ Î;
S, if ιh �∈ Î ,

yl ∈
{
S2 − {∞}, if jl ∈ Î;
S, if jl �∈ Î ,

ui ∈
{
C∞(S2; Pn), if i ∈ Î;
C∞(S; Pn), if i �∈ Î ,

and uh(∞) = uιh(xh) for all h ∈ Î. We associate such a tuple with
Riemann surface

Σb =

(⊔
i∈I

Σb,i

)/
∼, where Σb,i =

{
{i} × S2, if i ∈ Î;
{i} × S, if i �∈ Î ,

and (h,∞) ∼ (ιh, xh) ∀h ∈ Î ,
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with marked points (jl, yl) ∈ Σb,jl
, and continuous map ub : Σb −→ P

n,
given by ub|Σb,i

= ui for all i ∈ I. We require that all the singular
points of Σb, i.e., (ιh, xh) ∈ Σb,ιh for h ∈ Î, and all the marked points
be distinct. In addition, if Σb,i = S2 and ui∗[S2] = 0 ∈ H2(Pn; Z), then
Σb,i must contain at least two singular and/or marked points of Σb other
than (i,∞). Two bubble maps b and b′ are equivalent if there exists a
homeomorphism φ : Σb −→ Σb′ such that ub = ub′ ◦φ, φ(jl, yl) = (j′l, y

′
l)

for all l ∈M , φ|Σb,i
is holomorphic for all i ∈ I, and φ|Σb,i

= Id if S = Σ
and i ∈ I − Î.

The general structure of bubble maps is described by tuples T =
(S,M, I; j, d), with di ∈ Z describing the degree of the map ub on Σb,i.
We call such tuples bubble types. Bubble type T is simple if I is a rooted
tree; T is is basic if Î = ∅; T is semiprimitive if ιh �∈ Î for all h ∈ Î.
We call semiprimitive bubble type T primitive if jl ∈ Î for all jl ∈M .
The above equivalence relation on the set of bubble maps induces an
equivalence relation on the set of bubble types. For each h, i ∈ I, let

HiT = {h ∈ Î : ιh = i}, MiT = {l ∈M : jl = i},

χT h =


0, if di = 0 ∀i ≤ h;
1, if dh �= 0, but di = 0 ∀i < h;
2, otherwise.

Let HT denote the space of all holomorphic bubble maps with struc-
ture T .

The automorphism group of every bubble type T we encounter in
Sections 4 and 5 is trivial. Thus, every bubble type discussed below is
presumed to be automorphism-free.

If S = Σ, we denote by MT the set of equivalence classes of bubble
maps in HT . Then there exists M(0)

T ⊂ HT such that MT is the
quotient of M(0)

T by an (S1)Î -action. Corresponding to this action, we
obtain |Î| line orbi-bundles {LhT −→ MT : h ∈ Î}. The bundle of
gluing parameters in this case is

FT =
⊕
h∈Î

FhT , where Fh,[b]T =

{
Lh,[b]T ⊗ L∗

ιh,[b]T , if ιh ∈ Î;

Lh,[b]T ⊗ Txh
Σ, if ιh �∈ Î .

Let F ∅T = {υ = (υh)h∈Î ∈ FT : υh �= 0 ∀h ∈ Î}. Each line orbi-

bundle FhT −→ MT is the quotient of a line bundle F (0)
h T −→ M(0)

T
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by a GT ≡ (S1)Î -action. We denote by F (∅)T the preimage of F ∅T in
F (0)T ≡

⊕
h∈Î

F
(0)
h T . The bundles F ∅T , F (∅)T , and F

(0)
h T are defined

even if the automorphism group of T is nontrivial.
For each bubble type T = (S2,M, I; j, d), let

UT =
{

[b] : b =
(
S2,M, I;x, (j, y), u

)
∈ HT ,

ui1(∞) = ui2(∞) ∀i1, i2 ∈ I − Î
}
.

Similarly to the S = Σ case above, UT is the quotient of a subset BT
of HT by a G̃T ≡ (S1)I -action. Denote by U (0)

T the quotient of BT by
GT ≡ (S1)Î ⊂ G̃T . Then UT is the quotient of U (0)

T by the residual

G∗
T ≡ (S1)I−Î ⊂ G̃T

action. Corresponding to these quotients, we obtain line orbi-bundles
{LhT −→ U (0)

T : h ∈ Î} and {LiT −→ UT : i ∈ I}. Let

FT =
⊕
h∈Î

FhT −→U (0)
T , where Fh,[b]T =

{
Lh,[b]T ⊗ L∗

ιh,[b]T , if ιh ∈ Î;

Lh,[b]T , if ιh �∈ Î;

FT =
⊕
h∈Î

FhT −→ UT , where Fh,[b]T = Lh,[b]T ⊗ L∗
ιh,[b]T .

The orbi-bundles FhT and FiT are quotients of line bundles over BT
similarly to the S = Σ case.

The stable-map topology on the space of equivalence classes of bub-
ble maps induces a partial ordering on the set of bubble types and their
equivalence classes such that the spaces

MT =
⋃

T ′≤T
MT ′ , U (0)

T =
⋃

T ′≤T
U (0)
T ′ , and UT =

⋃
T ′≤T

UT ′

are compact and Hausdorff. The G∗
T -action on U (0)

T extends to an action

on U (0)
T , and thus line orbi-bundles LiT −→ UT with i ∈ I − Î extend

over UT . The evaluation maps

evl : HT −→ P
n, evl

(
(S,M, I;x, (j, y), u)

)
= ujl

(yl),

descend to all the quotients and induce continuous maps on MT , UT ,
and U (0)

T . If µ = µM is an M -tuple of submanifolds of P
n, let

MT (µ) = {b ∈ MT : evl(b) ∈ µl ∀l ∈M}
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and define spaces UT (µ), UT (µ), etc. in a similar way. If S = S2, we
define another evaluation map,

ev : BT −→ P
n by ev

(
(S2,M, I;x, (j, y), u)

)
= u0̂(∞),

where 0̂ is any minimal element of I. This map descends to U (0)
T and UT .

If µ = µ{0̂}�M is a tuple of constraints, let

UT (µ0̂;µM ) = {b ∈ UT (µM ) : ev(b) ∈ µ0̂}

and define U (0)
T (µ0̂;µM ), etc. similarly. If S = Σ, T is a simple bubble

type, and d0̂ = 0, define

ev : HT −→ P
n by ev

(
(Σ,M, I;x, (j, y), u)

)
= u0̂(Σ).

This map is well-defined, since u0̂ is a degree-zero holomorphic map and
thus is constant.

If T is any bubble type, let 〈T 〉 be the basic bubble such that
T ≤ 〈T 〉. If T is a simple bubble type, let T be the bubble type ob-
tained from T by dropping the minimal element 0̂ from the indexing
set I and the subset M0̂T from M . Note that if T is primitive, T is
basic.

Finally, if X is any space, F −→ X a normed vector bundle, and
δ : X −→ R is any function, let

Fδ =
{
(b, v) ∈ F : |v|b < δ(b)

}
.

Similarly, if Ω is a subset of F , let Ωδ = Fδ ∩ Ω. If υ = (b, v) ∈ F ,
denote by bυ the image of υ under the bundle projection map, i.e., b in
this case.

2. Analysis

2.1 The basic setup

In this section, we focus on bubble types T =
(
S,M, I; j, d

)
such that

either S = S2 or d0̂ = 0. In the first case, we describe a small neigh-
borhood of UT (µ) in U 〈T 〉(µ) and the behavior of sections of certain
bundles over U 〈T 〉(µ) near UT (µ); see Theorem 2.8. This theorem is de-
duced from Theorem 3.33 in [13]. If T is a simple bubble type, S = Σ,
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and d0̂ = 0, we describe the elements of MΣ,tν,d(µ) lying near MT (µ)
as the zero set of a map defined on an open subset of the bundle FT ;
see Theorem 2.7. The map takes values in a bundle over MT (µ), which
is the analogue of Taubes’s obstruction bundle of [11] in this setting.
Theorem 2.7 is a consequence of Theorem 3.29 in [13], which requires
us to make two major choices. This is done in the next two subsections.

If T =
(
S,M, I; j, d

)
and S = S2, by Corollaries 6.3 and 6.5, T is a

(Pn, J)-regular bubble type in the sense of Definition 3.1 in [13]. This
regularity property implies that:

(R1) HT is a smooth manifold.

(R2) For any b =
(
S,M, I;x, (j, y), u

)
∈ HT , a neighborhood of b in

HT , is modeled on

ker
(
Db : Γ(b) −→ Γ0,1(b)

)
⊕
⊕
h∈I

Txh
Σb,ιh ⊕

⊕
l∈M

Tyl
Σb,jl

.

(R3) Db : Γ(b) −→ Γ0,1(b) is surjective for all b ∈ HT .

Here Γ0,1(b) denotes the space of u∗bTP
n-valued (0, 1)-forms on the com-

ponents of Σb, while Γ(b) is the set of vector fields ξ on the components
of Σb that agree at the nodes and such that ξ(i1,∞) = ξ(i2,∞) for
all i1, i2 ∈ I − Î. The operator Db is the linearization of the ∂-operator
with respect to a connection in TP

n. Along HΣ, it is independent of
the choice of the connection. On the other hand, if T is a simple bubble
type, S = Σ, and d0̂ = 0, by the same two corollaries, T is a (Pn, J)-
semiregular bubble type in the sense of Definition 3.2 in [13]. This
means that (R1) and (R2) are satisfied, with Γ(b) defined as above but
omitting the last condition. Property (R3) is not satisfied, and in fact
by the two corollaries,

coker Db ≈ H0,1
Σ ⊗ Tev(b)P

n ∀b ∈ HT ,

where H0,1
Σ is the space of harmonic (0, 1)-forms on Σ. This cokernel

bundle descends to a bundle Γ0,1
− −→ MT , which will be our obstruction

bundle.

If S = Σ, for the gluing construction in [13], we choose a smooth
family {gb,0̂ : b ∈ HT } of metrics on Σ such that for all

b =
(
Σ,M, I;x, (j, y), u

)
∈ HT ,
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the metric gb,0̂ is flat on a neighborhood of xh in Σ for all h ∈ Î

such that ιh = 0̂. This family of metrics, in fact, depends only on the
sets {xh : ιh = 0̂}. Along with the standard metric on S2, the met-
ric gb,0̂ induces a Riemannian metric gb = (gb,i)i∈I on Σb =

⋃
i∈I

Σb,i. If

S = S2, we take gb,i to be the standard metric on Σb,i = S2 for all i ∈ I.
With notation as above, if xh, z ∈ Σb,0̂ = Σ, let rb,h(z) = dgb,0̂

(xh, z). If
xh, z ∈ Σb,i = S2 and z �= ∞, let rb,h(z) = |z − xh|.

For each υ = (b, vh)h∈Î ∈ F (0)T sufficiently small, in [13] we then
define a complex curve Συ, smooth maps qυ : Συ −→ Σb and qυ,i :
Συ,0̂ −→ Σb for i ∈ I, and Riemannian metric gυ on Σ on Συ such that:

(G1) The linearly ordered set corresponding to Συ is

I(υ) ≡ I − {h ∈ Î : vh �= 0}.

(G2) The map qυ|Συ,0̂
factors through each of the maps qυ,i.

(G3) qυ : (Συ, gυ) −→ (Σb, gb) is an isometry (and thus holomorphic)
outside of the annuli

A+
υ,h = q−1

υ,ιh

({
z ∈ Σb,ιh : |vh|

1
2 ≤ rb,h(z) ≤ 2|vh|

1
2
})

;(2.1)

A−
υ,h = q−1

υ,ιh

({
z ∈ Σb,ιh :

1
2
|vh|

1
2 ≤ rb,h(z) ≤ |vh|

1
2

})
.

(G4) qυ,ιh : (A±
υ,h, gυ) −→

(
qυ,ιh(A±

υ,h), gb

)
is an isometry.

The map qυ collapses disjoint circles on Συ and identifies the resulting
surfaces with S2 in a manner encoded by υ. Alternatively, (Συ, gυ) can
be viewed as the surface obtained by smoothing (some of) the nodes
of Σb. The maps qυ and qυ,i are constructed explicitly by fixing a smooth
function β : R −→ [0, 1] such that

β(t) =

{
0, if t ≤ 1;
1, if t ≥ 2,

and β′(t) > 0 if t ∈ (1, 2).(2.2)

If r > 0, let βr ∈ C∞(R; R) be given by βr(t) = β(r−
1
2 t). Note that

supp(βr) = [r
1
2 , 2r

1
2 ], ‖β′r‖C0 ≤ Cβr

− 1
2 , and ‖β′′r ‖C0 ≤ Cβr

−1.

(2.3)
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These cutoff functions will not appear in the main statements of this
paper, but they do show up in the proofs of Lemma 2.1, Theorem 2.8,
and Proposition 4.4. Having constructed the maps qυ, we let b(υ) =
(Συ, uυ) = (Συ, ub ◦ qυ). The marked points on Συ are the preimages of
the marked points of Σb under the map qυ.

We also need to choose a smooth family
{
gPn,b : b ∈ M(0)

T

}
of metrics

on P
n invariant under the equivalence relation on M(0)

T if S = Σ and on
BT if S = S2. While taking gPn,b to be the standard metric on P

n may
be the canonical choice, for computational reasons it is more convenient
to take gPn,b = gPn,ev(b), where {gPn,q : q ∈ P

n} is the family of metrics
of Lemma 2.1.

Lemma 2.1. There exist rPn > 0 and a smooth family of Kahler
metrics {gPn,q : q ∈ P

n} on P
n with the following property. If Bq(q′, r) ⊂

P
n denotes the gPn,q-geodesic ball about q′ of radius r, the triple (Bq(q,
rPn), J, gPn,q) is isomorphic to a ball in C

n for all q ∈ P
n.

Proof. On the open set U0 = {[X0 : · · · : Xn] ∈ P
n : X0 �= 0}, the

Fubini-Study symplectic form is given by

ωPn =
i

2π
∂∂ ln(1 + f0), where f0([X0 : · · · : Xn]) =

∑
k∈[n]

|Xk/X0|2;

(2.4)

see [3, p. 31]. Let q = [1 : 0 : · · · : 0]. Set

ωPn,q,ε =
i

2π
∂∂
{
f0 + (βε2 ◦ f0)

(
ln(1 + f0) − f0

)}
.(2.5)

Note that ωPn,q,ε agrees with ωPn outside of the set {f0 ≤ 2ε} and with
the standard symplectic form ωCn on {f0 ≤ ε}. Here we view ωCn as
a form on U0 via the coordinates z0,k = Xk/X0, k ∈ [n]. In particular,
ωPn,q,ε is globally defined, and the corresponding Riemannian metric on
{f0 ≤ ε} is flat. Furthermore,

ωPn,q,ε =
{
(1 − βε2 ◦ f0)ωCn + (βε2 ◦ f0)ωPn

}
(2.6)

+
i

2π

{(
∂(βε2 ◦ f0)

)(
∂f̃0

)
−
(
∂(βε2 ◦ f0)

)(
∂f̃0

)
+
(
∂∂(βε2 ◦ f0)

)
f̃0

}
,

where f̃0 = ln(1 + f0) − f0. On the set {f0 ≤ 2ε} with ε ≤ 1
2 ,∥∥f̃0

∥∥
C0 ≤ Cε2 and

∥∥df̃0

∥∥
C0 ≤ Cε

3
2 ,(2.7)
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where
∥∥df̃0

∥∥
C0 denotes the C0-norm with respect to the standard metric

on C
n. Furthermore, by (2.3),∥∥d(βε2 ◦ f0)

∥∥
C0 ≤ Cε−1ε

1
2 ,(2.8) ∥∥∇2(βε2 ◦ f0)

∥∥
C0 ≤ C

(
ε−2ε

1
2 ε

1
2 + ε−1

)
,

where again all the norms are computed with respect to the standard
metric on C

n. Equations (2.7) and (2.8) imply that the term on the
second line of (2.6) tends to 0 as ε goes to 0. Thus by (2.6), we can
choose ε > 0 such that ωPn,q ≡ ωPn,q,ε is a symplectic form on all of P

n.
Note that ωPn,q is invariant under the action of the stabilizer of q in
SUn+1, which is the subgroup

Stabp(SUn+1) =

{(
det(h) 0

0 h

)
: h ∈ Un

}
⊂ SUn+1.

We can define a smooth family of symplectic Kahler forms on P
n by

ωPn,g·q = g∗ωPn,q, g ∈ SUn+1.

The above invariance property of ωPn,q insures that ωPn,g·q depends only
on g · q. We can now take gPn,g·q to be the metric corresponding to the
symplectic form ωPn,g·q and the standard complex structure J on P

n.
We denote by expb and Πb,X for X ∈ TP

n the gPn,b-exponential map
and gPn,b-parallel transport along the gPn,b-geodesic for X, respectively.
If υ ∈ F (0)T , let

gPn,υ = gPn,bυ , expυ = expbυ
, Πυ,X = Πbυ ,X .

If υ ∈ F (0) is sufficiently small, we define L2-norms inner-products on

Γ(υ) ≡ Γ
(
b(υ)
)

and Γ0,1(υ) ≡ Γ0,1
(
b(υ)
)

via the metrics gPn,υ and gυ in the usual way. Denote by Dυ the lin-
earization of the ∂-operator with respect to the metric gPn,υ on P

n and
by D∗

υ its formal adjoint with respect to the above (L2, υ) inner-product.
We fix p > 2 and denote by ‖ · ‖υ,p,1 and ‖ · ‖υ,p the modified Sobolev
(Lp

1, gPn,υ, gυ) and (Lp, gPn,υ, gυ) norms of [6] on Γ(υ) and Γ0,1(υ), re-
spectively. Let Lp

1(υ) and Lp(υ) be the corresponding completions. A
description of the modified Sobolev norms in the notation of this paper
can be found in [13]. They are needed only for certain technical aspects
of this paper.
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2.2 Obstruction bundle

In this subsection, in the case S = Σ, we choose an obstruction bundle
over F (∅)Tδ in the sense of Definition 3.13 in [13] with δ ∈ C∞(MT ; R+)
sufficiently small.

Let δT ∈ C∞(MT ; R+) be such that

4δT (b)‖dui‖b,C0 < rPn ∀b =
(
Σ,M, I;x, (j, y), u

)
∈ MT , i ∈ I.

We assume that the above function δ is such that 8δ
1
2 < δT . If υ ∈

F (∅)Tδ and Xψ ∈ Tev(bυ)P
n ⊗H0,1

Σ , define RυXψ ∈ Γ0,1(uυ) as follows.
If z ∈ Συ = Σ is such that qυ(z) ∈ Σbυ ,h for some h ∈ Î with χT h = 1
and
∣∣q−1

S (qυ(z))
∣∣ ≤ 2δT (bυ), by our assumption on δT , we can define

uυ(z) ∈ Tev(bυ)P
n by

expυ,ev(bυ) uυ(z) = uυ(z), |uυ(z)| < rPn .

Given z ∈ Σ, let hz ∈ I be such that qυ(z) ∈ Σbυ ,hz . If w ∈ TzΣ, put

RυXψ|zw =


0, if χT hz = 2;
β
(
δT (bυ)|qυz|

)
(ψ|zw)Πυ,uυ(z)X, if χT hz = 1;

(ψ|zw)X, if χT hz = 0.

Let Γ0,1
− (υ) be the image of Tev(bυ)P

n ⊗H0,1
Σ under the map Rυ. Denote

by π0,1
υ,− the (L2, υ)-orthogonal projection of Lp(υ) onto Γ0,1

− (υ).
The spaces Γ0,1

− (υ) form our obstruction bundle over F (∅)T . We need
to show that these spaces satisfy the requirements of Definition 3.13
in [13]. First, the rate of change of π0,1

υ,− with respect to changes in υ
should be controlled by a function of bυ only. The proof of this fact is
similar to the proof of the second statement of (5) of Lemma 3.6 in [13].
The next lemma implies that the remaining conditions are also satisfied.
For any h ∈ Î, put

|υ|h =
∏

i∈Î,i≤h

|vi|.

Lemma 2.2. For any υ ∈ F (∅)Tδ and Xψ ∈ Tev(bυ)P
n ⊗ H0,1

Σ ,
D∗

υRυXψ vanishes outside of the annuli

Ãυ,h ≡ q−1
υ

({
(h, z) ∈ Σbυ ,h : δT (bυ) ≤ |q−1

S (z)| ≤ 2δT (bυ)
})
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with h ∈ Î such that χT h = 1. Furthermore, there exists C ∈ C∞(MT ;
R

+) such that:

‖D∗
υRυXψ‖υ,C0 ≤ C(bυ)

 ∑
χT h=1

|υ|h

 |X|υ‖ψ‖2;(1)

(
1 − C(bυ)−1|υ|

2
p̃
)
‖Xψ‖υ,p̃ ≤ ‖RυXψ‖υ,p̃(2)

≤
(
1 + C(bυ)−1|υ|

2
p̃
)
‖Xψ‖υ,p̃,

where p̃ = 2, p.

Proof. The first statement and estimate (2) are immediate from
the definition of RυXψ and of the norms; see [13]. Let (s, t) be the
conformal coordinates on Ãυ,h given by qυ(s, t) = s + it ∈ C. Write
gυ = θ−2(s, t)(ds2 + dt2). Then

θ =
1
2
(
1 + s2 + t2

)
.(2.9)

Put

ξ(s, t) =
{
RυXψ

}
(s,t)

∂s(2.10)

= β
(
δT (bυ)

√
s2 + t2

)(
ψ|(s,t)∂s

)
Πυ,uυ(s,t)X.

Then by [7, p. 29],

D∗
υRυXψ|z = θ2

(
−D

ds
ξ + J

D

dt
ξ

)
,(2.11)

where D
ds and D

dt denote covariant differentiation with respect to the
metric gPn,υ on P

n. Since this metric is flat on the support of ξ and
ψ ∈ H0,1

Σ , Equations (2.9)–(2.11) give

D∗
υRυXψ|z =

(
1 + s2 + t2

)2
4

{
β′|δT (bυ)

√
s2+t2δT (bυ)

−s+ it√
s2 + t2

}
(2.12)

·
(
ψ|(s,t)∂s

)
Πυ,uυ(s,t)X.

Since the right-hand-side of (2.12) vanishes unless δT (bυ)−1 ≤
√
s2 + t2

≤ 2δT (bυ)−1, it follows that∣∣D∗
υRυXψ

∣∣
υ,z

≤ C(bυ)
∣∣ψ|(s,t)∂s

∣∣|X|υ ≤ C ′(bυ)|υ|h‖ψ‖2|X|(2.13)
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Claim (1) follows from (2.13).
Let R̃υ : H0,1

Σ ⊗ Tev(bυ)P
n −→ Γ−(υ) be the adjoint of R−1

υ , i.e.,〈〈
R̃υXψ,RυX

′ψ′〉〉
υ,2

=
〈〈
Xψ,X ′ψ′〉〉

bυ ,2
= 〈X,X ′〉bυ〈ψ,ψ′〉2(2.14)

for all X,X ′ ∈ Tev(bυ)P
n and ψ,ψ′ ∈ H0,1

Σ . By Lemma 2.2, ‖R̃υ−Rυ‖2 ≤
C(bυ)|υ|.

2.3 Tangent-bundle model

We now describe our choice for a tangent-bundle model, which is the
subject of Definition 3.11 in [13].

For any υ ∈ F (0)T sufficiently small and ξ ∈ Γ(bυ), define Rυξ ∈
Lp

1(υ) by {Rυξ}(z) = ξ
(
qυ(z)
)
. Let Γ−(υ) be the image of ker(Dbυ)

under the map Rυ. Denote by Γ+(υ) its (L2, υ)-orthogonal complement
in Lp

1(υ). Let πυ,± be the (L2, υ)-orthogonal projection onto Γ±(υ).
If x ∈ Σ, let H−

Σ(x) = {ψ ∈ H0,1
Σ : ψ|x = 0}. This is a codimension-

one subspace of H0,1
Σ for all x ∈ Σ; see [3]. Denote by H+

Σ(x) its
L2-orthogonal complement. The space H+

Σ(x) is independent of the
choice of a Kahler metric on (Σ, jΣ). For any h ∈ Î, we put x̃h(υ) =
q−1
υ,ιh

(ιh, xh). Fix h∗ ∈ Î such that χT h∗ = 1. Let

Γ−(υ) = D∗
υRυ

(
H+

Σ(x̃h∗(υ)) ⊗ Tev(bυ)P
n
)
.

Denote by Γ+(υ) the (L2, υ)-orthogonal complement of Γ−(υ) in Lp
1(υ)

and by πυ,± the (L2, gυ)-orthogonal projections onto Γ±(υ). Let Γ̃+(υ)
be the image of Γ+(υ) under πυ,+ and let Γ̃−(υ) be the (L2, υ)-orthogonal
complement of Γ̃+(υ) in Lp

1(uυ).
The spaces Γ̃−(υ) will be our tangent-space model. We need to check

that the requirements of Definition 3.11 in [13] are satisfied. Let

{h ∈ Î : χT (h) = 1} = {h1 = h∗, h2, . . . , hm}.

If z ∈ Σb,hr is such that |q−1
S (z)| ≤ 2δ(b), define uhr(z) ∈ Tev(b)P

n by

expb,ev(b) uhr(z) = uhr(z), |uhr(z)|b < rPn .

If X ∈ Tev(b)P
n, define Rb,hrX ∈ Γ(uhr) by

Rb,hrX(z) =

{
0, if |z| ≥ 2δT (b)−1;

β′
∣∣
δT (b)|z|

(1+|z|2)2z
|z| Πb,uhr (z)X, otherwise.
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Since Rb,hrX vanishes at all the nodes of Σb by assumption on δT , we
can extend Rb,hrX by zero to an element of Γ(b). If c = c[m] ∈ C

[m] is
different from zero, let

Γ−(b; c) =

∑
r∈[m]

crRb,hrX : X ∈ Tev(b)P
n

 .
Denote by Γ+(b; c) the (L2, b)-orthogonal complement of Γ−(b; c) in
Γ(b). Let π(b;c),± be the corresponding (L2, b)-orthogonal projection
maps. Let Γ̃+(b; c) = π(b,c),+

(
Γ+(b)
)

and let Γ̃−(b; c) be its (b, L2)-
orthogonal complement.

Lemma 2.3. There exist δ, C ∈ C∞(M(0)
T ; R+) such that for all

υ ∈ F (∅)Tδ and ξ ∈ Γ−(υ),

‖ξ‖υ,p,1 ≤ C(bυ)‖ξ‖υ,2.

In addition, dimC Γ−(υ) = dimC Γ−(bυ; c) = n for any nonzero c ∈ C
m.

Furthermore, if υk −→ b ∈ M(0)
T and ξk ∈ Γ−(υ) is such that ‖ξk‖υk,2 =

1, then there exists a nonzero c ∈ C
m and ξ ∈ Γ−(b; c) with ‖ξ‖b,2 = 1

such that a subsequence of {ξk} C0-converges to ξ.

Remark. The last statement means that a subsequence of {ξk}
C0-converges to ξ on compact subsets of Σ∗

b and the norms ‖ξk‖υk,p,1

are uniformly bounded; see Definition 3.9 in [13].

Proof. (1) Let ψ be a generator of H0,1
Σ,+

(
x̃h1(υ)

)
. If X ∈ Tev(bυ)P

n

and r ∈ [m], define Rυ,hrX ∈ Γ(uυ) as follows. If qυ(z) ∈ Σbυ ,hr , let

Rυ,hrX(z) =

∑
r∈[m]

∣∣ψx̃r(υ)d(q
−1
υ,hr

◦ qN )∂s

∣∣−1

(1 + |qυz|2)2qυz
|qυz|

· β′
∣∣
δT (bυ)|qυz|

(
ψzd(q−1

υ,hr
◦ qN )∂s

)
Πbυ ,uυ(z)X.

Note that the sum is not zero, since ψ|x̃h1
(υ) �= 0. If qυ(z) �∈ Σbυ ,hr , we

let Rυ,hrX(z) = 0. Since the modified Sobolev norms are equivalent to
the standard ones away from the thin necks of (Συ, gυ),

∥∥Rυ,hrX
∥∥

υ,p,1
≤ C(bυ)

∑
r∈[m]

∣∣ψx̃r(υ)d(q
−1
υ,hr

◦ qN )∂s

∣∣−1

(2.15)

·
∣∣ψzd(q−1

υ,hr
◦ qN )∂s

∣∣|X|υ
≤ C ′(bυ)‖Rυ,hrX‖υ,2.
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By the proof of Lemma 2.2, if ξ ∈ Γ−(υ),

ξ = RυX ≡
∑

r∈[m]

Rυ,hrX,

for some X ∈ Tev(bυ)P
n. Thus, the first two statements of the lemma

follow from (2.15).

(2) If υk −→ b and ξk = RυXk ∈ Γ−(υk) is such that ‖ξk‖υk,2 = 1,
then it is immediate from (1) that a subsequence of ξk C0-converges to∑
r∈[m]

crRb,hrX, where

X = lim
k−→∞

Xk,

(2.16)

cr = lim
k−→∞

∑
r∈[m]

∣∣ψx̃r(υ)d(q
−1
υ,hr

◦ qN )∂s

∣∣−1 (
ψx̃r(υ)d(q

−1
υ,hr

◦ qN )∂s

)
.

The two limits in (2.16) exist after passing to a subsequence of the
original sequence. This proves the last statement of the lemma.

Lemma 2.4. There exist δ, C ∈ C∞(M(0)
T ; R+) such that for all

υ ∈ F (∅)Tδ and ξ ∈ Γ̃−(υ),

‖ξ‖υ,p,1 ≤ C(bυ)‖ξ‖υ,2.

Proof. Let Γ−+(υ) be the (υ, L2)-orthogonal complement of πυ,−
(
Γ−(υ)

)
in Γ−(υ). Then

Γ̃−(υ) = Γ−+(υ) ⊕ Γ−(υ).

Since this decomposition is (L2, υ)-orthogonal, we can assume that ei-
ther ξ ∈ Γ−+(υ) or ξ ∈ Γ−(υ). In the first case, the statement is obvious,
since Γ−+(υ) ⊂ Γ−(υ). The second case is proved in Lemma 2.3.

Corollary 2.5. Suppose υk ∈ F (0)Tδ and υk −→ b ∈ M(0)
T . If

{ξυk,l} is an (L2, υ)-orthonormal basis for Γ̃−(υk), then there exists a
nonzero c ∈ C

m and an (L2, b)-orthonormal basis {ξb,l} for Γ̃−(b; c) such
that after passing to a subsequence ξυk,l C

0-converges to ξb,l for all l.

Proof. If ξk,l ∈ Γ−(υk), by Lemma 2.3 a subsequence of {ξk,l} C0-
converges to an element of ξl ∈ Γ−(b; c) for some nonzero c ∈ C

n
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dependent on the sequence {υk}. Furthermore, orthonormal pairs of
such elements C0-converge to an orthonormal pair in Γ−(b). If ξk,l ∈
Γ−+(υk) ⊂ Γ−(υk), then by definition of Γ−(υk), a subsequence of {ξk,l}
C0-converge to an element ξl ∈ Γ−(b), which must be orthogonal to
Γ−(b; c); see Lemma 3.10 in [13]. Thus, a subsequence of

{
{ξk,l}
}
C0-

converges to an orthonormal set of vectors in Γ̃−(b), which implies that
dimC Γ̃−(b; c) ≥ dimC Γ̃−(υk). However,

dimC Γ̃−(b; c) = dimC Γ−+(b; c) + dimC Γ−(b; c)

= dimC Γ−(b) +
(
dimC Γ−(b; c) − dimC πb,−Γ−(b; c)

)
;

dimC Γ̃−(υk) = dimC Γ−+(υk) + dimC Γ−(υk)

= dimC Γ−(υk) +
(
dimC Γ−(υk) − dimC πυk,−Γ−(υk)

)
,

where Γ−+(b; c) denotes the (L2, b)-complement of πb,−Γ−(b; c) in Γ−(b).
Since Γ−(υk) and Γ−(b) have the same dimension, in order to conclude
the proof, it is sufficient to show that

πb,− : Γ−(b; c) −→ Γ−(b; c)

is an isomorphism; see Lemma 2.6.

Lemma 2.6. There exists C ∈ C∞(M(0)
T ; R+) such that for all

b ∈ M(0)
T , nonzero c ∈ C

m, and ξ ∈ Γ−(b; c)

‖ξ‖b,2 ≤ C(bω)‖πb,−ξ‖b,2.

Proof. Suppose X ∈ Tev(b)P
n. We define R̃b,hrX ∈ Γ0,1(uhr), outside

of ∞ ∈ Σb,hr , by

R̃b,hrX
∣∣
x

= 4β
(
δT (b)|q−1

N (x)|
)(
q−1∗
N dz
)
Πb,uhr (x)X,

where dz is the usual (0, 1)-form on C. By the same computation as
in the proof of Lemma 2.2, Rb,hrX = D∗

b,uhr
R̃b,hrX. Thus, if ξ = ξÎ ∈

kerDb and 2δ < δT (b), by integration by parts,

〈〈
ξ,Rb,hrX

〉〉
b
=
〈〈
ξhr , D

∗
b,uhr

R̃b,hrX
〉〉

b

(2.17)

= 2iδT (b)−1

∫
|q−1

N (x)|=δ−1

〈ξhr(x),Πb,uhr (x)X〉bq−1∗
N dz,
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since Db,uhr
ξhr = 0. Using the change of variables with x = qN (w−1),

we obtain ∫
|q−1

N (x)|=δ−1

〈ξhr(x),Πb,uhr (x)X〉bq−1∗
N dz(2.18)

= −
∫

|w|=δ

〈ξhr |qN (w−1),Πb,uhr (qN (w−1))X〉b
dw

w2

= −2πi
d

dw
〈ξh∗ |qN (w−1),Πb,uhr (qN (w−1))X〉b

∣∣∣
w=0

= −2πi
d

dz
〈ξhr |qS(z),Πb,uhr (qS(z))X〉b

∣∣∣
z=0

= −2πi
〈D
ds

(ξhr ◦ qS)
∣∣∣
z=0

, X
〉
,

since Db,uhr
ξhr = 0. It follows from (2.17) and (2.18) that for any

ξ = ξ[M ] ∈ ker(Db),

〈〈
ξ,
∑

r∈[m]

crRb,hrX
〉〉

b
= 4πδT (b)−1

∑
r∈[m]

cr

〈D
ds

(ξhr ◦ qS)
∣∣∣
z=0

, X
〉
.

(2.19)

Along with Corollary 6.3, Equations (2.19) gives∥∥∥πb,−
∑

r∈[m]

crRb,hrX
∥∥∥

b,2
(2.20)

≥ C(b)|cr∗ | sup
ξ[M ]∈ker(Db),‖ξ[M ]‖=1

〈D
ds

(ξhr∗ ◦ qS)
∣∣∣
z=0

, X
〉

b

≥ C ′(b)|cr∗ ||X| ≥ C ′′(b)
∥∥∥ ∑

r∈[m]

crRb,hrX
∥∥∥

b,2
,

where r∗ ∈ [m] is such that |cr∗ | = supr |cr|. Since the right-hand side
of (2.20) must be a continuous function of b, the claim follows.

The statement of Corollary 2.5 is precisely Condition (1) of Defi-
nition 3.11 in [13]. The other two conditions require that the rate of
change of the (L2, υ)-orthogonal projection onto Γ̃−(υ) be controlled by
a function of bυ only. This is a consequence of the convergence described
in the Corollary 2.5, i.e., we can use the same argument as described in
the remark following Lemma 3.6 in [13], but with Γ−(b) replaced by the
appropriate space Γ−(b; c) (depending on υ).
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2.4 Structure theorem, S = Σ

If T = (Σ, [N ], I; j, d) is a simple bubble type and µ is an N -tuple of
complex submanifolds of P

n such that the evaluation map,

ev[N ] ≡ ev1 × · · · × evN : MT −→ (Pn)N ,

is transversal to µ1×· · ·×µN , MT (µ) is a complex submanifold of MT .
Let N µT be its normal bundle. If S is a complex submanifold of M,
denote its normal bundle by NS and an identification of small neigh-
borhoods of S in NS and in MT by φS . For any complex vector bundle
V −→ MT , we denote by ΦS an identification of φ∗SV and π∗NSV such
that its restriction to the fibers over S is the identity. We assume that
ΦS preserves F ∅T ⊂ FT . Let

F ∅S = {(b, �n, υ) ∈ NS ⊕ FS : (b, υ) ∈ F ∅T
}
.

If ev[N ]|S is transversal to µ1 × · · · × µN , S(µ) ≡ S ∩ MT (µ) is a
complex submanifold of S with normal bundle N µT . Let φµ

S and Φµ
S

be the analogues of φS and ΦS for the bundle N µT −→ S(µ). We
assume the bundle N µT is normed. We call the pair (ΦS ,Φ

µ
S) a reg-

ularization of S(µ) if it satisfies a certain minor compatibility condi-
tion. For the purposes of this paper, it suffices to say that once ΦS
is chosen, it is a condition on Φµ

S |FT ; see Subsection 3.8 in [13] for
details. However, the exact nature of Φµ

S |FT is irrelevant for our com-
putational purposes. Finally, we denote by C∞

(d;N)(Σ;µ) the space of all
bubble maps

(
Σ, [N ], I;x, (j, y), u

)
such that

∑
i∈I ui∗[Σb,i] = dλ, where

λ ∈ H2(Pn;Z) is the class of a line, and ujl
(yl) ∈ µl for all l ∈ [N ].

Theorem 2.7. Suppose d is a positive integer, T = (Σ, [N ], I; j, d)
is a simple bubble type with d0̂ = 0 and

∑
i∈I

di = d, S ⊂ MT is a complex

submanifold, and

ν ∈ Γ0,1
(
Σ × P

n; Λ0,1
J,jπ

∗
ΣT

∗Σ ⊗ π∗PnTP
n
)

is a generic section. Let µ be an N -tuple of complex submanifolds of P
n

in general position of total codimension

codimCµ = d(n+ 1) − n(g − 1) +N,

and (ΦS ,Φ
µ
S) a regularization of S(µ). Then for every precompact open

subset K of S(µ), there exist a neighborhood UK of K in C
∞
(d;N)(Σ;µ)
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and δ, ε, C > 0 with the following property. For every t ∈ (0, ε), there
exist a section

ϕµ
S,tν ∈ Γ

(
F ∅Sδ|K ;π∗FSN µS

)
, with

∣∣ϕµ
S,tν(υ)

∣∣
bυ

≤ C
(
t+ |υ|

1
p
)
,

and a sign-preserving bijection between MΣ,tν,d(µ) ∩ UK and the zero
set of the section ψµ

S,tν defined by

ψµ
S,tν ∈ Γ

(
F ∅Sδ|K ;π∗FS

(
H0,1

Σ ⊗ ev∗TP
n
))

,

Πbυ ,φµ
Sϕµ

S,tν(υ)ψ
µ
S,tν(υ) = ψS,tν

(
Φµ
S(ϕµ

S,tν(υ))
)
;

ψS,tν ∈ Γ
(
F ∅Sδ

∣∣
S∩UK

;π∗FS

(
H0,1

Σ ⊗ ev∗TP
n
))

,

Πbυ ,φS(υ)ψS,tν(υ) = ψT ,tν

(
ΦS(υ)

)
;

ψT ,tν ∈ Γ
(
F ∅Tδ

∣∣
MT ∩UK

;π∗FT

(
H0,1

Σ ⊗ ev∗TP
n
))

,

R̃υψT ,tν(υ) = π0,1
υ,−
(
tνυ,t − ∂uυ −Dυξυ,tν

)
,

where Πb,b′ denotes the gPn,b-parallel transport along the gPn,b-geodesics
from ev(b) to ev(b′) whenever dPn

(
ev(b), ev(b′)

)
< rPn, ξυ,tν ∈ Γ̃+(υ),

∥∥νυ,t − ν
∥∥

υ,2
≤ C
(
t+ |υ|

1
p
)
, and

∥∥ξυ,tν

∥∥
υ,p,1

≤ C
(
t+ |υ|

1
p
)
.

Proof. This theorem follows immediately from Theorem 3.29 in [13]
applied to the obstruction bundle setup of Subsections 2.2 and 2.3.
The only refinement is that we drop the term η̃υ,tν from the definition
of ψT ,tν . This is because it vanishes on the support of the (0, 1)-forms
in Γ0,1

− (υ), provided δ is sufficiently small. Thus, π0,1
υ,−η̃υ,tν = 0.

2.5 Structure theorem, S = S2

In this subsection, we define sections D(m)
〈T 〉,k, where k ∈ I − Î, of the

bundle L∗
kT ⊗m⊗ev∗TP

n over U 〈T 〉(µ), and describe their behavior with
respect to the gluing maps near each space UT (µ). In Section 4, the
number of elements of MΣ,tν,d(µ) lying near each space MT (µ) will be
expressed as the number of zeros of affine maps between certain bundles.
These affine maps will involve the sections D(m)

T ,k
. Their behavior near

various boundary strata is the foundation for the local computations of
Section 5.
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If b =
(
S2,M, I;x, (j, y), u

)
∈ BT , m ≥ 1, and k ∈ I, let

D(m)
T ,kb =

2
(m− 1)!

Dm−1

dsm−1

d

ds
(uk ◦ qS)

∣∣∣
(s,t)=0

,

where the covariant derivatives are taken with respect to the metric
gPn,b and s+ it ∈ C. If T ∗ is a basic bubble type, the maps D(m)

T ,k with

T < T ∗ and k ∈ I − Î induce a continuous section of ev∗TP
n over U (0)

T ∗

and a continuous section of the bundle L∗
kT ∗⊗m ⊗ ev∗TP

n over UT ∗ ,
described by

D(m)
T ∗,k[b, ck] = cmk D(m)

T ,kb, if b ∈ U (0)
T , ck ∈ C.

We will often write DT ,k instead of D(1)
T ,k. If T is simple, we will abbre-

viate D(m)
T ,k as D(m). If T = (Σ, [N ], I; j, d) is a simple bubble type and

k ∈ Î, let D(m)
T ,k denote the section D(m)

T ,k
.

Theorem 2.8. If T ∗ = (S2,M, I∗; j, d∗) is a basic bubble type and
µ is an M -tuple of constraints in general position, the spaces U (0)

T ∗(µ)
and UT ∗(µ) are oriented topological orbifolds. If T < T ∗, there exist
GT ∗-invariant functions δ, C ∈ C∞(U (0)

T (µ); R+
)

and GT ∗-equivariant
continuous map

γ̃µ
T : FTδ

∣∣
U(0)
T (µ)

−→ U (0)
T ∗(µ),

which is an orientation-preserving homeomorphism onto an open neigh-
borhood of U (0)

T (µ) in U (0)
T ∗(µ) and is identity on U (0)

T (µ). This map is
smooth on F ∅Tδ. Furthermore, for any

υ =
[
(b, vh)h∈Î

]
=
[(
S2,M, I;x, (j, y), u

)
, (vh)v∈Î

]
∈ FTδ

∣∣
U(0)
T (µ)

,∣∣∣∣∣∣Π−1
bυ ,ev(γ̃µ

T (υ))

(
DT ∗,kγ̃

µ
T (υ)
)
− 2

∑
h∈Ik,χT h=1

 ∏
i∈Î,i≤h

vi

(duh|∞e∞
)∣∣∣∣∣∣

≤ C(bυ)|υ|
1
p

∑
h∈Ik,χT h=1

 ∏
i∈Î,i≤h

|vi|

 ,
where Ik ⊂ I is the rooted tree containing k.

Remark. This theorem states that there exists an identification
γµ
T : FT δ −→ UT ∗(µ) of neighborhoods of UT (µ) in FT and in UT ∗(µ).
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Furthermore, with appropriate identifications,∣∣∣DT ∗,kγ
µ
T (υ) − αT

(
ρT (υ)
)∣∣∣ ≤ C(bυ)|υ|

1
p
∣∣ρT (υ)

∣∣, where(2.21)

ρT (υ) =
(
b, (ṽh)χT h=1

)
∈ F̃T ≡

⊕
χT h=1

LhT ⊗ L∗
ι̃h
T ;

ṽh =
∏

i∈Î,i≤h

vi; ι̃h = min{i ∈ I : i < h};

αT
(
b, (ṽh)χT h=1

)
=
∑

h∈Ik,χT h=1

DT ,hṽh.

This estimate is used frequently in Section 5. Note that if T is a
semiprimitive bubble type, the bundle FT is defined over UT (µ). How-
ever, FT is not the normal bundle of UT (µ) in U 〈T 〉(µ) unless M0̂T �
H0̂T is a two-element set; see [9]. The theorem implies only that the
restrictions of the normal bundle of UT (µ) in U 〈T 〉(µ) and of FT to
UT (µ) are isomorphic.

Proof. (1) All statements of this theorem, except for the analytic
estimate, follow immediately from Theorem 3.33 in [13]. We deduce the
analytic estimate from (2) of Theorem 3.33. Let

γµ
T (υ) =

(
S2,M, I(υ);x(υ), (j(υ), y(υ)), ũυ

)
.

By Theorem 3.33, there exist a holomorphic bubble map

b′ =
[
S2,M, I;x′, (j, y′), u′

]
such that dCk(b, b′) ≤ C(bυ)|υ|

1
p and with appropriate identifications,

ũυ = expb′,ub′◦qυ
ξ for some ξ ∈ Γ(ub′ ◦ qυ) with ‖ξ‖b,C0 ≤ C(bυ)|υ|

1
p .

Thus, for the purposes of proving the analytic estimate, we can assume
that uυ = expb,ub◦qυ

ξυ for ξ ∈ Γ(ub ◦ qυ) with ‖ξυ‖b,C0 ≤ C(bυ)|υ|
1
p , i.e.,

it is enough to prove the estimate for the map γ̃T as defined in [13] with
T a simple bubble type. If dk �= 0, the claim is immediate from the
usual Sobolev and elliptic estimates near (k,∞). Thus, we assume that
d0̂ = 0. For future use, we obtain equations describing the behavior of
D(m)γ̃T (υ) for all m ≥ 1.

(2) We identify BgPn,b

(
ev(b), 1

2rPn

)
with an open subset of C

n via the
gPn,ev(b)-parallel transport along the geodesics from ev(b). We assume

that δ ∈ C∞(U (0)
T ; R+) satisfies

C(b)δ(b)
1
2p + δ(b)

1
2

(∑
i∈M

‖dui‖b,C0

)
<

1
2
rPn .
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Let q : B1(0; C) −→ S2 be the local stretching map as in Subsection 2.2
of [13] with v = 1, defined with respect to the standard metric on C. Let
fυ = uυ ◦q and f̃υ = ũυ ◦q. We denote the usual complex coordinate on
C by z. For any z ∈ B1(0; C), let iυ(z) be such that qυ(q(z)) ∈ Σb,iυ(z).
If X ∈ Tev(b)P

n and m ≥ 1, define RυXψ
(m) ∈ Γ0,1(f̃υ) by

RυXψ
(m)
∣∣
z

=


Xzm−1dz, if χT iυ(z) = 0;
β
(
δ(bυ)|qυ(q(z))|

)
Xzm−1dz, if χT iυ(z) = 1;

0, if χT iυ(z) = 2.

Note that if χT iυ(z) = 0, or χT iυ(z) = 1 and β
(
δ(bυ)|qυ(q(z))|

)
�= 0,

f̃υ(z) lies in BgPn,b

(
ev(b), 1

2rPn

)
. Thus, RυXψ

(m) is well-defined. We
now compute 〈〈∂f̃υ, RυXψ

(m)〉〉 in two ways and compare the results.
First, note that the map f̃υ is holomorphic outside of the annulus

A0̂(υ) ≡ B1(0; C) −B 1
2
(0; C).

Thus, by the same computation as in the proof of Lemma 4.3, we see
that

〈〈∂f̃υ, RυXψ
(m)〉〉 = − π

m

〈
D(m)γ̃T (υ), X

〉
.(2.22)

(3) Since f̃υ = expev(b),fυ
(ξυ ◦ q) and fυ is constant on A0̂(υ),

2i
〈〈
∂f̃υ, RυXψ

(m)
〉〉

=
∫

A0̂(υ)

〈
∂

∂z
(ξυ ◦ q), X

〉
zm−1dz ∧ dz(2.23)

Denote by A+
0̂
(υ) and A−

0̂
(υ) the outer and inner boundary of A0̂(υ),

respectively. For every h ∈ Î with χT h = 1, let

Ah(υ) = q−1
υ,ιh

({
z ∈ Σbυ ,ιh : 4δ(bυ)−1|vh| ≤ |φ−1

b,hz| ≤ |vh|
1
2
})

⊂ Σbυ ,0̂.

Denote by A±
h (υ) the outer and inner boundary of Ah(υ). Let w be

the complex coordinate on C ⊂ Σbυ ,0̂ = S2. Note that q is holomorphic
inside of A−

0̂
(υ) and outside of q−1(A−

h (υ)). Furthermore, since ub and
ũυ are both holomorphic, on the image of this set under q

∂

∂w
ξυ = − ∂

∂w
uυ.
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The last quantity vanishes outside of the annuli Ah(υ). Thus by inte-
gration by parts,∫

A0̂(υ)

〈
∂

∂z
(ξυ ◦ q), X

〉
zm−1dz ∧ dz(2.24)

=
∑

χT h=1

( ∫
q−1(Ah(υ))

〈(
∂uυ

∂w

)(
∂q

∂z

)
, X

〉
zm−1dz ∧ dz

+
∫

q−1(A−
h (υ))

〈
ξυ ◦ q,X

〉
zm−1dz

)

=
∑

χT h=1

(∫
Ah(υ)

〈
∂uυ

∂w
,X

〉
g dw ∧ dw +

∫
A−

h (υ)

〈
ξυ, X
〉
g dw

)
,

where g(w) = wm−1. Since ξυ ◦ q is constant on A+
0̂
(υ), the second

boundary term is zero. Note that the radius of A−
h (υ) in C ⊂ S2 is

bounded by C(bυ)|ṽh|. Furthermore, |g| ≤ Cm(bυ) on A−
h (υ). It fol-

lows that ∣∣∣ ∫
A−

h (υ)

〈
ξυ, X
〉
gdw
∣∣∣ ≤ Cm(bυ)|υ|

1
p |ṽh|.(2.25)

On the other hand, by the same computation as in the proof of Lemma 4.3,

∫
Ah(υ)

〈
∂uυ

∂w
,X

〉
g dw ∧ dw = −2i

m′=m∑
m′=1

πam′,h(υ)
m′

(
m− 1
m′ − 1

)
ṽm′
h

(
D(m′)

T ,h b
)
.

(2.26)

Combining Equations (2.22)–(2.26), we see that

∣∣∣∣∣∣〈D(m)γ̃T (υ), X
〉
− 2m

∑
χT h=1

ṽh

(
duh

∣∣
∞e∞
)∣∣∣∣∣∣ ≤ C(bυ)|υ|

1
p

 ∑
χT h=1

|ṽh|

 .
(2.27)
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3. Topology

3.1 Maps between vector bundles

In Section 4, we express the number of zeros of the maps ψµ
T ,tν (and

ψµ
S,tν for certain submanifolds S of MT ) of Theorem 2.7 in terms of the

number of zeros of affine maps between the same vector bundles. The
topological justification for this reduction is discussed in this subsec-
tion. Subsections 3.2 and 3.3 are used in the explicit computations of
Section 5. For simplicity, we state all the results for smooth vector bun-
dles over smooth manifolds, but similar statements apply in the orbifold
category. However, in the cases of g = 2, n = 2, 3, 4, the spaces involved
are actually manifolds.

Let I denote the unit interval [0, 1]. If Z is a compact oriented zero-
dimensional manifold, we denote the signed cardinality of Z by ±|Z|.
All vector bundles we encounter in this subsection will be assumed to
be smooth, complex, and normed.

Definition 3.1. Suppose M is a smooth manifold and F,O −→ M
are vector bundles.

(1) If F =
i=k⊕
i=1

Fi, bundle map α : F −→ O is a polynomial of degree

d[k] if for each i ∈ [k] there exists

pi ∈ Γ(M;F ∗⊗di
i ⊗O) for i ∈ [k] s.t.

α(υ) =
i=k∑
i=1

pi

(
υdi

i

)
∀υ = (υi)i∈[k] ∈

i=k⊕
i=1

Fi.

(2) If α : F −→ O is a polynomial, the rank of α is the number

rk α ≡ max{rkbα : b ∈ M}, where rkbα = dimC

(
Im αb

)
.

Polynomial α : F −→ O is of constant rank if rkbα = rk α for all
b ∈ M; α is nondegenerate if rkbα = rk F for all b ∈ M.

(3) If Ω is an open subset of I × F , O is a vector bundle, and

{φt} =
{
φt : {υ ∈ F : (t, υ) ∈ Ω} −→ O

}
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is a family of smooth bundle maps, bundle map α : F −→ O is a
dominant term for {φt} if there exists ε ∈ C0(I ×F ; R) such that∣∣φt(υ) − α(υ)

∣∣ ≤ ε(t, υ)
(
t+ |α(υ)|

)
∀(t, υ) ∈ Ω and lim

(t,υ)−→0
ε(t, υ) = 0.

Dominant term α : F −→ O of {φt} is the resolvent of {φt} if α
is a polynomial of constant rank.

In (2) above, by dimC(Im αb) we mean the dimension of the image
of αb as an analytic subvariety of the fiber Ob. Note that if Ω ⊂ I × F
contains a neighborhood of {0} × M, the resolvent of {φt} is unique
(if it exists).

Lemma 3.2. Suppose M is a smooth manifold,

(1) F ≡ F− ⊕ F+ −→ M and O ≡ O− ⊕ O+ −→ M are vector
bundles;

(2) Ω is an open subset of I×F and
{
φt : {υ ∈ F : (t, υ) ∈ Ω} −→ O

}
is a family of smooth maps;

(3) α : F −→ O is a dominant term for {φt} s.t. α(F+) ⊂ O+, α− ≡
π− ◦α|F− is a constant-rank polynomial, where π− : O−⊕O+ −→
O− is the projection map, and (dimM + 2rk α−) < 2rk O−;

(4) ν = (ν−, ν+) ∈ Γ(M;O− ⊕O+) is generic with respect to α−.

Then for every compact subset K of M, there exist δK > 0 and a
neighborhood UF (K) of K in F such that the map

ψt : {υ ∈ F : (t, υ) ∈ Ω} −→ O, ψt(υ) = tνυ + φt(υ),

has no zeros on {υ ∈ UF (K) : (t, υ) ∈ Ω} for all t ∈ (0, δK).

Proof. (1) Suppose υ̃ ∈ ΩδK
|K and ψt(υ̃) = 0. Then by our assump-

tions on φt,
|α(υ̃)| ≤ CK

(
t+ εK(δK)|α(υ̃)|

)
,

where CK > 0 depends only on K (and ν) and εK is a continuous
function vanishing at zero. Thus, if δK > 0 is sufficiently small,

|α(υ̃)| ≤ 2CKt ∀t < δK , υ̃ ∈ FδK
|K s.t. ψt(υ̃) = 0.(3.1)
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(2) Let F− =
i=k⊕
i=1

Fi −→ M be the bundles and pi ∈ Γ(M;F ∗⊗di
i ⊗

O−) the sections as in (1) of Definition 3.1 corresponding to α−. Define

ϕt ∈ Γ
(
M; End(F−)

)
by ϕt(υi) = t−1/diυi if υi ∈ Fi.

Then by our assumption on φt and Equation (3.1),

∣∣ν− + α−(ϕt(υ̃−))
∣∣ ≤ C̃KεK(δK) ∀t < δK , υ̃ ∈ FδK

|K s.t. ψt(υ̃) = 0,
(3.2)

where C̃K is determined by K. Since α− has constant rank, the image of
α− is closed and is the total space of a bundle of affine analytic varieties
of complex dimension rk α− < rk O− − 1

2 dimM. Thus, by assumption
(4) of the lemma, ν− does not intersect the image of α−, and there
exists εK > 0 such that∣∣ν− + α−(υ−)

∣∣ ≥ εK ∀υ ∈ F−|K .(3.3)

If εK > C̃KεK(δK), by (3.2) and (3.3), π− ◦ ψt (and thus ψt) has no
zeros on FδK

|K .
We will call family

{
φt : {υ ∈ F : (t, υ) ∈ Ω} −→ O

}
of smooth

maps hollow if it admits a dominant term α that satisfies hypothesis (3)
of Lemma 3.2.

Definition 3.3. Suppose M is a smooth manifold and F −→ M
is a vector bundle.

(1) Subset Y of F is small if Y contains no fiber of F and there exists
a smooth manifold Z of dimension (dimF −1) and a smooth map
f : Z −→ F such that the image of f is closed in F and contains Y .

(2) If F, F̃ −→ M are smooth complex vector bundles, ρ ∈ Γ(M;
F ∗⊗d ⊗ F̃ ) induces a d̃-to-1 cover F −→ F̃ if the map

Fb −→ F̃b, υ −→ ρ(υ) ≡ ρ
(
υd
)
,

is d̃-to-1 on a dense open subset of every fiber Fb of F .

Lemma 3.4. Suppose M is a smooth manifold, F =
i=k⊕
i=1

Fi and O
are vector bundles over M, and

α =
i=k∑
i=1

pi : F −→ O, where pi ∈ Γ
(
M;F ∗⊗di

i ⊗O
)
,
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is a nondegenerate polynomial. Then there exists a small subset Yα

of F =
i=k⊕
i=1

Fi, which is invariant under scalar multiplication in each

component separately, with the following property. If K is a compact
subset of O − α(Yα), there exists CK > 0 such that

|υ| ≤ CK |α(υ)| ∀ υ ∈ F s.t. α(υ) ∈ K.

Proof. (1) Let Yα ⊂ F be the closed subset on which the differential
of the fiberwise map υ −→ α(υ) does not have full rank, i.e., its rank is
less than rk F . Since α is nondegenerate, Yα contains no fiber of F . By
our assumptions on α,

D(α|Fb
)
∣∣
υ

=
(
D(p1|F1,b

)
∣∣
υ1
, . . . , D(pk|Fk,b

)
∣∣
υk

)
: F1 ⊕ · · · ⊕ Fk −→ O,

∀ b ∈ M, υ = υ[k] ∈
i=k⊕
i=1

Fi.

Since pi|Fi,b
is a homogeneous polynomial of degree di, its derivative

is a homogeneous polynomial of degree (di − 1). Thus, Yα is preserved
under scalar multiplication in each component separately. It also clearly
satisfies the second condition of (1) of Definition 3.3.

(2) On F−Yα, α is a covering map onto its image with the number of
leaves bounded by some number Nα. Thus, if K is any compact subset
of O−α(Yα), α−1(K) is a compact subset of F . Therefore, there exists
CK such that

|υ| ≤ CK |α(υ)| ∀υ ∈ F s.t. α(υ) ∈ K.

Note that if 0 �∈ α(Yα), then α is a linear injection on every fiber, and
the above inequality holds on all of F .

Lemma 3.5. Suppose M is a smooth manifold,

(1) F =
i=k⊕
i=1

Fi and O are vector bundles over M with rkF+ 1
2 dimM=

rkO;

(2) Y is a small subset of F =
i=k⊕
i=1

Fi, which is invariant under the

scalar multiplication in each component separately;

(3) Ω is an open subset of I × F such that Ω ∪ ({0} ×X) is a neigh-
borhood of {0} ×X in I ×

(
F − (Y −X)

)
;
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(4)
{
φt : {υ ∈ F : (t, υ) ∈ Ω} −→ O

}
is a family of smooth maps;

(5) nondegenerate polynomial α : F −→ O is the resolvent of {φt};

(6) ν ∈ Γ(M;O) is generic with respect to (Y, α), and the map

F −→ O, υ −→ νυ + α(υ),(3.4)

has a finite number of (transverse) zeros.

If ψt is transversal to zero for all t, there exists a compact subset Kα,ν

of M with the following property. If K is a precompact open subset of M
containing Kα,ν , there exist δK , εK > 0 such that for all t ∈ (0, εK),

±∣∣{υ ∈ FδK
|K : (t, υ) ∈ Ω, ψt(υ) = 0

}∣∣ =± ∣∣{υ ∈ F : νυ + α(υ) = 0
}∣∣,

where ψt(υ) = tνυ + φt(υ) as before. Furthermore, all the zeros of
ψt

∣∣
FδK

|K lie over Kα,ν .

Proof. (1) Since the map in (3.4) has a finite number of zeros,
all of them lie in the interior of FCα,ν |Kα,ν for some compact subset
Kα,ν of M and number Cα,ν > 0. Suppose K ⊂ M is a precompact
open subset containing Kα,ν , δK > 0 is such that FδK

|K−Y ⊂ Ω, and
υ̃ ∈ ΩδK

|K is such that ψt(υ̃) = 0. By the same argument as in the
proof of Lemma 3.2, if δK > 0 is sufficiently small,

(3.5)
∣∣α(υ̃)
∣∣ ≤ CKt and

∣∣tν υ̃ + α(υ̃)
∣∣ ≤ εK(δK)t

∀t < δK , υ̃ ∈ FδK
|K s.t. ψt(υ̃) = 0,

where CK and εK = εK(δK) depend only on K, and εK(δK) tends to
zero with δK . Let φt : F −→ F be the map defined in (2) of the proof
of Lemma 3.2, with F− replaced by F . By (3.5),

(3.6)
α(φt(υ̃)) ∈ Kν

(
K;CK , εK(δK)

)
≡
{
� ∈ OCK

: |ν� +�| ≤ εK(δK)
}

∀t < δK , υ̃ ∈ FδK
|K s.t. ψt(υ̃) = 0.

(2) If ν is generic, the map in (3.4) does not vanish on Yα, where
Yα is as in Lemma 3.4. Since α(Yα) is a closed subset of O, there exists
εK > 0 such that ∣∣νυ + α(υ)

∣∣ > εK ∀ υ ∈ Yα|K .
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Thus, if εK(δK) < εK , Kν

(
K;CK , εK(δK)

)
is a compact subset of O

disjoint from α(Yα). Then by (3.6) and Lemma 3.4,∣∣φt(υ̃)
∣∣ ≤ C∗

K ∀t < δK , υ̃ ∈ FδK
|K s.t. ψt(υ̃) = 0,(3.7)

where C∗
K depends only on K.

(3) There is a one-to-one sign-preserving correspondence between
the zeros of ψt on ΩδK

|K and the zeros of

ψ̃t : ΩδK
(K, t) ≡

{
υ ∈ F : (t, φ−1

t (υ)) ∈ ΩδK
|K
}
−→ O,

ψ̃t(υ) = t−1ψt

(
φ−1

t (υ)
)
.

By (3.7), all the zeros of ψ̃t on ΩδK
(K, t) are in fact contained in FC∗

K
|K .

We can assume that C∗
K > Cα,ν . By our assumptions on φt,∣∣ψ̃t(υ) − (νυ + α(υ))
∣∣ ≤ CKεK(δK) ∀υ ∈ ΩδK

(K, t) ∩ FC∗
K
|K ,(3.8)

where CK > 0 depends only on K. We define a cobordism between the
zeros of ψ̃t and the zeros of ν + α on ΩδK

(K, t) ∩ FC∗
K
|K by

Ψ : I × ΩδK
(K, t) ∩ FC∗

K
|K −→ O,

Ψτ (υ) = τψ̃t(υ) + (1 − τ)
(
νυ + α(υ)

)
+ ητ (υ),

where η : I × ΩδK
(K, t) −→ O is any smooth function with very small

C0-norm such that η0 = η1 = 0 and Ψ is transversal to zero. It remains
to see that Ψ−1(0) is compact. Suppose Ψτr(υr) = 0 and (τr, υr) con-
verges (τ̃ , υ̃) ∈ I×F2C∗

K
|K ; we need to show that υ̃∈ΩδK

(K, t) ∩ FC∗
K
|K .

By Equation (3.8),

(3.9)
∣∣νυr + α(υr)

∣∣ ≤ CKεK(δK) + ‖η‖C0 ∀r =⇒∣∣ν υ̃ + α(υ̃)
∣∣ ≤ CKεK(δK) + ‖η‖C0 .

On the other hand, since ν is generic, the map in (3.4) does not vanish
on Y . Furthermore, all the zeros of this map are contained in the interior
of FCα,ν |Kα,ν . Thus, by compactness,

ε̃K ≡ inf
{∣∣νυ + α(υ)

∣∣ : υ ∈
(
Y ∩ F2C∗

K

)
∪
(
FC∗

K
|K − FCα,ν |Kα,ν

)}
> 0,

(3.10)
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where ε̃K depends only on K. If ε̃K > CKεK(δK) + ‖η‖C0 , by (3.9)
and (3.10),

υ̃ ∈ FCα,ν |Kα,ν ⊂ FC∗
K
|K − Y ⊂ ΩδK

(K, t).

The last inclusion follows from the very first assumption on δK above.
We conclude that Ψ−1(0) is compact.

Corollary 3.6. Suppose M is a smooth oriented manifold,

(1) F ≡ F− ⊕ F+, F̃−, and O ≡ O− ⊕ O+ are vector bundles over
M with

rk F− = rk F̃− = rkO− − 1
2

dimM and rkF+ = rkO+;

(2) ρ ∈ Γ(M;F−∗⊗k ⊗ F̃−) induces a d̃-to-1 cover F −→ F̃ , and
α− ∈ Γ(M; F̃−∗ ⊗O−);

(3) α : F −→ O is a nondegenerate polynomial such that α+ ≡ α|F+ :
F+ −→ O+ is linear and π− ◦ α = α− ◦ ρ;

(4) Y is a small subset of F , which is invariant under the scalar mul-
tiplication in each component separately;

(5) Ω is an open subset of I × F such that Ω ∪X is a neighborhood
of {0} ×X in I ×

(
F − (Y −X)

)
;

(6)
{
φt : {υ ∈ F : (t, υ) ∈ Ω} −→ O

}
is a family of smooth maps with

resolvent α;

(7) ν = (ν−, ν+) ∈ Γ(M;O−⊕O+) is generic with respect to (α+, α−,
ρ, Y ), and the map

F̃− −→ O−, � −→ ν−� + α−(�),(3.11)

has a finite number of (transverse) zeros.

If ψt is transversal to zero for all t, there exists a compact subset Kα,ν of
M with the following property: If K is a precompact open subset of M
containing Kα,ν , there exist δK , εK > 0 such that for all t ∈ (0, εK),

±∣∣{υ ∈ FδK
|K : (t, υ) ∈ Ω, ψt(υ) = 0

}∣∣
= d̃ · ±

∣∣{� ∈ F̃− : ν−� + α−(�) = 0
}∣∣,

where ψt(υ) = tνυ + φt(υ). Furthermore, all the zeros of ψt

∣∣
FδK

|K lie
over Kα,ν .
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Proof. Let Kα,ν and δK > 0 be as in Lemma 3.5. Then if K is a
precompact open subset of M, for all t ∈ (0, εK) the signed number of
zeros of ψt on ΩδK

|K is the same as the signed number of solutions of

F |K −→ O,
{
ν−υ + α−(ρ(υ−)) = 0 ∈ O−;
ν+

υ + α+(υ+) + π+(α(υ−)) = 0 ∈ O+.
(3.12)

For every solution of the first equation, there is a unique solution of the
second equation. Since α+ is complex-linear on the fibers, the signed
number of solutions of (3.12) is the same as the signed number of so-
lutions of the first equation. Since the first equation has no solutions
on Yα− if ν is generic and ρ is d̃-to-1 outside of Yα− , ρ induces a d̃-to-1
sign-preserving map from the set of zeros of (3.11) to the set of solutions
of the first equation.

3.2 Contributions to the Euler class

If M is a smooth oriented compact n-manifold and V −→ M is an
oriented vector bundle of rank n, the euler class of V is the number of
zeros of any section s : M −→ V which is transverse to the zero set.
In this subsection, under slightly more topological assumptions on M
and V , we discuss a relationship between subsets of the zero set of a
non-transverse section and the euler class of V .

Definition 3.7.

(1) Compact oriented topological manifold M = Mn �
i=n−2⊔

i=0
Mi of

dimension n is mostly smooth, or ms, if:

(1a) Each Mi is a smooth manifold of dimension i, and M ≡ Mn

is a dense open subset of M.

(1b) For each i ∈ [n− 2], Mi −Mi ⊂
j−2⋃
j=0

Mj ;

(2) If Z = Z�
⊔

Zj and M = M�
⊔

Mi are ms-manifolds, continuous
map π : Z −→ M is an ms-map if for each j there exists i such
that π : Zj −→ Mi is a smooth map.

(3) If M is an ms-manifold, topological vector bundle V −→ M is
an ms-bundle if V |Mi is a smooth vector bundle for i = n and
all i ∈ [n− 2].
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(4) If V −→ M is an ms-bundle, continuous section s : M −→ V is
an ms-section if s|Mi is C2-smooth for i = n and all i ∈ [n− 2].

The dense open submanifold M of M will be called the smooth
base of M. Note that if E −→ M is an ms-bundle, then the (complex)
projectivization PE of E is an ms-manifold. Furthermore, the projection
map πE : PE −→ M is an ms-map, and the tautological line bundle
γE −→ PE is an ms-bundle.

If V −→ M is an ms-bundle, we denote the space of ms-sections of V
by Γ(M;V ). Using (4) of Definition 3.7, we define an ms-polynomial
map between two ms-bundles analogously to (1) of Definition 3.1. We
topologize Γ(M;V ) as follows. If sk, s ∈ Γ(M;V ), the sequence {sk}
converges to s if sk converges to s in the C0-norm on all of M and in the
C2-norm on compact subsets of Mi for i = n and all i ∈ [n− 2]. The
C0-norm is defined with respect to the norm on V −→ M. In order to
define the C2-norm on compact subsets of Mi, we fix a connection in
each smooth bundle in V −→ Mi.

Definition 3.8. Let M be an ms-manifold as in Definition 3.7.

(1) If Z ⊂ Mi is a smooth oriented submanifold, a normal-bundle
model for Z is a tuple (F, Y, ϑ), where:

(1a) F −→ Z is a smooth complex normed vector bundle and Y
is a small subset of F .

(1b) For some δ ∈ C∞(Z; R+), ϑ : Fδ − (Y − Z) −→ M is a
continuous map such that:

(1b-i) ϑ : Fδ − (Y − Z) −→ M is a homeomorphism onto an
open neighborhood of Z in M∪Z;

(1b-ii) ϑ|Z is the identity map, and ϑ : Fδ − (Y − Z) −→ M
is an orientation preserving diffeomorphism on an open
subset of M.

(2) A closure of a normal-bundle model (F, Y, ϑ) is a tuple (Z, F̃ , π),
where:

(2a) Z is an ms-manifold with smooth base Z;

(2b) π : Z −→ M is an ms-map such that π|Z is the identity;

(2c) F̃ −→ Z is an ms-bundle such that F̃ |Z = F .
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If Z is a smooth submanifold of M, an identification of the normal
bundle NZ of Z in M with a neighborhood of Z in M induces a normal
bundle model for Z. Definition 3.8 extends this standard construction
to the ms-category.

Definition 3.9. Suppose E,O −→ M are ms-bundles and α :
E −→ O is an ms-polynomial.

(1) Subset Z of M is α-regular if there exist a normal bundle model
(F, Y, ϑ) for Z, constant-rank polynomial p : F ⊕E −→ O over Z,
smooth bundle isomorphisms ϑE : ϑ∗E−→ π∗FE and ϑO : ϑ∗O −→
π∗FO covering the identity on Fδ − (Y −Z), and ε ∈ C(F ; R) such
that:

(1a) ϑE and ϑO are smooth on Fδ − Y − Z and restrict to the
identity over Z;

(1b) limw−→0 ε(w) = 0;
(1c) |ϑOα(ϑ−1

E (w, υ)) − p(w, υ)| ≤ ε(w)|p(w, υ)| for all w ∈ Fδ −
(Y −X), υ ∈ E.

(2) α is a regular polynomial if M is a union of finitely many α-regular
subsets.

Lemma 3.10. Suppose E,O −→ M are ms-bundles, such that
rkE + 1

2 dimM = rkO, and α : E −→ O is a regular polynomial, such
that α is nondegenerate on M. Let ν ∈ Γ(M;O) be an ms-section such
that the map

ψα,ν : E −→ O, ψα,ν(υ) = νυ + α(υ),

does not vanish on E|M−M and is transversal to the zero set in O|M.
Then ψ−1

α,ν(0) is finite, and N(α) ≡± |ψ−1
α,ν(0)| is independent of the

choice of ν as above.

Proof. (1) We first show that for every x ∈ M−M there exists a
neighborhood U of x in M such that ψα,ν does not vanish on E|U . By (2)
of Definition 3.9, there exists an α-regular subset Z of M containing x.
Let (F, Y, ϑ), δ, p, ϑE , ϑO, and ε be as in (1) of Definition 3.9. It can
be assumed that δ is such that

ε(w) <
1
2

and
∣∣νϑ(w)

∣∣ ≤ 2
∣∣νw

∣∣ ≡ 2
∣∣νbw

∣∣ ∀w ∈ Fδ − (Y −Z).

Then, if ψα,ν(ϑ−1
E (w, υ)) = 0 for some (w, υ) ∈ F ⊕ E with w ∈

Fδ − (Y − Z), |α(w, υ)| ≤ 4|νw| by (1c) of Definition 3.9. Thus, if
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{(wk, υk)} ⊂ F⊕E is such that ψα,ν(ϑ−1
E (wk, υk) = 0 and wk −→ x ∈ F ,

a subsequence of {α(wk, υk)} converges to an element � ∈ Ox. Since α
is a polynomial map of constant rank, there exists (0, υ) ∈ F ⊕ E such
that α(0, υ) = �. Since α(0, υ) = p(0, υ), it follows that ψα,ν(υ) = 0
contrary to the assumption.

(2) By (1), there exists a compact subset Kα,ν of M such that
ψ−1

α,ν(0) ⊂ E|Kα,ν . Since ψα,ν is transversal to zero, ν(M) ∩ α(Yα) = ∅,
where Yα ⊂ E|M is as in Lemma 3.4. It follows that ψ−1

α,ν(0) is a finite
subset of E|M.

(3) The final claim of the lemma is obtained by constructing a
cobordism between ψα,ν and ψα,ν′ . More precisely, we take a smooth
family {ντ : τ ∈ I} of ms-sections of O such that ν0 = ν, ν1 = ν ′,
ψ−1

α,ντ
(0) ⊂ E|M, and the section

Ψα : I × E −→ O, Ψα(τ, υ) = ψα,ντ (υ),

is transversal to the zero set in O. Such a family can always be chosen,
since M−M has codimension two in M. Then, by the same argument
as in (1) and (2), Ψ−1

α (0) is a smooth compact oriented submanifold of
E|M with boundary ψ−1

α,ν1
(0) − ψ−1

α,ν0
(0).

Definition 3.11. Suppose M is an ms-manifold of dimension 2n,
V −→ M is an ms-bundle of rank n, s ∈ Γ(M;V ), and Z ⊂ Mi∩s−1(0).

(1) Z is s-hollow if there exist a normal bundle model (F, Y, ϑ) for Z
and a bundle isomorphism ϑV : ϑ∗V −→ π∗FV , covering the iden-
tity on Fδ − (Y −Z), such that:

(1a) ϑV |Fδ−Y −Z is smooth and ϑV |Z is the identity;

(1b) φ0 ≡ ϑV ◦ ϑ∗s : Fδ − (Y −Z) −→ V is hollow.

(2) Z is s-regular if there exist a normal bundle model (F, Y, ϑ) for
Z with closure (Z, F̃ , π), regular polynomial α : F̃ −→ π∗V , and
a bundle isomorphism ϑV : ϑ∗V −→ π∗FV covering the identity
on Fδ − (Y −Z), such that:

(2a) ϑV |Fδ−Y −Z is smooth and ϑV |Z is the identity;

(2b) α|Z is nondegenerate and is the resolvent for φ0 ≡ ϑV ◦ ϑ∗s :
Fδ − (Y − Z) −→ V , and Y is preserved under scalar mul-
tiplication in each of the components of F for the splitting
corresponding to α as in (1) of Definition 3.1.
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Lemma 3.12. If (M,V, s) and (Z, F,Y, ϑ) are as in Definition 3.11,
there exist a number CZ(s) ∈ Z, which equals zero if Z is s-hollow, and
a dense open subset ΓZ(s) ⊂ Γ(M;V ) with the following properties. For
every ν ∈ ΓZ(s):

(1) There exists εν > 0 such that for all t ∈ (0, εν), all the zeros of
tν + s are contained in M and (tν + s)

∣∣
M is transversal to the

zero set in V .

(2) There exist a compact subset Kν ⊂ Z, open neighborhood Uν(K)
of K in M for each compact subset K ⊂ Z, and εν(U) ∈ (0, εν)
for each open subset U of M such that

±∣∣{b ∈ U : tν(b) + s(b) = 0}
∣∣ = CZ(s) if

t ∈ (0, εν(U)), Kν ⊂ K ⊂ U ⊂ Uν(K).

Proof. It is clear that we can choose a dense open subset Γ′
Z(s) ⊂

Γ(M;V ) such that every ν ∈ Γ′
Z(s) satisfies requirement (1) of the

lemma. If Z is s-hollow, we also need that ν ≡ ν|Z is generic with
respect to the corresponding polynomial α− in the sense of the proof of
Lemma 3.2. We can then take Kν = ∅. If Z is s-regular, let ν = π∗ν ∈
Γ(Z;π∗V ). By Lemma 3.10, the second part of (6) of Lemma 3.5 is
satisfied, as long as tν + s is transversal to the zero set on each smooth
strata. The other requirements on ν in Lemma 3.5 are finitely many
transversality properties. We then take

CZ(s) = ±∣∣{υ ∈ F : νυ + α(υ) = 0
}∣∣.

By Lemma 3.10, this number is well-defined.
The total number of zeros of a section tν + s satisfying condi-

tion (1) of Lemma 3.12 is precisely the euler class e(V ) of the bun-
dle V −→ M. Thus, due to (2) of Lemma 3.12, we call CZ(s) the s-
contribution (or simply contribution) of Z to e(V ). If Z is any subset of
M such that Z ∩s−1(0) satisfies the requirements of Definition 3.11, let
CZ(s) = CZ∩s−1(0)(s). In addition, if Z is a closed subset of M such that
s−1(0) −Z is also closed, we can easily define CZ(s) by Lemma 3.12.

Corollary 3.13. Let V −→ M be an ms-bundle of rank n over an
ms-manifold of dimension 2n. Suppose U is an open subset of M and
s ∈ Γ(M;V ) is such that s|U is transversal to the zero set.

(1) If s−1(0)∩U is a finite set, ±|s−1(0)∩U| = 〈e(V ), [M]〉−CM−U (s).
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(2) If M − U =
i=k⊔
i=1

Zi, where each Zi is s-hollow or s-regular, then

s−1(0) ∩ U is finite, and

±|s−1(0)∩U| =
〈
e(V ), [M]

〉
−CM−U (s) =

〈
e(V ), [M]

〉
−

i=k∑
i=1

CZi(s).

If Zi is s-hollow, CZi(s) = 0. If Zi is s-regular and αi : F̃i −→ V is the
corresponding polynomial,

CZi(s) = ±∣∣{υ ∈ F̃i : νυ + αi(υ) = 0}
∣∣ ≡ N(αi),

where ν ∈ Γ(Zi;V ) is a generic section. Finally, if αi ∈ Γ(Zi; F̃ ∗⊗k
i ⊗

π∗V ) has constant rank over Zi and factors through a k̃-to-1 cover ρi :
F̃i −→ F̃⊗k

i ,
CZi(s) = k̃

〈
e
(
π∗V/αi(F̃i)

)
, [Zi]
〉
.

All statements of this corollary have already been proved. A splitting
of the zero set as in (2) of Corollary 3.13 always exists in the complex-
analytic category. It should be possible to generalize the constructions of
this subsection to an arbitrary compact oriented topological manifold.
However, Lemma 3.10 will no longer be valid, and another approach
will be needed to deal with the zeros of ψα,ν that tend to infinity. For
the cases that we encounter in Section 5, the version of s-regularity of
Definition 3.11 suffices.

3.3 Zeros of polynomial maps

We now present a procedure for computing the number of zeros of a
polynomial map between two complex vector bundles over a compact
oriented manifold. All the polynomials we encounter in Section 5 are
of degree-one. Thus, we focus on the degree-one case, but discuss the
general case at the end for the sake of completeness.

Suppose M is an ms-manifold, E,O −→ M are ms-bundles such
that rk E + 1

2 dimM = rk O, and α ∈ Γ(M;E∗ ⊗O) is an ms-section.
Let ν ∈ Γ(M;O) be such that ν has no zeros, the map

ψα,ν ≡ ν + α : E −→ O

is transversal to the zero set in O on E|M, and all its zeros are contained
in E|M. The first step in our procedure of determining the number of
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zeros of ψα,ν reduces this issue to the case E is a line bundle. Let PE be
the projectivization of E (over C) and let γE −→ PE be the tautological
line bundle. Then α induces an ms-section αE ∈ Γ(PE; γ∗E ⊗ π∗EO),
where πE : PE −→ M is the bundle projection map. The number of
zeros of ψα,ν is the same as the number of zeros of the induced map

ψE
α,ν ≡ π∗Eν + αE : γE −→ π∗EO.

Thus, we can always reduce the computation to the case E is a line
bundle.

The second step describes the number of zeros of ψα,ν topologically
in the case E is a line bundle. Since ν has no zeros, it spans a triv-
ial subbundle Cν of O. Let O⊥ be the quotient of O by this trivial
subbundle. Denote the Cν- and O⊥-components of α by αt and α⊥,
respectively. Then the zeros of ψα,ν are described by{

νb + αt
b(v) = 0 ∈ Cν;

α⊥
b (v) = 0 ∈ O⊥;

b ∈ M, v ∈ Eb.(3.13)

Since ν does not vanish, all solutions of the first equations (3.13) are
nonzero. The solution of the second equation with nonzero v is (E −
M)|α⊥−1(0). Furthermore, if b ∈ α⊥−1(0) and α(b) �= 0, αt : E −→ (Cν)b

is an isomorphism. Thus, for every b ∈ α⊥−1(0) − α−1(0), there exists a
unique v ∈ Eb solving the first equation in (3.13), and the sign of (b, v)
as a zero of ψα,ν agrees with the sign of b as a zero of α⊥. On the other
hand, (3.13) has no solutions on E|α−1(0). It follows that the number of
zeros of ψα,ν is the number of zeros of α⊥ on M− α−1(0), i.e.,

±|ψ−1(0)| =
〈
e(E∗ ⊗O⊥), [M]

〉
− Cα−1(0)(α

⊥);(3.14)

see Corollary 3.13.
As discussed in the previous subsection, computing CZ(s) in reason-

ably good cases reduces to counting the number of zeros of polynomial
maps between vector bundles over ms-manifolds, but with the rank of
the target bundle one less than the rank of the bundle O we started
with. Thus, this process will eventually terminate. The lemma below
summarizes the last two paragraphs. Let λE = c1(γ∗E).

Lemma 3.14. Suppose M is an ms-manifold and E,O −→ M
are ms-bundles such that

rkE +
1
2

dimM = rkO.
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If α ∈ Γ(M;E∗⊗O) and ν ∈ Γ(M;O) are such that α is regular, ν has
no zeros, the map

ψα,ν ≡ ν + α : E −→ O
is transversal to the zero set on E|M, and all its zeros are contained
in E|M, then ψ−1

α,ν(0) is a finite set, ±|ψ−1
α,ν(0)| depends only on α, and

N(α) ≡ ±|ψ−1
α,ν(0)| =

〈
c(O)c(E)−1, [M)]

〉
− Cα−1

E (0)(α
⊥
E).

Proof. Let n = rkE, m= rkO, and λE = c1(γ∗E). From Lemma 3.10,
Equation (3.14), and the construction above, we obtain the first two
claims of the lemma along with

N(α) =
k=m−1∑

k=0

〈
ck(O⊥)λm−1−k

E , [PE]
〉
− Cα−1

E (0)(α
⊥
E)(3.15)

=
k=m−1∑

k=0

〈
ck(O)λm−1−k

E , [PE]
〉
− Cα−1

E (0)(α
⊥
E).

On the other hand,

λn
E +

k=n∑
k=1

ck(E)λn−k
E = 0 ∈ H2n(PE) and(3.16) 〈

µλn−1
E , [PE]

〉
=
〈
µ, [M]

〉
∀µ ∈ H2m−2n(M);

see [2] for example. The last statement of the lemma follows from (3.15)
and (3.16).

Remark. If α : E −→ O is a polynomial, and not just a linear map,
the first step in computing the number of zeros of the map ψα,ν = ν+α
would be to reduce to the case α is a linear map via a projectivization
construction similar to the one in the second paragraph of this subsec-
tion. For example, suppose α = p1 + p2, where pi ∈ Γ(M;E∗⊗di

i ⊗ O)
and E = E1 ⊕E2. Then the number of zeros of ψα,ν is the same as the
number of zeros of

ψE1
α,ν ≡ π∗E1

ν + p1,E1 + π∗E1
p2 : γE1 ⊕ π∗E1

E2 −→ π∗E1
O

over PE1, where p1,E1 ∈ Γ(PE1; γ∗⊗d1
E1

) is the section induced by p1. If
ν is generic, this number is d1-times the number of zeros of the map

ψ̃E1
α,ν ≡ π∗E1

ν + p1,E1 + π∗E1
p2 : γ⊗d1

E1
⊕ π∗E1

E2 −→ π∗E1
O.
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Note that p1,E1 is linear on γ⊗d1
E1

. Taking the projection of π∗E1
E2

over PE1 and repeating the above procedure, we obtain an affine map

ψE1,E2
α,ν : π∗E2

γ⊗d1
E1

⊕ γ⊗d2
π∗

E1
E2

−→ π∗π∗
E1

E2
π∗E1

O.

4. Resolvents for {ψµT ,tν} and {ψµS ,tν}

4.1 A power series expansion for π0,1
υ,−∂uυ

Throughout this section, we assume that T = (Σ, [N ], I; j, d) is a simple
bubble type, with d0̂ = 0 and

∑
i∈I di = d, and µ is an N -tuple of

constraints in general position of total codimension

codimCµ = d(n+ 1) − n(g − 1) +N.

Our goal is to extract leading-order terms from the bundle map ψµ
T ,tν

of Theorem 2.7 and to describe the zero set of ψµ
T ,tν as the union of the

zero sets of affine maps between finite-rank vector bundles. The main
topological tool is Subsection 3.1.

Nearly all of this subsection is devoted to obtaining the power series
expansion for π0,1

υ,−∂uυ of Proposition 4.4. However, we first state an
estimate for π0,1

υ,−νυ,t, which is immediate from Theorem 2.7.
Let {ψj} denote an orthonormal basis for H0,1

Σ . Given q ∈ P
n and

an orthonormal basis {Xi} for TqP
n, put

νq =
i=n,j=g∑
i=1,j=1

(∫
z∈Σ

〈
ν(z, q), Xiψj

〉
z

)
Xiψj ≡ πH0,1

Σ
ν(·, q) ∈ H0,1

Σ ⊗ TqP
n.

Note that ν is well-defined.

Lemma 4.1. There exist δ, C ∈ C∞(M(0)
T ; R+) such that for all

υ ∈ F (∅)Tδ and t ∈ (0, δ(bυ)),∥∥π0,1
υ,−νυ,t − R̃υνev(bυ)

∥∥
υ,2

≤ C(bυ)
(
t+ |υ|

1
p
)
.

Suppose υ =
(
(Σ, [N ], I;x, (j, y), u), (vh)h∈Î

)
∈ F (∅)T is such that

qυ is defined. For any h ∈ Î, let h̃(T ) = min{i ∈ Î : i ≤ h}. By the
basic gluing construction of Subsection 2.2 in [13],

ṽh = dφ
bυ ,h̃(T )

∣∣
x̃h(υ)

(
dq−1

υ,ιh

∣∣
x̃h(υ)

dφ−1
bυ ,h

∣∣
0
vh

)
=
∏

i∈Î,i≤h

vi ∈ Tx
h̃(T )

Σ,
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where φbυ ,h is a holomorphic identification of neighborhoods of xh in
Σbυ ,ιh and in F (0)

bυ ,h ≡ Txh
Σbυ ,h. If Σbυ ,h = S2, we also identify Txh

Σbυ ,h

with C with the map qN .

Lemma 4.2. For all υ ∈ F (∅)T such that qυ is defined, ∂uυ

vanishes outside of the annuli A−
υ,h with χT h = 1 and A±

υ,h with χT h =
2. Furthermore, there exists δ ∈ C∞(MT ; R+) such that for all υ ∈
F (∅)Tδ and h ∈ Î with χT h = 1, on Ã−

υ,h− ≡
{
z ∈ F

(0)
h,bυ

: 1
2 |vh|

1
2 ≤

|z|bυ ≤ |vh|
1
2

}
,

Π−1
bυ ,uυ(z)∂

(
uυ ◦ q−1

υ,ιh

)
◦ dφ−1

bυ ,h

∣∣∣
z

= −|vh|−
1
2

(∑
m≥1

(
1 − β|vh|(2|z|)

)(m−1)D(m)
T ,h

([
bυ,
(vh

z

)]))
∂β
∣∣
2|vh|−

1
2 z
,

where uυ(z) ∈ Tev(bυ)P
n is given by

expbυ ,ev(bυ) uυ(z) = uυ

(
q−1
υ,ιh

φ−1
bυ ,h(z)

)
= uh

(
qh,(xh,vh)φ

−1
bυ ,h(z)

)
, |uυ(z)|bυ < rPn .

This sum converges uniformly on Ã−
υ,h.

Remark. By construction, qυ = qυ,(xh,vh) ◦ qυ,ιh on A−
υ,h, and on

qυ,ιh(A−
υ,h)

qυ,(xh,vh)(z) =
(
h, qSph,(xh,vh)(z)

)
, where

ph,(xh,vh)(z) =
(
1 − β|vh|(2|φbυ ,hz|)

)( vh

φbυ ,hz

)
.

Proof. The first claim follows from (G3); see Subsection 2.1. If
y ∈ Σbυ ,h and |q−1

S (y)| ≤ 2δT (bυ), define uh(y) ∈ Tev(bυ)P
n by

expbυ ,ev(bυ) uh(y) = uh(y), |uh(y)|bυ < rPn .

By construction, uυ ◦ q−1
υ,ιh

= uh ◦ qυ ◦ q−1
υ,ιh

on qυ,ιh(A−
υ,h). Since Π−1

bυ ,uυ
◦

duh is C-linear on qυ(A−
υ,h), for any z ∈ Ã−

υ,h

Π−1
bυ ,uυ(·)∂(uυ ◦ q−1

υ,ιh
) ◦ dφ−1

bυ ,h

∣∣∣
z

(4.1)

= Π−1
bυ ,uυ(·)duh ◦ ∂(qυ ◦ q−1

υ,ιh
) ◦ dφ−1

bυ ,h

∣∣∣
z

= −2|vh|−
1
2

(vh

z

)
Π−1

bυ ,uυ(·)(duh ◦ dqS)
∣∣∣
ph,(xh,vh)φ

−1
υ,h(z)

◦ ∂β
∣∣∣
2|vh|−

1
2 z

;
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see Lemma 2.2 in [13]. Since gPn,bυ is flat on uυ(A−
υ,h) by our choice of

metrics,

Π−1
bυ ,uυ

(duh ◦ dqS) = d(uh ◦ qS)(4.2)

on q−1
S qυ(A−

υ,h). Since uh ◦ qS is antiholomorphic and the metric gPn,bυ

is flat near ev(bυ),

d(uh ◦ qS)
∣∣
x

(
∂

∂s

)
= d(uh ◦ qS)

∣∣
x

(
∂

∂y

)
(4.3)

=
∑
m≥1

xm−1

(m− 1)!
dm

dym

(
uh ◦ qS

)∣∣
(s,t)=0

=
∑
m≥1

xm−1

(m− 1)!
Dm−1

dsm−1

d

ds
(uh ◦ qS)

∣∣
(s,t)=0

,

for any x ∈ qυ(A−
υ,h), where y = s + it ∈ C is the complex coordinate.

The second claim follows from Equations (4.1)–(4.3). For the last claim,
note that the sum converges uniformly on Ã−

υ,h as long as qυ(A−
υ,h) is

contained in the ball of convergence for the power series expansion for
uh at 0.

If ψ ∈ H0,1
Σ , b ∈ M(0)

T , m ≥ 1, and the metric gb,0̂ is flat near x, we

define D(m)
b,x ψ ∈ T 0,1

x Σ⊗m as follows. If (s, t) are conformal coordinates
centered at x such that s2 + t2 is the square of the gb,0̂-distance to x, let

{D(m)
b,x ψ}

(
∂

∂s

)
≡ {D(m)

b,x ψ}
(
∂

∂s
, . . . ,

∂

∂s︸ ︷︷ ︸
m

)

=
π

m!

{Dm−1

dsm−1
ψj

∣∣∣
(s,t)=0

}( ∂
∂s

)
,

where the covariant derivatives are taken with respect to the metric gb,0̂.
Since ψj ∈ H0,1

Σ , ψj = f(ds− idt) for some anti-holomorphic function f .
Since gb,0̂ is flat near x, it follows that D(m)

b,x ψ ∈ T 0,1
x Σ⊗m. If {ψj} is an

orthonormal basis for H0,1
Σ , let s(m)

b,x ∈ T ∗
xΣ⊗m ⊗H0,1

Σ be given by

s
(m)
b,x (v) ≡ s

(m)
b,x (v, . . . , v︸ ︷︷ ︸

m

) =
∑
j∈[g]

{
D

(m)
b,x ψj

}
(v)ψj .

The section s(m)
b,x is always independent of the choice of a basis for H0,1

Σ ,

but is dependent on the choice of the metric gb,0̂ if m > 1. However, s(1)b,x
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depends only on (Σ, j); we denote this section by sΣ,x. By [3, p. 246],
sΣ,x does not vanish and thus spans a subbundle of Σ×H0,1

Σ −→ Σ. We
denote this subbundle by H+

Σ and its orthogonal complement by H−
Σ . A

slightly different description of these bundles is given in Subsection 2.3.
Let

π+, π− ∈ Γ
(
Σ; (Σ ×H0,1

Σ )∗ ⊗H±
Σ

)
be the corresponding orthogonal projection maps. Denote by s(m,±)

b,x the

composition π±x ◦ s(m,±)
b,x .

Lemma 4.3. There exists δ ∈ C∞(MT ; R+) such that for all
υ ∈ F (∅)Tδ, X ∈ Tev(bυ)P

n, and ψ ∈ H0,1
Σ ,〈〈

π0,1
υ,−∂uυ, RυXψ

〉〉
υ,2

= −
∑
m≥1

∑
χT h=1

〈
D(m)

T ,hbυ, X
〉({

D
(m)
bυ ,x̃h(υ)ψ

}(
(dφbυ ,x

h̃(T )
|x̃h(υ))−1ṽh

))
.

Furthermore, the sum is absolutely convergent.

Proof. Since
〈
∂uυ, RυXψ

〉
= 0 outside of the annuli A−

υ,h with
χT h = 1,

〈〈
π0,1

υ,−∂uυ, RυXψ
〉〉

=
〈〈
∂uυ, RυXψ

〉〉
=
∑

χT h=1

∫
A−

υ,h

〈
∂uυ, RυXψ

〉
.

(4.4)

Since q−1
υ,ιh

◦φ−1
bυ ,h is holomorphic on Ã−

υ,h, Π−1
bυ ,uυ

is unitary on uυ(A−
υ,h),

and the inner-product of one-forms is conformally invariant,∫
A−

υ,h

〈
∂uυ, RυXψ

〉
(4.5)

=
∫

Ã−
υ,h

〈
∂(uυ ◦ q−1

υ,ιh
) ◦ dφ−1

bυ ,h, RυXψ ◦ dq−1
υ,ιh

◦ dφ−1
bυ ,h

〉
=
∫

Ã−
υ,h

〈
Π−1

bυ ,uυ
∂(uυ ◦ q−1

υ,ιh
) ◦ dφ−1

bυ ,h, Xψ ◦ dq−1
υ,ih

◦ φ−1
bυ ,h

〉
,

since Π−1
bυ ,uυ

RυXψ = Xψ on A−
υ,h. If ιh = 0̂, we identify F (0)

h,bυ
= Txh

Σ
with C in a gbυ ,0̂-unitary way. In all cases, we can then write

ψ ◦ dq−1
υ,ιh

◦ dφ−1
bυ ,h = fdz.
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Since ψ is harmonic and q−1
υ,ιh

◦ φ−1
bυ ,h is holomorphic on Ãυ,h, f is anti-

holomorphic. Using the change of variables 2|vh|−
1
2 z = reiθ, we obtain∫

Ãυ,h

〈
|vh|−

1
2
(
1 − β|vh|(2|z|)

)m−1D(m)
T ,h

([
bυ,

vh

z

])
∂β
∣∣
2|vh|−

1
2 z
,(4.6)

Xψ ◦ dq−1
υ,ιh

◦ dφ−1
bυ ,h

〉
=
〈
D(m)

T ,hbυ, X
〉
vm
h

·
∫

Ãυ,h

{(
1 − β(2|vh|−

1
2 |z|)
)m−1

β′
∣∣
2|vh|−

1
2 |z|

}
|vh|−

1
2 z−m z

|z|f

=
〈
D(m)

T ,hbυ, X
〉
vm
h |vh|−

m−1
2 2m−2

· 1
m

∫ 2

1

∫ 2π

0

{(
1 − β(r)

)m}′(reiθ)−(m−1)f
(1
2
|vh|

1
2 reiθ
)
dθdr.

Since f is holomorphic, for any r > 0,∫ 2π

0
(reiθ)−(m−1)f

(
1
2
|vh|

1
2 reiθ
)
dθ(4.7)

= −i
∫

|z|=r

z−mf

(
1
2
|vh|

1
2 z

)
dz

=
2π

(m− 1)!
d(m−1)

dz(m−1)
f

(
1
2
|vh|

1
2 z

) ∣∣∣
z=0

=
2π

(m− 1)!
2−(m−1)|vh|

m−1
2 f

〈m−1〉(0).

Since the metric gb,0̂ is flat near x̃h,

π

m!
vm
h f

〈m−1〉(0) =
{
D

(m)
bυ ,x̃h(υ)ψ

}(
dq−1

υ,ιh

∣∣
xh
dφ−1

bυ ,h

∣∣
0
vh

)
(4.8)

=
{
D

(m)
bυ ,x̃h(υ)ψ

}(
(dφbυ ,x

h̃(T )
|x̃h(υ))−1ṽh

)
.

The claim follows from Equations (4.4)–(4.8) and Lemma 4.2.

Proposition 4.4. If T = (Σ, [N ], I; j, d) is a simple bubble type
with d0̂ = 0, there exists δ ∈ C∞(MT ; R+) such that

π0,1
υ,−∂uυ = −R̃υ

∑
m≥1

∑
χT h=1

(
D(m)

T ,hb
)(
s
(m)
b,x̃h(υ)

(
dφb,x

h̃(T )
|−1
x̃h(υ)ṽh

))
∀ υ =

[
b, (vh)h∈Î

]
∈ F ∅Tδ.
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Furthermore, the sum is absolutely convergent.

Proof. This proposition follows from Lemma 4.3 and Equation (2.14).

4.2 First-order estimate for ψµT ,tν

If T = (Σ, [N ], I; j, d) is a bubble type as before, we denote by χ(T )
the subset of elements h of I such that χT h = 1. For any υ ∈ FT and
h ∈ χ(T ), let

α
(k)
T ,h(υ) =

(
D(k)

T ,hbυ
)
s
(k)
bυ ,x

h̃(T )
(ṽh), α

(k)
T (υ) =

∑
h∈χ(T )

α
(k)
T ,h(υ),

if υ =
[
(Σ, [N ], I;x, (j, y), u), (vh)h∈Î

]
.

We denote α(1)
T ,h and α(1)

T by αT ,h and αT , respectively.

Lemma 4.5. There exist δ, C ∈ C∞(MT ; R+) such that for all
υ ∈ F ∅Tδ, ∥∥π0,1

υ,−∂uυ + R̃υαT (υ)
∥∥

2
≤ C(bυ)|υ|

∑
h∈χ(T )

|υ|h.

Proof. This is immediate from Proposition 4.4, since∥∥sx̃h(υ)

(
dφbυ ,x

h̃(T )
|−1
x̃h(υ)ṽh

)
− sx

h̃(T )
(ṽh)
∥∥

2
≤ C(bυ)

∣∣φbυ ,x
h̃(T )

x̃h(υ)
∣∣
bυ

∣∣ṽh

∣∣
≤ C ′(bυ)|υ|

∣∣ṽh

∣∣
b
;∑

m≥2

∣∣D(m)
T ,hbυ
∣∣|ṽh|m ≤ C(bυ)|ṽh|2,

for all h ∈ Î with χT h = 1 and υ ∈ FTδ with δ ∈ C∞(MT ; R+)
sufficiently small.

Lemma 4.6. There exist δ, C ∈ C∞(MT (µ); R+) such that for all
υ ∈ F ∅Tδ,

∥∥∥ψµ
T ,tν(υ) −

(
tνev(bυ) + αT (υ)

)∥∥∥
2
≤ C(bυ)

(
t+ |υ|

1
p
)t+

∑
h∈χ(T )

|υ|h

 ,
where ψµ

T ,tν denotes ψµ
MT ,tν .
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Proof. By Lemma 2.2 and Theorem 2.7,

∥∥π0,1
υ,−Dυξυ,tν

∥∥
2
≤ C(bυ)

 ∑
h∈χ(T )

|υ|h

 ‖Dυξυ,tν‖υ,p,1

≤ C ′(bυ)
(
t+ |υ|

1
p
) ∑

h∈χ(T )

|υ|h.

Combining this estimate with Lemmas 4.1 and 4.5, we obtain

∥∥∥ψT ,tν(υ) −
(
tνev(bυ) + αT (υ)

)∥∥∥
2
≤ C(bυ)

(
t+ |υ|

1
p
)t+

∑
h∈χ(T )

|υ|h


(4.9)

for all υ ∈ F ∅Tδ, provided δ ∈ C∞(MT ; R+) is sufficiently small. On
the other hand, if bυ ∈ MT (µ),∥∥ϕµ

T ,tν(υ)
∥∥

bυ
≤ C(bυ)

(
t+ |υ|

1
p
)

=⇒(4.10) ∥∥∥(tνev(φµ
T ϕµ

T ,tν(υ)) + αT (Φµ
T ϕ

µ
T ,tν(υ))

)
− Πbυ ,φµ

T ϕµ
T ,tν(υ)

(
tνev(bυ) + αT (υ)

)∥∥∥
2

≤ C(bυ)
(
t+ |υ|

1
p
)t+

∑
h∈χ(T )

|υ|h

 ,
where ϕµ

T ,tν = ϕµ
MT ,tν is the section of Theorem 2.7 for any fixed reg-

ularization
(
ΦT ≡ Id,Φµ

T
)

of MT (µ). The claim follows from (4.9)
and (4.10).

Our next step is to apply Lemma 3.2 or Corollary 3.6 to the map
ψµ
T ,tν whenever possible. In terms of notation of Subsection 3.1, we take

F+ = O+ = {0}, F− = FT ,
O− = H0,1

Σ ⊗ ev∗TP
n, F̃− =

⊕
h∈χ(T )

⊗
i∈Î,i≤h

FiT ;

φh

(
[b, vÎ ]
)

=
[
b,
⊗

i∈Î,i≤h

vi

]
=
[
b, ṽh

]
, α−(φ(υ)) ≡ αT (υ),

where φh denotes the hth component of φ : F− −→ F̃−. Note that
α− ∈ Γ(MT ; F̃−∗ ⊗O−) is well-defined. A priori, α− may not have full
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rank on every fiber over MT (µ). We will call a subset K ⊂ MT (µ)
T -regular if α− has full rank over K. From Theorem 2.7, Lemma 3.2,
and Corollary 3.6, we then obtain:

Corollary 4.7. Suppose d is a positive integer, T = (Σ, [N ], I;
j[N ], d) is a simple bubble type, with d0̂ = 0 and

∑
i∈I di = d, and µ is

an N -tuple of constraints in general position such that

codimCµ = d(n+ 1) − n(g − 1) +N.

Let ν ∈ Γ
(
Σ × P

n; Λ0,1π∗ΣT
∗Σ ⊗ π∗

PnTP
n
)

be a generic section. If ιh �= 0̂
for some h ∈ Î, for every regular compact subset K of MT (µ), there
exist a neighborhood UK of K in C

∞
(d;[N ])(Σ;µ) and εK > 0 such that

for any t ∈ (0, εK), UK ∩MΣ,d,tν(µ) = ∅. If ιh = 0̂ for all h ∈ Î,
there exists a compact regular subset KT of MT (µ) with the following
property. If K is a compact regular subset of MT (µ) containing KT ,
there exist a neighborhood UK of K in C

∞
(d;[N ])(Σ;µ) and εK > 0 such

that for all t ∈ (0, εK), the signed cardinality of UK ∩MΣ,d,tν(µ) equals
to the signed number of zeros of the map

FT
∣∣
MT (µ)

−→ H0,1
Σ ⊗ ev∗TP

n, υ −→ νev(bυ) + αT (υ).(4.11)

Proof. In either case, by Theorem 2.7, there exist a neighborhood UK

of K in C∞
(d;[N ])(Σ;µ) and δK , εK > 0 such that for any t ∈ (0, εK), there

exists a sign-preserving bijection between UK ∩MΣ,d,tν(µ) and the ze-
ros of ψµ

T ,tν on F ∅TδK
|UK∩MT (µ), provided UK ∩MT (µ) is precompact

in MT (µ). Furthermore, δK can be required to be arbitrarily small. If
K is regular, UK can be chosen so that the closure of UK ∩MT (µ) in
MT (µ) is also regular. Then by Lemma 4.6,∥∥∥ψµ

T ,tν(υ) −
(
tνev(bυ) + αT (υ)

)∥∥∥
2

≤ CK

(
t+ |υ|

1
p
)(
t+ |αT (υ)|

)
∀υ ∈ F ∅TδK

∣∣
K
,

where CK > 0 depends only on K. Thus, the first claim follows from
Lemma 3.2. The second follows from Corollary 3.6, provided that for a
generic ν the set of zeros of the map in (4.11) is T -regular and finite;
see below.

The affine maps of Corollaries 4.7, 4.14, 4.18, and 4.22 extend over
the natural compactifications of the spaces MT (µ) and ST ;k(µ) de-
scribed in Subsection 4.9. Along with counting the zeros of these affine
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maps in Section 5, we also show that the linear part of each of the affine
maps is regular in the sense of Definition 3.9. Thus, by Lemma 3.10
these affine maps have a finite numbers of transverse zeros, which must
lie over the subspace of the base where the linear part of the affine map
has full rank.

4.3 Consequences of the first-order estimate for ψµT ,tν

In this subsection, we show that MT (µ) is T -regular for most bubble
types T under consideration, and nearly all of them fall under the first
case of Corollary 4.7. We call T effective, if for some generic choice of ν
and of the constraints µ1, . . . , µN ,

⋃
t<1

MΣ,tν,d(µ) intersects MT (µ). If

K is a compact subset of MT (µ), we call K effective if
⋃
t<1

MΣ,tν,d(µ)

intersects K.

Lemma 4.8. Let T = (Σ, [N ], I; j, d) be a simple bubble type. If
jl = 0̂ for some l ∈ [N ] and K is a T -regular subset of MT (µ), then K
is not effective.

Proof. By Corollary 4.7, it is sufficient to show that the map

ν + αT : FT −→ H0,1
Σ ⊗ ev∗TP

n

has no zeros for a generic ν. For a generic ν, the zero set of this section
is zero-dimensional. However, if jl = 0̂ for some l ∈ [N ], we can move
yl ∈ Σ freely, without changing the value of ν + αT . Thus, if the zero-set
of the section is nonempty, it must be at least one-dimensional, which
is not the case for a generic ν.

Lemma 4.9. Let T = (Σ, [N ], I; j, d) be a bubble type with d0̂ = 0.
If

ng−|Î|−

|H0̂T | + |M0̂T | +
∑

i∈Î,di=0

(
|HiT | + |MiT | − 2

)≤ n−|χ(T )|,

MT (µ) is T -regular. Furthermore, if the number on the left-hand side
above is negative, then MT (µ) is empty.

Proof. (1) The dimension of M(µ) is given by

dimMT (µ) =
(
d(n+1)+n+N−|Î|

)
−
(
d(n+1)−n(g−1)+N

)
= ng−|Î|.
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However, given b =
(
Σ, [N ], I;x, (j, y), u

)
∈ MT (µ), we are free to vary

xh if ιh = 0̂ (i.e., xh ∈ Σ) and yl if jl = 0̂. Similarly, if i ∈ Î, di = 0, and
|HiT | + |MiT | > 2, we can vary |HiT | + |MiT | − 2 marked and singular
points on Σb,i. Thus, the space MT (µ) must have dimension at least

dmin(T ) ≡ |H0̂T | + |M0̂T | +
∑

i∈Î,di=0

(
|HiT | + |MiT | − 2

)
,

if MT (µ) is nonempty. Therefore, we can assume |χ(T )| ≤ n.
(2) Let h1, . . . , h|χ(T )| be the elements of χ(T ). The section sΣ ∈

Γ(Σ;T ∗Σ⊗H0,1
Σ ) does not vanish; see [3, p. 246]. Thus, the section α−

defined above has rank at least k if the section

DT ;k ∈ Γ

MT (µ);

⊕
m≤k

L∗
hm

T

⊗ ev∗TP
n

 ,
DT ;k

([
b, c{hm:m≤k}

])
=
∑
m≤k

DT ,hm ([b, chm ]) ,

has rank k. We prove inductively that under the assumptions of the
lemma this is the case for all k ≤ |χ(T )|. If k = 0, there is nothing
to prove. So we can assume that k > 0 and that the statement has
been shown to be true for k − 1. The k − 1 statement shows that the
image of DT ;k−1 is a rank k − 1 subbundle of ev∗TP

n. Let π⊥k−1 denote
the orthogonal projection onto the orthogonal complement of this rank
(k− 1)-subbundle in ev∗TP

n with respect to the standard metric in P
n.

We need to show that the section

π⊥k−1 ◦ DT ;k ∈ Γ
(
MT (µ);Lhk

T ∗ ⊗ π⊥k−1(ev
∗
T TP

n)
)

does not vanish. By Corollary 6.3, π⊥k−1 ◦ DT ;k is transverse to zero for
a generic choice of the constraints µ1, . . . , µN . Its zero set must have
dimension at least dmin(T ), if nonempty, since the movements of points
described in (1) do not effect π⊥k−1 ◦ DT ;k. Thus, π⊥k−1 ◦ DT ,k does not
vanish if

dim(MT (µ)) − dmin(T ) < n− (k − 1).

By the assumption of the lemma, this is the case as long as k ≤ |χ(T )|.
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Corollary 4.10. Let T = (Σ, [N ], I; j, d) be an effective bubble
type with d0̂ = 0. If g = 2 and n = 2, then either:

(1) |Î| = 1 and jl �= 0̂ for all l ∈ [N ], or

(2) |Î| = 2, H0̂T = Î, and jl �= 0̂ for all l ∈ [N ].

Furthermore, in Case (2) αT has full rank over all of MT (µ).

d d1̂

d2̂

Figure 1: The two possibilities for T of Corollary 4.10

We illustrate the statement of Corollary 4.10 in Figure 1. We rep-
resent each of the potentially effective bubble types T by the domain
of any stable map in the space MT (µ). Each disk represents a sphere.
We shade the component(s) of the domain on which any (or every) map
in MT (µ) is nonconstant. The labels d, d1̂, and d2̂ indicate the degree
of the map on each of the bubble components; we must have d1̂+d2̂ =d.
In the case of Figure 1, all marked points must be distributed between
the shaded components of the domain.

Due to Corollary 4.10, Corollary 4.7 describes topologically the num-
ber of elements of the set MΣ,d,tν(µ) that lie near a compact subset K
of MΣ,d,0(µ), provided K is disjoint from the space

ST ,1(µ) ≡ α−1
T (0) ⊂ MT (µ),

where T is the bubble type specified by (1) in Corollary 4.10 and by the
first diagram in Figure 1. By definition of αT , the set ST ,1(µ) consists
of the elements of MT (µ) such that the differential of the bubble map
at the attaching node is zero, i.e. the corresponding rational curve in
P

2 has a cusp at the image of Σ. Determining the number of elements
of MΣ,d,tν(µ) that lie near ST ,1(µ) requires higher-order estimates. In
Subsection 4.4, we determine the number of elements of MΣ,d,tν(µ) that
lie near a compact subset K of ST ,1(µ) such that for no element of K the
corresponding singular point on Σ is one of the six hyperelliptic points
of Σ. Finally, in Subsection 4.5, we determine the number of elements
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of MΣ,d,tν(µ) that lie near the subset K of ST ,1(µ) such that for every
element of K the corresponding singular point on Σ is a hyperelliptic
point of Σ.

Proof of Corollary 4.10. (1) By Lemma 4.9, MT (µ) is empty, unless
ng − |Î| ≥ 1, i.e., |Î| ≤ 3. Suppose |Î| = 3. If |H0̂T | ≥ 2,

ng − |Î| − |H0̂T | ≤ 4 − 3 − 2 < 0,

and thus MT (µ) is empty by Lemma 4.9. If |H0̂T | = 1,

n− |χ(T )| ≥ 2 − (|Î| − 1) = 0 = ng − |Î| − |H0̂T |,

and by Lemma 4.9 the space MT (µ) is T -regular. The space MT (µ) is
compact, since by the above MT ′(µ) = ∅ if T ′ < T . Corollary 4.7 then
implies that MT (µ) is not effective, i.e., T is not effective.

(2) Suppose |Î| = 2. If |H0̂T | = 2 and jl = 0̂ for some l ∈ [N ],

ng − |Î| − |H0̂T | − |M0̂T | ≤ 4 − 2 − 2 − 1 < 0,

and thus MT (µ) is empty by Lemma 4.9. If |H0̂T | = 1,

n− |χ(T )| = 2 − 1 = ng − |Î| − |H0̂T |,

and it follows from Lemma 4.9 and Corollary 4.7, that every compact
subset of MT (µ) is not effective. Furthermore, MT (µ) −MT (µ) con-
sists of three-bubble strata, all of which are not effective by (1) above.
Thus, T is not effective, unless ιh = 0̂ for all h ∈ Î and jl �= 0̂ for all
l ∈ [N ]. The second statement about the |Î| = 2 case is immediate from
Lemma 4.9.

(3) Finally, suppose |Î| = 1 and jl = 0̂ for some l ∈ [N ]. Then,

n− |χ(T )| = 2 − 1 ≥ ng − |Î| − |H0̂T | − |M0̂T |,

and thus by Lemmas 4.8 and 4.9, every compact subset of MT (µ) is
not effective. Furthermore, MT (µ)−MT (µ) consists of two- and three-
bubble strata that by (1) and (2) are not effective. It follows that T is
not effective.
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Corollary 4.11. Let T = (Σ, [N ], I; j, d) be an effective bubble
type with d0̂ = 0. If g = 2 and n = 3, then either:

(1) |Î| = 1,

(2a) |Î| = 2, H0̂T = Î, and jl �= 0̂ for all l ∈ [N ],

(2b) |Î| = 2, H0̂T �= Î, and jl �= 0̂ for all l ∈ [N ],

(3a) |Î| = 3, H0̂T = Î, and jl �= 0̂ for all l ∈ [N ], or

(3b) |Î| = 3, ιh = 1̂ for some 1̂ ∈ Î and all h ∈ Î − {1̂}, d1̂ = 0, and
jl �= 0̂, 1̂ for all l ∈ [N ].

Furthermore, in Case (3a) αT has full rank on all of MT (µ).

l1

l2

Figure 2: The five possibilities for T of Corollary 4.11

We illustrate the statement of Corollary 4.11 in Figure 2, using the
same conventions as in Figure 1. In the first case, the genus-two Rie-
mann surface Σ may carry some of the marked points. In the remaining
four cases, all of the marked points are distributed between the shaded
components. In the third diagram, the lightly shaded disk indicates
that the restriction of the maps in MT (µ) to the corresponding bub-
ble component may or may not be constant. In the former case, this
component must carry at least one marked point.

By the last remark of Corollary 4.11, Corollary 4.7 describes topo-
logically the number of elements of the set MΣ,d,tν(µ) that lie near a
compact subset K of MT (µ) for any bubble type T as in (3a) of Corol-
lary 4.11 and in the fourth diagram in Figure 2. If T is a bubble type
as in (1) or (2b) of Corollary 4.11 and in the first or third diagram of
Figure 2, respectively, Corollary 4.7 describes the number of elements
of MΣ,d,tν(µ) that lie near a compact subset K of MT (µ), provided K
is disjoint from the space

ST ,1(µ) ≡ α−1
T (0) ⊂ MT (µ).
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The elements of ST ,1(µ) are characterized geometrically in exactly the
same way as in the n= 2 case above. As in the n= 2 case, we give a
topological description for the number of elements of MΣ,d,tν(µ) that
lie near a compact subset K of ST ,1(µ) in Subsections 4.4 and 4.5.

If T is a bubble type as in (2a) or (3b) of Corollary 4.11 and in the
second or last diagram of Figure 2, respectively, Corollary 4.7 describes
the number of elements of MΣ,d,tν(µ) that lie near a compact subset K
of MT (µ), provided K is disjoint from the space

ST ,2(µ) ≡ α−1
T (0) ⊂ MT (µ).

As discussed in the first paragraph of Subsection 4.6, in the first case
ST ,2(µ) consists of the stable maps in MT (µ) such that the image of the
differentials at the attaching nodes of the two bubble components is the
same complex line and the two singular points on Σ are conjugates. The
first condition means that the two rational curves form a tacnode at the
image of Σ in P

3. For T as in (2a) of Corollary 4.11 and in the second
diagram of Figure 2, we determine the number of elements of MΣ,d,tν(µ)
that lie near a compact subset K of ST ,2(µ) in Subsection 4.6. Finally,
if T is as in (3b) of Corollary 4.11 and in the last diagram of Figure 2,
ST ,2(µ) consists of the stable maps in MT (µ) such that the image of the
differentials at the attaching nodes of the two shaded bubble components
is the same complex line. In Subsection 4.7, we determine the number of
elements of MΣ,d,tν(µ) that lie near a compact subset K of ST ,2(µ) such
that for no element of K the corresponding singular point on Σ is one
of the six hyperelliptic points of Σ. In Subsection 4.8, we determine the
number of elements of MΣ,d,tν(µ) that lie near the subset K of ST ,2(µ)
such that for every element of K the corresponding singular point on Σ
is a hyperelliptic point of Σ. We eventually find that only the simplest
possible bubble types are effective: that in the first diagram of Figure 2
with no marked points on Σ and those in the second and fourth diagrams
in Figure 2; see Subsection 4.9.

Proof of Corollary 4.11. (1) Similarly to the proof of Corollary 4.10,
MT (µ) is empty unless |Î| ≤ 5. If |Î| = 5, MT (µ) is compact and
|H0̂T | = 1. Let 1̂ ∈ Î be such that ι1̂ = 0̂. If d1̂ > 0,

n− |χ(T )| = 3 − 1 > 0 = ng − |Î| − |H0̂T |,

and MT (µ) is not effective by Lemma 4.9 and Corollary 4.7. Suppose
d1̂ = 0. Then |H1̂T | ≥ 2; otherwise MT (µ) is empty by Lemma 4.9. It
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follows that

n− |χ(T )| ≥ 3 − (|Î| − 2) = 0 = ng − |Î| − |H0̂T |.

Thus, by Lemma 4.9 and Corollary 4.7, T is not effective.
(2) Suppose |Î| = 4. If |H0̂T | ≥ 3, MT (µ) is empty by Lemma 4.9.

Let 1̂ ∈ Î be as above. If |H0̂T | = 2,

n− |χ(T )| ≥ 3 − (|Î| − 1) = 0 = ng − |Î| − |H0̂T |.

If |H0̂T | = 1 and d1̂ > 0,

n− |χ(T )| = 3 − 1 > 1 = ng − |Î| − |H0̂T |.

If |H0̂T | = 1, d1̂ = 0, and |H1̂T | = 3,

n− |χ(T )| ≥ 3 − (|Î| − 1) = 0 = ng − |Î| − |H0̂T | − (|H1̂T | − 2).

Finally, if |H0̂T | = 1, d1̂ = 0, and |H1̂T | = 2,

n− |χ(T )| ≥ 3 − (|Î| − 2) = 1 = ng − |Î| − |H0̂T |.

Thus, by Corollary 4.7 and Lemma 4.9, in all four cases, no compact
subset of MT (µ) is effective. Since MT (µ) − MT (µ) consists of five-
bubble strata that are not effective by (1) above, it follows that T is
not effective.

(3) Suppose |Î| = 3. If H0̂T = Î and jl = 0̂ for some l ∈ [N ],

ng − |Î| − |H0̂T | − |M0̂T | = 6 − 3 − 3 − 1 < 0,

and thus MT (µ) is empty by Lemma 4.9. If |H0̂T | = 2,

n− |χ(T )| ≥ 3 − (|Î| − 1) = 1 ≥ ng − |Î| − |H0̂T |.

If |H0̂T | = 1 and d1̂ > 0,

n− |χ(T )| = 2 = ng − |Î| − |H0̂T |.

If |H0̂T | = 1 and |H1̂T | = 1,

n− |χ(T )| = 2 = ng − |Î| − |H0̂T |.

Thus, in all three cases, by Lemma 4.9 and Corollary 4.7, no compact
subset of MT (µ) is effective. Since MT (µ) −MT (µ) consists of four-
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and five-bubble strata that are not effective by (1) and (2) above, T
is not effective in these three cases. On the other hand, if |H0̂T | = 2,
jl = 0̂ or jl = 1̂ for some l ∈ [N ], and d1̂ = 0,

n− |χ(T )| ≥ 1 ≥ ng − |Î| − |H0̂T | − |M0̂T | −
(
|H1̂T | + |M1̂T | − 2

)
.

Thus, by Lemmas 4.8 and 4.9, no compact subset of MT (µ) is effective.
Similarly to the above, it follows that T is not effective.

(4) Suppose |Î| = 2 and jl = 0̂ for some l ∈ [N ]. If |H0̂T | = 2,

n− |χ(T )| ≥ 1 ≥ ng − |Î| − |H0̂T | − |M0̂T |.

If |H0̂T | = 1,

n− |χ(T )| = 2 ≥ ng − |Î| − |H0̂T | − |M0̂T |.

Thus, in either case, no compact subset of MT (µ) is effective by Lem-
mas 4.8 and 4.9. Furthermore,

MT (µ) −MT (µ) =
⋃

T ′<T
MT ′(µ),

where T ′ is either a four- or five-bubble strata, or a three bubble-strata
T ′ = (Σ, [N ], I ′; j′, d′) such that either |H0̂T | = 1, or d′

1̂′
= 0 and j′l = 0̂

or 1̂′. By (1)–(3) above, none of such bubble types is effective, and thus
T is not effective.

4.4 Second-order estimate for ψµT ,tν , Case 1

We now refine the first-order estimate for ψµ
T ,tν along the sets on which

the section α− defined above does not have full rank. These are precisely
the sets on which the section DT ,|χ(T | defined in the proof of Lemma 4.9
does not have full rank.

One set on which DT ,|χ(T )| fails to have full rank is the zero set of
DT ,h1 . If n = 2, 3, by Lemma 4.9, DT ,h1 does not vanish unless h1 is
the only element of the set χ(T ). Thus, we assume that this is the
case. We denote the zero-locus of DT ,h1 by ST ,1 ⊂ MT , which will
be abbreviated as S in this subsection. Since DT ,h1 is transversal to
zero by Corollary 6.3, S is a complex submanifold of MT of codimen-
sion n. Its normal bundle NS in MT is the restriction of L∗

k1
T ⊗ev∗TP

n
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to ST ,1. Let (ΦS ,Φ
µ
S) be a regularization of ST ,1(µ) ≡ S∩MT (µ). This

regularization can be chosen so that

DT ,h1 φ̃S(b,X) = Π
b,φ̃S(b,X)

X ∀ (b,X) ∈ NS̃ = ev∗TP
n,(4.12)

where φ̃S is the lift of φS to the preimage S̃ of S and its normal bun-
dle NS̃ in M(0)

T ; see Subsection 3.8 in [13]. The bundle NS carries a
natural norm induced by the gPn,ev-metric on P

n. Denote by FS and
F ∅S the bundles described in Subsection 2.4 corresponding to the sub-
manifold ST ,1. Let 1̂ ∈ H0̂T be the unique element such that 1̂ ≤ h1. If[
b;X, υ

]
∈ FS = NS ⊕ FT , put

(2)αT ;1(X, υ) = X(bυ)sΣ,x1̂
ṽh1 + α

(2)
T ,h1

(υ).

Lemma 4.12. There exist δ, C ∈ C∞(S; R+) such that for all
� = [(b;X, υ)] ∈ F ∅Sδ,∥∥∥π0,1

ΦS(�),−∂uΦS(�) + R̃ΦS(�)Πb,φS(X)
(2)αT ;1(X, υ)

∥∥∥
2

≤ C(b)|υ|
(
|υ|2h1

+ |X||υ|h1

)
.

Proof. The proof is almost identical to the proof of Lemma 4.5.
The only difference is that we use two terms of the power series of
Proposition 4.4. We then make use of the assumption (4.12) on φS and
smooth dependence of D(2)

T ,h1
on X.

Lemma 4.13. There exist δ, C ∈ C∞(ST ,1(µ); R+) such that for
all � = [(b;X, υ)] ∈ F ∅Sδ,∥∥∥ψµ

S,tν(�) −
(
tνev(b) + (2)αT ;1(X, υ)

)∥∥∥
2

≤ C(b)
(
t+ |υ|

1
p
)(
t+ |υ|2h1

+ |X||υ|h1

)
.

Proof. This claim follows from Lemmas 4.1 and 4.12 in a way anal-
ogous to the proof of Lemma 4.6. The only difference is that we need to
improve the estimate on π0,1

υ,−Dυξυ,tν made in the proof of Lemma 4.6.
Let {ψj} be an orthonormal basis for H0,1

Σ , such that ψ1 ∈ H+
Σ(x̃h1(υ)),

and {Xi} an orthonormal basis for Tev(φS(X))P
n. By Theorem 2.7, with

υ(X) = ΦS(�),∣∣∣〈〈π0,1
υ(X),−Dυ(X)ξυ(X),tν , Rυ(X)Xiψj

〉〉∣∣∣(4.13)

=
∣∣∣〈〈ξυ(X),tν , D

∗
υ(X)Rυ(X)Xiψj

〉〉∣∣∣
≤ C(b)(t+ |υ|

1
p )‖D∗

υ(X)Rυ(X)Xjψj‖C0 .
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Since ξ ∈ Γ̃+(υ), by construction in Subsection 2.3,〈〈
ξυ(X),tν , D

∗
υ(X)Rυ(X)Xiψ1

〉〉
= 0.(4.14)

On the other hand, since ψ2|x̃h1
(υ) = 0 and ‖∇ψ2‖gφS (X),0̂,C0 ≤ C(b), by

Equation (2.12)∥∥D∗
υ(X)Rυ(X)Xiψ2

∥∥
C0(Ãυ(X),h1

)
≤ C(b)|υ|2h1

,(4.15)

where Ãυ(X),h1
is the annulus defined in Lemma 2.2. By Equations

(4.13)–(4.15), ∣∣∣π0,1
υ(X),−Dυξυ(X),tν

∣∣∣ ≤ C(b)(t+ |υ|
1
p )|υ|2h1

.

The next step is to apply Lemma 3.2 or Corollary 3.6 whenever
possible. Let

F+ = ev∗TP
n ⊗
⊗

i∈Î,i≤h1

FiT , F− = FT ,

F̃− =

 ⊗
i∈Î,i≤h1

FiT

⊗2

, O± = H±
Σ ⊗ ev∗TP

n;

α+
(
[X, υ]
)

= XsΣ,x1̂
ṽh1 , φ

(
[b, vÎ ]
)

=
[
b, ṽh1 ⊗ ṽh1

]
,

α−(φ(υ)
)
≡ π−x1̂(bυ)α

(2)
T (υ).

Note that α+ ∈ Γ(S;F+∗ ⊗ O+), since π− ◦ XsΣ = 0. Since the map
(X, υ) −→ (X ⊗ ṽh1 , υ) is injective on F ∅T , we can view ψµ

S,tν as a map
on an open subset of F− ⊕ F+. Analogously to the first-order case of
Subsection 4.2, subset K ⊂ ST ,1(µ) will be called second-order regular
if α− has full rank over K.

Corollary 4.14. Suppose d is a positive integer, T = (Σ, [N ], I; j, d)
is a simple bubble type, with d0̂ = 0 and

∑
i∈I di = d, and µ is an N -

tuple of constraints in general position such that

codimCµ = d(n+ 1) − n(g − 1) +N.

Let ν ∈ Γ(Σ×P
n; Λ0,1π∗ΣT

∗Σ⊗π∗
PnTP

n) be a generic section. If |Î| > 1,
for every second-order regular compact subset K of ST ,1(µ), there exist
a neighborhood UK of K in C

∞
(d;[N ])(Σ;µ) and εK > 0 such that for
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any t ∈ (0, εK), UK ∩MΣ,d,tν(µ) = ∅. If |Î| = 1, there exists a compact
regular subset KT ,1 of ST ,1(µ) with the following property. If K is a
compact subset of ST ,1(µ) containing KT ,1, there exist a neighborhood
UK of K in C

∞
(d;[N ])(Σ;µ) and εK > 0 such that for all t ∈ (0, εK), the

signed cardinality of UK ∩MΣ,d,tν(µ) equals to twice the signed number
of zeros of the map

TΣ⊗2 ⊗ L1̂T
⊗2
∣∣
ST ,1(µ)

−→ H−
Σ ⊗ ev∗TP

n,(4.16)

[b, v] −→ ν−b + α(2,−)
(
[b, v]
)
.

Proof. In either case, by Theorem 2.7, there exist a neighborhood
UK of K in C∞

(d;[N ])(Σ;µ) and δK , εK > 0 such that for any t ∈ (0, εK),
there exists a sign-preserving bijection between UK∩MΣ,d,tν(µ) and the
zeros of ψµ

S,tν on F ∅SδK

∣∣
UK∩ST ,1(µ)

, provided UK∩ST ,1(µ) is precompact
in ST ,1(µ). If K is second-order regular, UK can be chosen so that the
closure of UK ∩ST ,1(µ) in ST ,1(µ) is also second-order regular. Since K
is regular and α+ is injective on all fibers,

|υ|2h1
= |φ(υ)| ≤ CK

∣∣α−(φ(υ))
∣∣ =⇒

|υ|2h1
+ |X||υ|h1 ≤ C ′

K

∣∣(2)αT ;1(X, υ)
∣∣ ∀(X, υ) ∈ F ∅SδK

∣∣
K
,

where CK , C
′
K > 0 depend only on K. Thus, by Lemma 4.13,∥∥∥ψµ

S,tν(�) −
(
tνev(b�) + (2)αT ;1(�)

)∥∥∥
2

≤ CK

(
t+ |�|

1
p
)(
t+
∣∣(2)αT ;1(�)

∣∣) ∀� ∈ F ∅SδK

∣∣
K
,

where CK > 0 depends only on K. The first claim now follows from
Lemma 3.2. The second follows from Corollary 3.6, provided that for a
generic ν the set of zeros of the map in (4.16) is second-order regular
and finite; see the last paragraph of Subsection 4.2.

4.5 Third-order estimate for ψµT ,tν , Case 1

We continue with the case of Subsection 4.4. Then

α−([b, ṽh1 ]) = (D(2)
T ,h1

b)s(2,−)
b,x1̂

(ṽh1).

By Corollary 6.3, for a generic choice of the constraints µ1, . . . , µN ,
D(2)

T ,h1
is transversal to zero along ST ,1(µ) if dh1 ≥ 2. Since the zero
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set of D(2)
T ,h1

must have dimension at least dmin(T ) ≥ 1 by the same

argument as in the proof of Lemma 4.9, D(2)
T ,h1

does not vanish along
ST ,1(µ) if dh1 ≥ 2. On the other hand, if dh1 = 1, ST ,1 = ∅, since
the differential of any degree-one holomorphic map from S2 to P

n is
nowhere zero. In fact, ST ,1(µ) = ∅ even for dh1 = 2, since the image
of any degree-two map with a somewhere vanishing differential is a
line, and no line intersects µ1, . . . , µN if n = 2, 3. Thus, we can assume
dh1 ≥ 3. It follows that the only way the above homomorphism α− can
fail to have full rank on F̃− is if s(2,−)

b,x1̂
= 0. While s(2)b,x1̂

depends on the

choice of the metric gb,0̂ on Σ, the section s(2,−) ∈ Γ
(
Σ;T ∗Σ⊗2 ⊗H−

Σ

)
is

independent of the metric and is globally defined on Σ. This can be seen
by a direct computation. It has transverse zeros at the six branch points
of the double cover Σ −→ P

1 induced by sΣ; see [3, p. 246]. Denote by
z1, . . . , z6 these six points. Then the set on which α− fails to have full
rank is

⋃
m∈[6]

S(m)
T ,1 (µ), where

S(m)
T ,1 =

{
b ∈ ST ,1 : x1̂(b) = zm}, S(m)

T ,1 (µ) = S(m)
T ,1 ∩MT (µ).

The sets S(m)
T ,1 are obviously disjoint.

Since the normal bundle of S(m)
T ,1 in ST ,1 is TzmΣ, the normal bundle

NS of S(m)
T ,1 in MT (µ) is TzmΣ⊕NS1, where NS1 is the normal bundle

of ST ,1 in MT (µ), as described in the previous subsection. Let
(
ΦS ,Φ

µ
S
)

be a regularization of S(m)
T ,1 (µ) induced by the regularization of ST ,1(µ)

described in Subsection 4.4. In particular,

(4.17) DT ,h1 φ̃S(b, w,X) = Π
b,φ̃S(b,w,X)

X

∀ (b, w,X) ∈ TzmΣ ⊕NS̃1 = TzmΣ ⊕ ev∗TP
n,

where φ̃S is the lift of φSto M(0)
T . We can also assume that Φµ

S is given by
the gPn,b-parallel transport on NbS1. The bundle NS carries a natural
norm induced by the gPn,ev-metric on P

n and g·,0̂-metric on Σ. Denote
by FS and F ∅S the bundles described in Subsection 2.4 corresponding
to the submanifold S(m)

T ,1 . If (b, w,X, υ) ∈ F ∅S is sufficiently small, let

x̃1̂(w, υ) = x̃1̂

(
φS(w,X, υ)

)
= x̃1̂

(
φS(w, 0, υ)

)
∈ Σ.
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We identify a small neighborhood of zm in Σ with a neighborhood of 0
in TzmΣ via the gb,0̂-exponential map. Put

α̃(w,X, υ) = (Xb)sΣ,x̃1̂(w,υ)(ṽh1)

+ Π−1
b,φS(b,X)

(
D(2)

T ,h1
φS(b,X)

)
s
(2)
b,x̃1̂(w,υ)(ṽh1)

+
(
D(3)

T ,h1
b
)
s
(3)
b,zm

(ṽh1).

If (b, w,X, υ) ∈ F ∅S|S(m)
T ,1 (µ)

is sufficiently small, let

α̃µ(w,X, µ) = (Xb)sΣ,x̃1̂(w,υ)(ṽh1) +
(
Dµ,(2)

S,tν (w,X, υ)
)
s
(2)
b,x̃1̂(w,υ)(ṽh1)

+
(
D(3)

T ,h1
b
)
s
(3)
b,zm

(ṽh1),

where, with ϕµ
S,tν as in Theorem 2.7,

Dµ,(2)
S,tν (w,X, υ) = Π−1

φµ
Sϕµ

S,tν(w,X,υ),φSΦµ
Sϕµ

S,tν(w,X,υ)
Π−1

b,φµ
Sϕµ

S,tν(w,X,υ)

·
(
D(2)

T ,h1
φSΦµ

Sϕ
µ
S,tν(w,X, υ)

)
.

Lemma 4.15. There exist δ, C ∈ C∞(S(m)
T ,1 ; R+) such that for all

� = [(b, w,X, υ)] ∈ F ∅Sδ,∥∥∥π0,1
ΦS(�),−∂uΦS(�) + R̃ΦS(�)Πb,φS(X)α̃(w,X, υ)

∥∥∥
2
≤ C(b)|�||υ|3h1

.

Proof. The proof is the same as that of Lemma 4.12, except here we
use the first three terms of the expansion of Proposition 4.4. Note that
|x̃1̂(w, υ)| ≤ C(b)(|w| + |υ|).

Lemma 4.16. There exist δ, C ∈ C∞(S(m)
T ,1 (µ); R+) such that for

all � = (b, w,X, υ) ∈ F ∅Sδ∥∥ψµ
S,tν(�) − (tνev(b) + α̃µ(w,X, υ))

∥∥
2

≤ C(b)(t+ |�|
1
p )
(
t+ |υ|3h1

+ |x̃1(w, υ)||υ|2h1

)
.

Proof. The proof is similar to the proofs of Lemmas 4.6 and 4.13,
but we need to obtain an even stronger bound on∥∥π0,1

ΦS(�),−DΦS(�)ξΦS(�),tν

∥∥
2
.
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Let {ψj} be an orthonormal basis for H0,1
Σ such that ψ1∈H+

Σ

(
x̃h1(w, υ)

)
,

and {Xi} an orthonormal basis for Tev(φS(X,υ))P
n. Then, as in the proof

of Lemma 4.13, with υ(�) = ΦS(�),〈〈
DΦS(�)ξυ(�),tν , Rυ(�)Xiψ1

〉〉
= 0;(4.18) ∣∣∣〈〈π0,1

υ(�),−DΦS(�)ξυ(�),tν , Rυ(�)X
〉〉∣∣∣(4.19)

≤ C(b)
(
t+ |υ|

1
p
)∥∥D∗

υ(�)Rυ(�)Xiψ2

∥∥
υ(�),1

.

The one-form ψ2 vanishes at x̃h1(w, υ) by definition and ‖∇ψ2‖gb,0̂,C0 ≤
C|x̃h1(w, υ)|, since the derivative of the corresponding one-form for zm
vanishes. Thus, by Equation (2.12)∥∥D∗

υ(�)Rυ(�)Xiψ2

∥∥
gυ(�),L

1(Ãυ(�),h)
(4.20)

≤ C(b)(|x̃h1(w, υ)||υ|h1 + |υ|2h1
)|υ|h1 ,

as needed for our bound. Finally, we use our assumption that Φµ
S is

given by the gb,0̂-parallel transport on NbS1.
For any (w,X, υ) ∈ F ∅

b S|S(m)
T ,1 (µ)

sufficiently small, let

Y (w,X, υ) = (Xb)sΣ,x̃1(w,υ)(ṽh1) +
(
Dµ,(2)

S,tν (w,X, υ)
)
s
(2,+)
b,x̃1̂(w,υ)(ṽh1 , ṽh1);

(3)α
(m),−
T ;1 (w, υ)=

(
D(2)

T ,h1
b
)
s
(3,−)
b,zm

(
x̃1̂(w, υ), ṽh1 , ṽh1

)
+
(
D(3)

T ,h1
b
)
s
(3,−)
b,zm

(ṽh1);

r+T ;1(υ) =
(
D(3)

T ,h1
b
)
s
(3,+)
b,zm

(ṽh1), ν±b = πzmνb.

Corollary 4.17. There exist δ, C ∈ C∞(S(m)
T ,1 (µ); R+) such that

for all � = [(b, w,X, υ)] ∈ F ∅Sδ∥∥π+
x1̂(w,υ)ψ

µ
S,tν(w,X, υ) − (tπ+

x1̂(w,υ)νb + Y (w,X, υ) + r+T ;1(υ))
∥∥

2

≤ C(b)(t+ |�|
1
p )
(
t+ |υ|3h1

+ |x̃1(w, υ)||υ|2h1

)
;∥∥π−x1̂(w,υ)ψ

µ
S,tν(w,X, υ) − (tπ−zm

νb + (3)α
(m),−
T ;1 (w, υ)

)∥∥
2

≤ C(b)(t+ |�|
1
p )
(
t+ |υ|3h1

+ |x̃1(w, υ)||υ|2h1

)
.

Proof. The first estimate is clear from Lemma 4.16. For the second,
note that since s(2,−)

b,zm
= 0, |π−x̃1̂(w,υ) − π−zm

| ≤ C|x̃1(w, υ)|2, and thus∣∣s(2,−)
b,x̃1̂(w,υ)(ṽh1) − s

(3,−)
b,zm

(x̃1̂(w, υ), ṽh1 , ṽh1)
∣∣ ≤ C|x̃1̂(w, υ)|

2|ṽh1 |2 =⇒∣∣π−x1̂(w,υ)α̃
µ(w,X, υ) − (3)α−

T ;1(w, υ)
∣∣

≤ C(b)|(t, w,X, υ)|
1
p
(
|x1̂(w, υ)||ṽh1 |2 + |ṽh1 |3

)
.
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Furthermore, |ϕµ
S,tν(w,X, υ)|b ≤ C(b)(t+ |�|

1
p ).

The next step is to apply Lemma 3.2 and Corollary 3.6. Let

F+ = H+
Σ ⊗ ev∗TP

n, F− = TzmΣ ⊕ FT , O± = H±
Σ ⊗ ev∗TP

n;

F̃− = TzmΣ ⊗

 ⊗
i∈Î,i≤h1

FiT

⊗2

⊕

 ⊗
i∈Î,i≤h1

FiT

⊗3

;

φ
(
[b;w, vÎ ]

)
=
[
b, x1̂(w,υ) ⊗ ṽh1 ⊗ ṽh1 , ṽh1 ⊗ ṽh1 ⊗ ṽh1

]
;

π+α(w, υ) = r+T ;1(υ), α
+(Y ) = π+

zm
Y, α−(φ(w, υ)) ≡ (3)α

(m),−
T ,1 (w, υ).

Note that α− ∈ Γ(S; F̃−∗ ⊗O−) is well-defined. Since the map

(w,X, υ) −→
(
Y (w,X, υ), w, υ

)
is injective on F ∅S, we can view ψµ

S,tν as a map on an open subset of
F− ⊕ F+.

Corollary 4.18. Suppose d is a positive integer, T =(Σ, [N ], I; j, d)
is a simple bubble type, with d0̂ = 0 and

∑
i∈I

di = d, and µ is an N -tuple

of constraints in general position such that

codimCµ = d(n+ 1) − n(g − 1) +N.

Let ν ∈ Γ(Σ × P
n; Λ0,1π∗ΣT

∗Σ ⊗ π∗
PnTP

n) be a generic section. If |Î| >
1, for every compact subset K of S(m)

T ,1 (µ), there exist a neighborhood
UK of K in C

∞
(d;[N ])(Σ;µ) and εK > 0 such that for any t ∈ (0, εK),

UK ∩ MΣ,d,tν(µ) = ∅. If |Î| = 1, there exists a compact subset K̃(m)
T ,1

of S(m)
T ,1 (µ) with the following property. If K is a compact subset of

S(m)
T , 1 (µ) containing K̃

(m)
T ,1 , there exist a neighborhood UK of K in

C
∞
(d;[N ])(Σ;µ) and εK > 0 such that for all t ∈ (0, εK), the signed car-

dinality of UK ∩MΣ,d,tν(µ) equals to three times the signed number of
zeros of the map

TzmΣ⊗3 ⊗
(
L1̂T

⊗2 ⊕ L1̂T
⊗3
)∣∣

S(m)
T ,1 (µ)

−→ H−
Σ ⊗ ev∗TP

n,(4.21)

[b, w, v1̂] −→ ν−b +
(
D(2)

T ,1̂
b
)
s
(3,−)
b,zm

(w) +
(
D(3)

T ,1̂
b
)
s
(3,−)
b,zm

(v).

Proof. The proof is similar to the proofs of Corollaries 4.7 and 4.14,
but two modifications are needed to be mentioned. First, we need to
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show that α− always has full rank. Since we are assuming that dh1 ≥ 3,
the sections D(1)

T ,h1
, D(2)

T ,h1
, and D(3)

T ,h1
over MT have transverse images

in TP
n. Thus, the sections of P(ev∗TP

n) −→ S
(m)
T ,1 (µ) induced by D(2)

T ,h1

and D(3)
T ,h1

are mutually transversal. However, the fiber dimension of

P(ev∗TP
n) is n − 1, while the dimension of S(m)

T ,1 (µ) is n − 2. Thus,
the two sections do not intersect and α− has full rank on all fibers
over S(m)

T ,1 (µ). The second difference with the proofs of Corollaries 4.7
and 4.14 is that we replace the section ψµ

S,tν by the map

(w, υ,X) −→ π+
zm
π+

x1̂(w,υ)ψ
µ
S,tν(w, υ,X) + π−zm

π−x1̂(w,υ)ψ
µ
S,tν(w, υ,X),

which has exactly the same zeros provided w and υ are sufficiently small
(depending only on Σ).

4.6 Second-order estimate for ψµT ,tν , Case 2a

We now understand all cases except for (2a) and (3b) of Corollary 4.11.
Let {h1, h2} = {1̂, 2̂} in Case (2a) and {2̂, 3̂} in (3b). By dimension
count as in the proof of Lemma 4.9, DT ,h1 and DT ,h2 do not vanish on
MT (µ) in these two cases. By Corollary 6.3, π⊥b ◦ DT ,h2 is transversal
to zero, where π⊥b denotes the projection onto the orthogonal comple-
ment E1 of the image of DT ,h1 in ev∗TP

n. Since

αT (υ) =
(
DT ,h1bυ

)
sΣ,x

h̃1(T )
(ṽh1) +

(
DT ,h2bυ

)
sΣ,x

h̃2(T )
(ṽh2),

αT can fail to have the full rank only on the zero set of π⊥b ◦ DT ,h2 .
Furthermore, sΣ,x

h̃1
and sΣ,x

h̃2
must have the same image in H0,1

Σ . This

is automatic in Case (3b), since h̃1(T ) = h̃2(T ) = 1̂, but in Case (2a),
this means that x1̂ and x2̂ differ by the nontrivial holomorphic auto-
morphism of Σ; see [3, p. 254].

We first treat Case (2a); so we can assume h1 = 1̂, h2 = 2̂. Let
S ≡ ST ,2 denote the subset of MT on which the section αT has rank one.
By Corollary 6.3, this is a complex submanifold of MT . Furthermore,
S = S0 × S1, where S1 is the subspace of UT on which the operator
DT ,2, defined as in the proof of Lemma 4.9, has rank one,

S0 =
{
(x1̂,−x1̂) : x1̂ ∈ Σ∗},

−x1̂ ∈ Σ denotes the image of x1̂ under the nontrivial automorphism
of Σ, and Σ∗ is the subset of Σ which is not fixed by this automorphism,
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i.e., the complement of the points z1, . . . , z6 described in Subsection 4.5.
By Corollary 6.3, S1 is a complex submanifold of UT . The normal bundle
of S in MT is

NS = NS0 ⊕NS1, where NS0 = π∗
Σ,2̂
TΣ, NS1 = L∗

2̂
T ⊗ E1,

and πΣ,h : S0 ⊂ Σ × Σ −→ Σ is the projection on the hth compo-
nent. Let (ΦS ,Φ

µ
S) be a regularization of ST ,2(µ) ≡ S ∩MT (µ). This

regularization can be chosen so that

π⊥φS(b,X)DT ,2̂φ̃S(b,X) = Π
b,φ̃S(b,X)

X ∀(b,X) ∈ NS̃1 = E1,(4.22)

where φ̃S is the lift of φS to M(0)
T . We also assume that Φµ

S is given
by the gPn,b-parallel transport on NbS1. Since the section s is invari-
ant under the automorphism group of Σ, we identify π∗

Σ,2̂
TΣ|S0 with

π∗
Σ,1̂
TΣ|S0 . If (b;w) ∈ NS0 is sufficiently small, let

x2̂(w) = expb,x2̂
w.

The bundle NS carries a natural norm induced by the gPn,ev-metric
on P

n and g·,0̂-metric on Σ. Denote by FS and F ∅S the bundles de-
scribed in Subsection 2.4 corresponding to the submanifold ST ,2. If
(w,X, υ) ∈ FS = NS ⊕ FT , put

α̃(w,X, υ) = Π−1
b,φS(b,X)

((
DT ,1̂φS(b,X)

)
sΣ,x1̂

(v1̂)

+
(
DT ,2̂φS(b,X)

)
sΣ,x2̂(w)(v2̂)

)
+
((

D(2)

T ,1̂
b
)
s
(2)
b,x1̂

(v1̂) +
(
D(2)

T ,2̂
b
)
s
(2)
b,x1̂

(v2̂)
)
.

If (w,X, υ) ∈ F ∅S|ST ,2(µ) is sufficiently small, let

α̃µ(w,X, υ) =
((

Dµ

S,tν,1̂
(w,X, υ)

)
sΣ,x1̂

(v1̂)

+
(
Dµ

S,tν,2̂
(w,X, υ)

)
sΣ,x2̂(w)(v2̂)

)
+
((

D(2)

T ,1̂
b
)
s
(2)
b,x1̂

(v1̂) +
(
D(2)

T ,2̂
b
)
s
(2)
b,x1̂

(v2̂)
)
,

where, with ϕµ
S,tν as in Theorem 2.7,

Dµ
S,tν,h(w,X, υ) = Π−1

φµ
Sϕµ

S,tν(w,X,υ),φSΦµ
Sϕµ

S,tν(w,X,υ)
Π−1

b,φµ
Sϕµ

S,tν(w,X,υ)
(Z),

where Z = DT ,hφSΦµ
Sϕ

µ
S,tν(w,X, υ).



408 a. zinger

Lemma 4.19. There exist δ, C ∈ C∞(S; R+) such that for all
� = [(b, w,X, υ)] ∈ F ∅Sδ,∥∥π0,1

ΦS(�),−∂uΦS(�) + R̃ΦS(�)Pib,φS(X)α̃(w,X, υ)
∥∥

2
≤ C(b)|�||υ|2.

Proof. The proof is analogous to the proof of Lemma 4.15; here we
use Proposition 4.4 with two terms for h = 1̂ and two terms for h = 2̂.

Lemma 4.20. There exist δ, C ∈ C∞(ST ,2(µ); R+) such that for
all � = [(b, w,X, υ)] ∈ F ∅Sδ,∥∥ψµ

S,tν(�) − (tνev(b) + α̃µ(w,X, υ))
∥∥

2

≤ C(b)(t+ |�|
1
p )
(
t+ |υ|2 + |w||v2̂|

)
.

Proof. As in the proof of Lemmas 4.13 and 4.16, we need to obtain
an appropriate estimate on∥∥D∗

ΦS(�)RΦS(�)Xiψ2

∥∥
L1 ,

where ψ2 is a (0, 1)-form vanishing at x1̂ and with norm 1. From Equa-
tion (2.11), we see that the L1-norm over the small annulus centered at
x1̂ is bounded by C(b)|v1̂|2; see also the proof of Lemma 4.13. Fur-
thermore, since x2̂ is “dual” to x1̂, ψ2 also vanishes at x2̂. Thus,
the L1-norm over the small annulus centered at x2̂(w) is bounded by
C(b)(|w| + |v2̂|)|v2̂| as can be seen from Equation (2.11).

Let s̃(2,+)
b,x ∈ T ∗

xΣ be given by s(2,+)
b,x (v, v) = s̃

(2,+)
b,x (v)sΣ,x(v). For any

b ∈ ST ,2(µ), define

κ(b) ∈ L∗
2̂
T ⊗ L1̂T − {0} and µ(b) ∈ L∗

2̂
T ⊗ L1̂T by(

DT ,2̂b
)

= κ(b)
(
DT ,1̂b
)
, πb

(
D(2)

T ,1̂
b
)

= µ(b)
(
D(1)

T ,1̂
b
)
,

where πb : ev∗TP
n −→ Im(DT ,1̂) is the orthogonal projection map. If

(w,X, υ) ∈ F ∅S|ST ,2(µ) is sufficiently small, let κ̃(w,X, υ) ∈ C
∗ be given

by

πφSΦµ
Sϕµ

S,tν(w,X,υ)

(
DT ,2̂φSΦµ

Sϕ
µ
S,tν(w,X, υ)

)
= κ̃(w,X, υ)

(
DT ,1̂φSΦµ

Sϕ
µ
S,tν(w,X, υ)

)
.
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Note that by Theorem 2.7, |κ̃(w,X, υ) − κ(b)| ≤ C(b)(t+ |�|
1
p ). Let

Y t(w,X, υ) =
(
Dµ

S,tν,1̂
(w,X, υ)

)
sΣ,x1̂

(
v1̂ + κ̃(w,X, υ)v2̂

+ µ(b)s̃(2,+)
Σ,x1̂

(v1̂)v1̂
)
,

Y ⊥(X, v2̂) = XsΣ,x1̂

(
v2̂
)
;

(2)α−
T ;2

(
w, v2̂
)

=
(
DT ,1̂b
)
s
(2,−)
b,x1̂

(
w, v2̂
)

+
(
D(2)

T ,1̂
b
)
s
(2,−)
b,x1̂

(
κ(b)v2̂

)
+
(
D(2)

T ,2̂
b
)
s
(2,−)
b,x1̂

(
v2̂
)
;

r+T ;2(w, υ) =
(
D(1)

T ,1̂
(b)
)
s
(2,+)
b,x1̂

(
w, v2̂
)

+ π⊥b
(
D(2)

T ,1̂
(b)
)
s
(2,+)
b,x1̂

(
κ(b)v2̂

)
+
(
D(2)

T ,2̂
(b)
)
s
(2,+)
b,x1̂

(
v2̂
)
.

Let Y = Y t + Y ⊥ and ν±b = π±x1̂
νb.

Corollary 4.21. There exist δ, C ∈ C∞(ST ,2(µ); R+) such that
for all � = [(b, w,X, υ)] ∈ F ∅Sδ,∥∥π+

x1̂
ψµ
S,tν(�)−(tν+

b + Y (w,X, υ) + r+T ;2(w, υ))
∥∥

2

≤ C(b)(t+ |�|
1
p )
(
|υ|2 + |w||v2̂| + |Y |

)
;∥∥π−x1̂

ψµ
S,tν(�)−(tν−b + (2)α−

T ;2(w, v2̂))
∥∥

2

≤ C(b)(t+ |�|
1
p )
(
|υ|2 + |w||v2̂| + |Y |

)
.

Proof. The proof is similar to that of Corollary 4.17, but we use∣∣sΣ,x2̂(w)(v2̂) − (sΣ,x1̂
(v2̂) + s

(2)
b,x1̂

(w, v2̂))
∣∣ ≤ C(b)|w|2|v2̂|.

We also use |Dµ

S,tν,1̂
(w,X, υ)| ≥ C(b)−1.

The next step is to apply Corollary 3.6. Let

F+ = H+
Σ ⊗ ev∗TP

n, F− = π∗
Σ,1̂
TΣ ⊕ F2̂T ,

O± = H±
Σ ⊗ ev∗TP

n, F̃− = π∗
Σ,1̂
TΣ ⊗ F2̂T ⊕ F2̂T

⊗2;

φ
(
[b;w, v2̂]

)
=
[
b, w ⊗ v2̂, v2̂ ⊗ v2̂

]
, α−(φ(w, v2̂)

)
≡ (2)α−

T ,2(w, v2̂),

π+r(w, υ) = r+T ;1(w, υ).

Note that α− ∈ Γ(S; F̃−∗ ⊗O−) is well-defined. Since the map

(w,X, υ) −→
(
Y (w,X, υ), w, v2̂

)
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is injective on F ∅S as long as δ ∈ C∞(ST ,2(µ); R+) is sufficiently small,
we can view ψµ

S,tν as a map on an open subset of F− ⊕ F+.

Corollary 4.22. Suppose d is a positive integer, T = (Σ, [N ], I; j, d)
is a simple bubble type, with Î = {1̂, 2̂}, M0̂T = ∅, d0̂ = 0, and∑

i∈I di = d, and µ is an N -tuple of constraints in general position
such that

codimCµ = d(n+ 1) − n(g − 1) +N.

Let ν ∈ Γ(Σ × P
n; Λ0,1π∗ΣT

∗Σ ⊗ π∗
PnTP

n) be a generic section. Then
there exists a compact subset K̃T ,2 of ST ,2(µ) with the following prop-
erty. If K is a compact subset of ST ,2(µ) containing K̃T ,1, there exist
a neighborhood UK of K in C

∞
(d;[N ])(Σ;µ) and εK > 0 such that for any

t ∈ (0, εK), the signed cardinality of UK ∩MΣ,d,tν(µ) equals to twice the
signed number of zeros of the map

π∗ΣTΣ⊗2 ⊗
(
L2̂T ⊕ L2̂T

⊗2)∣∣
Σ∗×ST ;2(µ)

−→ H−
Σ ⊗ ev∗TP

n,(4.23)[
(x, b); (w, v)

]
−→ ν−b +

(
DT ,2̂b
)
s(2,−)
x (w, v) +

(
D(2)

T ,1̂
b
)
s(2,−)
x

(
κ(b)v
)

+
(
D(2)

T ,2̂
b
)
s(2,−)
x (v).

Proof. The proof is similar to that of Corollary 4.14. We only need
to see that the section α− defined above has rank two. If d1̂ = d2̂ = 1,
the space ST ,2(µ) = ∅, since any two tangent lines in P

n agree, and no
line passes through all of the constraints µ1, . . . , µN if n = 3. Thus,
it can be assumed that d1̂ ≥ 2. Note that ST ,2(µ) is one-dimensional,
with the only dimension coming from the singular point x1̂ ∈ Σ. Thus,
by Corollary 6.3, if the constraints µ1, . . . , µN are in general position,
the image of D(2)

T ;1̂
does not lie in the linear span of DT ,2̂b and D(2)

T ,2̂
b.

Furthermore, DT ,2̂b �= 0.

4.7 Second-order estimate for ψµT ,tν , Case 2b

We now treat Case (3b) of Corollary 4.11; we can assume h1 = 2̂, h2 = 3̂.
Let S ≡ ST ,2 denote the subset of MT on which the operator DT ,2 of
Lemma 4.9 has rank one. Similarly to the case of Subsection 4.6, S is a
regular submanifold of MT with normal bundle NS = L∗

3̂
T ⊗E1. As be-

fore, we can choose a regularization
(
ΦS ,Φ

µ
S
)

of ST ,2(µ) ≡ S ∩MT (µ)
such that

π⊥φS(b,X)DT ,3̂φ̃S(b,X) = Π
b,φ̃S(b,X)

X ∀(b,X) ∈ NS̃1 = E1,(4.24)
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where φ̃S is the lift of φS to M(0)
T , and Φµ

S is given by the gPn,b-parallel
transport on NbS. Denote by FS and F ∅S the bundles described in
Subsection 2.4 corresponding to the submanifold ST ,2. If (X, υ) is a
sufficiently small element of FS = NS ⊕ FT , let

α̃(X, υ) =
(
DT ,2̂φS(b,X)

)
sΣ,x̃2̂(υ)(ṽ2̂) +

(
DT ,3̂φS(b,X)

)
sΣ,x̃3̂(υ)(ṽ3̂);

α̃µ(X, υ) =
(
Dµ

S,tν,2̂
(X, υ)

)
sΣ,x̃2̂(υ)(ṽ2̂) +

(
Dµ

S,tν,3̂
(X, υ)

)
sΣ,x3̂(υ)(v3̂),

where, with ϕµ
S,tν as in Theorem 2.7,

Dµ
S,tν,h(X, υ) = Π−1

φµ
Sϕµ

S,tν(X,υ),φSΦµ
Sϕµ

S,tν(X,υ)
Π−1

b,φµ
Sϕµ

S,tν(X,υ)

·
(
DT ,hφSΦµ

Sϕ
µ
S,tν(X, υ)

)
.

Lemma 4.23. There exist δ, C ∈ C∞(ST ,2; R+) such that for all
� = [(b,X, υ)] ∈ F ∅Sδ,∥∥π0,1

ΦS(�),−∂uΦS(�) + R̃ΦS(�)α̃(X, υ)
∥∥

2
≤ C(b)

(
|ṽ2̂|

2 + |ṽ3̂|
2
)
.

Proof. This lemma is immediate from Proposition 4.4 applied with
one term for each h = 2̂, 3̂.

Lemma 4.24. There exist δ, C ∈ C∞(ST ,2(µ); R+) such that for
all � = [(b,X, υ)] ∈ F ∅Sδ,∥∥ψµ

S,tν(�) − (tνb + α̃µ(X, υ))
∥∥

2
≤ C(b)(t+ |�|

1
p )
(
t+ |v1̂|(|ṽ2̂| + |ṽ3̂|)

)
.

Proof. As usually, we only need to obtain a good bound on∥∥D∗
ΦS(�)RΦS(�)Xiψ2‖L1 ,

where the notation is as in the proof of Lemma 4.20. By Equation (2.11),
the L1-norm on the small annulus centered at x̃2̂(υ) is bounded by |ṽ2̂|2.
Since gb,0̂-distance between x̃2̂(υ) and x̃3̂(υ) is bounded by C(b)|v1̂|, the
L1-norm over the annulus centered at x̃3̂(υ) is bounded by |v1̂||ṽ3̂|.

For any b ∈ ST ,2(µ), let κ(b) ∈ L3̂T ∗ ⊗ L2̂T be given by DT ,3̂b =
κ(b)(DT ,2̂b). For (X, υ) ∈ F ∅S|ST ,2(µ) sufficiently small, we define the
nonzero element κ̃(X, υ) of L3̂T ∗ ⊗ L2̂T by

πφSΦµ
Sϕµ

S,tν(X,υ)

(
DT ,3̂φSΦµ

Sϕ
µ
S,tν(X, υ)

)
= κ̃(X, υ)

(
DT ,2̂φSΦµ

Sϕ
µ
S,tν(X, υ)

)
.
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Note that by Theorem 2.7, |κ̃(X, υ) − κ(b)| ≤ C(b)(t+ |�|
1
p ). Let

Y t(X, υ) =
(
Dµ

S,tν,2̂
(X, υ)

)(
sΣ,x1̂

(ṽ2̂ + κ̃(X, υ)ṽ3̂)

+ s
(2,+)
b,x1̂

(v1̂, x2̂ṽ2̂ + x3̂κ̃(b)ṽ3̂)
)
;

Y ⊥(X, υ) = XsΣ,x1̂
(ṽ3̂),

(2)α−
T ;2(υ) =

(
DT ,2̂b
)
s
(2,−)
b,x1̂

(
v1̂, x2̂ṽ2̂ + x3̂κ(b)ṽ3̂

)
.

Let Y = Y t + Y ⊥ and ν±b = π±x1̂
νb.

Corollary 4.25. There exist δ, C ∈ C∞(ST ,2(µ); R+) such that
for all � = [(b,X, υ)] ∈ F ∅Sδ,∥∥πx1̂

ψµ
S,tν(X,�) − (tν+

b + Y (X, υ))
∥∥

2

≤ C(b)(t+ |�|
1
p )
(
t+ |v1̂|(|ṽ2̂| + |ṽ3̂|) + |Y ⊥(X, υ)|

)
;∥∥π−x1̂

ψµ
S,tν(�) − (tν−b + (2)α−

T ;2(υ))
∥∥

2

≤ C(b)(t+ |�|
1
p )
(
t+ |v1̂|(|ṽ2̂| + |ṽ3̂|)

)
.

Proof. This claim is proved similarly to Corollary 4.21.
The next step is to apply Lemma 3.2. Let

F+ = H+
Σ ⊗ E1, F− = FT ,

O± = H±
Σ ⊗ ev∗TP

n, F̃− = π∗ΣTΣ ⊗ F2̂T ;

φ
(
[b; υ]
)

=
[
b, v1̂ ⊗ (x2̂ṽ2̂ + x3̂κ(b)ṽ3̂)

]
, α−(φ(υ)) ≡ (2)α−

T ,2(υ),

α(X, υ) = Y (X, υ) + (2)α−
T ,2(υ).

Note that α− ∈ Γ(S; F̃−∗ ⊗O−) is well-defined. Since the map

(X, υ) −→
(
Y ⊥(X, υ), υ

)
is injective on F ∅S, we can view ψµ

S,tν as a map on an open subset of
F+ ⊕ F−.

Corollary 4.26. Suppose d is a positive integer, T = (Σ, [N ], I; j, d)
is a simple bubble type, with Î = {1̂, 2̂, 3̂}, H1̂T = {2̂, 3̂}, d0̂ = 0, and∑

i∈I di = d, and µ is an N -tuple of constraints in general position such
that

codimCµ = d(n+ 1) − n(g − 1) +N.
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Let ν ∈ Γ(Σ×P
n; Λ0,1π∗ΣT

∗Σ⊗π∗
PnTP

n) be a generic section. For every
compact subset K of ST ,2(µ), such that x1̂(b) ∈ Σ∗ for all b ∈ K, there
exist a neighborhood UK of K in C

∞
(d;[N ])(Σ;µ), where and εK > 0 such

that for any t ∈ (0, εK), UK ∩MΣ,d,tν(µ) = ∅.
Proof. The set S∗

T ,2(µ) ≡ {b ∈ ST ,2(µ) : x1̂ ∈ Σ∗} is an open subset
of ST ,2(µ) on which the section α− has full rank, since DT ,2̂ does not
vanish on ST ,2(µ). Note that the dimension of ST ,2(µ) is 1, the rank
of F̃− is also 1, while the rank O− is 3. Thus, the claim follows from
Theorem 2.7, Lemma 3.2, and Corollary 4.25, provided

|v1̂|
(
|ṽ2̂| + |ṽ3̂|

)
≤ C(b)

(
|v1̂||x2̂ṽ2̂ + x3̂κ(b)ṽ3̂| + |Y t(X, υ)|

)
for some C ∈ C∞(S∗

T ,2(µ); R+). By definition of Y t(X, υ),

|ṽ2̂ + κ(b)ṽ3̂| ≤ |Y t(X, υ)| + C(b)|x2̂ṽ2̂ + x3̂κ(b)ṽ3̂|.

Since x2̂ �= x3̂,

|v1̂|
(
|ṽ2̂| + |ṽ3̂|

)
≤ C(b)|v1̂|

(
|ṽ2̂ + κ(b)ṽ3̂| + |x2̂ṽ2̂ + x3̂κ(b)ṽ3̂|

)
≤ C ′(b)|v1̂|

(
|x2̂ṽ2̂ + x3̂κ(b)ṽ3̂| + |Y t(X, υ)|

)
.

4.8 Third-order estimate for ψµT ,tν , Case 2

It remains to consider gluing along the subset S(m)
T ,2 (µ) of ST ,2(µ) consist-

ing of bubble maps b such that x1̂(b) = zm, one of the six distinguished
points of Σ. Let

S = S(m)
T ,2 = {b ∈ ST ,2 : x1̂(b) = zm}.

The normal bundle of S(m)
T ,2 in MT is NS = TzmΣ⊕NS1, where NS1 is

the normal bundle of ST ,2 in MT described in the previous subsection.
Let
(
ΦS ,Φ

µ
S
)

be a regularization of S(m)
T ,2 (µ) induced by the regulariza-

tion of ST ,2(µ) described in Subsection 4.7. In particular,

π⊥φS(b,X)DT ,3̂φ̃S(b, w,X) = Π
b,φ̃S(b,w,X)

X

∀(b, w,X) ∈ TzmΣ ⊕NS̃1 = TzmΣ ⊕ E1,

where φ̃S is the lift of φS to M(0)
T . We also assume that Φµ

S is given by
the gPn,b-parallel transport on NbS1. The bundle NS carries a natural
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norm induced by the gPn,ev-metric on P
n and g·,0̂-metric on Σ. Denote

by FS and F ∅S the bundles described in Subsection 2.4 corresponding
to the submanifold S(m)

T ,2 . If (b, w,X, υ) ∈ F ∅S is sufficiently small, let

x̃h(w, υ) = x̃h(φS(w,X, υ)) = x̃h(φS(w, 0, υ)) ∈ Σ, h = 2̂, 3̂.

We identify a small neighborhood of zm in Σ with a neighborhood of 0
in TzmΣ via the gb,0̂-exponential map. Put

α̃(w,X, υ) = Π−1
b,φS(b,X)

(
(DT ,2̂φS(b,X))sΣ,x̃2̂(w,υ)(ṽ2̂)

+ (DT ,3̂φS(b,X))sΣ,x̃3̂(w,υ)(ṽ3̂)

+ (D(2)

T ,2̂
φS(b,X))s(2)b,zm

(ṽ2̂) + (D(2)

T ,3̂
φS(b,X))s(2)b,zm

(ṽ3̂)
)
;

α̃µ(w,X, υ) = (Dµ

S,tν,2̂
(w,X, υ))sΣ,x̃2̂(w,υ)(ṽ2̂)

+ (Dµ

S,tν,3̂
(w,X, υ))sΣ,x̃3̂(w,υ)(v3̂)

+ (Dµ,(2)

S,tν,2̂
b)s(2)b,zm

(ṽ2̂) + (Dµ,(2)

S,tν,3̂
b)s(2)b,zm

(ṽ3̂),

where, with ϕµ
S,tν as in Theorem 2.7,

Dµ,(k)
S,tν,h(w,X, υ) = Π−1

φµ
Sϕµ

S,tν(w,X,υ),φSΦµ
Sϕµ

S,tν(w,X,υ)
Π−1

b,φµ
Sϕµ

S,tν(w,X,υ)
(Z)

where Z = D(k)
T ,hφSΦµ

Sϕ
µ
S,tν(w,X, υ).

With κ(b) as in the previous subsection, let

α+(υ) =
(
DT ,2̂b
)
sΣ,zm

(
ṽ2̂ + κ(b)ṽ3̂

)
,

α−
2̂
(w, υ) =

(
DT ,2̂b
)
s
(3,−)
b,zm

(
x̃2̂(w, υ), (x2̂ − x3̂)v1̂, ṽ2̂

)
,

α−
3̂
(w, υ) =

(
DT ,3̂b
)
s
(3,−)
b,zm

(
x̃3̂(w, υ), (x3̂ − x2̂)v1̂, ṽ3̂

)
.

Lemma 4.27. There exist δ, C ∈ C∞(S(m)
T ,2 ; R+) such that for all

� = (b, w,X, υ) ∈ F ∅Sδ,∥∥π0,1
ΦS(�),−∂uΦS(�) − R̃ΦS(�)α̃(w,X, υ)

∥∥
2
≤ C(b)|�|

(
|ṽ2̂|

2 + |ṽ3̂|
2
)
.

Proof. This lemma follows from Proposition 4.4 applied with first-
and second-order terms.
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Lemma 4.28. There exist δ, C > 0 such that for all � = (b, w,
X, υ) ∈ F ∅Sδ

∣∣
S(m)
T ;2 (µ)

,

∥∥ψµ
S,tν(�) − (tνb + α̃µ(w,X, υ))

∥∥
2

≤ C(t+ |�|
1
p )
(
t+ (|v1̂|

2 + |v1̂||w|)(|ṽ2̂| + |ṽ3̂|)
)
.

Proof. Note that the space S(m)
T ,2 (µ) is zero-dimensional and compact

if n = 3. As before, we need to bound∥∥D∗
ΦS(�)RΦS(�)Xiψ2

∥∥
L1 ,

where the notation is as in the proof of Lemma 4.20. By Equation (2.11),
the L1-norm on the annulus centered at x̃2̂ = x̃2̂(w, υ) is bounded by
(|x̃2̂||ṽ2̂| + |ṽ2̂|2)|ṽ2̂|, while the norm over the other annulus is bounded
by (|x̃2̂||v1̂| + |v1̂|2)|ṽ3̂|, since the gb,0̂-distance between x̃2̂ and x̃3̂ is
bounded by C|v1̂|. See the proof of Lemma 4.16 for more detail. The
claim follows from x̃2̂ = w + x2̂v1̂.

Lemma 4.29. There exist δ, C > 0 such that for all � = (b, w,
X, υ) ∈ F ∅Sδ

∣∣
S(m)
T ;2 (µ)

,

∥∥α̃µ(w,X, υ) − α+(w, υ)
∥∥

2

≤ C(t+ |�|
1
p )
(
|ṽ2̂| + |ṽ3̂|

)
;∥∥π−x̃2̂(w,υ)α̃

µ(w,X, υ) − α−
3̂
(w, υ)
∥∥

≤ C(t+ |�|
1
p )
(
|v1̂| + |w|

)
|v1̂|
(
|ṽ2̂| + |ṽ3̂|

)
;∥∥π−x̃3̂(w,υ)α̃

µ(w,X, υ) − α−
2̂
(w, υ)
∥∥

≤ C(t+ |�|
1
p )
(
|v1̂| + |w|

)
|v1̂|
(
|ṽ2̂| + |ṽ3̂|

)
.

Proof. The first bound is clear from the definition of α̃µ, since

(
DT ,3̂b
)

= κ(b)
(
DT ,2̂b
)
, |ϕ(w,X, υ)|b ≤ C(t+ |�|

1
p ).

Since s(2,−)
b,zm

= 0,

∣∣π−x̃2̂
s
(2)
x̃h

(ṽh)
∣∣ ≤ C
(
|x̃2̂| + |v1̂|

)
|ṽh|2.(4.25)
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where x̃h = x̃h(w, υ). Since x̃3̂ − x̃2̂ = (x3̂ − x2̂)v1̂,∣∣∣sb,x̃3̂
(ṽ3̂) −

(
sb,x̃2̂

(
ṽ3̂) + s

(2)
b,x̃2̂

((x3̂ − x2̂)v1̂, ṽ3̂)

+ s
(3)
b,x̃2̂

((x3̂ − x2̂)v1̂, (v3̂ − v2̂)v1̂, ṽ3̂)
)∣∣∣ ≤ C|v1̂|

3|ṽ3̂|.

Since π−x̃2̂
sΣ,x̃2̂

= 0 and s(2,−)
b,zm

= 0,∣∣π−x̃2̂
s
(2)
b,x̃2̂

((x3̂ − x2̂)v1̂, ṽ3̂) − s
(3,−)
b,zm

(x̃2̂, (x3̂ − x2̂)v1̂, ṽ3̂)
∣∣ ≤ C|x̃2̂|

2|v1̂||ṽ3̂|;∣∣π−x̃2̂
s
(3)
b,x̃2̂

((x3̂ − x2̂)v1̂, (x3̂ − x2̂)v1̂, ṽ3̂)

− s
(3,−)
b,zm

((x3̂ − x2̂)v1̂, (x3̂ − x2̂)v1̂, ṽ3̂)
∣∣ ≤ C|x̃2̂||v1̂|

2|ṽ3̂|.

Putting the last three equations together, we see that∣∣π−x̃2̂
sb,x̃3̂

(ṽ3̂) − s
(3,−)
b,zm

(
x̃3̂, (x3̂ − x2̂)v1̂, ṽ3̂

)∣∣∣(4.26)

≤ C
(
|x̃2̂| + |v1̂|

)(
|x̃2̂||v1| + |v1̂|

2
)
|ṽ3̂|.

The second bound follows from Equations (4.25) and (4.26). The last
estimate is proved similarly.

Corollary 4.30. There exist δ, C > 0 such that for all � = (b, w,
X, υ) ∈ F ∅Sδ

∣∣
S(m)
T ;2 (µ)

,

∥∥ψµ
S,tν(�) − (tνb + α̃µ(�))

∥∥
2
≤ C(t+ |�|

1
p )
(
t+ |α̃µ(�)|

)
.

Proof. In light of Lemma 4.28, it is sufficient to show that(
|v1̂| + |w|

)
|v1̂|
(
|ṽ2̂| + |ṽ3̂|

)
≤ C
∣∣α̃µ(w,X, υ)

∣∣(4.27)

for some C > 0. Since
(
DT ,2̂b
)
sΣ,zm ,

(
DT ,2̂b
)
s
(3,−)
b,zm

and
(
DT ,3̂b
)
s
(3,−)
b,zm

are nonzero, by Lemma 4.29∣∣ṽ2̂ + κ(b)ṽ3̂
∣∣ ≤ C
(
|α̃µ(w,X, υ)| + (t+ |�|

1
p )(|ṽ2̂| + |ṽ3̂|)

)
;

|x̃h||v1̂||ṽh| ≤ C
(
|α̃µ(w,X, υ)| + (t+ |�|

1
p )(|v1̂| + |w|)|v1̂|(|ṽ2̂| + |ṽ3̂|)

)
.

Since κ(b) �= 0, x2̂ �= x3̂, and x̃h = w + xhv1̂, we obtain

(
|v1̂| + |w|

)
|v1̂|
(
|ṽ2̂| + |ṽ3̂|

)
≤ C
(
|x̃2̂| + |x̃3̂|

)
|v1̂|
(
|ṽ2̂| + |ṽ3̂|

)(4.28)

≤ C ′(|x̃2̂||v1̂|(|ṽ2̂| + |ṽ2̂ + κ(b)ṽ3̂|) + |x̃3̂||v1̂|(|ṽ3̂| + |ṽ3̂ + κ(b)ṽ3̂|)
)

≤ C ′′(|α̃µ(w,X, υ)| + (t+ |�|
1
p )(|v1̂| + |w|)|v1̂|(|ṽ2̂| + |ṽ3̂|)

)
.
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If δ is sufficiently small, estimate (4.27) follows from (4.28).
The next step is to apply Lemma 3.2. Let

F+ = L∗
3̂
T ⊗ E1, F− = TzmΣ ⊕ FT ,

O± = H±
Σ ⊗ ev∗TP

n, F̃− = π∗ΣTΣ⊗3 ⊗ L2̂T
⊗3;

φ
(
[b, w, υ]

)
=
[
b, (w + x2̂v1̂) ⊗ ((x2̂ − x2̂)v1̂) ⊗ ṽ2̂

]
;

α−(φ(w, υ)
)
≡ α−

2̂
(w, υ), α(X,w, υ) = αµ(X,w, υ).

Note that α− ∈ Γ(S; F̃−∗ ⊗O−) is well-defined.

Corollary 4.31. Suppose d is a positive integer, T = (Σ, [N ], I; j, d)
is a simple bubble type, with Î = {1̂, 2̂, 3̂}, H1̂T = {2̂, 3̂}, d0̂ = 0, and∑

i∈I di = d, and µ is an N -tuple of constraints in general position such
that

codimCµ = d(n+ 1) − n(g − 1) +N.

Let ν ∈ Γ(Σ × P
n; Λ0,1π∗ΣT

∗Σ ⊗ π∗
PnTP

n) be a generic section. There
exist a neighborhood U of S(m)

T ,2 (µ) in C∞
(d;[N ])(Σ;µ), and ε > 0 such that

for any t ∈ (0, ε), U ∩MΣ,d,tν(µ) = ∅.
Proof. Analogously to the proof of Corollary 4.18, we apply Lem-

ma 3.2 to the map

(w, υ,X) −→ π+
zm
π+

x3̂(w,υ)ψ
µ
S,tν(w, υ,X) + π−zm

π−x3̂(w,υ)ψ
µ
S,tν(w, υ,X)

instead of ψµ
S,tν . The claim then follows from Theorem 2.7, Lemma 3.2,

and Corollary 4.30.

4.9 Summary of Section 4

We conclude Section 4 by reviewing the main results so far. Throughout
this subsection,

T = (Σ, [N ], I; j, d)

is a simple bubble type, with d =
∑
dh and d0̂ = 0, and µ is an N -tuple

of constraints in general position such that codimCµ = d(n+1)−n(g−
1) +N .

If |Î| > n, by Corollaries 4.10 and 4.11, there exist a neighbor-
hood UT of MT (µ) in C

∞
(d;[N ])(Σ;µ) and εT > 0 such that for all t ∈

(0, εT ), UT ∩MΣ,d,tν(µ) = ∅. This is also true if H0̂T �= Î or M0̂T �= ∅.
If n = 2, this statement is just Corollary 4.10. If n = 3, we only need to
consider Cases (1), (2b), and (3b) of Corollary 4.11. Case (3b) follows
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from Corollaries 4.7, 4.26, and 4.31. The claim for Case (2b) is obtained
from Corollaries 4.7, 4.14, 4.18 and the same claim for Case (3b). Fi-
nally, in Case (1), we use Corollaries 4.7, 4.26, and 4.31, the statement
of Corollary 4.11 for |Î| ≥ 2, and the just stated result for Case (2b).

If |Î| ≤ n, H0̂T = Î, and M0̂T = ∅, i.e., T is a primitive bubble type,
by the previous paragraph and Corollaries 4.7, 4.14, 4.18, and 4.22, there
exist a neighborhood UT of MT (µ) in C

∞
(d;[N ])(Σ;µ) and εT > 0 such

that for all t ∈ (0, εT ), the signed cardinality nT (µ) of UT ∩MΣ,d,tν(µ)
is the sum of the numbers given by these four corollaries applied to T .
If |Î| = 1,

n1(µ) ≡ nT (µ) = n
(1)
1 (µ) + 2n(2)

1 (µ) + 18n(3)
1 (µ),(4.29)

where the numbers n(k)
1 (µ) are described as follows. The number n(1)

1 (µ)
is the signed number of zeros of the affine map

ψ
(1)
1 : TΣ ⊗ L1̂T −→ H0,1

Σ ⊗ ev∗TP
n,(4.30)

ψ
(1)
1 (x, [b, v1̂]) = νb + (DT ,1̂b)sΣ,x(v1̂),

where the bundles are considered over Σ×UT (µ) = MT (µ) and 1̂ is the
unique element of Î. Note that this number is the same as the number
of zeros of the map in (4.11), since Σ × UT (µ) −MT (µ) is a finite union
of smooth manifolds of dimension less than the dimension of MT (µ).
Thus, if ν is generic, ψ(1)

1 has no zeros over Σ × UT (µ) −MT (µ). The
number n(2)

1 (µ) is the signed number of zeros of the affine map

ψ
(2)
1 : TΣ⊗2 ⊗ L1̂T

⊗2 −→ H−
Σ ⊗ ev∗TP

n,(4.31)

ψ
(2)
2 (x, [b, v1̂]) = ν−b + (D(2)

T ,1̂
b)s(2,−)

Σ,x (v1̂),

where the bundles are considered over Σ×S1(µ) and S1(µ) is the closure
in UT (µ) of the space

S1(µ) =
{
b ∈ UT (µ) : DT ,1̂|b = 0

}
.(4.32)

If n = 2, S1(µ) is a finite set and thus S1(µ) = S1(µ). If n = 3, S1(µ) is
one-dimensional over C. The boundary S1(µ) − S1(µ) is a finite set, as
can be seen from the estimate on DT ,1̂ of Theorem 2.8. Thus, in either
case, the maps in (4.31) and (4.16) have the same zeros. Finally, the
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number n(3)
1 (µ) is the signed number of zeros of the affine map

ψ
(3)
1 : TΣ⊗3 ⊗

(
L1̂T

⊗2 ⊕ L1̂T
⊗3) −→ H−

Σ ⊗ ev∗TP
n,(4.33)

ψ
(3)
1 (x, [b, v1̂, w1̂]) = ν−b + (D(2)

T ,1̂
b)s(3,−)

b,zm
(v1̂) + (D(3)

T ,1̂
)s(3,−)

b,zm
(w1̂),

where the bundles are considered over S1(µ) and zm is one of the six
distinguished points of Σ. By the same argument as above, this number
is precisely the number of zeros of the map in (4.21).

If |Î| = 2 and n = 2, nT (µ) = n
(1)
T (µ) is the signed number of zeros

of the affine map

ψ
(1)
T : TΣ1̂ ⊗ L1̂T ⊕ TΣ2̂ ⊗ L2̂T −→ H0,1

Σ ⊗ ev∗TP
n,(4.34)

ψ
(1)
T
(
x1̂, x2̂, [b, v1̂, v2̂]

)
= νb + (DT ,1̂b)sΣ,x1̂

(v1̂) + (DT ,2̂b)sΣ,x2̂
(v2̂),

where the bundles are considered over Σ2 × UT (µ) = Σ1̂ × Σ2̂ × UT (µ)
and 1̂, 2̂ are the two elements of Î. By the same argument as before, the
number n(1)

T (µ) is the same as the number of zeros of the map (4.7). If
|Î| = 2 and n = 3,

nT (µ) = n
(1)
T (µ) + 2n(2)

T (µ),(4.35)

where n(1)
T (µ) is defined the same way as in the n = 2 case, while n(2)

T (µ)
is the signed number of zeros of the affine map

ψ
(2)
T : TΣ⊗2 ⊗

(
L2̂T ⊕ L2̂T

⊗2) −→ H−
Σ ⊗ ev∗TP

n,(4.36)

ψ
(2)
T
(
x, [b, v2̂, w2̂]

)
= ν−b + (DT ,2̂b)s

(2,−)
Σ,x (w2̂) + (D(2)

T ,1̂
b)s(2,−)

Σ,x (κ(b)v2̂)

+(D(2)

T ,2̂
b)s(2,−)

Σ,x (v2̂),

where the bundles are viewed over Σ × ST (µ),

ST (µ) =
{
b ∈ UT (µ) : π⊥[b] ◦ DT ,2̂|b = 0

}
,(4.37)

E1 is the quotient of ev∗TP
n by Im(DT ,1̂), π

⊥ : ev∗TP
n −→ E1 is the

projection map, and κ(b) ∈ L∗
2̂
T ⊗ L1̂T is a nonzero homomorphism.

Note that ST (µ) is a finite set with our choice of constraints. Finally,
if |Î| = 3 and n = 3, nT (µ) = n

(1)
T (µ) is the signed number of zeros of
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the affine map

ψ
(1)
T : TΣ1̂ ⊗ L1̂T ⊕ TΣ2̂ ⊗ L2̂T ⊕ TΣ3̂ ⊗ L3̂T −→ H0,1

Σ ⊗ ev∗TP
n,

(4.38)

ψ
(1)
T
(
x1̂, x2̂, x3̂, [b, v1̂, v2̂, v3̂]

)
= νb + (DT ,1̂b)sΣ,x1̂

(v1̂)

+ (DT ,2̂b)sΣ,x2̂
(v2̂) + (DT ,3̂b)sΣ,x3̂

(v3̂),

where the bundles are considered over Σ3×UT (µ) = Σ1̂×Σ2̂×Σ3̂×UT (µ)
and 1̂, 2̂, 3̂ are the three elements of Î. As before, the number n(1)

T (µ) is
precisely the number of zeros of the map (4.7). If m ≥ 2 and k ≥ 1, we
denote by n

(k)
m (µ) the sum of the numbers n(k)

T (µ) over all equivalence
classes of primitive bubble types T with |Î| = m.

5. Computations

5.1 The numbers n(1)
m (µ) with m = n

Our goal now is to compute the numbers n(k)
T (µ) for any primitive bubble

type T = (Σ, [N ], I; j, d), and thus the genus-two enumerative invariants
for P

2 and P
3. Most of this section is devoted to expressing the numbers

n
(k)
T (µ) in terms of intersection numbers of tautological classes of vari-

ous spaces of stable rational maps that pass through the constraints µ.
These are shown to be computable in [9]. The procedure for counting
the zeros of affine maps between vector bundles is described in Section 3.
We start with the easiest cases.

Lemma 5.1. If T = (Σ, [N ], I; j, d) is a primitive bubble type with
|Î| = n and µ is an N -tuple of constraints in general position such that

codimCµ = (n+ 1)
∑
i∈I

di − n+N,

the set UT (µ) is finite and n(1)
T (µ) = 2n|UT (µ)|.
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Proof. The first statement is clear by dimension counting. By Equa-
tions (4.34) and (4.38), we need to apply Lemma 3.14 with

M =

{
Σ1̂ × Σ2̂ × UT (µ), if n = 2;
Σ1̂ × Σ2̂ × Σ3̂ × UT (µ), if n = 3;

E =

{
TΣ1̂ ⊗ L1̂T ⊕ TΣ2̂ ⊗ L2̂T , if n = 2;
TΣ1̂ ⊗ L1̂T ⊕ TΣ2̂ ⊗ L2̂T ⊕ TΣ3̂ ⊗ L3̂T , if n = 3,

O = H0,1
Σ ⊗ ev∗TP

n, and α given by (4.34) and (4.38). By Lemma 4.9,
α ∈ Γ(M;E∗⊗O) has full rank on every fiber ofE. Thus by Lemma 3.14,

n
(1)
T (µ) =

〈
e(O/α(E)), [M]

〉
=
〈
c(O)c(E)−1, [M]

〉
.(5.1)

Since UT (µ) is a finite set,

E ≈
{
TΣ1̂ ⊕ TΣ2̂, if n = 2;
TΣ1̂ ⊕ TΣ2̂ ⊕ TΣ3̂, if n = 3;

O ≈ M× C
2n.

Let yh = c1(TΣh). Thus, if n = 2, by (5.1)

n
(1)
T (µ) =

〈
(1 + (y1̂ + y2̂) + y1̂y2̂)

−1, [M]
〉

=
〈
y1̂y2̂,
[
Σ1̂ × Σ2̂]

〉
|UT (µ)| = 4|UT (µ)|,

since 〈yh, [Σh]〉 = −2. If n = 3, we similarly obtain

n
(1)
T (µ) =

〈
−y1̂y2̂y3̂,

[
Σ1̂ × Σ2̂ × Σ3̂]

〉
|UT (µ)| = 8|UT (µ)|,

as claimed.

Let τn(µ) denote the sum of the numbers |UT (µ)| taken over all
equivalence classes of primitive bubble types T with |Î| = n. This is
the number of n-component connected curves of total degree d pass-
ing through the constraints µ1, . . . , µN in P

n with a choice of a node
which belongs to all n components. From Lemma 5.1, we immediately
conclude:

Corollary 5.2. If n = 2, n(1)
2 (µ) = 4τ2(µ). If n = 3, n(1)

3 (µ) =
8τ3(µ).



422 a. zinger

5.2 The numbers n(2)
m (µ) and n(3)

m (µ) with m = n− 1

In this subsection, we describe the numbers n(2)
T (µ) and n

(3)
T (µ) with

|Î| = n − 1 topologically. The similarity between these cases is that
UT (µ) is two-dimensional (over C), while ST (µ) is a finite set; see Sub-
section 4.9 for notation.

The numbers n(2)
T (µ) with |Î| = n − 1 = 1 and |Î| = n − 1 = 2

are the signed cardinalities of the zero sets of the affine maps in (4.31)
and (4.36), respectively. By Subsections 4.4 and 4.6, the linear part α
of the affine map ψ(2)

T has full rank in these cases, except over the zero
set of s(2,−)

Σ . In order to simplify our computations, we replace s(2,−)
Σ

by another section that has no zeros on Σ, but so that the correspond-
ing affine maps have the same number of zeros as the maps in (4.31)
and (4.36). The section

s
(2,−)
Σ ∈ Γ(Σ;T ∗Σ⊗2 ⊗H−

Σ)

has transverse zeros at the points z1, . . . , z6 ∈ Σ; see Subsection 4.5.
Thus, it induces a nonvanishing section

s̃
(2,−)
Σ ∈ Γ(Σ; T̃Σ∗ ⊗H−

Σ), where T̃Σ = TΣ⊗2 ⊗O(z1) ⊗ · · · ⊗ O(z6)

and O(zm) denotes the holomorphic line bundle corresponding to the
divisor zm on Σ. The bundles T̃Σ and TΣ⊗2 can be identified on Σ∗,
the complement of the six points, in such a way that s̃(2,−)

Σ = ηs
(2,−)
Σ

on Σ∗ for some η ∈ C∞(Σ∗; R+). Let ψ̃(2)
T denote the affine maps ob-

tained by replacing TΣ⊗2 and s
(2,−)
Σ by T̃Σ and s̃

(2,−)
Σ , respectively, in

(4.31) and (4.36) (depending on T ). Since ψ(2)
T and ψ̃

(2)
T have no zeros

over {zm} if ν is generic and s(2,−)
Σ and s̃(2,−)

Σ differ by a nonzero multi-
ple on Σ∗, there is a sign-preserving bijection between the zeros of ψ(2)

T
and of ψ̃(2)

T . Furthermore, the linear part of ψ̃(2)
T has full rank on every

fiber.
Denote by S2(µ) the union of the spaces ST (µ) defined by Equa-

tion (4.37) taken over all equivalence classes of appropriate bubble
types T . This set can be identified with the degree-d two-component
rational curves in P

3 that are connected at a tacnode and pass through
the constraints µ. Similarly, in the n = 2 case, the set S1(µ) corresponds
to the degree-d cuspidal rational curves passing through the constraints.

Lemma 5.3. If n = 2, n(2)
1 (µ) = 2|S1(µ)| and n

(3)
1 (µ) = |S1(µ)|.

If n = 3, n(2)
2 (µ) = 2|S2(µ)|.
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Proof. Let T = (Σ, [N ], I; j, d) be a bubble type that contributes to
one of these numbers. By dimension counting and Corollary 6.3, ST (µ)
is zero-dimensional and compact. Thus, in all cases the bundles LhT
and ev∗TP

n of Equations (4.31), (4.33) and (4.36) are trivial. If n = 2
and k = 2, we are in the case of (4.31). By the above, we can apply
Lemma 3.14 with

E = T̃Σ, O = H−
Σ ⊕H−

Σ ,

and α ∈ Γ(Σ × ST (µ);E∗ ⊗O) that has full rank. We obtain

n
(2)
T (µ) =

〈
c1(O) − c1(E),

[
Σ × ST (µ)]

〉
=
(
4 + (4 − 6)

)
|ST (µ)| = 2|ST (µ)|.

If n = 3 and k = 2, we are in the case of (4.36) and apply Lemma 3.14
with

E = T̃Σ ⊕ T̃Σ, O = H−
Σ ⊕H−

Σ ⊕H−
Σ ,

and α ∈ Γ(Σ × ST (µ);E∗ ⊗O) that again has full rank. Thus,

n
(2)
T (µ) =

〈
c1(O) − c1(E),

[
Σ × ST (µ)]

〉
= (6 − 4)|ST (µ)| = 2|ST (µ)|.

Finally, if n = 2 and k = 3, we are in the case of (4.33). Note that all the
bundles involved are trivial and the linear part of ψ(2)

T is an isomorphism
on every fiber. Thus, n(3)

T (µ) = |UT (µ)|.
The next step is to compute the cardinalities of the sets Sn−1(µ). In

order to simplify our answers, it is convenient to introduce cohomology
classes c1(L∗

kT ) closely related to c1(L∗
kT ). Suppose T = (S2,M, I; j, d)

is a bubble type. and
{
Tk = (S2,Mk, Ik; jk, dk)

}
are the corresponding

simple types; see [13]. For any k ∈ I − Î and nonempty subset M0

of MkT , we define bubble types T (M0) and T /M0 as follows. Let

T /M0 =
(
S2, I,M −M0; j|M−M0 , d

)
.

Let T (M0) ≡ (S2,M, Î �k 1̂; j′, d′) be given by

j′l =


k, if l ∈M0;
1̂, if l ∈MkT −M0;
jl, otherwise;

d′i =


0, if i = k;
dk, if i = 1̂;
di, otherwise.
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The tuples T /M0 and T (M0) are bubble types as long as dk �= 0 or
M0 �= M0̂T . Then,

UT (M0)(µ) = M0,{1̂}�M0
× UT /M0

 ⋂
l∈M0

µl;µ

 ,(5.2)

where M0,{1̂}�M0
denotes the Deligne-Mumford moduli space of rational

curves with ({0̂, 1̂}�M0)-marked points. If l ∈MkT for some k ∈ I− Î,
we denote T ({l}) by T (l). If T is a basic bubble type, by Theorem 2.8
and decomposition (5.2), UT (M0)(µ) is an oriented topological suborb-
ifold of UT (µ) of (real) codimension two. Thus,

c1(L∗
kT ) ≡ c1(L∗

kT ) −
∑

M0⊂Mk,M0 �=∅
PDUT (µ)

[
UT (M0)(µ)

]
∈ H2
(
UT (µ)

)
,

(5.3)

where PDUT (µ)

[
UT (M0)(µ)

]
denotes the Poincare Dual of

[
UT (M0)(µ)

]
in UT (µ), is a well-defined cohomology class. Since our constraints µ are
disjoint, UT (M0)(µ) = ∅ if |M0| ≥ 2. Furthermore, it is well-known in
algebraic geometry that for any l ∈Mk the normal bundle of UT (l)(µ) in
UT (µ) is L1̂T (l); see [9]. Thus, if µ is an M -tuple of disjoint constraints,[

UT (l)(µ)
]
∩ c1(L∗

kT ) =
[
UT (l)(µ)

]
∩ c1(L∗

1̂
T (l))(5.4)

=
[
UT (l)(µ)

]
∩ c1(L∗

1̂
T (l)),

since LkT |UT (l)
is the trivial line bundle. The above fact from algebraic

geometry is only used to simplify notation and is not really needed for
our computations. In addition, (5.4) can deduced from Subsection 5.7.

In the n = 3 case, we denote by V2(µ) the disjoint union of the
spaces UT (µ) taken over equivalence classes of basic bubble types T =
(S2,M, I; j, d) with |I| = 2. While the components of V2(µ) are un-
ordered, we can still define the chern classes

c1(L∗
1) + c1(L∗

2), c
2
1(L∗

1) + c21(L∗
2), c1(L∗

1)c1(L∗
2) ∈ H∗(V2(µ)

)
.

In the notation of the previous paragraph, c1(L∗
i ) denotes the cohomol-

ogy class c1(L∗
ki
Tki

), where we write I = {k1, k2}. If T ∗ = (S2,M, {0̂};
0̂, d), we denote by V1(µ) the space UT ∗(µ) and by c1(L∗) ∈ H2(V1(µ))
the cohomology class c1(L∗

0̂
T ∗).
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Lemma 5.4. If d ≥ 1, the number of rational degree-d cuspidal
curves passing through a tuple µ of 3d − 2 points in general position
in P

2 is given by∣∣S1(µ)
∣∣ = 〈3a2 + 3ac1(L∗) + c21(L∗),

[
V1(µ)
]〉

− τ2(µ),

where a = ev∗(O(1)).

Proof. (1) This result is well-known in algebraic geometry; see [12].
Nevertheless, for the sake of completeness, we include a proof. Let T ∗

be as above. By definition, S1(µ) is the intersection of the zero set of
the section

D ≡ DT ∗ ∈ Γ
(
V1(µ);L∗ ⊗ ev∗TP

2
)
, where L = L0̂T

∗,

with V1(µ) = UT ∗(µ). Thus, by Corollary 3.13, with ∂V1(µ) = V1(µ) −
V1(µ),

|S1(µ)| =
〈
c2
(
L∗ ⊗ ev∗TP

2),
[
V1(µ)
]〉

− C∂V1(µ)(D)(5.5)

=
〈
3a2 + 3ac1(L∗) + c21(L

∗),
[
V1(µ)
]〉

− C∂V1(µ)(D).

(2) Suppose T = (S2, [N ], I; j, d) < T ∗, where N = 3d− 2, is a bub-
ble type such that D vanishes somewhere on UT (µ). Since the complex
dimension of UT (µ) is at most one, by Corollary 6.3 d0̂ = 0. Let

ρT ∈ Γ
(
UT (µ); Polyn(FT ; F̃T )

)
and

αT ∈ Γ
(
UT (µ); Hom(F̃T ;L∗ ⊗ ev∗TP

n)
)

be the sections defined in Equation (2.21). Recall that with appropriate
identifications∣∣D(γµ

T (υ)) − αT (ρT (υ))
∣∣ ≤ C(bυ)|υ|

1
p
∣∣ρT (υ)

∣∣ ∀υ ∈ FT δ,(5.6)

where δ, C ∈ C∞(UT (µ); R+) and γµ
T : FT δ −→ V1(µ) is an identi-

fication of neighborhoods of UT (µ), which is smooth on the preimage
of V1(µ). Note that |Î| ∈ {1, 2} if UT (µ) is nonempty. By the proof of
Lemma 4.9, αT has full rank on every fiber F̃T −→ UT (µ). Thus, by
Equation (5.6) and Corollary 3.13,

CUT (µ)(D) = 0 if H0̂T �= Î .
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(3) Suppose |H0̂T | = |Î| = 1. Then T = T ∗(l) for some l ∈ [N ] and
F̃T = FT ≈ L1̂T . Since αT ◦ ρT has constant rank over UT (µ), by
Corollary 3.13 and Lemma 3.14,

CUT (µ)(D) =
〈
c1(L∗ ⊗ ev∗TP

2) − c1
(
L1̂T
)
,
[
UT (µ)

]〉
=
〈
3a+ c1(L∗

1̂
T ),
[
UT (µ)

]〉
.

If |H0̂T | = |Î| = 2, αT ◦ ρT is an isomorphism on every fiber. Thus,
CUT (µ)(D) = |UT (µ)| by Corollary 3.13. Combining these contributions
to the euler class of L∗ ⊗ ev∗TP

2 gives

C∂U (DT ∗) =
∑
l∈[N ]

〈
3a+ c1(L∗

1̂
T ∗(l)),

[
UT ∗(l)(µ)

]〉
+

∑
[T ],|H0̂T |=|Î|=2

|UT (µ)|
(5.7)

=
∑

l∈[3d−2]

〈
3a+ c1(L∗

1̂
T ∗(l)),

[
UT ∗(l)(µ)

]〉
+ τ2(µ).

The claim follows by plugging Equation (5.7) into (5.5) and using Equa-
tions (5.3) and (5.4).

Lemma 5.5. If d ≥ 1, the number of two-component rational
degree-d curves connected at a tacnode and passing through a tuple µ of
p points and q lines in general position in P

3, where 2p+ q = 4d− 3, is
given by

|S2(µ)| =
〈
6a2 + 4a(c1(L∗

1) + c1(L∗
2)) + (c21(L∗

1) + c21(L∗
2))

+ c1(L∗
1)c1(L∗

2),
[
V2(µ)
]〉

− 3τ3(µ).

Proof. (1) Let T ∗ = (S2, [N ], I∗; j∗, d∗) be a basic bubble type such
that I∗ = {k1, k2} is a two-element set, d∗k1

, d∗k2
> 0, d∗k1

+ d∗k2
= d, and

N = p+ q. Denote by T ∗
1 and T ∗

2 the corresponding simple types. The
proof is similar to that of Lemma 5.4, but we pass to the projectivization
PE (over C) of the bundle

E = L1 ⊕ L2 −→ UT ∗(µ), where Li = Lki
T ∗

i .

The section DT ∗,2 of Lemma 4.9 induces a section D ∈ Γ(PE; γ∗E ⊗
ev∗TP

3) such that ST ∗(µ) corresponds to the intersection of the zero
set of D with PE|UT ∗ (µ). If PE′ denotes the restriction of PE to ∂U ≡
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UT ∗(µ) − UT ∗(µ), by Corollary 3.13,

|ST ∗(µ)| =
〈
c3(γ∗E ⊗ ev∗TP

3),
[
PE
]〉

− CPE′(D)(5.8)

=
〈
6a2 + 4a(c1(L∗

1) + c1(L∗
2)) + (c21(L

∗
1) + c21(L

∗
2))

+ c1(L∗
1)c1(L

∗
2),
[
UT ∗(µ)

]〉
− CPE′(D).

The second equality above is obtained by applying (3.16).

(2) Suppose T = (S2, [N ], I; j, d) < T ∗ is a bubble type such that D
vanishes somewhere on PE|UT (µ). Let T1 and T2 be the corresponding
simple types. Since the constraints are disjoint, up to interchanging the
indices, we must have

T1 = T ∗
1 , T2 =

(
S2,M2, I2; j|M2 , d|I2

)
< T ∗

2 with dk2 = 0.

Furthermore, DT ∗
1 ,k1 does not vanish on UT (µ); see the proof of Lem-

ma 4.9. Thus, D vanishes only the subspace

ZT ≡ PL2

∣∣
UT (µ)

=
{(
b, L2|b

)
: b ∈ UT (µ)

}
.

The map γµ
T of Theorem 2.8 induces an identification of a neighborhood

of 0 in
FS ≡ π∗EFT ⊕ π∗EL

∗
2 ⊗ π∗EL1 −→ ZT

with a neighborhood of ZT in PE. Similarly to the n = 2 case, with
appropriate identifications,

∣∣D(γµ
T (υ, u)) − α̃T (ρ̃T (υ, u))

∣∣ ≤ C(bυ)|υ|
1
p
∣∣ρT (υ)

∣∣ ∀(υ, u) ∈ FSδ,

(5.9)

where ρ̃T (υ, u) =
(
ρT (υ), u

)
∈ F̃S ≡ π∗F̃T ⊕ π∗EL

∗
2 ⊗ π∗EL1 −→ ZT ,

and α̃T has full rank on every fiber by (2.21) and Lemma 4.9. Thus,
similarly to the proof of Lemma 5.4, and CPE′|ZT

(D) = 0 if Hk2T �= Î2,
and only two cases remain to be considered.

(3) If |Hk2T | = |Î2| = 1, α̃T ◦ ρ̃T has full rank over all of ZT . Thus,
by Corollary 3.13 and Lemma 3.14,

CZT (D) =
〈
c1(γ∗E ⊗ ev∗TP

3) − c1(FS),
[
ZT
]〉

(5.10)

=
〈
4a+ c1(L∗

1̂
T2) + c1(L∗

1),
[
UT (µ)

]〉
;
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note that c1(γ∗E) = c1(L∗
2) = 0 over UT (µ). If |Hk2T | = |Î2| = 2, α̃T ◦ ρ̃T

is an isomorphism on every fiber, and thus

CPE′|ZT
(D) = |ZT | = |UT (µ)|.(5.11)

Note that the sum of |UT (µ)| over all equivalence classes of bubble types
T ∗ and T < T ∗ is 3τ3(µ), since one of the three components of the image
of each bubble map in UT (µ) is distinguished by the bubble type T . As
before, we now sum up Equations (5.10) and (5.11) over all equivalence
classes of bubble types T < T ∗ of the appropriate form, plug the result
back into (5.8) and use Equations (5.3) and (5.4). The claim follows by
summing the result over all equivalence classes of basic simple bubble
types T ∗.

5.3 The numbers n(1)
m with m = n− 1

In this subsection, we give topological formulas for the numbers n(1)
T

with |Î| = n − 1. As before, the reason these two cases are similar is
that the complex dimension of UT (µ) is two.

Lemma 5.6. If n = 2, n(1)
1 (µ) = 2

〈
6a2 + 3ac1(L∗),

[
V1(µ)
]〉

.

Proof. (1) Let N , T ∗, L, D be as in the proof of Lemma 5.4. Since
sΣ does not vanish on Σ, by Equation (4.30) and Lemma 3.14,

n
(1)
1 (µ) =

k=3∑
k=0

〈
ck(O)c3−k

1 (T ∗Σ ⊗ L∗),
[
Σ × UT ∗(µ)

]〉
− CΣ×D−1(0)(α

⊥),

(5.12)

= 2
〈
15a2 + 12ac1(L∗) + 3c21(L

∗),
[
V1(µ)
]〉

− CΣ×D−1(0)(α
⊥),

where O = H0,1
Σ ⊗ ev∗TP

2 and α ∈ Γ(Σ × V1(µ);T ∗Σ ⊗ L∗ ⊗O) is the
linear part of the affine map ψ(1)

1 of (4.30).
(2) We first compute CΣ×S1(µ)(α⊥). Since V1(µ) is a complex mani-

fold and D is transverse to the zero set in L∗⊗ev∗TP
2 by Corollary 6.3,

we can identify a neighborhood of 0 in

F ≡ L∗ ⊗ ev∗TP
2 −→ S1(µ)

with a neighborhood of S1(µ) in V1(µ) via a map γ in such a way that

Π−1
b,γ(b,X)

(
Dγ(b,X)

)
= X ∀(b,X) ∈ Fδ.(5.13)
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Then with appropriate identifications,

α⊥(γ(X)) = π⊥ ◦XsΣ ≡ αS(X),

where π⊥ : O −→ O⊥ is the quotient projection map. In particular, αS
has full rank if νb �∈ H+

Σ ⊗ ev∗TP
2 for all b ∈ S1(µ), i.e., ν is generic.

Furthermore,(
T ∗Σ ⊗ L∗ ⊗O⊥)/(Im αS

)
≈ T ∗Σ ⊗

(
(H−

Σ ⊗ C
2)/C
)
.

Thus, by Corollary 3.13,

CΣ×S1(µ)(α
⊥) =
〈
e(T ∗Σ⊗3), [Σ × S1(µ)]

〉
= 6|S1(µ)|.(5.14)

(3) It remains to compute the contribution to CΣ×D−1(0)(α⊥) from
Σ × (V1(µ) − V1(µ)). Suppose

T = (S2, [N ], I; j, d) < T ∗

is a bubble type such that D vanishes somewhere on UT (µ). As in the
proof of Lemma 5.4, |Î| ∈ {1, 2} and d0̂ = 0. Furthermore,∣∣α⊥(x, γµ

T (υ)) − α̃T (x, b; ρT (υ))
∣∣ ≤ C(bυ)|υ|

1
p |ρT (υ)| (x, b; υ) ∈ FT δ,

where α̃T = π⊥ ◦ (sΣ ⊗ αT ). If ν is generic, α̃T has full rank on every
fiber, since sΣ has no zeros. Thus, by Corollary 3.13,

CΣ×UT (µ)(α
⊥) = 0 if H0̂T �= Î .

If |H0̂T | = |Î| = 1, α̃T ◦ ρ̃T has full rank over all Σ × UT (µ), and thus
by Corollary 3.13 and Lemma 3.14

CΣ×UT (µ)(α
⊥) =
〈
c(T ∗Σ ⊗O⊥)c(L1̂T )−1,

[
Σ × UT (µ)

]〉
(5.15)

= 2
〈
12a+ 3c1(L∗

1̂
T ),
[
UT (µ)

]〉
.

If |H0̂T | = |Î| = 2,(
T ∗Σ ⊗ L∗ ⊗O⊥)/(Im α̃T ◦ ρ̃T

)
≈ T ∗Σ ⊗

(
(H−

Σ ⊗ C
2)/C
)
.

Thus, similarly to the computation in (2) above,

CΣ×UT (µ)(α
⊥) = 6|UT (µ)|.(5.16)
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Summing Equations (5.15) and (5.16) over all equivalence classes of
T < T ∗, we obtain

CΣ×(V1(µ)−V1(µ))(α
⊥) = 2

∑
l∈[N ]

〈
12a+ 3c1(L∗

1̂
T ),
[
UT ∗(l)(µ)

]〉
+ 6τ2(µ).

(5.17)

The claim follows by plugging (5.14) and (5.17) into (5.12) and using
(5.3), (5.4), and Lemma 5.4.

Lemma 5.7. If n = 3, n(1)
2 (µ) = 4

〈
10a2 + 4a(c1(L∗

1) + c1(L∗
2)) +

c1(L∗
1)c1(L∗

2),
[
V2(µ)
]〉

.

Proof. (1) We use the same notation as in the proof of Lemma 5.5.
By Section 4.9 and Equation (4.34), n(1)

2 (µ) = N(α2), where

α2 ∈ Γ
(
Σ2 × V2(µ); Hom(Ẽ;O)

)
, Ẽ = TΣ1 ⊗ L1 ⊕ TΣ2 ⊗ L2,

O = H0,1
Σ ⊗ ev∗TP

3,

α2

(
x1, x2, b; v1 ⊗ υ1, v2 ⊗ υ2

)
= (Dυ1)(sΣ,x1v1) + (Dυ2)(sΣ,x2v2).

Here the bundles Li −→ V2(µ) and the sections Di ∈ Γ
(
V2(µ);L∗

i ⊗
ev∗TP

2
)

are defined as follows. If b ∈ UT ∗(µ) ⊂ V2(µ), T ∗= (S2, [N ], I∗;
j∗, d∗), and I∗ = {k1, k2}, we let Li

∣∣
b

= Lki
T and Di = DT ,ki

. These
bundles and sections are well-defined once we fix a representative for
each equivalence class of such bubble types T ∗ and order the elements
of the corresponding set I∗.

(2) By Lemma 3.14,

n
(1)
1 (µ) =

k=5∑
k=0

〈
ck(O)λ5−k

Ẽ
,
[
PẼ
]〉

− Cα̃−1(0)(α̃
⊥),(5.18)

= 4
〈
28a2 + 16a(c1(L∗

1) + c1(L∗
2)) + 3(c21(L

∗
1) + c21(L

∗
2))

+ 4c1(L∗
1)c1(L

∗
2),
[
V2(µ)
]〉

− Cα̃−1(0)(α̃
⊥),

where α̃ ∈ Γ(PẼ; γ∗
Ẽ
⊗O) is the section induced by α2. Let

Σ(±) =
{
(x1, x2) ∈ Σ∗

1 × Σ∗
2 : x1 = ±x2}, Σ(0) =

{
(zm, zm) : m ∈ [6]

}
;

S(±)
2 = Σ(±) × S2(µ), S(0)

2 = Σ(0) × S2(µ),
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where +x2 ≡ x2 and −x2 is the image of x2 under the nontrivial auto-
morphism of Σ. The zero set of α̃ is the union of a section of PẼ over
S(±)

2 , S(0)
2 , and Σ2 × UT (µ), where T is as in the proof of Lemma 5.5.

(3) The above section over Σ2 × UT (µ) is given by

ZT ≡ α̃−1(0) ∩ PẼ|Σ2×UT (µ)

=
{
(x1, x2, b, Tx1Σ1 ⊗ L1|b) : (x1, x2, b) ∈ Σ2 × UT (µ)

}
.

The map γµ
T of Theorem 2.8 induces identifications of neighborhoods of

ZT in
FS = π∗

Ẽ

(
FT ⊕ T ∗Σ1 ⊗ L∗

1 ⊗ TΣ2 ⊗ L2

)
and in PẼ as well as of appropriate bundles such that∣∣α̃(γµ

T (υ, u)) − α̃T (ρT (υ), u)
∣∣ ≤ C(bυ)|υ|

1
p |ρT (υ)| ∀(υ, u) ∈ FSδ,

where

α̃T ∈ Γ
(
ZT ; Hom(F̃S; γ∗

Ẽ
⊗O)
)
,

F̃S = π∗
Ẽ

(
F̃T ⊕ T ∗Σ1 ⊗ L∗

1 ⊗ TΣ2 ⊗ L2

)
,

α̃T (x1, x2, b; υ̃, u) = {αT (υ̃)} ⊗ sx1 + (D2 ⊗ sx2) ◦ u.

By the proof of Lemma 4.9, α̃T is nondegenerate. The same is true
of α̃⊥ as long as ν ∈ Γ(PẼ;O) is generic. Thus, if Î �= H0̂T , ZT is
α̃⊥-hollow and CZT (α̃⊥) = 0 by Corollary 3.13. If |Hk1T | = |Î| = 1,
i.e., T = T ∗(l) for some l ∈ [N ], α̃T has full rank on ZT ≈ Σ2 × UT (µ).
Thus, by Corollary 3.13,

CZT (α̃⊥) =
〈
c(γ∗

Ẽ
⊗O⊥)c

(
FS)−1, [ZT ]

〉
(5.19)

= 4
〈
16a+ 4c1(L∗

2) + 3c1(L∗
1̂
T ),
[
UT (µ)

]〉
,

since FS ≈ L1̂T ⊕ T ∗Σ1 ⊗ TΣ2 ⊗ L2. If |Hk1T | = |Î| = 2, we similarly
obtain

CZT (α̃⊥) =
〈
c(γ∗

Ẽ
⊗O⊥)c

(
FS)−1, [ZT ]

〉
= 12|UT (µ)|.(5.20)

Note that FS ≈ C
2 ⊕ T ∗Σ1 ⊗ TΣ2 in this case. Summing up Equa-

tions (5.19) and (5.20) over all equivalence classes of bubble types T of
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the appropriate form and using (5.3) and (5.4), we obtain

C
PẼ|∂V2(µ)

(α̃⊥) = 4
∑
[T ∗]

∑
l∈M∗

i ,i�=j

〈
16a+ 3c1(L∗

i ) + 4c1(L∗
j ),
[
UT ∗(l)(µ)

]〉(5.21)

− 36
∣∣V3(µ)

∣∣,
where the outer sum is taken over equivalence classes of bubbles T ∗ as
in (1) above.

(4) It remains to compute C
PẼ|S±

2
(α̃⊥) and C

PẼ|S(0)
2

(α̃⊥). Note that

α̃−1(0) ∩ PẼ|S(±)
2

= Z(±)
2 ≡

{
(x,±x, b; [v ⊗ υ1, v ⊗ υ2]) ∈ PẼ|S(±)

2

: D|(b;[υ1,υ2]) = 0
}
,

where D is the section of γ∗E⊗ev∗TP
3 defined in the proof of Lemma 5.5.

Identify neighborhoods of Z(±)
2 in

FS ≡ TΣ ⊕ γ∗E ⊗ ev∗TP
3 ≈ TΣ ⊕ C

3

and in PẼ via a map γ in such a way that∣∣α̃(γ(w,X)) − αS(w,X)
∣∣ ≤ C(x, b)

(
|w| + |X|

)
|w ∀(w,X) ∈ FSδ,

where αS ∈ Γ
(
Z2;2; Hom(FS; γ∗

Ẽ
⊗O)
)
,{

αS(w,X)}(v ⊗ υ) = (Xυ)(sxv) +
(
D2υ2

)(
s
(2)
b,x(w, v)

)
∈ O,

if v ∈ TxΣ, υ = (υ1, υ2) ∈ γE .

Since s(2)x = π−x ◦s(2)b,x does not vanish on Σ∗, αS has full rank on Z(±)
2;2 and

extends over Z(±)
2 ≈ Σ × S2(µ). This extension is a regular polynomial

in the sense of Definition 3.9. Furthermore,

π⊥ν αS : γ∗E ⊗ ev∗TP
3 −→ γ∗

Ẽ
⊗ π⊥ν
(
H+

Σ ⊗ ev∗TP
3
)

is an isomorphism. Thus, by Corollary 3.13, CZ(±)
2

(α̃⊥) = N(α−
S ), where

α−
S ∈ Γ
(
Z2; Hom(TΣ;O2)

)
,

O2 = γ∗
Ẽ
⊗
(
H−

Σ ⊗ ev∗TP
3
)⊥ ≈ T ∗Σ ⊗

(
H−

Σ ⊗ C
3
)⊥
,{

α−
S (w)
}
(v ⊗ υ2) = π⊥

π−
x ν

(
(D2υ2)s(2,−)

x (w, v)
)
.



enumeration of genus-two curves 433

As in the previous section, we can replace TΣ with

T̃ ′Σ ≡ TΣ ⊗O(z1) ⊗ · · · ⊗ O(z6)

and s(2,−) with s̃(2,−)∈Γ(Σ; T̃ ′Σ∗ ⊗H−
Σ) above to obtain a non-vanishing

linear map α̃−
S such that N(α−

S ) = N(α̃−
S ). Thus, by Lemma 3.14,

CZ(+)
2 ∪Z(−)

2

(α̃⊥) = 2
〈
c1(O2) − c1(T̃ ′Σ), [Z(+)

2 ]
〉

(5.22)

= 2(10 − 4)|S2(µ)| = 12|S2(µ)|.

(5) We next show that C
PẼ|S(0)

2

(α̃⊥) = 0. Similarly to (4),

α−1(0) ∩ PẼ|S(0)
2

= Z(0)
2 ≡
{

(zm, zm, b; [v ⊗ υ1, v ⊗ υ2]) ∈

PẼ|S(0)
2

: D|(b;[υ1,υ2]) = 0
}
.

We can identify neighborhoods of Z(0)
2 in

FS ≡ TΣ1 ⊕ TΣ2 ⊕ γ∗E ⊗ ev∗TP
3 ≈ C

2 ⊕ C
3

and in PẼ via a map γ in such a way that∣∣π−w1
◦ α̃(γ(w1, w2, X)) − α−

S (w1, w2, X)
∣∣

≤ C
∣∣X,w1, w2

∣∣|w1||w1 − w2| ∀(w1, w2, X) ∈ FSδ,

where {
α−
S (w1, w2)

}
(v ⊗ υ1, v ⊗ υ2)

= (D2υ2)s(3)zm
(w1, w2 − w1, v) ∈ H−

Σ(zm) ⊗ ev∗TP
3.

Since the rank of (H−
Σ(zm) ⊗ ev∗TP

3)/Cπ−zm
ν is two, while the rank of

TzmΣ1⊗TzmΣ2 is one, it follows that Z(0)
2 is α̃⊥-hollow, and C

PẼ|S(0)
2

(α̃⊥)

= 0 by Corollary 3.13. The lemma is obtained by plugging (5.21) and
(5.22) into (5.18), using (5.3) and (5.4), and Lemma 5.5.

5.4 Behavior of D(2) and D(3) near S1(µ) − S1(µ)

If n = 3, the space S1(µ) is not compact. In order to be able to compute
the numbers n(k)

1 (µ), we thus must understand the structure of S1(µ) as
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well as the behavior of D(2)

T ∗,0̂
and D(3)

T ∗,0̂
, where T ∗ = (S2, [N ], {0̂}; 0̂, d),

near S1(µ) − S1(µ).
If T = (S2, [N ], I; j, d) < T ∗, from Theorem 2.8 one should expect

that the normal bundle, or cone, FS of ST (µ) ≡ UT (µ)∩S1(µ) in S1(µ)
is the closure of the set

[υ = (b, (vh)h∈Î)] ∈ F (∅)T
∣∣
ST (µ)

:
∑

h∈χ(T )

∏
i∈Î,i≤h

vi (DT ,hb) = 0


(5.23)

in FT . The next lemma shows that this is indeed the case. By a
dimension-counting argument, if the set in (5.23) is not empty, either
|χ(T )| = 1 or χ(T ) = {h1, h2} is a two-element set, ιh1 = ιh2 , DT ,h1b �=
0, and DT ,h2b �= 0. In the first case FS = FT |ST (µ), while in the second
FS is a codimension-one subbundle of FT |ST (µ).

Let NS −→ FS denote the normal bundle of FS in FT −→ UT (µ).
While for the purposes of Lemma 5.8, we can use any identification of
neighborhoods of FS in NS and in FT −→ UT (µ), in order to simplify
the statement of Lemma 5.10, we choose a fairly natural one. More
precisely, denote by FS⊥ a subspace of FT |ST (µ) complementary to FS
and by πS : NS(1) −→ ST (µ) the normal bundle of ST (µ) in UT (µ).
Choose a norm on NS(1) and an identification φS : NS

(1)
δ −→ ST (µ) of

neighborhoods of ST (µ) in NS(1) and in UT (µ). Let ΦS : π∗SFT −→ FT
be a lift of φS such that ΦS restricts to the identity over ST (µ) ⊂ NS

(1)
δ .

Let π : FT −→ ST (µ) be the bundle projection. Then

NS = π∗NS(1) ⊕FS⊥, and φ̃S : NSδ −→ FT ,
φ̃S
(
(b, v), (X, v⊥)

)
= ΦS
(
(b,X), v + v⊥

)
,

is an identification of neighborhoods of FS in NS and FT −→ UT (µ).

Lemma 5.8. For every bubble type T = (S2, [N ], I; j, d) < T ∗,
there exist δ, C ∈ C∞(ST (µ); R+) and a section ϕS ∈ Γ(FSδ;NS) such
that

‖ϕS(υ)‖ ≤ C(bυ)|υ|
1
p , ‖ϕFS⊥(υ)‖ ≤ C(bυ)|υ|1+

1
p ,

where ϕFS⊥ denotes the FS⊥-component of ϕS , and the map

γS : FSδ −→ S1(µ), γS(υ) = γµ
T
(
φ̃SϕS(υ)

)
,

is a homeomorphism onto an open neighborhood of ST (µ) in S1(µ),
which is smooth and orientation-preserving on the preimage of S1(µ).



enumeration of genus-two curves 435

Proof. (1) The proof is similar to that of Lemma 3.32 in [13], and so
we only describe the differences. If ST (µ) �= ∅, T must have one of the
three forms described by Lemma 5.10. In Case (1), we apply Subsec-
tion 3.7 in [13], which contains an application of the Implicit Function
Theorem, to DT ∗,0̂ instead of the evaluation maps. By Theorem 2.8,∣∣Π−1

b,γ̃µ
T (υ)

(DT ∗,0̂γ̃
µ
T (υ)) − (DT ∗,0̂bυ)

∣∣ ≤ C ′(b)|υ|
1
p ∀υ ∈ FSδ.

This estimate suffices for applying an argument similar to the proof of
Lemma 3.32 in [13].

(2) In Case (2) of Lemma 5.10, instead of the section DT ∗,0̂ of L∗
0̂
T ∗⊗

ev∗TP
3, we consider the section D̃ of

(
L0̂T ∗ ⊗ FT

)∗ ⊗ ev∗TP
3 on a

neighborhood of UT (µ) in UT ∗(µ) defined by

D̃
∣∣
γ̃µ
T (b,v1̂)

(v0̂, v1̂) = DT ∗,0̂

∣∣
γ̃µ
T (b,v1̂)

(v0̂) ∈ ev∗TP
3.

This section is well-defined outside of UT (µ) and by Theorem 2.8 extends
over UT (µ) by

D̃
∣∣
b
(v0̂ ⊗ v1̂) = v0̂v1̂

(
DT ,1̂b
)
.

The restriction of this section to UT (µ) vanishes transversally at ST (µ)
by Corollary 6.3, while its zero set on UT ∗(µ) is the same as the zero
set of DT ∗,0̂. By Theorem 2.8, with appropriate identifications,∣∣D̃|γµ

T (b,υ) − D̃|b
∣∣ ≤ C ′(b)|υ|

1
p ∀υ ∈ FSδ.

(3) In the final case of Lemma 5.10, we replace DT ∗,0̂ by a bundle
section over the blowup of FT along UT (µ). Let

ΩT =
{
(b, v, �) : (b, v) ∈ FT , v ∈ � ∈ PFT |b

}
,

Ω∗
T =
{
(b, v, �) ∈ ΩT : v �= 0

}
, ET = ΩT − Ω∗

T .

Denote by γ −→ ΩT the tautological line bundle. The normal bundle
ÑS of γ −→ PFS in γ −→ ET is given by

ÑS = π∗γπ
∗
FTNS(1) ⊕ π∗γ

(
γ∗ ⊗ π∗FTFS⊥),

φ̃ÑS
(
(b, �, v), X, σ

)
=
(
φS(b,X),

[
ΦS(v + σ(v))

]
, v + σ(v)

)
,

where πγ : γ −→ ΩT is the bundle projection map. The bundle L0̂T ∗

pulls back to a bundle L̃ over a neighborhood Ωδ of ET in ΩT . We define
a section D̃ of

(
L̃⊗ γ)∗ ⊗ ev∗TP

3 over Ωδ by

D̃
∣∣
(b,v1̂,v2̂,�)

(
v0̂, v1̂, v2̂

)
= DT ∗,0̂

∣∣
γ̃µ
T (b,v1̂,v2̂)

(v0̂) ∈ ev∗TP
3.
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This section is well-defined outside of ET (µ) and by Theorem 2.8 extends
over ET (µ) by

D̃
∣∣
b

(
v0̂, v1̂, v2̂

)
= v0̂
(
v1̂(DT ,1̂b) + v2̂(DT ,2̂b)

)
.

The restriction of this section to ET (µ) vanishes transversally at PFS
−→ ST (µ) by Corollary 6.3, while its zero set on Ω∗ corresponds to
the zero set of DT ∗,0̂ on γµ

T
(
FT δ − UT (µ)

)
. By Theorem 2.8, with

appropriate identifications,∣∣D̃|(b,v1̂,v2̂,�) − D̃|(b,�)
∣∣ ≤ C ′(b)|υ|

1
p .

Thus, we can apply the arguments of Lemma 3.32 in [13] to D̃ to describe
its zero set near ET . We obtain a section ϕ̃S ∈ Γ(γδ|PFS ; ÑS) such that
‖ϕ̃S(υ)‖ ≤ C(bυ)|υ|

1
p , and the map

γ̃S : γδ|PFS −→ ΩT , γ̃S(υ) = φ̃ÑS(ϕS(υ)),

is a homeomorphism onto an open neighborhood of PFS in D̃−1(0).
This section ϕ̃S induces the required section ϕS with the claimed prop-
erties.

Corollary 5.9. For every bubble type T = (S2, [N ], I; j, d) < T ∗,
there exist δ ∈ C∞(ST (µ); R+) and a map

γS :
(
NS(1) ⊕FT

)
δ

∣∣
ST (µ)

−→ UT ∗(µ)

such that γS is a homeomorphism onto an open neighborhood of ST (µ)
in UT ∗(µ), which is smooth and orientation-preserving on the preimage
of UT ∗(µ), and with appropriate identifications,

DγS(X, υ) =

{
X, in Case (1) with X ∈ L∗ ⊗ ev∗TP

3;
Xυ1̂, in Case (2) with X ∈ L∗

1̂
T ⊗ ev∗TP

3,

where the cases are the ones described by Lemma 5.10.

Proof. The proof is just a modification of the proof of Lemma 5.8.
We work with the sections D ≡ D and D ≡ D̃ in Cases (1) and (2),
respectively. Choose an identification γ : NS

(1)
δ −→ UT (µ) of neighbor-

hoods of ST (µ) in NS(1) and in UT (µ) as well as of the appropriate line
bundle over these neighborhoods such that

D
∣∣
(b,X)

= X ∀X ∈ NS
(1)
δ .
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By the same argument as in the proof of Lemma 5.8, for any (Y, υ) ∈
NS(1) ⊕FT , there exists a unique Z ∈ NS(1), such that

D
∣∣
γµ
T (ΦS(X+Y ;υ))

= D
∣∣
X

= X.

Furthermore, |Z| ≤ C(b)
(
|Y | + |υ|

1
p
)
.

Lemma 5.10. If d ≥ 1, µ is a tuple of p points and q lines in
general position in P

3 with 2p+ q = 4d− 3, and N = p + q, the set
S1(µ) − S1(µ), is finite. Furthermore, if

T = (S2, [N ], I; j, d) < T ∗ and ST (µ) �= ∅,

then one of the following cases holds:

(1) Î = {1̂}, d0̂ > 0, and the images of D(2)

T ∗,0̂
and D(3)

T ∗,0̂
are linearly

independent in every fiber of ev∗TP
3 over ST (µ).

(2) Î = {1̂}, d0̂ = 0, d1̂ = d, and for all υ =
[
b, v1̂
]
∈ FSδ,∣∣Π−1

b,γS(υ)(D
(2)γS(υ)) − v2

1̂
(D(2)

T ,1̂
b)
∣∣ ≤ C|v1̂|

2+ 1
p ;∣∣Π−1

b,γS(υ)

(
(D(3)γS(υ))− 3x1̂(D

(2)γS(υ))
)
− v3

1̂
(D(3)

T ,1̂
b)
∣∣ ≤C|v1̂|3+ 1

p .

(3) Î = {1̂, 2̂}, d0̂ = 0, and for all υ = [b, v1̂, v2̂] ∈ FS∣∣∣Π−1
b,γS(υ)(D

(2)γS(υ)) − 2
(
x1̂v1̂(DT ,1̂b) + x2̂v2̂(DT ,2̂b)

)∣∣∣ ≤ C|υ|1+
1
p ;∣∣∣Π−1

b,γS(υ)

(
2(D(3)γS(υ)) − 3(x1̂ + x2̂)(D

(2)γS(υ))
)

−3
(
x1̂ − x2̂)

(
v2
1̂
(D(2)

T ,1̂
b) − v2

2̂
(D(2)

T ,2̂
b)
)∣∣∣ ≤ C|υ|2+

1
p .

Proof. (1) The statement about the possible structures of T is eas-
ily seen from Theorem 2.8 and dimension count. The finiteness claim
then also follows by dimension count. In Case (1), if d0̂ ≥ 3, by Corol-
lary 6.3, the images of D(2)

T ∗,0̂
and D(3)

T ∗,0̂
are transversal and thus linearly

independent over the finite set ST (µ). On the other hand, if d0̂ < 3,
ST (µ) = ∅; see Subsection 4.5.

(2) The four inequalities in the lemma will be obtained by refin-
ing the proof of the analytic estimate of Theorem 2.8. We use the
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same notation. Combining Equations (2.22), (2.23), (2.24), and (2.26),
we obtain

(
D(m)γ̃T (υ)

)
= m

∑
h∈χ(T )

k=m∑
k=1

ak,h(υ)
k

ṽk
(
D(k)

T ,hb
)

(5.24)

− m

2πi

∑
h∈χ(T )

∫
A−

h (υ)
ξυw

m−1dw,

where the integral is computed by using the same trivializations as be-
fore. This equality holds for any bubble type. If γT (υ) ∈ S1(µ) and T
is as in (2) of the lemma, (5.24) with m = 1, 2, 3 gives

0 = v1̂
(
D(1)

T ,1̂
b
)
− 1

2πi

∫
|x1̂−w|=ε

ξυdw;(5.25)

(
D(2)γ̃T (υ)

)
= 2x1̂v1̂

(
D(1)

T ,1̂
b
)

+ v2
1̂

(
D(2)

T ,1̂
b
)
− 1
πi

∫
|x1̂−w|=ε

ξυwdw;

(5.26)

(
D(3)γ̃T (υ)

)
= 3x2

1̂
v1̂
(
D(1)

T ,1̂
b
)

+ 3x1̂v
2
1̂

(
D(2)

T ,1̂
b
)(5.27)

+ 2v3
1̂

(
D(3)

T ,1̂
b
)
− 3

2πi

∫
|x1̂−w|=ε

ξυw
2dw.

where ε = 4δ(bυ)−1|v1̂|. Subtracting 2x1̂ times the first equation from
the second, we obtain∣∣(D(2)γ̃T (υ)) − v2

1̂
(D(2)

T ,1̂
b)
∣∣ ≤ C(b)|v1̂|

2+ 1
p .(5.28)

Similarly, subtracting 3x1̂ times (5.26) from and adding 3x2
1̂

times (5.25)
to (5.27), we obtain∣∣((D(3)γ̃T (υ)) − 3x1̂(D

(2)γ̃T (υ))
)
− 2v3

1̂
(D(3)

T ,1̂
b)
∣∣ ≤ C(b)|v1̂|

3+ 1
p .(5.29)

If υ ∈ FS is sufficiently small, the claim in Case (2) follows from Equa-
tions (5.28) and (5.29) along with Lemma 5.8 and our choice of φ̃S .
Note that if υ ∈ FS, we have to apply (5.28) and (5.29) with υ replaced
by Φµ

T ϕ
µ
T φ̃SϕS(υ), where Φµ

T and ϕµ
T are as in Subsection 3.9 of [13].

However, applying the bounds on ϕµ
T and φ̃S , we obtain the claimed

estimates.
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(3) In Case (3), we proceed similarly. The analog of Equation (5.26)
gives ∣∣(D(2)γ̃T (υ)) − 2

(
x1̂v1̂(DT ,1̂b) + x2̂v2̂(DT ,2̂b)

)∣∣ ≤ C(b)|υ|1+
1
p .

Subtracting 3(x1̂+x2̂) times the analog of (5.26) from and adding 6x1̂x2̂

times the analog of (5.25) to twice the analog of (5.27), we obtain∣∣(2(D(3)γ̃T (υ)) − 3(x1̂ + x2̂)(D
(2)γ̃T (υ))

)
− 3
(
x1̂ − x2̂)

(
v2
1̂
(D(2)

T ,1̂
b) − v2

2̂
(D(2)

T ,2̂
b)
)∣∣∣ ≤ C(b)|υ|2+

1
p .

The estimates of Case (3) follow from the last two equations and Lem-
ma 5.8. The finer bound on ϕFS⊥ of Lemma 5.8 is essential here.

5.5 The numbers n
(2)
1 (µ) and n

(3)
1 (µ) in the n = 3 case

In this subsection, we express the numbers n(2)
1 (µ) and n

(3)
1 (µ) in the

n = 3 case in terms of intersection numbers on the spaces V1(µ), V2(µ),
V3(µ).

Lemma 5.11. If n = 3, n
(2)
1 (µ) = 4〈2a+ c1(L∗), [S1(µ)]〉 −

2|S2(µ)|.
Proof. (1) We continue with the notation of the previous subsection.

The number n(2)
1 (µ) is the number of zeros of the affine map in (4.31).

As in the proof of Lemma 5.3, we can replace s(2,−)
Σ by s̃

(2,−)
Σ . Since

the linear part of the new affine map does not vanish on Σ×S1(µ) (see
Subsection 4.4), by Lemma 3.14,

n
(2)
1 (µ) =

k=2∑
k=0

〈
c2−k
1 (T̃Σ∗ ⊗ L∗⊗2)ck(O),

[
Σ × S1(µ)

]〉
− CΣ×∂S1

(α⊥)

(5.30)

= 4
〈
2a+ c1(L∗),

[
S1(µ)
]〉

− CΣ×∂S1
(α⊥),

where O = H−
Σ ⊗ ev∗TP

3, ∂S1 = S1(µ)−S1(µ), and α is the linear part
of the affine map in (4.31), with s(2,−)

Σ replaced by s̃(2,−)
Σ .

(2) If T = (S2, [N ], I; j, d) < T ∗ and ST (µ) �= ∅, T must have one
of the three forms given by Lemma 5.10. Since D(2) does not vanish
on ST (µ) in Case (1) of Lemma 5.10, CΣ×ST (µ)(α⊥) = 0 in this case.
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In Case (2), i.e., T = T ∗(l) for some l ∈ [N ], D(2)

T ,1̂
does not vanish

over ST (µ); see Subsection 4.5. Thus, by Corollaries 3.13, 3.6, and
the first estimate of Lemma 5.10, CΣ×ST (µ)(α⊥) is twice the number of
Lemma 3.14 corresponding to

M = Σ×ST (µ), E2 = FT⊗2 ≈ C, O2 = T̃Σ∗⊗L∗⊗O⊥ ≈ T̃Σ∗⊗O⊥,

and α2 ∈ Γ(M;E∗
2 ⊗ O2) that has full rank on every fiber. It follows

that

CΣ×ST (µ)(α
⊥) = 2

〈
c1(O2) − c1(E2),

[
Σ × ST (µ)

]〉
= 4|ST (µ)|.(5.31)

(3) Suppose T is as in Case (3) of Lemma 5.10. Since x1̂ �= x2̂, DT ,1̂

and DT ,2̂ do not vanish on ST (µ) = UT (µ)∩S2(µ) (see Subsection 4.6),
and DT ,1̂ + DT ,2̂ vanishes on FS, x1̂DT ,1̂ + x2̂DT ,2̂ does not vanish
on FS. Thus, the third estimate of Lemma 5.10, Corollary 3.13, and
Lemma 3.14,

CΣ×ST (µ)(α
⊥) =
〈
c1(O2) − c1(E),

[
Σ × ST (µ)

]〉
= 2|ST (µ)|.(5.32)

Summing up Equations (5.31) and (5.32) over all appropriate bubble
types T < T ∗ and substituting the result into (5.30), we obtain the
claim.

Lemma 5.12. If n = 3, n
(3)
1 (µ) = 〈4a+ 5c1(L∗), [S1(µ)]〉 −

3|S2(µ)|.
Proof. (1) We continue with the notation of Lemma 5.11. The

number n(3)
1 (µ) is the number of zeros of the affine map in (4.33). Let

E = L⊗2 ⊕ L⊗3 −→ S1(µ).

Since the linear part α of the affine map has full rank on S1(µ) (see
Subsection 4.5),

n
(3)
1 (µ) =

k=2∑
k=0

〈
λ2−k

E ck(O),
[
PE
]〉

− C
PE|∂S1

(α⊥
E)(5.33)

=
〈
4a+ 5c1(L∗),

[
S1(µ)
]〉

− C
PE|∂S1

(α⊥
E),

where O = ev∗TP
3.

(2) As in the proof of Lemma 5.11, CPE|ST (µ)(α⊥
E) = 0 for bubble

types T of Case (1) of Lemma 5.10. Suppose T = T ∗(l) for some l ∈ [N ],
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i.e., we are in Case (2) of Lemma 5.10. The normal bundle of PE|ST (µ)

in PE is π∗EFT ≈ C. By the first two estimates of Lemma 5.10, with
appropriate identifications,∣∣α⊥

E(γS(b, v1̂)) − α̃T (b, v1̂)
∣∣ ≤ C|v1̂|

2+ 1
p ∀(b, v1̂) ∈ FT δ,

for some α̃T ∈ Γ(PE|ST (µ);FT ∗⊗2 ⊗ γ∗E ⊗O⊥) which vanishes only on

ZT ≡
{
(b, [v, w]) ∈ PE|ST (µ) : v − 3x1̂w = 0

}
.

Thus, by Corollaries 3.13 and 3.6 and Lemma 3.14,

CPE|(ST (µ)−ZT )(α
⊥
E) = 2

(〈
c1(γ∗E ⊗O⊥) − c1(FT ),

[
PE|ST (µ)

]〉
− CZT (α̃⊥

T )
)

= 4|ST (µ)| − 2CZT (α̃⊥
T ).

By the first two estimates of Lemma 5.10, CZT (α̃⊥
T ) = |ZT | = |ST (µ)|.

Since the images of D(2)

T ,1̂
and D(3)

T ,1̂
are linearly independent in every

fiber of ev∗TP
3 over ST (µ), by the first two estimates of Lemma 5.10

and Corollary 3.13, CZT (α⊥
E) = 3|ZT |. Thus,

CPE|ST (µ)(α
⊥
E) =
(
4|ST (µ)| − 2|ST (µ)|

)
+ 3|ST (µ)| = 5|ST (µ)|.(5.34)

(3) Suppose T is as in Case (3). By the last two estimates of
Lemma 5.10, with appropriate identifications,∣∣α⊥

E(γS(b, v)) − α̃T (b, v)
∣∣ ≤ C|v1̂|

1+ 1
p ∀(b, v) ∈ FSδ,

for some α̃T ∈ Γ(PE|ST (µ);FS∗ ⊗ γ∗E ⊗O⊥) which vanishes only on

ZT ≡ {(b, [v, w]) ∈ PE|ST (µ) : 2v − 3(x1̂ + x2̂)w = 0}.

Thus, by Corollary 3.13 and Lemma 3.14,

CPE|(ST (µ)−ZT )(α
⊥
E) =
〈
c1(γ∗E ⊗O⊥) − c1(FS),

[
PE|ST (µ)

]〉
− CZT (α̃⊥

T )

= 2|ST (µ)| − CZT (α̃⊥
T ).

By the last two estimates of Lemma 5.10, CZT (α̃⊥
T ) = |ZT |. Finally, by

Lemma 5.10 and Corollary 3.13, CZT (α⊥
E) = 2|ZT |. Thus,

CPE|ST (µ)(α
⊥) =
(
2|ST (µ)| − |ST (µ)|

)
+ 2|ST (µ)| = 3|ST (µ)|.(5.35)
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The claim follows by summing up Equations (5.34) and (5.35) over the
appropriate equivalence classes of bubble types T < T ∗ and plugging
the result back into (5.33).

The next step is to relate 〈a, [S1(µ)]〉 and 〈c1(L∗), [S1(µ)]〉 to inter-
section numbers on the spaces V1(µ), V2(µ), and V3(µ). The approach
is similar to the proof of Lemma 5.4, but first we need to interpret
〈a, [S1(µ)]〉 and 〈c1(L∗), [S1(µ)]〉 as the zero sets of some bundle sec-
tions. In our case, the spaces UT ∗(µ) and UT ∗(l)(µ) for all l ∈ [N ] are
topological manifolds (not just orbifolds). Thus, c1(L∗) represents the
first chern class of some line bundle L∗ −→ UT (µ). It is well-known in
algebraic geometry that a slightly weaker statement is in fact true for
any choice of constraints, and

L∗ = L∗ ⊗O

−∑
l∈[N ]

UT ∗(l)

 .
Let V1 = ev∗O(1) −→ UT ∗(µ), V2 = L∗ −→ UT ∗(µ), and ηi = c1(Vi).
Choose sections si ∈ Γ(UT ∗(µ);Vi) such that si is smooth and transver-
sal to the zero set on all smooth strata UT (µ) ⊂ UT ∗(µ) and on ST (µ) ⊂
S1(µ). The second condition implies that si does not vanish on the finite
set ∂S1.

Lemma 5.13. If d ≥ 1, µ is a tuple of p points and q lines in
general position in P

3 with 2p+ q = 4d− 3,

〈a, [S1(µ)]〉 =
〈
6a3c1(L∗) + 4a2c21(L∗) + ac31(L∗), [V1(µ)]

〉
−
〈
4a2 + a(c1(L∗

1) + c1(L∗
2)), [V2(µ)]

〉
;

〈c1(L∗), [S1(µ)]〉 =
〈
4a3c1(L∗) + 6a2c21(L∗)

+ 4ac31(L∗) + c41(L∗), [V1(µ)]
〉
− τ3(µ).

Proof. (1) Similarly to the proof of Lemma 5.4,

〈ηi, [S1(µ)]〉 =
〈
ηic3
(
L∗ ⊗ ev∗TP

3
)
, [V1(µ)]

〉
− C∂V1(µ)(D ⊕ si).(5.36)

Suppose T =
(
S2, [N ], I; j, d

)
< T ∗ is a bubble type such that UT (µ) �=

∅. If d0̂ �= 0, by our assumptions on si, D ⊕ si does not vanish on
UT (µ). Thus, for the purposes of computing C∂V1(µ)(D ⊕ si), we can
assume d0̂ = 0.
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(2) In order to compute the numbers CUT (µ)(D ⊕ si), we slightly
modify the approach of Subsection 3.2, since we have a great amount
of flexibility in choosing the section si. We consider a family ψt =
(tν +D, si) of sections of L∗ ⊗ ev∗TP

3 ⊕ Vi, with ν generic with respect
to D. Let π : FT −→ UT (µ) be the bundle projection map and fix an
identification of γµ∗

T Vi −→ FT δ with π∗Vi. It can be assumed that the
section si has been chosen so that γµ∗

T si ∈ Γ(FT δ;π∗Vi) is constant on
the fibers of FT δ over an open subset KT of UT (µ) that contains all of
the finitely many zeros of the affine map

FT −→ L∗ ⊗ ev∗TP
3 ⊕ Vi, (b, υ) −→

(
νb + αT (ρT (υ)), si(b)

)
,

over UT (µ), where αT and ρT are as in (2.21). Note that by our as-
sumptions on si, the images of {DT ,h : h ∈ χ(T )} are linearly inde-
pendent in every fiber of ev∗TP

n over s−1
i (0). Thus by Theorem 2.8,

Corollary 3.13, and Lemma 3.2, CUT (µ)(D ⊕ si

)
= 0 if H0̂T �= Î. Fur-

thermore, if H0̂T = Î, CUT (µ)(D⊕si) is the number of zeros of the affine
map

FT −→ L∗ ⊗ ev∗TP
3, υ = (b, v) −→ νT ,b + αT (υ),(5.37)

over s−1
i (0) ∩ UT (µ), where νT ∈ Γ(UT (µ);L∗ ⊗ ev∗TP

3) is a generic
section. Thus, by Lemma 3.14,

CUT (µ)(D ⊕ si) =
k=2∑
k=0

〈
λ2−k
FT ck(L

∗ ⊗ ev∗TP
3),
[
PFT
∣∣
s−1
i (0)∩UT (µ)

]〉(5.38)

− C
PFT |s−1

i (0)∩∂UT
(α⊥

FT ),

=
k=2∑
k=0

〈
λ2−k
FT ck(L

∗ ⊗ ev∗TP
3)ηi,
[
PFT ]
〉

− C
PFT |s−1

i (0)∩∂UT
(α⊥

FT ),

where ∂UT = UT (µ) − UT (µ) and αFT ∈ Γ(PFT ; γ∗FT ⊗ L∗ ⊗ ev∗TP
3)

is the section induced by αT .
(3) Suppose i = 1, i.e., ηi = a. If T = T ∗(l) and T ′ =

(
S2, [N ], I ′;

j, d′
)
< T is a bubble type such that s−1

1 (0) ∩ UT ′(µ) ∩ α−1
T (0) �= ∅, T ′

must have the form

|I ′ − I| = 2, H1̂T
′ = {2̂, 3̂}, d′

1̂
= 0, d′

2̂
�= 0, d′

3̂
�= 0.
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By Theorem 2.8 applied to T ′
< T , and Corollary 3.13,

Cs−1
1 (0)∩UT ′ (µ)(α

⊥
FT ) =

∣∣UT ′(µ) ∩ s−1
1 (0)
∣∣ = 〈a, [UT ′(µ)]〉.

Thus, summing up Equation (5.38) over T = T ∗(l) with l ∈ [N ], we
obtain

∑
l∈[N ]

CUT ∗(l)(µ)(D ⊕ s1)

(5.39)

=
∑
l∈[N ]

〈
6a3 + 4a2c1(L∗

1̂
T ∗(l)) + ac21(L

∗
1̂
T ∗(l)),

[
UT ∗(l)(µ)

]〉
− τ

(1)
2 (µ),

where τ
(1)
2 (µ) is the number of two-component connected degree-d

curves passing through the constraints with the node at the intersection
of one of the constraints with a generic plane in P

3. If |H0̂T | = |Î| = 2,
|M0̂T | = 0, and T ′ is as above, up to equivalence of bubble types,

|I ′ − I| = 1, ι′
3̂

= 1̂, d′
1̂

= 0, d′
2̂
�= 0, d′

3̂
�= 0,

i.e., T ′ = T (l) for some l ∈ [N ]. By Theorem 2.8 applied to T ′
< T

and Corollary 3.13,

C
PFT |s−1

1 (0)∩UT ′ (µ)(α
⊥
FT ) =

∣∣UT ′(µ) ∩ s−1
1 (0)
∣∣ = 〈a, [UT ′(µ)]〉.

Thus, summing up Equation (5.38) over T with |H0̂T | = |Î| = 2 and
|M0̂T | = 0, we obtain

∑
|H0̂T |=|Î|=2,|M0̂T |=0

〈
a
(
4a+ c1(L∗

1̂
T ) + c1(L∗

2̂
T )
)
,
[
UT (µ)

]〉
− 2τ (1)

2 (µ)

(5.40)

=
〈
4a2 + a(c1(L∗

1) + c1(L∗
2)),
[
V2(µ)
]〉
.

If |H0̂T | = |Î| = 2 and |M0̂T | = 1, αT has full rank on all of UT (µ).
Thus, by Corollary 3.13,

CUT (µ)(D ⊕ si) =
〈
c1(L∗ ⊗ ev∗TP

3) − c1(FT ), [UT (µ) ∩ s−1
1 (0)]

〉
= |UT (µ)|.
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Here we used FT = L∗ ⊗
(
L1̂ ⊕ L2̂

)
≈ L∗ ⊕ L∗ and Corollary 5.22.

Thus, summing up Equation (5.38) over T with |H0̂T | = |Î| = 2 and
|M0̂T | = 1 gives ∑

|H0̂T |=|Î|=2,|M0̂T |=1

CUT (µ)(D ⊕ si) = τ
(1)
2 (µ).(5.41)

Finally, if |H0̂T | = |Î| = 3, η1|U ′
T (µ)

= 0. The first claim follows by
plugging the sum of Equations (5.39)–(5.41) into (5.36). See also Equa-
tions (5.3) and (5.4).

(4) Suppose ηi = c1(L∗). We continue as in (3) above. If T = T ∗(l),
αT does not vanish anywhere on s−1

2 (0) ∩ UT (µ). Thus, by Corol-
lary 3.13,

∑
l∈[N ]

CUT ∗(l)(µ)(D ⊕ s2)

(5.42)

=
∑
l∈[N ]

〈
c(L∗ ⊗ ev∗TP

3)c(L1̂T )−1,
[
UT ∗(l)(µ) ∩ s−1

2 (0)
]〉

=
∑
l∈[N ]

〈
c1(L∗)

(
6a2 + 4ac1(L∗

1̂
T ∗(l)) + c21(L

∗
1̂
T ∗(l))

)
,
[
UT ∗(l)(µ)

]〉
.

If |H0̂T | = |Î| = 3, αT again does not vanish anywhere on s−1
2 (0) ∩

UT (µ), and thus

CUT (µ)(D ⊕ s2) =
∣∣UT (µ) ∩ s−1

2 (0)
∣∣ = 〈c1(L∗), [UT (µ)]

〉
=
∣∣UT (µ)

∣∣.(5.43)

Here we used Corollary 5.22 again. Note that if |H0̂T | = |Î| = 2,
η2|UT (µ) = 0. This is immediate in the case |M0̂T | = 0 and follows from
Corollary 5.22 and (5.3) in the case |M0̂T | = 1. The second claim of
the lemma is obtained by summing (5.43) over all equivalence classes
of bubble types T < T ∗ with |H0̂T | = |Î| = 3, and plugging the result
along with (5.42) into (5.36). Note that

a3
∣∣
UT ∗(l)(µ)

= 0 ∀ l ∈ [N ] =⇒〈
4a3c1(L∗), [V1(µ)]

〉
=
〈
4a3c1(L∗), [V1(µ)]

〉
.
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5.6 The number n
(1)
1 (µ) in the n = 3 case

We finally compute the remaining number n(1)
1 (µ). The computation

parallels the proof of Lemma 5.6.

Lemma 5.14. If n = 3,

n
(1)
1 (µ) = 4

〈
10a3c1(L∗) + 3a2c21(L∗),

[
V1(µ)
]〉

− 12τ (2)
2 (µ),

where τ (2)
2 (µ) denotes the number of two-component connected degree-d

curves that pass through the constraints and with the node on a generic
line in P

3.

Proof. (1) We use the same notation as in the proof of Lemma 5.6.
By Equation (4.30) and Lemma 3.14,

n
(1)
1 (µ) =

k=5∑
k=0

〈
ck(O)c5−k

1 (T ∗Σ ⊗ L∗),
[
Σ × UT ∗(µ)

]〉
− CΣ×D−1(0)(α

⊥),

(5.44)

= 2
〈
112a3c1(L∗) + 84a2c21(L

∗) + 32ac31(L
∗)

+ 5c41(L
∗),
[
UT ∗(µ)

]〉
− CΣ×D−1(0)(α

⊥),

where O = H0,1
Σ ⊗ ev∗TP

3 and α ∈ Γ(Σ×UT ∗(µ);T ∗Σ⊗L∗ ⊗O) is the
linear part of the affine map ψ(1)

1 of (4.30). Let O2 = T ∗Σ ⊗ L∗ ⊗O⊥.
(2) Similarly to (2) of the proof of Lemma 5.4,

CΣ×S1(µ)(α
⊥) =
〈
e
(
T ∗Σ ⊗ L∗ ⊗ (H−

Σ ⊗ ev∗TP
3/C)
)
,
[
Σ × S1(µ)

]〉(5.45)

= 2
〈
12a+ 5c1(L∗), [S1(µ)]

〉
.

Suppose T = (S2, [N ], I; j, d) < T ∗ is a bubble type such that ST (µ) �=
∅. By Lemma 5.10, there are three possibilities for the structure of
T , but CΣ×D−1(0)(α⊥) = 0 in all three cases. This claim follows from
Corollaries 5.9 and 3.13 and Lemma 3.2.

(3) As before, if T < T ∗ and CΣ×(UT (µ)−ST (µ))(α⊥) �= 0, d0̂ = 0 and
H0̂T = Î. In such a case,

CΣ×(UT (µ)−ST (µ))(α
⊥) =

k=4∑
k=0

〈
λ4−k
FT ck(O2),

[
PFT
]〉

− Cα̃−1
FT (0)(α̃

⊥
FT ),

(5.46)
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where α̃FT ∈ Γ(PFT ; γ∗FT ⊗O2) is the section induced by the section

π⊥ ◦ (αT ◦ sΣ) ∈ Γ
(
Σ × UT (µ);FT ∗ ⊗O2

)
.

(4) If T = T ∗(l) for some l ∈ [N ], FT ≈ L1̂T over UT (µ), and
α−1
T (0) = Σ ×D−1

T ,1̂
(0). Thus, by (5.46),

CΣ×(UT (µ)−ST (µ))(α
⊥) = 2

〈
112a3 + 84a2c1(L∗

1̂
T ) + 32ac21(L

∗
1̂
T )

+ 5c31(L
∗
1̂
T ),
[
UT (µ)

]〉
− CΣ×D−1

T ,1̂
(0)(α̃

⊥
FT ).

By Corollaries 6.3 and 3.13,

CΣ×ST (µ)(α̃
⊥
FT ) =

〈
c(FT ∗ ⊗O⊥

2 )c(L∗
T ,1̂

⊗ ev∗TP
3)−1,
[
Σ × ST (µ)

]〉
= 10
∣∣ST (µ)

∣∣.
On the other hand, if T ′ = (S2, [N ], I ′; j′, d′) < T , we apply Theorem 2.8
to T ′

< T . Then for the same reason as before, CΣ×UT ′ (α̃⊥
FT ) = 0 unless

d1̂ = 0 and H1̂T ′ = I ′ − I, i.e.,

Î ′ = {1̂, 2̂, 3̂}, ι′
2̂

= 1̂, ι′
3̂

= 1̂, d′
1̂

= 0, d′
2̂
�= 0, d′

3̂
�= 0.

In such a case, with E = L2̂T ′ ⊕ L3̂T ′, by Corollary 3.13,

CΣ×UT ′ (µ)(α̃
⊥
FT ) =

〈
c(FT ∗ ⊗O2)c(E)−1,

[
Σ × UT ′(µ)

]〉
=
〈
32a+ 5(c1(L∗

2̂
T ′) + c1(L∗

3̂
T ′)),
[
UT ′(µ)

]〉
.

Summing Equation (5.46) over T = T ∗(l), we thus obtain

∑
l∈[N ]

CΣ×(UT ∗(l)(µ)−ST ∗(l)(µ))(α
⊥)

(5.47)

= −64τ (1)
2 (µ) − 10

〈
c1(L∗

1) + c1(L∗
2),
[
V2,1(µ)

]〉
+ 2
∑
l∈[N ]

(〈
112a3 + 84a2c1(L∗

1̂
) + 32ac21(L

∗
1̂
) + 5c31(L

∗
1̂
),
[
UT ∗(l)(µ)

]〉
− 5
∣∣UT ∗(l) ∩ S1(µ)

∣∣),
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where L1̂ = L1̂T ∗(l), V2,1(µ) =
⋃

l∈[N ]

V2,1;l(µ), and V2,1;l(µ) denotes

the union of the spaces UT (µ) taken over all equivalence classes of basic
bubble types T = (S2, [N ]−{l}, {1̂, 2̂}; j, d) with d1̂, d2̂ > 0 and d1̂+d2̂ =
d.

(5) If |H0̂T | = |Î| = 2 and |M0̂T | = 0, FT ≈ L1̂T ⊕ L2̂T over
UT (µ) and α̃−1

FT (0) consists of a section ZT of PFT over Σ×ST (µ) and
the spaces Σ × UT ′(µ), with T ′ corresponding to the bubble types T
described in (2) in the proof of Lemma 5.5. By Corollaries 6.3 and 3.13,

CΣ×ST (µ)(α̃
⊥
FT ) =

〈
c(γ∗FT ⊗O⊥

2 )c(C3)−1,
[
Σ × ST (µ)

]〉
= 10
∣∣ST (µ)

∣∣.
On the other hand, if T ′=(S2, [N ], I ′; j′, d′)<T and CPFT |Σ×U ′

T (µ)(α̃⊥
FT )

�= 0,

|I ′ − I| ∈ {1, 2}, H2̂T = I ′ − I, d′
2̂

= 0, d′h �= 0 if h ∈ Î ′ − {2̂}.

If |I ′ − I| = 1, by Corollary 3.13,

CPFT |Σ×U ′
T (µ)(α̃

⊥
FT ) =

〈
c(O2)c(L1̂T

′ ⊕ L3̂T
′)−1

,
[
Σ × UT ′(µ)

]〉
= 2
〈
32a+ 5(c1(L∗

1̂
T ′) + c1(L∗

3̂
T ′)),
[
UT ′(µ)

]〉
;

see the proof of Lemma 5.13 for more details. If |I ′ − I| = 2, by Corol-
lary 3.13,

CPFT |Σ×U ′
T (µ)(α̃

⊥
FT ) =

〈
c1(O2) − c1(C3),

[
Σ × UT ′(µ)

]〉
= 10
∣∣UT ′(µ)

∣∣.
Thus, summing Equation (5.46) over T < T ∗ with |H0̂T | = |Î| = 2 and
|M0̂T | = 0, we obtain∑

[T ]

CΣ×(UT (µ)−ST (µ))(α
⊥)(5.48)

= −30τ3(µ) − 10|S2(µ)| + 2
〈
84a2 + 32a(c1(L∗

1) + c1(L∗
2))

+ 5(c21(L∗
1) + c21(L∗

2)) + 5c1(L∗
1)c1(L∗

2),
[
V2(µ)
]〉
.

(6) If |H0̂T | = |Î| = 2 and |M0̂T | = 1, α̃FT does not vanish on
Σ × UT (µ). Thus, by Corollary 3.13,

CΣ×UT (µ)(α
⊥) =
〈
c(O2)c

(
L∗ ⊗ (L1̂T ⊕ L2̂T )

)−1
,
[
Σ × UT (µ)

]〉
= 2
〈
32a+ 5(c1(L∗

1̂
T ) + c1(L∗

2̂
T )),
[
UT (µ)

]〉
.
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Here we used the decomposition (5.2) and Corollary 5.22. Summing
Equation (5.46) over T < T ∗ with |H0̂T | = |Î| = 2 and |M0̂T | = 1, we
obtain ∑

[T ]

CΣ×UT (µ)(α
⊥) = 64τ (1)

2 (µ) + 10
〈
c1(L∗

1) + c1(L∗
2), [V2,1(µ)]

〉
.(5.49)

(7) Finally, if |H0̂T | = |Î| = 3, FT ≈ L∗ ⊕L∗ ⊕L∗ over UT (µ), and
α̃FT again does not vanish over Σ × UT (µ). Then by Corollary 3.13,

CΣ×UT (µ)(α
⊥) =
〈
c(O2)c(L∗ ⊕ L∗ ⊕ L∗)−1,

[
Σ × UT (µ)

]〉
= 10|UT (µ)|.

Thus, summing Equation (5.46) over T < T ∗ with |H0̂T | = |Î| = 3, we
obtain ∑

|H0̂T |=3

CΣ×UT (µ)(α
⊥) = 10τ3(µ).(5.50)

From Equations (5.44), (5.45), and (5.47)–(5.50), we conclude that

n
(1)
1 (µ) = 2

〈
112a3c1(L∗) + 84a2c21(L∗) + 32ac31(L∗) + 5c41(L∗),

[
V1(µ)
]〉(5.51)

− 2
〈
84a2 + 32a(c1(L∗

1) + c1(L∗
2)) + 5(c21(L∗

1) + c21(L∗
2))

+ 5c1(L∗
1)c1(L∗

2),
[
V2(µ)
]〉

− 2
〈
12a+ 5c1(L∗), [S1(µ)]

〉
+ 10
∣∣S2(µ)

∣∣+ 20τ3(µ).

The claim follows by using Lemma 5.5 and 5.13.

5.7 Computation of Chern classes

In this subsection, we show that all intersection numbers of the spaces
Vk(µ) involving powers of a and powers of c1(L∗

i ) are computable. We
can then conclude that the numbers n(k)

m (µ) are computable. The com-
putability of intersection numbers of tautological classes of Vk(µ), which
include a and c1(L∗

i ), has been shown in [9]. For the sake of complete-
ness, a slightly different approach is presented below.

If d0̂ and d1̂ are nonnegative integers and µ is an N -tuple of any
generic constraints in P

n, let M(d0̂,d1̂)(µ) denote the union of the spaces
UT (µ), where T is a simple bubble type of the form

T =
(
S2, [N ], {0̂, 1̂}; j, {d0̂, d1̂}

)
.
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Then MT ,(d0̂,d1̂)(µ) is a complex codimension-one homology class in the
space V1(µ) with d = d0̂ + d1̂. If d > 0, let

≥∑
d0̂+d1̂=d

f(d0̂, d1̂) =
∑

d
0̂
+d

1̂
=d

d0̂,d1̂≥0

f(d0̂, d1̂),

>∑
d0̂+d1̂=d

f(d0̂, d1̂) =
∑

d
0̂
+d

1̂
=d

d0̂,d1̂>0

f(d0̂, d1̂),

whenever f is any function defined on the appropriate subset of Z × Z.

Lemma 5.15. Let T ∗ = (S2, [N ], {0̂}; 0̂, d) be a bubble type with
d > 0. Then in H∗(UT ∗(µ)),

c1(L∗) =
1
d2

H− 2da+
≥∑

d0̂+d1̂=d

d2
1̂
M(d0̂,d1̂)(µ)

 ,
where H denotes the subset of elements in UT ∗(µ) that pass through a
generic codimension-two linear subspace of P

n.

Proof. (1) We restate the proof of [4] in terms of the line bundle
L∗⊗d2 −→ UT ∗(µ), instead of passing to a cover of UT ∗(µ). Define a
section ψ ∈ Γ(UT ∗(µ);L∗⊗d2

) as follows. Let H0 and H1 be two fixed
hyperplanes in P

n, generic with respect to the constraints µ1, . . . µN .
Suppose

[b] =
[
(S2, [N ], 0̂; , (0̂, y), u0̂)

]
∈ UT ∗(µ)

is such that u0̂ is transversal to H0 and H1. Then,

u−1
0̂

(Hi) =
{
[x(i)

1 , y
[i]
1 ], . . . , [x(i)

d , y
[i]
d ]
}
, i = 0, 1,

for some [x(i)
k , y

[i]
k ] ∈ P

1. Define ψ([b]) by

ψ([b, c]) = cd
2
∏

k,l∈[d]

(
x

(0)
k

y
(0)
k

− x
(1)
l

y
(1)
l

)
.(5.52)

While this section could be infinite, it is well-defined, i.e., independent
of the choice of a representative b ∈ BT ∗ for [b]. With an appropriate
coordinate change on C

n+1, it can be assumed that Hi = {Xi = 0}. The
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map u0̂ corresponds to (n + 1) homogeneous polynomials of degree d:
p0, . . . , pn. Since the right-hand side of (5.52) is symmetric in the roots
of p0 and separately in the roots of p1, ψ is a rational function in the co-
efficients of p0 and p1. Thus, ψ extends over all of UT ∗(µ). Furthermore,
this section extends by zero over UT ∗(µ) − UT ∗(µ).

(2) We now identify the zero set of the section ψ. From Equa-
tion (5.52), it is clear that ψ vanishes with multiplicity one if p0 and p1

have a common root, i.e., if u0̂ passes through H0 ∩H1. The section ψ
also has a pole of order d along the sets of maps

X0 = {b : y(0)
k (b) = 0 for a unique k ∈ [d], p1(1, 0) �= 0},

X1 = {b : y(1)
k (b) = 0 for a unique k ∈ [d], p0(1, 0) �= 0}.

Note that Xi = ev−1(Hi). Finally, while ψ vanishes outside of UT ∗(µ),
UT (µ) has (complex) codimension one in UT ∗(µ) if and only if T < T ∗

is a two-bubble strata, i.e., as described just before the statement of the
lemma. Let d0̂ and d1̂ be the corresponding degrees. It follows from
Equation (5.52) that ψ has a zero of order d2

1̂
along an open subset

of UT (µ). Thus, we obtain

c1
(
L∗⊗d2)

= H− 2da+
≥∑

d0̂+d1̂=d

d2
1̂
M(d0̂,d1̂)(µ).

Corollary 5.16. With notation as in Lemma 5.15,

c1(L∗) =
1
d2

H− 2da+
>∑

d0̂+d1̂=d

d2
1̂
M(d0̂,d1̂)(µ)

 .
Proof. This is immediate from Lemma 5.15 and (5.3).

If T = (S2, [N ], I; j, d) is any bubble type, let T0̂ = (S2,M0̂T �
H0̂T , {0̂}; 0̂, d0̂). Denote by Tk for k ∈ H0̂T the simple bubble types
corresponding to T . Then,

UT (µ) = UT0̂
(µ) × ∏

k∈H
0̂
T

(evk×ev)

∏
k∈H0̂T

UTk
(µ)(5.53)

≡
{(
b0̂, (bk)k∈H0̂T

)
∈ UT0̂

(µ)

×
∏

k∈H0̂T
UTk

(µ) : evk(b0̂) = ev(bh) ∀k ∈ H0̂T
}
.
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Lemma 5.17. With notation as above, if T < T ∗ and d0̂ �= 0,

c1(L∗T ∗)
∣∣
UT (µ)

=

c1(L∗T0̂)
∣∣
UT

0̂
(µ)

+
∑

∅�=M0⊂M0̂T0̂,M0∩H0̂T �=∅
UT0̂(M0)(µ)


× ∏

k∈H
0̂
T

(evk×ev)

∏
k∈H0̂T

UTk
(µ).

Proof. Since L0̂T ∗|UT (µ) = L0̂T and UT (µ)∩UT ∗(M0)(µ) = ∅ unless
M0 ⊂M0̂T , by (5.3)

c1(L∗T ∗)
∣∣
UT (µ)

= c1(L∗T )
∣∣
UT (µ)

−
∑

∅�=M0⊂M0̂T
UT (µ) · UT ∗(M0)(µ)

= c1(L∗
0̂
T0̂)
∣∣
UT (µ)

−
∑

∅�=M0⊂M0̂T
UT (M0)(µ).

The claim follows by using Equation (5.3) again.

Corollary 5.18. All intersection numbers on Vk(µ) involving only
the powers of a and c1(L∗

k) are computable.

Proof. Corollary 5.16 and Lemma 5.17 reduce the computation of
such numbers to understanding the restrictions c1(L∗T0̂)|UT

0̂
(M0)

, where

M0 is a subset of M0̂T0̂ intersecting H0̂T . By (5.2),

UT0̂(M0) ≈ M0,{0̂,1̂}�M0
× UT0̂/M0

.

We express c1 (L∗ T0̂) |UT
0̂

(M0)
in terms of cohomology classes on

M0,{0̂,1̂}�M0
. By definition, LT0̂|UT

0̂
(M0)

comes from a line bundle over

M0,{0̂,1̂}�M0
. In fact,

c1(L∗T0̂)
∣∣
M0,{0̂,1̂}�M0

×UT
0̂

/M0

= ψ0̂ × 1,

where ψ0̂ is the ψ-class of M0,{0̂,1̂}�M0
corresponding to the marked

point 0̂. Since L∗T0̂|UT
0̂
(M0)

is L∗T0̂(M0),

c1(L∗T0̂)
∣∣
UT

0̂
(M0)

= c1(L∗T0̂)
∣∣
UT

0̂
(M0)

−
∑

∅�=M ′
0⊂M0̂T

UT0̂(M ′
0) · UT0̂(M0)

= ψ0̂ × 1 −
∑

∅�=M ′
0⊂(M0−H0̂T )

UT0̂(M ′
0;M0−M ′

0)

= ψ̃M0−H0̂T × 1
∣∣
M{0̂,1̂}�M0

×UT
0̂

/M0

,
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where T0̂(M
′
0;M0 −M ′

0) ≡ {T0̂(M0)}(M ′
0) and for any proper subset J̃

of J we define the cohomology class ψ̃
J̃

on M0,{0̂,1̂}�J by

ψ̃
J̃

= ψ0̂ −
∑

∅�=J ′⊂J̃

M0,({0̂}�J ′,{1̂}�(J−J ′)).

Here M0,({0̂}�J ′,{1̂}�(J−J ′)) is the closure in M0,{0̂,1̂}�J of the two-com-
ponent strata such that the marked points on one of the components
are {0̂} � J ′. The numbers

χ
(
|J |, |J̃ |

)
≡
〈
ψ̃
|J |−1

J̃
,
[
M0,{0̂,1̂}�J

]〉
are given in Corollary 5.20, which is a consequence of the following
well-known lemma; see [9] for example.

Lemma 5.19.

(1) For any j∗ ∈ J , ψ̃J−{j∗} = 0 in H∗
(
M0,{0̂,1̂}�J

)
.

(2) If NM0,({0̂}�J ′,{1̂}�(J−J ′)) is the normal bundle of

M0,({0̂}�J ′,{1̂}�(J−J ′)) ≈ M0,{0̂,1̂}�J ′ ×M0,{0̂,1̂}�(J−J ′)

in M0,{0̂,1̂}�J ,

c1

(
NM0,({0̂}�J ′,{1̂}�(J−J ′))

)
= −ψ1̂ × 1 − 1 × ψ0̂.

Corollary 5.20. If m > 0, χ(m, 0) = 1. If m > k > 0, χ(m, k) =
0.

For our purposes, we can assume that the constraints µ1, . . . , µN

are disjoint. In the case of P
2, the dimension of the space Vk(µ) is

at most 2. Thus, by a dimension count, if UT0̂(M0)(µ) is nonempty and
appears in the computation of the intersection numbers of Corollary 5.18
via Lemma 5.17, then H0̂T consists of a single element and M0 = H0̂T .
The corresponding moduli space M0,{0̂,1̂}�M0

is a single point and thus〈
ψ̃
|M0|−1
M0−H0̂T

,
[
M{0̂,1̂}�M0

]〉
= 1.

In the case of P
3, V1(µ) is four-dimensional, and we encounter two

cases when M0,{0̂,1̂}�M0
is positive-dimensional. One possibility is that
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H0̂T is still a single-element set, but M0 contains one of the N marked
points. In this case, by Corollary 5.20 or simply by the first statement
of Lemma 5.19,〈

ψ̃
|M0|−1
M0−H0̂T

,
[
M{0̂,1̂}�M0

]〉
= χ(2, 1) = 0.

In fact, we can replace the first statement of Lemma 5.19 with the direct
computation of the degree ψ0̂ on M0,4 given by Lemma 5.21 below. The
other case when M0,{0̂,1̂}�M0

is positive-dimensional is M0 = H0̂T is a
two-element set. Then〈

ψ̃
|M0|−1
M0−H0̂T

,
[
M{0̂,1̂}�M0

]〉
= χ(2, 0) = 1.

Lemma 5.21. Let

M(0)
0,4 =
{

(y1, y2, y3) ∈ C
3 : y1 + y2 + y3 = 0,

β(|y1|) + β(|y2|) + β(|y3|) =
1
2

}
.

Then the action of S1 on M(0)
0,4 induced from the standard action on C

is free,

M0,4 = M(0)
0,4/S

1 ≈ P
1,

and the line bundle associated to this quotient is the tautological line
bundle over P

1.

Proof. Identify M(0)
0,4 with S3 ⊂ C

2 S1-equivariantly by the map

(y1, y2, y3) −→
(y1, y2)

|y1| + |y2|
.

Our assumptions on β imply that this map is a diffeomorphism; see
Subsection 1.3.

Corollary 5.22. If T = (S2, [3], {0̂}; 0̂, 0), 〈c1(L∗), [UT ]〉 = 1.

Remark. In [13], we extend the definition of M(0)
0,4 of Corollary 5.21

to construct spaces M(0)
T for all bubble types T .
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5.8 The final formulas

We finally put everything together to arrive at formulas for the numbers
n2,d(µ) for P

2 and P
3. It can be assumed that µ is a tuple of (3d − 2)

points in the case of P
2 and of p points and q lines, with 2p+q = 4d−3,

in the case of P
3. In the former case, we write n2,d for n2,d(µ) and nd

for the number of rational plane degree d curves passing through 3d− 1
points.

If ν ∈ Γ(Σ × P
n; Λ0,1π∗ΣT

∗Σ ⊗ π∗
PnT ∗

P
n) is generic, for all t ∈ (0, 1),

the signed cardinality of the set MΣ,tν,d(µ) is the symplectic invari-
ant RT2,d(;µ). If t > 0 is sufficiently small, every element of MΣ,tν,d(µ)
lies either in a small neighborhood U of the set HΣ,d(µ) or in a small
neighborhood W of the space of all bubble map with singular domains.
Furthermore,

±∣∣MΣ,tν,d(µ) ∩ U
∣∣ = ∣∣HΣ,d(µ)

∣∣ = 2n2,d(µ).

On the other hand, by Subsection 4.9,∣∣MΣ,tν,d(µ) ∩W
∣∣(5.54)

=


n

(1)
1 (µ) + 2n(2)

1 (µ) + 18n(3)
1 (µ) + n

(1)
2 (µ), if n = 2;

n
(1)
1 (µ) + 2n(2)

1 (µ) + 18n(3)
1 (µ)

+n(1)
2 (µ) + 2n(2)

2 (µ) + n
(1)
3 (µ), if n = 3.

Thus, n2,d(µ) is one-half of the difference between RT2,d(;µ) and the
number in (5.54). We write CR(µ) for the number given by (5.54).

We first consider to the n = 2 case. We abbreviate M(d1,d2)(µ)
as Md1,d2 . Let

Z2;d =

 ⋃
d1,d2>0

d1+d2=0

Zd1,d2

/Z2, where

Zd1,d2 =
⋃

jl=1,2

U (S2,[N ],I;j,{0,d1,d2})(µ),

and the partial ordering on I = {0̂, 1, 2} is 0 < 1, 2. The set Z2;d is the
zero-dimensional space of three-bubble maps passing through the (3d-2)
points µ, such that the map is trivial on the principal component. Note
that ∣∣Zd;2

∣∣ = τ2(µ) =
1
2

∑
d1+d2=d

(
3d− 2
3d1 − 1

)
d1d2nd1nd2 .(5.55)
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The binomial coefficient counts the number of possible ways of distribut-
ing the constraints between the two nontrivial bubbles. Without the
factor d1d2, the above number would have been precisely the number of
two-component rational curves passing through (3d− 2) generic points
in P

2. However, we have to account for the image of the evaluation map
at 0̂, which must be one of the d1d2 points of intersection of two rational
curves of degrees d1 and d2.

Lemma 5.23. In the n = 2 case, the total correction is given by

CR(µ) =
〈
78a2 + 72ac1(L∗) + 22c21(L∗),

[
V1(µ)
]〉

− 18τ2(µ).

Proof. The four numbers of (5.54) are given by Lemmas 5.6 and 5.3
and by Corollary 5.2. The cardinality of S1(µ) is given by Lemma 5.4.

Lemma 5.24. With notation as above,

〈
ac1(L∗), [V1(µ)]

〉
=

1
d

−nd +
1
2

∑
d1+d2=d

d2
1d

2
2

(
3d− 2
3d1 − 1

)
nd1nd2

 .
Proof. By Corollary 5.16,

ac1(L∗) =
1
d2
a

H− 2da+
>∑

d1+d2=d

d2
2Md1,d2

 .(5.56)

Note that∑
d1+d2=d

d2
2

〈
a, [Md1,d2 ]

〉
=
∑

d1+d2=d

d1(d1d2)d2
2

(
3d− 2
3d1 − 1

)
nd1nd2(5.57)

=
1
2
d
∑

d1+d2=d

d2
1d

2
2

(
3d− 2
3d1 − 1

)
nd1nd2 .

The reason for the appearance of the factor d1d2 in (5.57) is the same one
as in (5.55). On the other hand, the factor d1 appears because we need
to count the number of times the first rational component intersects a
line in P

2. Since〈
aH, [V1(µ)]

〉
= dnd and

〈
a2, [V1(µ)]

〉
= nd,

the claim follows by plugging (5.57) into (5.56).



enumeration of genus-two curves 457

Lemma 5.25. With notation as above,〈
c21(L∗), [V1(µ)]

〉
= −1

2

∑
d1+d2=d

(
3d− 2
3d1 − 1

)
d1d2nd1nd2 .

Proof. By Corollary 5.16,

c21(L∗) =
1
d2
c1(L∗)

H− 2da+
∑

d1+d2=d

d2
2Md1,d2

 .(5.58)

Since there are no two-component rational curves of total degree d
passing through (3d − 1) generic points in P

2 and there are no three-
component rational curves of total degree d passing through (3d − 2)
generic points in P

2, by Corollary 5.16〈
Hc1(L∗), [V1(µ)]

〉
=

1
d2

〈
−2daH, [V1(µ)]

〉
= −2nd.(5.59)

Similarly by Corollary 5.16 and Lemma 5.17,

〈
c1(L∗), [Md1,d2 ]

〉
=

1
d2

1

〈
−2d1aH, [Md1,d2 ]

〉
+
∣∣Zd1,d2

∣∣ = −
∣∣Zd1,d2

∣∣(5.60)

= −d1d2

(
3d− 2
3d1 − 1

)
nd1nd2 .

Note that by symmetry∑
d1+d2=d

d1d
3
2

(
3d− 2
3d1 − 1

)
nd1nd2(5.61)

=
1
2

∑
d1+d2=d

d1d2

(
d2 − 2d1d2

)( 3d− 2
3d1 − 1

)
nd1nd2 .

The claim now follows from Equations (5.58)–(5.61) and Lemma 5.24.

Corollary 5.26. The total correction term is given by

CR(µ) = 78nd + 72
1
d

−nd +
1
2

∑
d1+d2=d

d2
1d

2
2

(
3d− 2
3d1 − 1

)
nd1nd2


− 20

∑
d1+d2=d

d1d2

(
3d− 2
3d1 − 1

)
nd1nd2 .
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Proof. This claim is immediate from Lemmas 5.23–5.25 and Equa-
tion (5.55).

Lemma 5.27. The genus-two degree-d RT-invariant of P
2 is given

by

RT2,d(;µ) ≡ RT2,d(; p[3d−2]) = 6d2nd +
∑

d1+d2=d

d3
1d

3
2

(
3d− 2
3d1 − 1

)
nd1nd2 .

Proof. Applying the genus-reducing composition law of [10] twice,
we obtain

RT2,d(; p[3d−2]) = 2RT1,d(p,P2; p[3d−2]) + RT1,d(�, �; p[3d−2])

(5.62)

= 4RT0,d(p,P2, p,P2; p[3d−2])

+ 4RT0,d(p,P2, �, �; p[3d−2]) + RT0,d(�, �, �, �; p[3d−2])

= 0 + 4RT0,d(p, �, �; p[3d−2]) + RT0,d(�, �, �, �; p[3d−2]).

Since the genus-zero three-point RT-invariant is the usual enumerative
invariant, the middle term above is simply 4d2nd. On the other hand,
by the component-splitting composition law of [10],

RT0,d(�, �, �, �; p[3d−2])(5.63)

= 2RT0,0(�, �,P2; )RT0,d(�, �, p; p[3d−2])

+
∑

d1+d2=d

∑
J1+J2=[3d−2]

RT0,d1(�, �, �; pJ1)RT0,d2(�, �, �; pJ2)

= 2d2nd +
∑

d1+d2=d

d3
1d

3
2

(
3d− 2
3d1 − 1

)
nd1nd2 .

The lemma follows from Equations (5.62) and (5.63).
Theorem 1.1 is nearly proved. We can simplify the expression in

Corollary 5.26 by using a recursive relation for the numbers nd; see
[10, p. 363]. The expression of Theorem 1.1 is half of the difference
between the quantity of Lemma 5.27 and Corollary 5.26. Note that the
numbers nd with d = 1, 2, 3 have long been known to be zero; see [1].
Strictly speaking, our computation does not apply to the cases d = 1, 2.
However, these two cases do provide a consistency check.

The case of P
3 is significantly harder than the n = 2 case. An ex-

plicit recursive formula as in Theorem 1.1 would be rather long, so we
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do not provide one. Instead we express n2,d(µ) in terms of the corre-
sponding symplectic invariant and intersection numbers of the spaces
V1(µ), V2(µ), and V3(µ).

Theorem 5.28. If d is a positive integer and µ is a tuple of p
points and q lines in general position in P

3 with 2p+ q = 4d− 3,

2n2,d(µ) = RT2,d(·;µ) − CR(µ), where
1
2
CR(µ) =

〈
480a3c1(L∗) + 476a2c21(L∗) + 240ac31(L∗)

+ 49c41(L∗),
[
V1(µ)
]〉

+ 36τ3(µ)

−
〈
324a2 + 144a(c1(L∗

1) + c1(L∗
2))

+ 27(c21(L∗
1) + c21(L∗

2)) + 25c1(L∗
1)c1(L∗

2),
[
V2(µ)]

〉
.

Furthermore, RT(·;µ) and all intersection numbers above are comput-
able.

Proof. The six numbers of (5.54) in the n = 3 case are given by
Lemmas 5.14, 5.11, 5.12, 5.7, 5.3, and Corollary 5.2, respectively. The
numbers 〈a, [S1(µ)]〉, 〈c1(L∗), [S1(µ)]〉, and

∣∣S2(µ)
∣∣ are given by Lem-

mas 5.5 and 5.13. The symplectic invariant RT2,d(·;µ) is well-known
to be computable; see [10]. The above intersection numbers are com-
putable by Corollary 5.18.

As in the case of P
2, we recover the well-known fact that all degree-

one, -two, and -three numbers are zero. The only degree-one number,
the number of genus-two degree-one curves through a line, is zero be-
cause there are no holomorphic degree-one maps from a positive-genus
curve into P

n; see [1]. The eight degree-two and -three numbers are zero
because the image of any holomorphic map of degree two or three from
a genus-two curve into P

n is a line, see [1], while no line passes through
the required constraints. The first three degree-four numbers given in
the table below have also been known to be zero, since the image of any
holomorphic map of degree four from a genus-two curve into P

n must
lie in a plane. Finally, observe that the fourth degree-four number is
the number n2,4 given by Theorem 1.1, as should be the case.
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degree 4 5

(p,q) (6,1) (5,3) (4,5) (3,7) (0,13) (5,7)

RT2,d(·;µ) 7,872 64,960 548,608 4,906,304 5,130,826,752 290,439,680

CR(µ) 7,872 64,960 548,608 4,877,504 4,998,465,792 258,287,360

n2,d(µ) 0 0 0 14,400 66,180,480 16,076,160

6. Appendix

6.1 A short exact sequence on P
n

If M is a Kahler manifold and E −→M is a holomorphic vector bundle,
let O(E) denote the sheaf of holomorphic sections of E. If E −→M is
the trivial holomorphic line bundle, we write O for O(E). Let H −→ P

n

be the hyperplane bundle.

Lemma 6.1. There exists an exact sequence of sheaves over P
n:

0 −→ O −→ (n+ 1)O(H) −→ O(TP
n) −→ 0.

Proof. (1) Let [X0 : · · · : Xn] denote the homogeneous coordinates
on P

n. Denote by Xi the section of the hyperplane bundle given by

Xi|[X0:···:Xn](X0, . . . , Xn) = Xi ∈ C.

Then we define a sheaf map O −→ (n+ 1)O(H) by

f −→ (fX0, . . . , fXn).

Let Ui = {[X0 : · · · : Xn] : Xi �= 0}. On Ui, we can use the complex
coordinates

zi,k =
Xk

Xi
, k ∈ {0, . . . , n} − {i}.

Using these coordinates, we define a sheaf map (n+1)O(H) −→ O(TP
n)

by

(p0, . . . , pn) −→
∑
k �=i

(
pk(zi,0, . . . , zi,n) − zi,kpi(zi,0, . . . , zi,n)

) ∂

∂zi,k
,

(6.1)
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where zi,i = 1. We need to see that this map is well-defined. Suppose
j �= i. Then,

zj,l = z−1
i,j zi,l =⇒ ∂

∂zi,k
=
∑
l �=j

∂zj,l
∂zi,k

∂

∂zj,l
(6.2)

=


z−1
i,j

∂
∂zj,k

, if k �= j;

−z−2
i,j

(
∂

∂zj,i
+
∑

l �=i,j

zi,l
∂

∂zj,l

)
, if k = j.

Since each pl is a linear functional, if k �= i, j, we can write the kth
summand in (6.1) as

(
z−1
j,i pk(zj,0, . . . , zj,n) − z−2

j,i zj,kpi(zj,0, . . . , zj,n)
)
z−1
i,j

∂

∂zj,k
(6.3)

=
(
pk(zj,0, . . . , zj,n) − z−1

j,i zj,kpi(zj,0, . . . , zj,n)
) ∂

∂zj,k
.

The remaining, k = j, summand in (6.1) is equal to

(
z−1
j,i pj(zj,0, . . . , zj,n) − z−2

j,i pi(zj,0, . . . , zj,n)
)(6.4)

· (−z−2
i,j )

 ∂

∂zj,i
+
∑
k �=i,j

zi,k
∂

∂zj,k


=
(
pi(zj,0, . . . , zj,n) − zj,ipj(zj,0, . . . , zj,n)

) ∂

∂zj,i
+
∑
k �=i,j

zi,k
∂

∂zj,k

 .
Since zj,izi,k = zj,k, collecting similar terms in (6.3) and (6.4), we obtain
Equation (6.1) with i replaced by j.

(2) It is clear that the first map is injective, the second is surjective,
and the composite is zero. Finally, if (p0, . . . , pn) is mapped to zero by
the second map, then (6.1) implies that Xjpi = Xipj for all i and j.
Thus, the function f , given by

f([X0 : · · · : Xn]) =
pi(X0, . . . , Xn)

Xi
,

is well-defined and holomorphic wherever (p0, . . . , pn) is.
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6.2 On regularity of the kernel of Db

Lemma 6.2. If u : S2 −→ P
n is a holomorphic map, there is a

surjection

(n+ 1)H1
(
S2;O(u∗H ⊗ (−(k + 1)p))

)
−→ H1

(
S2;O(u∗TP

n ⊗ (−(k + 1)p))
)
,

where p denotes the divisor corresponding to a point p ∈ S2. If the
degree of u is at least k, then both cohomology groups are trivial.

Proof. Pulling back the short exact sequence of sheaves of Lemma 6.1
by u, tensoring it with −(k + 1)p, and taking the corresponding long
exact sequence, we obtain:

−→ (n+ 1)H1
(
S2;O(u∗H ⊗ (−(k + 1)p))

)
(6.5)

−→ H1
(
S2;O(u∗TP

n ⊗ (−(k + 1)p))
)

−→ H2
(
S2;O(−(k + 1)p)

)
−→ · · · .

Since S2 is a one-dimensional complex manifold, the last cohomology
group in (6.5) must vanish, and the first statement of the lemma follows.
On the other hand, by Kodaira-Serre duality,

H1
(
S2;O(u∗H ⊗ (−(k + 1)p))

)
= H1
(
S2; Ω1(u∗H ⊗ (−(k − 1)p)

)(6.6)

≈ H0
(
S2;O((u∗H ⊗ (−(k − 1)p))∗)

)∗
.

The last group in (6.6) is trivial if O(u∗H⊗ (−(k−1)p)) is positive, i.e.,
if 〈

c1
(
u∗H ⊗ (−(k − 1)p

)
, [S2]
〉

= d− (k − 1) > 0,

where d is the degree of u.

Corollary 6.3. If u : S2 −→ P
n is holomorphic map of degree d,

for any p ∈ S2 and nonzero v ∈ TpS
2, the map

φ(k)
p,v : kerDu −→

⊕
m∈〈k〉

Tu(p)P
n, φ(k)

p,vξ =
(
ξp, Dξ|p,v, . . . , D

(k)ξ|p,v

)
,

where Dξ|p,v denotes the covariant derivative of ξ along u in the direc-
tion of v, is surjective provided d ≥ k.



enumeration of genus-two curves 463

Remark. If one defines D(k)ξ with respect to the metric gPn,u(p) on
P

n, D(k) ∈ Tu(p)P
n ⊗ T ∗S2⊗k, where T ∗S2 is viewed as a complex line

bundle. However, the statement is independent of the choice of metric
on P

n.

Proof. Since ξ is holomorphic, if φ(k)
p,vξ is zero, ξ has a zero of order

k + 1 at p. Thus, φ(k)
p,v induces a short exact sequence of sheaves on S2:

0 −→ O
(
u∗TP

n ⊗ (−(k + 1)p)
)

−→ O(u∗TP
n)

φ
(k)
p,v−→ (k + 1)O

(
(u∗TP

n)p

)
−→ 0,

where we view O((u∗TP
n)p) as a sheaf on S2 via extension by 0; see [3,

p. 38]. Taking the corresponding long exact sequence in cohomology,
we obtain

· · · −→ H0
(
S2;O(u∗TP

n)
) φ

(k)
p,v−→ (k + 1)H0

(
S2;O((u∗TP

n)p)
)

(6.7)

−→ H1
(
S2;O(u∗TP

n ⊗ (−(k + 1)p))
)
· · · .

By Lemma 6.2, the last cohomology group in (6.7) is zero if d ≥ k. It
follows that the map φ(k)

p,v is surjective.

6.3 Dimension counts

Lemma 6.4. Let Σ be a compact Riemann surface. If u : Σ −→ P
n

is a holomorphic map, there exists a surjection

(n+ 1)H1
(
Σ;O(u∗H)

)
−→ H1

(
Σ;O(u∗TP

n)
)
.

Proof. Pulling back the short exact sequence of Lemma 6.1 by u
gives a long exact sequence in sheaf cohomology:

· · · (n+ 1)H1
(
Σ;O(u∗H)

)
−→ H1

(
Σ;O(u∗TP

n)
)
−→ H2

(
Σ;O
)
· · · .

(6.8)

Since the complex dimension of Σ is one, the last group vanishes, and
the claim follows.

Corollary 6.5. Let Σ be a compact Riemann surface. If u : Σ −→
P

n is a holomorphic map, the ∂-operator for the bundle u∗TP
n,

Du : Γ(Σ;u∗TP
n) −→ Γ(Σ; Λ0,1T ∗Σ ⊗ u∗TP

n)

is surjective, provided d+ χ(Σ) > 0, where d is the degree of u.
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Proof. The cokernel of Du is H1
∂
(Σ;u∗TP

n). By Dolbeault Theorem,

H1
∂
(Σ;u∗TP

n) = H1
(
Σ;O(u∗TP

n)
)
.(6.9)

On the other hand, by Kodaira-Serre duality (see [3, p. 153]),

H1
(
Σ;O(u∗H)

)
= H1
(
Σ; Ω1(TΣ ⊗ u∗H)

)(6.10)

= H0
(
Σ;O((TΣ ⊗ u∗H)∗)

)∗ = H0
∂

(
Σ; (TΣ ⊗ u∗H)∗

)∗
.

The bundle (TΣ ⊗ u∗H)∗ does not admit any holomorphic section if it
is negative, i.e., if〈

c1((TΣ ⊗ u∗H)), [Σ]
〉

=
〈
c1(TΣ) + c1(u∗H), [Σ]

〉
= χ(Σ) + d > 0.

Thus, the claim follows from Equations (6.9) and (6.10) and Lemma 6.4,

Proposition 6.6. Let Σ be a Riemann surface of genus 2 and let
d and n be positive integers with n ≤ 4. If n = 4, assume that d �= 2.
Suppose µ = (µ1, . . . , µN ) is an N -tuple of proper complex submanifolds
of P

n of total complex codimension d(n+1)−n+N in general position.
If

T =
(
Σ, [N ], I; j, d′

)
< T ∗ =

(
Σ, [N ], {0̂}; 0̂, d

)
is a bubble type such that d′

0̂
> 0, then HT (µ) = ∅. Furthermore, if

b =
(
Σ, [N ], {0̂}; , (0̂, y), u

)
∈ HT ∗(µ),

then the map u is not multiply-covered.

Proof. (1) If d′
0̂
≥ 3, by Corollaries 6.3 and 6.5 and standard argu-

ments such as in [7], the space HT is a smooth manifold and the maps
evl are smooth. If b ∈ HT , a neighborhood of b in HT can be modeled

on kerDb ⊕
l=n⊕
l=1

Tyl
Σb,jl

. In particular, by the Index Theorem,

dimC HT =
∑
i∈I

(
d′i(n+ 1) + n(1 − g(Σb,i))

)
− (n− 1)|Î| +N

= d(n+ 1) − n+ |Î| +N.

Thus, if the map

ev[N ] ≡ ev1 × · · · × evN : HT −→ P
n × · · · × P

n,



enumeration of genus-two curves 465

is smooth and transversal to µ1×· · ·×µN , HT (µ) is a smooth manifold
of (complex) dimension |Î|. Since the map ev[N ] is invariant under the
action of 2|Î|-dimensional group

GT ≡ {g ∈ PSL2 : g(∞) = ∞}Î ,

GT acts smoothly on HT (µ). Furthermore, the stabilizer at each point
is finite. Thus, HT (µ) = ∅.

(2) Suppose d′
0̂

= 2. If b =
(
Σ, [N ], I;x, (j, y), u

)
∈ HT , the map

u0̂ must factor through a degree-one map ũ0̂ : S2 −→ P
n; see [1, p.

116]. Thus, it is enough to show that the space HT ′(µ) is empty, where
T ′ = (S2, [N ], I; j, d′′), d′′h = d′h if h ∈ Î and d′′

0̂
= 1. By Corollary 6.3,

the space HT ′ is a smooth manifold of dimension

dimC HT ′ = (d− 1)(n+ 1) + n+ |Î| +N.

Similarly to (1) above, it follows that HT ′(µ) is a smooth manifold of
dimension n−1+|Î| on which the (2|Î|+3)-dimensional group PSL2×GT
acts with only finite stabilizers. It follows that HT ′(µ) = ∅ if n < |Î|+4.
Note that the case Î = ∅ can occur only if d = d0̂ = 2. Finally, if d0̂ = 1,
the entire space HT is empty, since there are no holomorphic degree-one
maps from Σ into P

n.
(3) Suppose b = (Σ, [N ], {0̂}; , (0̂, y), u) ∈ HT ∗(µ) and u : Σ −→ P

n

factors through a k-fold cover of S2, where k ≥ 2 and k divides d. Then
b arises from the space HT ′(µ), where

T ′ =
(
S2, [N ], {0̂}; 0̂, d/k

)
.

Similarly to the above, this space is a smooth manifold of dimension(
(d/k)(n+ 1) + n+N

)
−
(
d(n+ 1) − n+N

)
= −k − 1

k
d(n+ 1) + 2n.

Thus, HT ′(µ) = ∅, provided d ≥ 3. In fact, since HT ′(µ) has a three-
dimensional group of symmetry, HT ′(µ) = ∅ unless d = 2 and n ≥ 4.

(4) Suppose b is as in (3) and u factors through a k-fold cover of a
torus T , where k ≥ 2 and k divides d. Then b arises from the space

H̃1,d/k(µ) ≡
{

(E , y[N ], u) : E is smooth elliptic curve,

u : C −→ P
n, ∂u = 0, u∗[E ] =

d

k
λ; u(yl) ∈ µl ∀l ∈ [N ]

}
.
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Similarly to the above, Corollary 6.5 implies that H̃1,d/k(µ) is a smooth
space of dimension(

(d/k)(n+ 1) + 1 +N
)
−
(
d(n+ 1) − n+N

)
= −
(k − 1

k
d− 1
)
(n+ 1) < 1.

Since H̃1,d/k(µ) has a one-dimensional group of symmetries, H̃1,d/k(µ) =
∅.
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