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SPECIAL LAGRANGIAN SUBMANIFOLDS WITH
ISOLATED CONICAL SINGULARITIES.

V. SURVEY AND APPLICATIONS

DOMINIC JOYCE

Abstract
This is the last in a series of five papers studying compact special Lagrangian
submanifolds (SL m-folds) X in (almost) Calabi-Yau m-folds M with singu-
larities x1, . . . , xn locally modelled on special Lagrangian cones C1, . . . , Cn

in Cm with isolated singularities at 0. Readers are advised to begin with
this paper.

We survey the major results of the previous four papers, giving brief
explanations of the proofs. We apply the results to describe the boundary
of a moduli space of compact, nonsingular SL m-folds N in M . We prove
the existence of special Lagrangian connected sums N1# · · ·#Nk of SL m-
folds N1, . . . , Nk in M . We also study SL 3-folds with T 2-cone singularities,
proving results related to ideas of the author on invariants of Calabi-Yau
3-folds, and the SYZ Conjecture.

Let X be a compact SL m-fold with isolated conical singularities xi and
cones Ci for i = 1, . . . , n. The first paper studied the regularity of X near its
singular points, and the the second the moduli space of deformations of X.
The third and fourth papers construct desingularizations of X, realizing X
as a limit of a family of compact, nonsingular SL m-folds Nt in M for small
t > 0. Let Li be an asymptotically conical SL m-fold in Cm asymptotic to
Ci at infinity. We make Nt by gluing tLi into X at xi for i = 1, . . . , n.

1. Introduction

Special Lagrangian m-folds (SL m-folds) are a distinguished class of
real m-dimensional minimal submanifolds which may be defined in Cm,
or in Calabi-Yau m-folds, or more generally in almost Calabi-Yau m-
folds (compact Kähler m-folds with trivial canonical bundle). We write
an almost Calabi-Yau m-fold as M or (M,J, ω,Ω), where the manifold
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M has complex structure J , Kähler form ω and holomorphic volume
form Ω.

This is the fifth in a series of five papers [17, 18, 19, 20] studying SL
m-folds with isolated conical singularities. That is, we consider an SL
m-foldX in an almost Calabi-Yaum-foldM form > 2 with singularities
at x1, . . . , xn in M , such that for some special Lagrangian cones Ci in
TxiM

∼= Cm with Ci \ {0} nonsingular, X approaches Ci near xi, in an
asymptotic C1 sense.

New readers of the series are advised to begin with this paper. We
shall survey the major results of [17, 18, 19, 20], giving explanations, but
avoiding the long, technical analytic proofs of previous papers. We also
integrate the results to give an (incomplete) description of the boundary
of a moduli space of compact SL m-folds, and apply them to prove
some conjectures in [9, 13] on connected sums of SL m-folds, and T 2-
cone singularities of SL 3-folds.

Having a good understanding of the singularities of special Lagrang-
ian submanifolds will be essential in clarifying the Strominger-Yau–
Zaslow conjecture on the mirror symmetry of Calabi-Yau 3-folds [29],
and also in resolving conjectures made by the author [9] on defining
new invariants of Calabi-Yau 3-folds by counting special Lagrangian
homology 3-spheres with weights. The series aims to develop such an
understanding for simple singularities of SL m-folds.

We begin in §2 with an introduction to almost Calabi-Yau and spe-
cial Lagrangian geometry, and the deformation theory of compact SL
m-folds. Section 3 defines SL m-folds with conical singularities, our
subject, gives examples of special Lagrangian cones, and some basics on
homology and cohomology.

Section 4 describes the first paper [17] on the regularity of SL m-
folds X with conical singularities x1, . . . , xn. We study the asymptotic
behaviour of X and its derivatives near xi, how quickly it converges to
the cone Ci.

In §5 we discuss the second paper [18] on the deformation theory of
compact SL m-folds X with conical singularities in an almost Calabi-
Yau m-fold M . We find that the moduli space MX of deformations
of X in M is locally homeomorphic to the zeroes of a smooth map
Φ : IX′ → OX′ between finite-dimensional vector spaces, and if the
obstruction space OX′ is zero then MX is a smooth manifold. We also
study deformations in smooth families of almost Calabi-Yau m-folds
(M,Js, ωs,Ωs) for s ∈ F ⊂ Rd.

Section 6 is an aside on asymptotically conical SL m-folds (AC SL
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m-folds) in Cm, that is, nonsingular, noncompact SL m-folds L in Cm

which are asymptotic at infinity to an SL cone C at a prescribed rate λ.
Our main sources are [17, §7] and Marshall [23]. The theories of AC SL
m-folds and SL m-folds with conical singularities are similar in many
respects.

Section 7 explains the third and fourth papers [19, 20] on desingu-
larizations of a compact SL m-fold X with conical singularities xi with
cones Ci for i = 1, . . . , n in an almost Calabi-Yau m-fold M . We take
AC SL m-folds Li in Cm asymptotic to Ci at infinity, and glue tLi into
X at xi for small t > 0 to get a smooth family of compact, nonsingular
SL m-folds Ñ t in M , with Ñ t → X as t → 0. We also study desin-
gularizations in families of almost Calabi-Yau m-folds (M,Js, ωs,Ωs)
for s ∈ F .

The new material of the paper is §8–§10. We study the moduli space
MN of compact, nonsingular SL m-folds N in §2, the moduli space MX

of compact SLm-foldsX with conical singularities in §5, and the moduli
space Mλ

L of AC SL m-folds in Cm with rate λ in §6. Section 8 explains
how these three kinds of moduli space fit together.

The idea is that MN has a compactification MN with boundary
∂MN = MN \ MN consisting of singular SL m-folds. Suppose N
is constructed as in §7 by desingularizing X with conical singularities
x1, . . . , xn by gluing in AC SL m-folds L1, . . . , Ln. Then in good cases
we expect MX ⊆ ∂MN , and MN may be locally modelled on a subset
of MX ×M0

L1
× · · · ×M0

Ln
near X.

Section 9 considers connected sums of SL m-folds. Suppose X is
a compact, immersed SL m-fold in M with transverse self-intersection
points x1, . . . , xn. This includes the case where X is a union of q > 1
embedded SL m-folds X1, . . . , Xq, and the xi are intersections between
Xj and Xk. Then we can consider X to be an SL m-fold with conical
singularities, with each cone Ci the union of two transverse SL m-planes
Π+
i ,Π

−
i
∼= Rm in Cm.

When Π±
i satisfy an angle criterion, Lawlor [21] constructed a family

of AC SL m-folds L±,A
i for A > 0 with cone Π+

i ∪Π−
i , diffeomorphic to

Sm−1 × R. We apply the results of §7 to construct SL m-folds Ñ t by
gluing tL±,A

i into X at xi. These Ñ t are multiple connected sums of X
with itself. In this way we re-prove and extend a result of Lee [8].

Finally, §10 studies SL 3-folds X with conical singularities with
cone C the U(1)2-invariant SL T 2-cone due to Harvey and Lawson [5,
§III.3.A]. These have particularly nice properties. For instance, the
moduli space MX is always smooth, and under topological conditions
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the compactified moduli space MN of desingularizations N is near X a
nonsingular manifold with boundary MX . We prove several conjectures
from [9, 13].

Acknowledgements. I would like to thank Stephen Marshall,
Mark Haskins, Tadashi Tokieda, Ivan Smith, Sema Salur, and Adrian
Butscher for useful conversations. I was supported by an EPSRC Ad-
vanced Research Fellowship whilst writing this paper.

2. Special Lagrangian geometry

We begin with some background from symplectic geometry. Then
special Lagrangian submanifolds (SL m-folds) are introduced both in
Cm and in almost Calabi-Yau m-folds. We also describe the deformation
theory of compact SL m-folds. Some references for this section are
McDuff and Salamon [24], Harvey and Lawson [5], McLean [26], and
the author [16].

2.1 Background from symplectic geometry

We start by recalling some elementary symplectic geometry, which can
be found in McDuff and Salamon [24]. Here are the basic definitions.

Definition 2.1. Let M be a smooth manifold of even dimension
2m. A closed 2-form ω on M is called a symplectic form if the 2m-form
ωm is nonzero at every point of M . Then (M,ω) is called a symplectic
manifold. A submanifold N in M is called Lagrangian if dimN = m =
1
2 dimM and ω|N ≡ 0.

The simplest example of a symplectic manifold is R2m.

Definition 2.2. Let R2m have coordinates (x1, . . . , xm, y1, . . . , ym),
and define the standard metric g′ and symplectic form ω′ on R2m by

g′ =
m∑
j=1

(dx2
j + dy2

j ) and ω′ =
m∑
j=1

dxj ∧ dyj .(1)

Then (R2m, ω′) is a symplectic manifold. When we wish to identify R2m

with Cm, we take the complex coordinates (z1, . . . , zm) on Cm to be
zj = xj + iyj . For R > 0, define BR to be the open ball of radius R
about 0 in R2m.

Darboux’s Theorem [24, Th. 3.15] says that every symplectic mani-
fold is locally isomorphic to (R2m, ω′). Our version easily follows.
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Theorem 2.3. Let (M,ω) be a symplectic 2m-manifold and x ∈
M . Then there exist R > 0 and an embedding Υ : BR → M with
Υ(0) = x such that Υ∗(ω) = ω′, where ω′ is the standard symplectic
form on R2m ⊃ BR. Given an isomorphism υ : R2m → TxM with
υ∗(ω|x)=ω′, we can choose Υ with dΥ|0 =υ.

Let N be a real m-manifold. Then its tangent bundle T ∗N has a
canonical symplectic form ω̂, defined as follows. Let (x1, . . . , xm) be
local coordinates on N . Extend them to local coordinates (x1, . . . , xm,
y1, . . . , ym) on T ∗N such that (x1, ..., ym) represents the 1-form y1dx1 +
· · · + ymdxm in T ∗

(x1,...,xm)N . Then ω̂ = dx1 ∧ dy1 + · · · + dxm ∧ dym.
Identify N with the zero section in T ∗N . Then N is a Lagrang-

ian submanifold of T ∗N . The Lagrangian Neighbourhood Theorem
[24, Th. 3.33] shows that any compact Lagrangian submanifold N in a
symplectic manifold looks locally like the zero section in T ∗N .

Theorem 2.4. Let (M,ω) be a symplectic manifold and N ⊂ M
a compact Lagrangian submanifold. Then there exists an open tubular
neighbourhood U of the zero section N in T ∗N , and an embedding Φ :
U → M with Φ|N = id : N → N and Φ∗(ω) = ω̂, where ω̂ is the
canonical symplectic structure on T ∗N .

We shall call U,Φ a Lagrangian neighbourhood ofN . Such neighbour-
hoods are useful for parametrizing nearby Lagrangian submanifolds of
M . Suppose that Ñ is a Lagrangian submanifold of M which is C1-close
to N . Then Ñ lies in Φ(U), and is the image Φ

(
Γ(α)

)
of the graph Γ(α)

of a unique C1-small 1-form α on N .
As Ñ is Lagrangian and Φ∗(ω) = ω̂ we see that ω̂|Γ(α) ≡ 0. But

one can easily show that ω̂|Γ(α) = −π∗(dα), where π : Γ(α) → N is
the natural projection. Hence dα = 0, and α is a closed 1-form. This
establishes a 1-1 correspondence between small closed 1-forms on N and
Lagrangian submanifolds Ñ close to N in M , which is an essential tool
in proving the results of §5 and §7.

2.2 Special Lagrangian submanifolds in Cm

We define calibrations and calibrated submanifolds, following [5].

Definition 2.5. Let (M, g) be a Riemannian manifold. An oriented
tangent k-plane V on M is a vector subspace V of some tangent space
TxM to M with dimV = k, equipped with an orientation. If V is an
oriented tangent k-plane on M then g|V is a Euclidean metric on V , so
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combining g|V with the orientation on V gives a natural volume form
volV on V , which is a k-form on V .

Now let ϕ be a closed k-form on M . We say that ϕ is a calibration
on M if for every oriented k-plane V on M we have ϕ|V � volV . Here
ϕ|V = α · volV for some α ∈ R, and ϕ|V � volV if α � 1. Let N be
an oriented submanifold of M with dimension k. Then each tangent
space TxN for x ∈ N is an oriented tangent k-plane. We say that N is
a calibrated submanifold if ϕ|TxN = volTxN for all x ∈ N .

It is easy to show that calibrated submanifolds are automatically
minimal submanifolds [5, Th. II.4.2]. Here is the definition of special
Lagrangian submanifolds in Cm, taken from [5, §III].

Definition 2.6. Let Cm have complex coordinates (z1, . . . , zm), and
define a metric g′, a real 2-form ω′ and a complex m-form Ω′ on Cm by

g′ = |dz1|2 + · · · + |dzm|2,
ω′ = i

2(dz1 ∧ dz1 + · · · + dzm ∧ dzm), and(2)
Ω′ = dz1 ∧ · · · ∧ dzm.

Then g′, ω′ are as in Definition 2.2, and Re Ω′ and Im Ω′ are realm-forms
on Cm. Let L be an oriented real submanifold of Cm of real dimension
m. We say that L is a special Lagrangian submanifold of Cm, or SL
m-fold for short, if L is calibrated with respect to Re Ω′, in the sense of
Definition 2.5.

Harvey and Lawson [5, Cor. III.1.11] give the following alternative
characterization of special Lagrangian submanifolds:

Proposition 2.7. Let L be a real m-dimensional submanifold of
Cm. Then L admits an orientation making it into an SL submanifold
of Cm if and only if ω′|L ≡ 0 and Im Ω′|L ≡ 0.

Thus special Lagrangian submanifolds are Lagrangian submanifolds
satisfying the extra condition that Im Ω′|L ≡ 0, which is how they get
their name.

2.3 Almost Calabi-Yau m-folds and SL m-folds

We shall define special Lagrangian submanifolds not just in Calabi-Yau
manifolds, as usual, but in the much larger class of almost Calabi-Yau
manifolds.
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Definition 2.8. Let m � 2. An almost Calabi-Yau m-fold is a
quadruple (M,J, ω,Ω) such that (M,J) is a compact m-dimensional
complex manifold, ω is the Kähler form of a Kähler metric g on M , and
Ω is a non-vanishing holomorphic (m, 0)-form on M .

We call (M,J, ω,Ω) a Calabi-Yau m-fold if in addition ω and Ω
satisfy

ωm/m! = (−1)m(m−1)/2(i/2)mΩ ∧ Ω.(3)

Then for each x ∈M there exists an isomorphism TxM ∼= Cm that iden-
tifies gx, ωx and Ωx with the flat versions g′, ω′,Ω′ on Cm in (2). Fur-
thermore, g is Ricci-flat and its holonomy group is a subgroup of SU(m).

This is not the usual definition of a Calabi-Yau manifold, but is
essentially equivalent to it.

Definition 2.9. Let (M,J, ω,Ω) be an almost Calabi-Yau m-fold,
and N a real m-dimensional submanifold of M . We call N a special
Lagrangian submanifold, or SL m-fold for short, if ω|N ≡ Im Ω|N ≡ 0.
It easily follows that Re Ω|N is a nonvanishing m-form on N . Thus N
is orientable, with a unique orientation in which Re Ω|N is positive.

Again, this is not the usual definition of SL m-fold, but is essentially
equivalent to it. In Definition 9.9 we give a more general definition of SL
m-fold involving a phase eiθ. Suppose (M,J, ω,Ω) is an almost Calabi-
Yau m-fold, with metric g. Let ψ : M → (0,∞) be the unique smooth
function such that

ψ2mωm/m! = (−1)m(m−1)/2(i/2)mΩ ∧ Ω,(4)

and define g̃ to be the conformally equivalent metric ψ2g on M . Then
Re Ω is a calibration on the Riemannian manifold (M, g̃), and SL m-
folds N in (M,J, ω,Ω) are calibrated with respect to it, so that they are
minimal with respect to g̃.

If M is a Calabi-Yau m-fold then ψ ≡ 1 by (3), so g̃ = g, and
an m-submanifold N in M is special Lagrangian if and only if it is
calibrated w.r.t. Re Ω on (M, g), as in Definition 2.6. This recovers the
usual definition of special Lagrangian m-folds in Calabi-Yau m-folds.

2.4 Deformations of compact SL m-folds

The deformation theory of special Lagrangian submanifolds was studied
by McLean [26, §3], who proved the following result in the Calabi-Yau
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case. The extension to the almost Calabi-Yau case is described in [16,
§9.5].

Theorem 2.10. Let N be a compact SL m-fold in an almost Calabi-
Yau m-fold (M,J, ω,Ω). Then the moduli space MN of special La-
grangian deformations of N is a smooth manifold of dimension b1(N),
the first Betti number of N .

Here is a sketch of the proof of Theorem 2.10. Let g be the Kähler
metric on M , and define ψ : M → (0,∞) by (4). Applying Theorem 2.4
gives an open neighbourhood U of N in T ∗N and an embedding Φ :
U → M . Let π : U → N be the natural projection. Define an m-form
β on U by β = Φ∗(Im Ω). If α is a 1-form on N let Γ(α) be the graph
of α in T ∗N , and write C∞(U) ⊂ C∞(T ∗N) for the subset of 1-forms
whose graphs lie in U .

Then each submanifold Ñ of M which is C1-close to N is Φ
(
Γ(α)

)
for some small α ∈ C∞(U). Here is the condition for Ñ to be special
Lagrangian.

Lemma 2.11. In the situation above, if α ∈ C∞(U) then Ñ =
Φ

(
Γ(α)

)
is an SL m-fold in M if and only if dα = 0 and π∗

(
β|Γ(α)

)
= 0.

Proof. By Definition 2.9, Ñ is an SL m-fold if and only if ω|
Ñ

≡
Im Ω|

Ñ
≡ 0. Pulling back by Φ and pushing forward by π : Γ(α) →

N , we see that Ñ is special Lagrangian if and only if π∗
(
ω̂|Γ(α)

) ≡
π∗

(
β|Γ(α)

) ≡ 0, since Φ∗(ω) = ω̂ and Φ∗(Im Ω) = β. But π∗
(
ω̂|Γ(α)

)
=

−dα, and the lemma follows. q.e.d.

We rewrite the condition π∗
(
β|Γ(α)

)
= 0 in terms of a function F .

Definition 2.12. Define F : C∞(U) → C∞(N) by π∗
(
β|Γ(α)

)
=

F (α) dVg, where dVg is the volume form of g|N on N . Then Lemma 2.11
shows that if α∈C∞(U) then Φ(Γ(α)) is special Lagrangian if and only
if dα = F (α) = 0.

In [18, Prop. 2.10] we compute the expansion of F up to first order
in α.

Proposition 2.13. This function F may be written

F (α)[x] = −d∗(ψmα)
+Q

(
x, α(x),∇α(x)

)
for x ∈ N ,(5)

where Q :
{
(x, y, z) : x ∈ N , y ∈ T ∗

xN ∩U , z ∈ ⊗2T ∗
xN

} → R is smooth
and Q(x, y, z) = O(|y|2 + |z|2) for small y, z.



special lagrangian submanifolds 287

From Definition 2.12 and Proposition 2.13 we see that the mod-
uli space MN of special Lagrangian deformations of N is locally ap-
proximately isomorphic to the vector space of 1-forms α with dα =
d∗(ψmα) = 0. But by Hodge theory, this is isomorphic to the de Rham
cohomology group H1(N,R), and is a manifold with dimension b1(N).

To carry out this last step rigorously requires some technical machin-
ery: one must work with certain Banach spaces of sections of ΛkT ∗N
for k = 0, 1, 2, use elliptic regularity results to prove that the map
α �→ (

dα,dF |0(α)
)

is surjective upon the appropriate Banach spaces,
and then use the Implicit Mapping Theorem for Banach spaces to show
that the kernel of the map is what we expect. This concludes our sketch
of the proof of Theorem 2.10.

We extend Theorem 2.10 to families of almost Calabi-Yau m-folds.

Definition 2.14. Let (M,J, ω,Ω) be an almost Calabi-Yau m-
fold. A smooth family of deformations of (M,J, ω,Ω) is a connected
open set F ⊂ Rd for d � 0 with 0 ∈ F called the base space, and a
smooth family

{
(M,Js, ωs,Ωs) : s ∈ F}

of almost Calabi-Yau struc-
tures with (J0, ω0,Ω0) = (J, ω,Ω).

If N is a compact SL m-fold in (M,J, ω,Ω), the moduli of defor-
mations of N in each (M,Js, ωs,Ωs) for s ∈ F make up a big moduli
space MF

N .

Definition 2.15. Let
{
(M,Js, ωs,Ωs) : s ∈ F}

be a smooth family
of deformations of an almost Calabi-Yau m-fold (M,J, ω,Ω), and N be
a compact SL m-fold in (M,J, ω,Ω). Define the moduli space MF

N of
deformations of N in the family F to be the set of pairs (s, N̂) for
which s ∈ F and N̂ is a compact SL m-fold in (M,Js, ωs,Ωs) which
is diffeomorphic to N and isotopic to N in M . Define a projection
πF : MF

N → F by πF(s, N̂) = s. Then MF
N has a natural topology, and

πF is continuous.

The following result is proved by Marshall [23, Th. 3.2.9], using
similar methods to Theorem 2.10.

Theorem 2.16. Let
{
(M,Js, ωs,Ωs) : s ∈ F}

be a smooth family
of deformations of an almost Calabi-Yau m-fold (M,J, ω,Ω), with base
space F ⊂ Rd. Suppose N is a compact SL m-fold in (M,J, ω,Ω) with
[ωs|N ] = 0 in H2(N,R) and [Im Ωs|N ] = 0 in Hm(N,R) for all s ∈ F .
Let MF

N be the moduli space of deformations of N in F , and πF :
MF

N → F the natural projection.
Then MF

N is a smooth manifold of dimension d + b1(N), and πF :
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MF
N → F a smooth submersion. For small s ∈ F the moduli space

Ms
N = (πF)−1(s) of deformations of N in (M,Js, ωs,Ωs) is a nonempty

smooth manifold of dimension b1(N), with M0
N = MN .

Here a necessary condition for the existence of an SL m-fold N̂ iso-
topic to N in (M,Js, ωs,Ωs) is that [ωs|N ] = [Im Ωs|N ] = 0 inH∗(N,R),
since [ωs|N ] and [ωs|N̂ ] are identified under the natural isomorphism be-
tween H2(N,R) and H2(N̂ ,R), and similarly for Im Ωs.

The point of the theorem is that these conditions [ωs|N ] = [Im Ωs|N ]
= 0 are also sufficient for the existence of N̂ when s is close to 0 in F .
That is, the only obstructions to existence of compact SL m-folds when
we deform the underlying almost Calabi-Yau m-fold are the obvious
cohomological ones.

3. SL cones and conical singularities

We begin in §3.1 with some definitions on special Lagrangian cones.
Section 3.2 gives examples of SL cones, and §3.3 defines SL m-folds with
conical singularities, the subject of the paper. Section 3.4 discusses
homology and cohomology of SL m-folds with conical singularities.

3.1 Preliminaries on special Lagrangian cones

We define special Lagrangian cones, and some notation.

Definition 3.1. A (singular) SL m-fold C in Cm is called a cone if
C = tC for all t > 0, where tC = {tx : x ∈ C}. Let C be a closed SL
cone in Cm with an isolated singularity at 0. Then Σ = C ∩ S2m−1 is
a compact, nonsingular (m−1)-submanifold of S2m−1, not necessarily
connected. Let gΣ be the restriction of g′ to Σ, where g′ is as in (2).

Set C ′ = C \ {0}. Define ι : Σ× (0,∞) → Cm by ι(σ, r) = rσ. Then
ι has image C ′. By an abuse of notation, identify C ′ with Σ × (0,∞)
using ι. The cone metric on C ′ ∼= Σ× (0,∞) is g′ = ι∗(g′) = dr2 + r2gΣ.

For α ∈ R, we say that a function u : C ′ → R is homogeneous of
order α if u ◦ t ≡ tαu for all t > 0. Equivalently, u is homogeneous of
order α if u(σ, r) ≡ rαv(σ) for some function v : Σ → R.

In [17, Lem. 2.3] we study homogeneous harmonic functions on C ′.

Lemma 3.2. In the situation of Definition 3.1, let u(σ, r) ≡ rαv(σ)
be a homogeneous function of order α on C ′ = Σ×(0,∞), for v ∈ C2(Σ).
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Then

∆u(σ, r) = rα−2
(
∆Σv − α(α+m− 2)v

)
,(6)

where ∆, ∆Σ are the Laplacians on (C ′, g′) and (Σ, gΣ). Hence, u is
harmonic on C ′ if and only if ∆Σv = α(α+m− 2)v.

Following [17, Def. 2.5], we define:

Definition 3.3. In the situation of Definition 3.1, suppose m > 2
and define

DΣ =
{
α ∈ R : α(α+m− 2) is an eigenvalue of ∆Σ

}
.(7)

Then DΣ is a countable, discrete subset of R. By Lemma 3.2, an equiv-
alent definition is that DΣ is the set of α ∈ R for which there exists a
nonzero homogeneous harmonic function u of order α on C ′.

Define mΣ : DΣ → N by taking mΣ(α) to be the multiplicity of the
eigenvalue α(α + m − 2) of ∆Σ, or equivalently the dimension of the
vector space of homogeneous harmonic functions u of order α on C ′.
Define NΣ : R → Z by

NΣ(δ) = −
∑

α∈DΣ∩(δ,0)

mΣ(α) if δ < 0, and

NΣ(δ) =
∑

α∈DΣ∩[0,δ]

mΣ(α) if δ � 0.

Then NΣ is monotone increasing and upper semicontinuous, and is dis-
continuous exactly on DΣ, increasing by mΣ(α) at each α ∈ DΣ. As the
eigenvalues of ∆Σ are nonnegative, we see that DΣ ∩ (2−m, 0) = ∅ and
NΣ ≡ 0 on (2 −m, 0).

We define the stability index of C, and stable and rigid cones [18,
Def. 3.6].

Definition 3.4. Let C be an SL cone in Cm for m > 2 with an
isolated singularity at 0, let G be the Lie subgroup of SU(m) preserving
C, and use the notation of Definitions 3.1 and 3.3. Then [18, eq. (8)]
shows that

mΣ(0) = b0(Σ), mΣ(1) � 2m and mΣ(2) � m2 − 1 − dimG.(8)

Define the stability index s-ind(C) to be

s-ind(C) = NΣ(2) − b0(Σ) −m2 − 2m+ 1 + dimG.(9)
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Then s-ind(C) � 0 by (8), as NΣ(2) � mΣ(0) + mΣ(1) + mΣ(2) by
definition. We call C stable if s-ind(C) = 0.

Following [17, Def. 6.7], we call C rigid if mΣ(2) = m2 − 1 − dimG.
As

s-ind(C) � mΣ(2) − (m2 − 1 − dimG) � 0,

we see that if C is stable, then C is rigid.

We shall see in §5 that s-ind(C) is the dimension of an obstruction
space to deforming an SL m-fold X with a conical singularity with cone
C, and that if C is stable then the deformation theory of X simplifies.
An SL cone C is rigid if all infinitesimal deformations of C as an SL cone
come from SU(m) rotations of C. This will be useful in the geometric
measure theory material of §4.2.

3.2 Examples of special Lagrangian cones

In our first example we can compute the data of §3.1 very explicitly.

Example 3.5. Here is a family of special Lagrangian cones con-
structed by Harvey and Lawson [5, §III.3.A]. For m � 3, define

CmHL =
{
(z1, . . . , zm) ∈ Cm : im+1z1 · · · zm ∈ [0,∞), |z1| = · · · = |zm|

}
.

Then CmHL is a special Lagrangian cone in Cm with an isolated singularity
at 0, and Σm

HL = CmHL ∩ S2m−1 is an (m−1)-torus Tm−1. Both CmHL and
Σm

HL are invariant under the U(1)m−1 subgroup of SU(m) acting by

(z1, . . . , zm) �→(eiθ1z1, . . . , eiθmzm) for θj ∈ R with θ1+· · ·+θm=0.
(10)

In fact ±CmHL for m odd, and CmHL, iC
m
HL for m even, are the unique SL

cones in Cm invariant under (10), which is how Harvey and Lawson
constructed them.

The metric on Σm
HL

∼= Tm−1 is flat, so it is easy to compute the
eigenvalues of ∆Σm

HL
. This was done by Marshall [23, §6.3.4]. There is

a 1-1 correspondence between (n1, . . . , nm−1) ∈ Zm−1 and eigenvectors
of ∆Σm

HL
with eigenvalue

m

m−1∑
i=1

n2
i −

m−1∑
i,j=1

ninj .(11)
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Using (11) and a computer we can find the eigenvalues of ∆Σm
HL

and
their multiplicities. The Lie subgroup GmHL of SU(m) preserving CmHL has
identity component the U(1)m−1 of (10), so that dimGmHL = m−1. Thus
we can calculate DΣm

HL
, mΣm

HL
, NΣm

HL
, and the stability index s-ind(CmHL).

This was done by Marshall [23, Table 6.1] and the author [18, §3.2].
Table 1 gives the data m,NΣm

HL
(2),mΣm

HL
(2) and s-ind(CmHL) for 3 � m �

12.

m 3 4 5 6 7 8 9 10 11 12

NΣm
HL

(2) 13 27 51 93 169 311 331 201 243 289

mΣm
HL

(2) 6 12 20 30 42 126 240 90 110 132

s-ind(CmHL) 0 6 20 50 112 238 240 90 110 132

Table 1: Data for U(1)m−1-invariant SL cones CmHL in Cm.

One can also prove that

NΣm
HL

(2) = 2m2 + 1 and mΣm
HL

(2) = s-ind(CmHL) = m2 −m for m � 10.
(12)

As CmHL is stable when s-ind(CmHL) = 0 we see from Table 1 and (12) that
C3

HL is a stable cone in C3, but CmHL is unstable for m � 4. Also CmHL is
rigid when mΣm

HL
(2) = m2 −m, as dimGmHL = m− 1. Thus CmHL is rigid

if and only if m �= 8, 9, by Table 1 and (12).

Here is an example taken from [10, Ex. 9.4], chosen as it is easy to
write down.

Example 3.6. Let a1, . . . , am ∈ Z with a1 + · · · + am = 0 and
highest common factor 1, such that a1, . . . , ak > 0 and ak+1, . . . , am < 0
for 0 < k < m. Define

La1,...,am
0 =

{(
ieia1θx1, eia2θx2, . . . , eiamθxm

)
: θ ∈ [0, 2π),

x1, . . . , xm ∈ R, a1x
2
1 + · · · + amx

2
m = 0

}
.

(13)

Then La1,...,am
0 is an immersed SL cone in Cm, with an isolated singu-

larity at 0.
Define Ca1,...,am =

{
(x1, . . . , xm) ∈ Rm : a1x

2
1 + · · · + amx

2
m = 0

}
.

Then Ca1,...,am is a quadric cone on Sk−1×Sm−k−1 in Rm, and La1,...,am
0 is

the image of an immersion Φ : Ca1,...,am ×S1 → Cm, which is generically
2:1. Therefore La1,...,am

0 is an immersed SL cone on (Sk−1 × Sm−k−1 ×
S1)/Z2.
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Further examples of SL cones are constructed by Harvey and Law-
son [5, §III.3], Haskins [6], the author [10, 11], and others. Special
Lagrangian cones in C3 are a special case, which may be treated using
the theory of integrable systems. In principle this should yield a classi-
fication of all SL cones on T 2 in C3. For more information see McIntosh
[25] or the author [15].

3.3 Special Lagrangian m-folds with conical singularities

Now we can define conical singularities of SL m-folds, following [17,
Def. 3.6].

Definition 3.7. Let (M,J, ω,Ω) be an almost Calabi-Yau m-fold
for m > 2, and define ψ : M → (0,∞) as in (4). Suppose X is a
compact singular SL m-fold in M with singularities at distinct points
x1, . . . , xn ∈ X, and no other singularities.

Fix isomorphisms υi : Cm → TxiM for i = 1, . . . , n such that
υ∗i (ω) = ω′ and υ∗i (Ω) = ψ(xi)mΩ′, where ω′,Ω′ are as in (2). Let
C1, . . . , Cn be SL cones in Cm with isolated singularities at 0. For
i = 1, . . . , n let Σi = Ci ∩ S2m−1, and let µi ∈ (2, 3) with

(2, µi] ∩ DΣi
= ∅, where DΣi

is defined in (7).(14)

Then we say that X has a conical singularity or conical singular point
at xi, with rate µi and cone Ci for i = 1, . . . , n, if the following holds.

By Theorem 2.3 there exist embeddings Υi : BR → M for i =
1, . . . , n satisfying Υi(0) = xi, dΥi|0 = υi and Υ∗

i (ω) = ω′, where BR is
the open ball of radius R about 0 in Cm for some small R > 0. Define
ιi : Σi × (0, R) → BR by ιi(σ, r) = rσ for i = 1, . . . , n.

Define X ′ = X \ {x1, . . . , xn}. Then there should exist a compact
subset K ⊂ X ′ such that X ′ \ K is a union of open sets S1, . . . , Sn
with Si ⊂ Υi(BR), whose closures S1, . . . , Sn are disjoint in X. For
i = 1, . . . , n and some R′ ∈ (0, R] there should exist a smooth φi :
Σi×(0, R′) → BR such that Υi◦φi : Σi×(0, R′) →M is a diffeomorphism
Σi × (0, R′) → Si, and∣∣∇k(φi − ιi)

∣∣ = O(rµi−1−k) as r → 0 for k = 0, 1.(15)

Here ∇ is the Levi-Civita connection of the cone metric ι∗i (g
′) on Σi ×

(0, R′), | . | is computed using ι∗i (g
′). If the cones C1, . . . , Cn are stable

in the sense of Definition 3.4, then we say that X has stable conical
singularities.
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We will see in Theorem 4.4 that if (15) holds for k = 0, 1 and some
µi satisfying (14), then we can choose a natural φi for which (15) holds
for all k � 0, and for all rates µi satisfying (14). Thus the number
of derivatives required in (15) and the choice of µi both make little
difference. We choose k = 0, 1 in (15), and some µi in (14), to make the
definition as weak as possible.

We suppose m > 2 for two reasons. Firstly, the only SL cones in
C2 are finite unions of SL planes R2 in C2 intersecting only at 0. Thus
any SL 2-fold with conical singularities is actually nonsingular as an
immersed 2-fold, so there is really no point in studying them. Secondly,
m = 2 is a special case in the analysis of [17, §2], and it is simpler to
exclude it. Therefore we will suppose m > 2 throughout the paper.

Here are the reasons for the conditions on µi in Definition 3.7:

• We need µi > 2, or else (15) does not force X to approach Ci
near xi.

• The definition involves a choice of Υi : BR → M . If we replace
Υi by a different choice Υ̃i then we should replace φi by φ̃i =
(Υ̃−1

i ◦ Υi) ◦ φi near 0 in BR. Calculation shows that as Υi, Υ̃i

agree up to second order, we have
∣∣∇k(φ̃i − φi)

∣∣ = O(r2−k).

Therefore we choose µi < 3 so that these O(r2−k) terms are ab-
sorbed into the O(rµi−1−k) in (15). This makes the definition
independent of the choice of Υi, which it would not be if µi > 3.

• Condition (14) is needed to prove the regularity result Theo-
rem 4.4, and also to reduce to a minimum the obstructions to
deforming compact SL m-folds with conical singularities studied
in §5.

3.4 Homology and cohomology

Next we discuss homology and cohomology of SL m-folds with conical
singularities, following [17, §2.4]. For a general reference, see for in-
stance Bredon [2]. When Y is a manifold, write Hk(Y,R) for the kth de
Rham cohomology group and Hk

cs(Y,R) for the kth compactly-supported
de Rham cohomology group of Y . If Y is compact then Hk(Y,R) =
Hk

cs(Y,R). The Betti numbers of Y are bk(Y ) = dimHk(Y,R) and bkcs(Y )
= dimHk

cs(Y,R).
Let Y be a topological space, and Z ⊂ Y a subspace. WriteHk(Y,R)

for the kth real singular homology group of Y , andHk(Y ;Z,R) for the kth
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real singular relative homology group of (Y ;Z). When Y is a manifold
and Z a submanifold we define Hk(Y,R) and Hk(Y ;Z,R) using smooth
simplices, as in [2, §V.5]. Then the pairing between (singular) homology
and (de Rham) cohomology is defined at the chain level by integrating
k-forms over k-simplices.

Suppose X is a compact SL m-fold in M with conical singularities
x1, . . . , xn and cones C1, . . . , Cn, and set X ′ = X \ {x1, . . . , xn} and
Σi = Ci ∩ S2m−1, as in §3.3. Then X ′ is the interior of a compact
manifold X

′ with boundary
∐n
i=1 Σi. Using this we show in [17, §2.4]

that there is a natural long exact sequence

· · ·→Hk
cs(X

′,R)→Hk(X ′,R)→
n⊕
i=1

Hk(Σi,R)→Hk+1
cs (X ′,R)→· · · ,

(16)

and natural isomorphisms

Hk

(
X; {x1, . . . , xn},R

)∗ ∼= Hk
cs(X

′,R) ∼= Hm−k(X ′,R)
∼= Hm−k(X ′,R)∗ for all k � 0

(17)

and Hk
cs(X

′,R) ∼= Hk(X,R)∗ for all k > 1.(18)

The inclusion ι : X → M induces homomorphisms ι∗ : Hk(X,R) →
Hk(M,R).

4. The asymptotic behaviour of X near xi

We now review the work of [17] on the regularity of SL m-folds
with conical singularities. Let M be an almost Calabi-Yau m-fold and
X an SL m-fold in M with conical singularities at x1, . . . , xn, with
identifications υi and cones Ci. We study how quickly X converges to
the cone υ(Ci) in TxiM near xi.

We start in §4.1 by writing X in a special coordinate system near
xi, as the graph of an exact 1-form ηi = dAi on C ′

i = Ci \ {0}. The
special Lagrangian condition reduces to a nonlinear elliptic p.d.e. on
the function Ai. In §4.2 we explain how elliptic regularity of this p.d.e.
implies that Ai and its derivatives decay quickly near xi.

4.1 Lagrangian neighbourhood theorems

In [17, Th. 4.3] we extend the Lagrangian Neighbourhood Theorem, The-
orem 2.4, to special Lagrangian cones.
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Theorem 4.1. Let C be an SL cone in Cm with isolated singularity
at 0, and set Σ = C∩S2m−1. Define ι : Σ×(0,∞) → Cm by ι(σ, r) = rσ,
with image C \ {0}. For σ ∈ Σ, τ ∈ T ∗

σΣ, r ∈ (0,∞) and u ∈ R, let
(σ, r, τ, u) represent the point τ + u dr in T ∗

(σ,r)

(
Σ× (0,∞)

)
. Identify

Σ× (0,∞) with the zero section τ=u=0 in T ∗(Σ× (0,∞)
)
. Define an

action of (0,∞) on T ∗(Σ×(0,∞)
)

by

t : (σ, r, τ, u) �−→ (σ, tr, t2τ, tu) for t ∈ (0,∞),(19)

so t∗(ω̂) = t2ω̂ for ω̂ the canonical symplectic structure on T ∗(Σ×
(0,∞)

)
.

Then there exists an open neighbourhood UC of Σ×(0,∞) in T ∗(Σ×
(0,∞)

)
invariant under (19) given by

UC =
{
(σ, r, τ, u) ∈ T ∗(Σ × (0,∞)

)
:
∣∣(τ, u)∣∣ < 2ζr

}
for some ζ > 0,

(20)

where | . | is calculated using the cone metric ι∗(g′) on Σ × (0,∞), and
an embedding ΦC : UC → Cm with ΦC |Σ×(0,∞) = ι, Φ∗

C(ω′) = ω̂ and
ΦC ◦ t = tΦC for all t > 0, where t acts on UC as in (19) and on Cm

by multiplication.

These UC ,ΦC are a Lagrangian neighbourhood of C ′ in Cm which is
equivariant under the action of dilations. Effectively they are a special
coordinate system on Cm near C ′, in which ω′ assumes a simple form.
In [17, Th. 4.4] we use UCi

,ΦCi
to construct a particular choice of φi in

Definition 3.7.

Theorem 4.2. Let (M,J, ω,Ω), ψ,X, n, xi, υi, Ci,Σi, µi, R,Υi and
ιi be as in Definition 3.7. Theorem 4.1 gives ζ > 0, neighbourhoods UCi

of Σi × (0,∞) in T ∗(Σi × (0,∞)
)

and embeddings ΦCi
: UCi

→ Cm

for i = 1, . . . , n.
Then for sufficiently small R′ ∈ (0, R] there exist unique closed 1-

forms ηi on Σi × (0, R′) for i = 1, . . . , n written ηi(σ, r) = η1
i (σ, r) +

η2
i (σ, r)dr for η1

i (σ, r) ∈ T ∗
σΣi and η2

i (σ, r) ∈ R, and satisfying |ηi(σ, r)|
< ζr and ∣∣∇kηi

∣∣ = O(rµi−1−k) as r → 0 for k = 0, 1,(21)

computing ∇, | . | using the cone metric ι∗i (g
′), such that the following

holds.
Define φi :Σi×(0, R′) →BR by φi(σ, r) =ΦCi

(
σ, r, η1

i (σ, r), η
2
i (σ, r)

)
.

Then Υi ◦ φi : Σi × (0, R′) → M is a diffeomorphism Σi × (0, R′) → Si
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for open sets S1, . . . , Sn in X ′ with S1, . . . , Sn disjoint, and K = X ′ \
(S1 ∪ · · · ∪ Sn) is compact. Also φi satisfies (15), so that R′, φi, Si,K
satisfy Definition 3.7.

We explained in §2.1 that in a Lagrangian neighbourhood U,Φ of
a Lagrangian m-fold N gives a 1-1 correspondence between nearby La-
grangian m-folds Ñ and closed 1-forms on N . Theorem 4.2 uses this
correspondence for the Lagrangian neighbourhoods UCi

,ΦCi
of Theo-

rem 4.1. This is why the 1-forms ηi are closed. We can extend Theo-
rem 2.4 to SL m-folds with conical singularities [17, Th. 4.6], in a way
compatible with Theorems 4.1 and 4.2.

Theorem 4.3. Suppose (M,J, ω,Ω) is an almost Calabi-Yau m-
fold and X a compact SL m-fold in M with conical singularities at
x1, . . . , xn. Let the notation ψ, υi, Ci,Σi, µi, R,Υi and ιi be as in Defi-
nition 3.7, and let ζ, UCi

,ΦCi
, R′, ηi, η1

i , η
2
i , φi, Si and K be as in Theo-

rem 4.2.
Then making R′ smaller if necessary, there exists an open tubular

neighbourhood UX′ ⊂ T ∗X ′ of the zero section X ′ in T ∗X ′, such that
under d(Υi ◦ φi) : T ∗(Σi × (0, R′)

) → T ∗X ′ for i = 1, . . . , n we have

(
d(Υi ◦ φi)

)∗(UX′) =
{
(σ, r, τ, u) ∈ T ∗(Σi × (0, R′)

)
:
∣∣(τ, u)∣∣ < ζr

}
,

(22)

and there exists an embedding ΦX′ : UX′ →M with ΦX′ |X′ = id : X ′ →
X ′ and Φ∗

X′(ω) = ω̂, where ω̂ is the canonical symplectic structure on
T ∗X ′, such that

ΦX′ ◦ d(Υi ◦ φi)(σ, r, τ, u) ≡ Υi ◦ ΦCi

(
σ, r, τ + η1

i (σ, r), u+ η2
i (σ, r)

)(23)

for all i = 1, . . . , n and (σ, r, τ, u) ∈ T ∗(Σi × (0, R′)
)

with
∣∣(τ, u)∣∣ < ζr.

Here |(τ, u)| is computed using the cone metric ι∗i (g
′) on Σi × (0, R′).

This is an essential tool in the deformation theory of §5 and desin-
gularization results of §7, as it gives a special coordinate system on M
near X ′ in which ω assumes a simple form. In these coordinate, defor-
mations or desingularizations of X become graphs of closed 1-forms on
X ′ away from xi, as in §2.1.

4.2 Regularity of X near xi

The results of §4.1 used only the fact that X ′ is Lagrangian in (M,ω).
Our next theorems make essential use of the special Lagrangian condi-
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tion. In [17, §5] we study the asymptotic behaviour of the maps φi of
Theorem 4.2. Combining [17, Th. 5.1], [17, Lem. 4.5] and [17, Th. 5.5]
proves:

Theorem 4.4. In the situation of Theorem 4.2 we have ηi = dAi
for i = 1, . . . , n, where Ai : Σi × (0, R′) → R is given by Ai(σ, r) =∫ r
0 η

2
i (σ, s)ds. Suppose µ′i ∈ (2, 3) with (2, µ′i]∩DΣi

= ∅ for i = 1, . . . , n.
Then ∣∣∇k(φi − ιi)

∣∣ = O(rµ
′
i−1−k),

∣∣∇kηi
∣∣ = O(rµ

′
i−1−k) and∣∣∇kAi

∣∣ = O(rµ
′
i−k) as r → 0 for all k � 0 and i = 1, . . . , n.

(24)

Hence X has conical singularities at xi with cone Ci and rate µ′i, for
all possible rates µ′i allowed by Definition 3.7. Therefore, the definition
of conical singularities is essentially independent of the choice of rate µi.

Theorem 4.4 in effect strengthens the definition of SL m-folds with
conical singularities, Definition 3.7, as it shows that (15) actually implies
the much stronger condition (24) on all derivatives.

The proof works by treating X ′ near xi as a deformation of the SL
cone Ci in Cm. Thus we can apply Proposition 2.13 with N replaced
by Σi × (0, R′) and α = ηi = dAi, and we find that Ai satisfies the
second-order nonlinear p.d.e.

d∗(ψmdAi
)
(σ, r) = Q

(
σ, r, dAi(σ, r),∇2Ai(σ, r)

)
(25)

for (σ, r) ∈ Σi × (0, R′), where Q is a smooth nonlinear function.
When r is small the Q term in (25) is also small and (25) approxi-

mates ∆iAi = 0, where ∆i is the Laplacian on the cone Ci. Therefore
(25) is elliptic for small r. Using known results on the regularity of solu-
tions of nonlinear second-order elliptic p.d.e.s, and a theory of analysis
on weighted Sobolev spaces on manifolds with cylindrical ends devel-
oped by Lockhart and McOwen [22], we can then prove (24).

Our next result [17, Th. 6.8] is an application of geometric measure
theory. For an introduction to the subject, see Morgan [27]. Geometric
measure theory studies measure-theoretic generalizations of submani-
folds called integral currents, which may be very singular, and is partic-
ularly powerful for minimal submanifolds. As from §2 SL m-folds are
minimal submanifolds w.r.t. an appropriate metric, many major results
of geometric measure theory immediately apply to special Lagrangian
integral currents, a very general class of singular SL m-folds with strong
compactness properties.
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Theorem 4.5. Let (M,J, ω,Ω) be an almost Calabi-Yau m-fold and
define ψ : M → (0,∞) as in (4). Let x ∈ M and fix an isomorphism
υ : Cm → TxM with υ∗(ω) = ω′ and υ∗(Ω) = ψ(x)mΩ′, where ω′,Ω′

are as in (2).
Suppose that T is a special Lagrangian integral current in M with

x ∈ T ◦, where T ◦ = suppT \ supp ∂T , and that υ∗(C) is a multiplicity
1 tangent cone to T at x, where C is a rigid special Lagrangian cone in
Cm, in the sense of Definition 3.4. Then T has a conical singularity at
x, in the sense of Definition 3.7.

This is a weakening of Definition 3.7 for rigid cones C. Theorem 4.5
also holds for the larger class of Jacobi integrable SL cones C, [17,
Def. 6.7].

Basically, Theorem 4.5 shows that if a singular SL m-fold T in M is
locally modelled on a rigid SL cone C in only a very weak sense, then it
necessarily satisfies Definition 3.7. One moral of Theorems 4.4 and 4.5
is that, at least for rigid SL cones C, more-or-less any sensible definition
of SL m-folds with conical singularities is equivalent to Definition 3.7.

Theorem 4.5 is proved by applying regularity results of Allard and
Almgren, and Adams and Simon, mildly adapted to the special La-
grangian situation, which roughly say that if a tangent cone Ci to X at
xi has an isolated singularity at 0, is multiplicity 1, and rigid, then X
has a parametrization φi near xi which satisfies (15) for some µi > 2. It
then quickly follows that X has a conical singularity at xi, in the sense
of Definition 3.7.

As discussed in [17, §6.3], one can use other results from geometric
measure theory to argue that for tangent cones C which are not Jacobi
integrable, Definition 3.7 may be too strong, in that there could exist
examples of singular SL m-folds with tangent cone C which are not
covered by Definition 3.7, as the decay conditions (15) are too strict.

5. Moduli of SL m-folds with conical singularities

Next we review the work of [18] on deformation theory for compact
SL m-folds with conical singularities. Following [18, Def. 5.4], we define
the space MX of compact SL m-folds X̂ in M with conical singularities
deforming a fixed SL m-fold X with conical singularities.

Definition 5.1. Let (M,J, ω,Ω) be an almost Calabi-Yau m-fold
and X a compact SL m-fold in M with conical singularities at x1, . . . , xn
with identifications υi : Cm → TxiM and cones C1, . . . , Cn. Define the
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moduli space MX of deformations of X to be the set of X̂ such that:

(i) X̂ is a compact SL m-fold in M with conical singularities at
x̂1, . . . , x̂n with cones C1, . . . , Cn, for some x̂i and identifications
υ̂i : Cm → Tx̂iM .

(ii) There exists a homeomorphism ι̂ : X → X̂ with ι̂(xi) = x̂i for
i = 1, . . . , n such that ι̂|X′ : X ′ → X̂ ′ is a diffeomorphism and ι̂
and ι are isotopic as continuous maps X →M , where ι : X →M
is the inclusion.

In [18, Def. 5.6] we define a topology on MX , and explain why it is
the natural choice. We will not repeat the complicated definition here;
readers are referred to [18, §5] for details.

In [18, Th. 6.10] we describe MX near X, in terms of a smooth map
Φ between the infinitesimal deformation space IX′ and the obstruction
space OX′ .

Theorem 5.2. Suppose (M,J, ω,Ω) is an almost Calabi-Yau m-fold
and X a compact SL m-fold in M with conical singularities at x1, . . . , xn
and cones C1, . . . , Cn. Let MX be the moduli space of deformations of
X as an SL m-fold with conical singularities in M , as in Definition 5.1.
Set X ′ = X \ {x1, . . . , xn}.

Then there exist natural finite-dimensional vector spaces IX′, OX′

with IX′ isomorphic to the image of H1
cs (X ′, R) in H1 (X ′, R) and

dimOX′ =
∑n

i=1 s-ind(Ci), where s-ind(Ci) is the stability index of Def-
inition 3.4. There exists an open neighbourhood U of 0 in IX′, a smooth
map Φ : U → OX′ with Φ(0) = 0, and a map Ξ : {u ∈ U : Φ(u) = 0} →
MX with Ξ(0) = X which is a homeomorphism with an open neigh-
bourhood of X in MX.

Here is a sketch of the proof. For simplicity, consider first the subset
of X̂ ∈ MX which have the same singular points x1, . . . , xn and identi-
fications υ1, . . . , υn as X. If X̂ is C1 close to X in an appropriate sense
then X̂ ′ = ΦX′

(
Γ(α)

)
, where UX′ ,ΦX′ is the Lagrangian neighbourhood

map of Theorem 4.3, and Γ(α) ⊂ UX′ is the graph of a small 1-form α
on X ′.

Since X̂ ′ is Lagrangian, α is closed, as in §2.1. Also, if φi, ηi and
φ̂i, η̂i are as in Theorem 4.2 for X, X̂ then (Υi ◦ φi)∗(α) = η̂i − ηi on
Σi× (0, R′), so applying Theorem 4.4 to X, X̂ shows that if i = 1, . . . , n
and µ′i ∈ (2, 3) with (2, µ′i] ∩ DΣi

= ∅ then∣∣∇kα(x)
∣∣ = O

(
d(x, xi)µ

′
i−1−k) near xi for all k � 0.(26)
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As α is closed it has a cohomology class [α] ∈ H1(X ′,R). Since (26)
implies that α decays quickly near xi, it turns out that α must be exact
near xi. Therefore [α] can be represented by a compactly-supported
form on X ′, and lies in the image of H1

cs(X
′,R) in H1(X ′,R).

Choose a vector space IX′ of compactly-supported 1-forms on X ′

representing the image of H1
cs(X

′,R) in H1(X ′,R). Then we can write
α = β + df , where β ∈ IX′ with [α] = [β] is unique, and f ∈ C∞(X ′) is
unique up to addition of constants. As X̂ ′ is special Lagrangian we find
that f satisfies a second-order nonlinear elliptic p.d.e. similar to (25):

d∗(ψm(β + df)
)
(x) = Q

(
x, (β + df)(x), (∇β + ∇2f)(x)

)
(27)

for x ∈ X ′. The linearization of (27) at β = f = 0 is d∗(ψm(β+ df)
)

=
0.

We study the family of small solutions β, f of (27) for which f has
the decay near xi required by (26). There is a ready-made theory of
analysis on manifolds with cylindrical ends developed by Lockhart and
McOwen [22], which is well-suited to this task. We work on certain
weighted Sobolev spaces Lpk,µ(X ′) of functions on X ′.

By results from [22] it turns out that the operator f �→ d∗(ψmdf)
is a Fredholm map Lpk,µ(X ′) → Lpk−2,µ−2(X

′), with cokernel of dimen-
sion

∑n
i=1NΣi

(2). This cokernel is in effect the obstruction space to
deforming X with xi, υi fixed, as it is the obstruction space to solving
the linearization of (27) in f at β = f = 0.

By varying xi, υi, and allowing f to converge to different constants
on the ends of X ′ rather than zero, we overcome many of these obstruc-
tions. This reduces the dimension of the obstruction space OX′ from∑n

i=1NΣi
(2) to

∑n
i=1 s-ind(Ci). The obstruction map Φ is constructed

using the Implicit Mapping Theorem for Banach spaces. This concludes
our sketch.

If the Ci are stable then OX′ = {0} and we deduce [18, Cor. 6.11]:

Corollary 5.3. Suppose (M,J, ω,Ω) is an almost Calabi-Yau m-
fold and X a compact SL m-fold in M with stable conical singularities,
and let MX and IX′ be as in Theorem 5.2. Then MX is a smooth
manifold of dimension dim IX′.

This has clear similarities with Theorem 2.10. Here is another simple
condition for MX to be a manifold near X, [18, Def. 6.12].

Definition 5.4. Let (M,J, ω,Ω) be an almost Calabi-Yau m-fold
and X a compact SL m-fold in M with conical singularities, and let
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IX′ ,OX′ , U and Φ be as in Theorem 5.2. We call X transverse if the
linear map dΦ|0 : IX′ → OX′ is surjective.

If X is transverse then {u ∈ U : Φ(u) = 0} is a manifold near 0, so
Theorem 5.2 yields [18, Cor. 6.13]:

Corollary 5.5. Suppose (M,J, ω,Ω) is an almost Calabi-Yau m-
fold and X a transverse compact SL m-fold in M with conical singu-
larities, and let MX , IX′ and OX′ be as in Theorem 5.2. Then MX is
near X a smooth manifold of dimension dim IX′ − dimOX′.

In [18, §7] we extend all this to families of almost Calabi-Yau m-
folds. Combining Definitions 2.15 and 5.1, we define moduli spaces in
families:

Definition 5.6. Let (M,J, ω,Ω) be an almost Calabi-Yau m-fold
and X a compact SL m-fold in M with conical singularities at x1, ..., xn.
Suppose

{
(M,Js, ωs,Ωs) : s ∈ F}

is a smooth family of deformations
of (M,J, ω,Ω). Define the moduli space MF

X of deformations of X in
the family F to be the set of pairs (s, X̂) such that:

(i) s ∈ F and X̂ is a compact SLm-fold in (M,Js, ωs,Ωs) with conical
singularities at x̂1, . . . , x̂n with cones C1, . . . , Cn, for some x̂i.

(ii) There exists a homeomorphism ι̂ : X → X̂ with ι̂(xi) = x̂i for
i = 1, . . . , n such that ι̂|X′ : X ′ → X̂ ′ is a diffeomorphism and ι̂
and ι are isotopic as continuous maps X →M , where ι : X →M
is the inclusion.

Define a projection πF : MF
X → F by πF(s, X̂) = s. In [18, Def. 7.5] we

define a natural topology on MF
X , for which πF is continuous.

Here [18, Th. 7.9] is the families analogue of Theorem 5.2.

Theorem 5.7. Suppose (M,J, ω,Ω) is an almost Calabi-Yau m-
fold and X a compact SL m-fold in M with conical singularities at
x1, . . . , xn. Let MX , X

′, IX′ ,OX′ , U,Φ and Ξ be as in Theorem 5.2.
Suppose

{
(M,Js, ωs,Ωs) : s ∈ F}

is a smooth family of deforma-
tions of (M,J, ω,Ω), in the sense of Definition 2.14, such that ι∗(γ) ·
[ωs] = 0 for all γ ∈ H2(X,R) and s ∈ F , where ι : X → M is the
inclusion, and [X] · [Im Ωs] = 0 for all s ∈ F , where [X] ∈ Hm(M,R)
and [Im Ωs] ∈ Hm(M,R). Let MF

X and πF : MF
X → F be as in Defini-

tion 5.6.
Then there exists an open neighbourhood UF of (0, 0) in F × U , a

smooth map ΦF : UF → OX′ with ΦF(0, u) ≡ Φ(u), and a map ΞF :
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{(s, u) ∈ UF : ΦF(s, u) = 0} → MF
X with ΞF(0, u) ≡ (

0,Ξ(u)
)

and πF ◦
ΞF(s, u) ≡ s, which is a homeomorphism with an open neighbourhood of
(0, X) in MF

X.

The conditions ι∗(γ) · [ωs] = 0 for all γ and [X] · [Im Ωs] = 0 are
necessary conditions for the existence of any SL m-fold X̂ with coni-
cal singularities isotopic to X in (M,Js, ωs,Ωs). Here are the families
analogues of Definition 5.4 and Corollaries 5.3 and 5.5, taken from [18,
Def. 7.11 & Cor.s 7.10 & 7.12].

Corollary 5.8. In the situation of Theorem 5.7, suppose X has
stable singularities. Then MF

X is a smooth manifold of dimension d +
dim IX′ and πF : MF

X → F a smooth submersion. For small s ∈ F the
fibre (πF)−1(s) is a nonempty smooth manifold of dimension dim IX′,
with (πF)−1(0) = MX.

Note the similarity of Corollary 5.8 and Theorem 2.16.

Definition 5.9. In the situation of Definition 5.7, we call X trans-
verse in F if the linear map dΦF |(0,0) : Rd × IX′ → OX′ is surjective. If
X is transverse in the sense of Definition 5.4 then it is also transverse
in F .

Corollary 5.10. In the situation of Theorem 5.7, suppose X is
transverse in F . Then MF

X is near (0, X) a smooth manifold of di-
mension d + dim IX′ − dimOX′, and πF : MF

X → F is a smooth map
near (0, X).

Now there are a number of well-known moduli space problems in
geometry where in general moduli spaces are obstructed and singular,
but after a generic perturbation they become smooth manifolds. For in-
stance, moduli spaces of instantons on 4-manifolds can be made smooth
by choosing a generic metric, and similar things hold for Seiberg–Witten
equations, and moduli spaces of pseudo-holomorphic curves in symplec-
tic manifolds.

In [18, §9] we try (but do not quite succeed) to replicate this for
moduli spaces of SL m-folds with conical singularities, by choosing a
generic Kähler metric in a fixed Kähler class. Our first result is [18,
Th. 9.1]:

Theorem 5.11. Let (M,J, ω,Ω) be an almost Calabi-Yau m-fold,
X a compact SL m-fold in M with conical singularities, and IX′ ,OX′

as in Theorem 5.2. Then there exists a smooth family of deformations{
(M,J, ωs,Ω) : s ∈ F}

of (M,J, ω,Ω) with [ωs] = [ω] ∈ H2(M,R) for
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all s ∈ F , such that X is transverse in F in the sense of Definition 5.9,
and d=dimF =dimOX′.

Combining this with Corollary 5.10 we see that MF
X is a manifold

near (0, X) and πF a smooth map near (0, X). It then follows from
Sard’s Theorem that for small generic s ∈ F , the moduli space (πF)−1(s)
of deformations of X in (M,J, ωs,Ω) is a smooth manifold near X.

Thus, given a compact SL m-fold X in (M,J, ω,Ω) with conical
singularities, we can perturb ω a little bit in its Kähler class to ωs, and
the moduli space Ms

X in (M,J, ωs,Ω) will be a smooth manifold near
X. More generally [18, Th. 9.3], if W ⊆ MX is a compact subset then
we can perturb ω to ωs so Ms

X is a smooth manifold near W .
We would like to conclude that by choosing a sufficiently generic

perturbation ωs we can make Ms
X smooth everywhere. This is the idea

of the following conjecture, [18, Conj. 9.5]:

Conjecture 5.12. Let (M,J, ω,Ω) be an almost Calabi-Yau m-
fold, X a compact SL m-fold in M with conical singularities, and IX′ ,
OX′ be as in Theorem 5.2. Then for a second category subset of Kähler
forms ω̌ in the Kähler class of ω, the moduli space M̌X of compact SL
m-folds X̂ with conical singularities in (M,J, ω̌,Ω) isotopic to X is a
manifold of dimension dim IX′ − dimOX′.

If we could treat the moduli spaces MX as compact, say if we had
a good understanding of the compactification MX of MX in §8, then
this would follow from [18, Th. 9.3]. However, without knowing MX is
compact, the condition that M̌X is smooth everywhere is in effect the
intersection of an infinite number of genericity conditions on ω̌, and we
do not know that this intersection is dense (or even nonempty) in the
Kähler class.

Notice that Conjecture 5.12 constrains the topology and cones of SL
m-folds X with conical singularities that can occur in a generic almost
Calabi-Yau m-fold, as we must have dim IX′ � dimOX′ .

6. Asymptotically conical SL m-folds

We now discuss asymptotically conical SL m-folds L in Cm, [17,
Def. 7.1].

Definition 6.1. Let C be a closed SL cone in Cm with isolated
singularity at 0 for m > 2, and let Σ = C ∩ S2m−1, so that Σ is a
compact, nonsingular (m− 1)-manifold, not necessarily connected. Let
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gΣ be the metric on Σ induced by the metric g′ on Cm in (2), and r the
radius function on Cm. Define ι : Σ × (0,∞) → Cm by ι(σ, r) = rσ.
Then the image of ι is C \{0}, and ι∗(g′) = r2gΣ +dr2 is the cone metric
on C \ {0}.

Let L be a closed, nonsingular SLm-fold in Cm. We call L asymptot-
ically conical (AC) with rate λ < 2 and cone C if there exists a compact
subset K ⊂ L and a diffeomorphism ϕ : Σ × (T,∞) → L \K for some
T > 0, such that∣∣∇k(ϕ− ι)

∣∣ = O(rλ−1−k) as r → ∞ for k = 0, 1.(28)

Here ∇, | . | are computed using the cone metric ι∗(g′).

This is very similar to Definition 3.7, and in fact there are strong
parallels between the theories of SL m-folds with conical singularities
and of asymptotically conical SL m-folds. We continue to assume m > 2
throughout.

In §6.1–§6.2 we review the results of [17, §7] on AC SL m-folds.
Section 6.3 covers the deformation theory of AC SL m-folds in Cm fol-
lowing Marshall [23] and Pacini [28], and §6.4 discusses examples of AC
SL m-folds.

6.1 Cohomological invariants of AC SL m-folds

Let L be an AC SL m-fold in Cm with cone C, and set Σ = C ∩S2m−1.
Using the notation of §3.4, as in (16) there is a long exact sequence

· · · → Hk
cs(L,R) → Hk(L,R) → Hk(Σ,R) → Hk+1

cs (L,R) → · · · .(29)

Following [17, Def. 7.2] we define cohomological invariants Y (L), Z(L)
of L.

Definition 6.2. Let L be an AC SL m-fold in Cm with cone C,
and let Σ = C ∩S2m−1. As ω′, Im Ω′ in (2) are closed forms with ω′|L ≡
Im Ω′|L ≡ 0, they define classes in the relative de Rham cohomology
groups Hk(Cm;L,R) for k = 2,m. But for k > 1 we have the exact
sequence

0 = Hk−1(Cm,R) → Hk−1(L,R)
∼=−→Hk(Cm;L,R) → Hk(Cm,R) = 0.

Let Y (L) ∈ H1(Σ,R) be the image of [ω′] in H2(Cm;L,R) ∼= H1(L,R)
under H1(L,R) → H1(Σ, R) in (29), and Z(L) ∈ Hm−1(Σ,R) be the
image of [Im Ω′] in Hm(Cm;L,R) ∼= Hm−1(L,R) under Hm−1(L,R) →
Hm−1(Σ, R) in (29).
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Here are some conditions for Y (L) or Z(L) to be zero, [17, Prop. 7.3]:

Proposition 6.3. Let L be an AC SL m-fold in Cm with cone C
and rate λ, and let Σ = C ∩ S2m−1. If λ < 0 or b1(L) = 0 then
Y (L) = 0. If λ < 2 −m or b0(Σ) = 1 then Z(L) = 0.

6.2 Lagrangian neighbourhood theorems and regularity

Next we give versions of parts of §4.1–§4.2 for AC SL m-folds rather
than SL m-folds with conical singularities. Here are the analogues of
Theorems 4.2 and 4.3, proved in [17, Th.s 7.4 & 7.5].

Theorem 6.4. Let C be an SL cone in Cm with isolated singularity
at 0, and set Σ = C∩S2m−1. Define ι : Σ×(0,∞) → Cm by ι(σ, r) = rσ.
Let ζ, UC ⊂ T ∗(Σ × (0,∞)

)
and ΦC : UC → Cm be as in Theorem 4.1.

Suppose L is an AC SL m-fold in Cm with cone C and rate λ < 2.
Then there exists a compact K ⊂ L and a diffeomorphism ϕ : Σ ×
(T,∞) → L \K for some T > 0 satisfying (28), and a closed 1-form χ
on Σ× (T,∞) written χ(σ, r) = χ1(σ, r)+χ2(σ, r)dr for χ1(σ, r) ∈ T ∗

σΣ
and χ2(σ, r) ∈ R, satisfying∣∣χ(σ, r)

∣∣ < ζr, ϕ(σ, r) ≡ ΦC

(
σ, r, χ1(σ, r), χ2(σ, r)

)
and

∣∣∇kχ
∣∣ = O(rλ−1−k) as r → ∞ for k = 0, 1,

(30)

computing ∇, | . | using the cone metric ι∗(g′).

Theorem 6.5. Suppose L is an AC SL m-fold in Cm with cone
C. Let Σ, ι, ζ, UC ,ΦC ,K, T, ϕ, χ, χ

1, χ2 be as in Theorem 6.4. Then
making T,K larger if necessary, there exists an open tubular neigh-
bourhood UL ⊂ T ∗L of the zero section L in T ∗L, such that under
dϕ : T ∗(Σ × (T,∞)

) → T ∗L we have

(dϕ)∗(UL) =
{
(σ, r, τ, u) ∈ T ∗(Σ × (T,∞)

)
:
∣∣(τ, u)∣∣ < ζr

}
,(31)

and there exists an embedding ΦL : UL → Cm with ΦL|L = id : L → L
and Φ∗

L(ω′) = ω̂, where ω̂ is the canonical symplectic structure on T ∗L,
such that

ΦL ◦ dϕ(σ, r, τ, u) ≡ ΦC

(
σ, r, τ + χ1(σ, r), u+ χ2(σ, r)

)
(32)

for all (σ, r, τ, u) ∈ T ∗(Σ× (T,∞)
)

with |(τ, u)| < ζr, computing | . |
using ι∗(g′).



306 d. joyce

Combining [17, Prop. 7.6] and [17, Th.s 7.7 & 7.11] gives an analogue
of Theorem 4.4, on the regularity of L near infinity in Cm. As in [17,
Th. 7.11], the theorem can be strengthened when 0 � λ < min

(DΣ ∩
(0,∞)

)
.

Theorem 6.6. In Theorem 6.4 we have [χ] = Y (L) in H1
(
Σ ×

(T,∞),R
) ∼= H1(Σ,R), where Y (L) is as in Definition 6.2. Let γ be

the unique 1-form on Σ with dγ = d∗γ = 0 and [γ] = Y (L) ∈ H1(Σ,R),
which exists by Hodge theory. Then χ = π∗(γ) + dE, where π : Σ ×
(T,∞) → Σ is the projection and E ∈ C∞(

Σ × (T,∞)
)
.

If either λ = λ′, or λ, λ′ lie in the same connected component of
R \ DΣ, then L is an AC SL m-fold with rate λ′ and∣∣∇k(ϕ− ι)

∣∣ = O(rλ
′−1−k),

∣∣∇kχ
∣∣ = O(rλ

′−1−k),(33) ∣∣∇k+1E
∣∣ = O(rλ

′−1−k) for all k � 0, and

|E| =

{
O(rλ

′
), λ′ �= 0,

O
(| log r|), λ′ = 0.

Here ∇, | . | are computed using the cone metric ι∗(g′) on Σ × (T,∞).

6.3 Moduli spaces of AC SL m-folds

The deformation theory of asymptotically conical SL m-folds in Cm has
been studied independently by Pacini [28] and Marshall [23]. Pacini’s
results are earlier, but Marshall’s are more complete.

Definition 6.7. Suppose L is an asymptotically conical SL m-fold
in Cm with cone C and rate λ < 2, as in Definition 6.1. Define the
moduli space Mλ

L of deformations of L with rate λ to be the set of AC
SL m-folds L̂ in Cm with cone C and rate λ, such that L̂ is diffeomorphic
to L and isotopic to L as an asymptotically conical submanifold of Cm.
One can define a natural topology on Mλ

L, in a similar way to the conical
singularities case of [18, Def. 5.6].

Note that if L is an AC SL m-fold with rate λ, then it is also an
AC SL m-fold with rate λ′ for any λ′ ∈ [λ, 2). Thus we have defined
a 1-parameter family of moduli spaces Mλ′

L for L, and not just one.
Since we did not impose any condition on λ in Definition 6.1 analogous
to (14) in the conical singularities case, it turns out that Mλ

L depends
nontrivially on λ.

The following result can be deduced from Marshall [23, Th. 6.2.15]
and [23, Table 5.1]. (See also Pacini [28, Th. 2 & Th. 3].) It implies
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conjectures by the author in [9, Conj. 2.12] and [16, §10.2].

Theorem 6.8. Let L be an asymptotically conical SL m-fold in Cm

with cone C and rate λ < 2, and let Mλ
L be as in Definition 6.7. Set

Σ = C ∩ S2m−1, and let DΣ, NΣ be as in §3.1 and bk(L), bkcs(L) as in
§3.4. Then:

(a) If λ ∈ (0, 2) \ DΣ then Mλ
L is a manifold with

dimMλ
L = b1(L) − b0(L) +NΣ(λ).(34)

Note that if 0 < λ < min
(DΣ ∩ (0,∞)

)
then NΣ(λ) = b0(Σ).

(b) If λ ∈ (2−m, 0) then Mλ
L is a manifold of dimension b1cs(L) =

bm−1(L).

This is the analogue of Theorems 2.10 and 5.2 for AC SL m-folds. If
λ ∈ (2−m, 2)\DΣ then the deformation theory for L with rate λ is unob-
structed and Mλ

L is a smooth manifold with a given dimension. This is
similar to the case of nonsingular compact SL m-folds in Theorem 2.10,
but different to the conical singularities case in Theorem 5.2.

6.4 Examples

Examples of AC SL m-folds L are constructed by Harvey and Lawson
[5, §III.3], the author [10, 11, 12, 14], and others. Nearly all the known
examples (up to translations) have minimum rate λ either 0 or 2 −
m, which are topologically significant values by Proposition 6.3. For
instance, all examples in [11] have λ = 0, and [10, Th. 6.4] constructs
AC SL m-folds with λ = 2−m in Cm from any SL cone C in Cm. The
only explicit, nontrivial examples known to the author with λ �= 0, 2−m
are in [12, Th. 11.6], and have λ = 3

2 .
We shall give three families of examples of AC SL m-folds L in

Cm explicitly. The first family is adapted from Harvey and Lawson [5,
§III.3.A].

Example 6.9. Let CmHL be the SL cone in Cm of Example 3.5.
We shall define a family of AC SL m-folds in Cm with cone CmHL. Let
a1, . . . , am � 0 with exactly two of the aj zero and the rest positive.
Write a = (a1, . . . , am), and define

(35) La
HL =

{
(z1, . . . , zm) ∈ Cm : im+1z1 · · · zm ∈ [0,∞),

|z1|2 − a1 = · · · = |zm|2 − am
}
.
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Then La
HL is an AC SL m-fold in Cm diffeomorphic to Tm−2 ×R2, with

cone CmHL and rate 0. It is invariant under the U(1)m−1 group (10). It is
surprising that equations of the form (35) should define a nonsingular
submanifold of Cm without boundary, but in fact they do.

Now suppose for simplicity that a1, . . . , am−2 > 0 and am−1 = am =
0. As Σm

HL
∼= Tm−1 we have H1(Σm

HL,R) ∼= Rm−1, and calculation shows
that Y (La

HL) = (πa1, . . . , πam−2, 0) ∈ Rm−1 in the natural coordinates.
Since La

HL
∼= Tm−2×R2 we have H1(La

HL,R) = Rm−2, and Y (La
HL) lies in

the image Rm−2 ⊂ Rm−1 of H1(La
HL,R) in H1(Σm

HL,R), as in Definition
6.2. As b0(Σm

HL) = 1, Proposition 6.3 shows that Z(La
HL) = 0.

Take C = CmHL, Σ = Σm
HL and L = La

HL in Theorem 6.8, and let
0 < λ < min

(DΣ ∩ (0,∞)
)
. Then b1(L) = m − 2, b0(L) = 1 and

NΣ(λ) = b0(Σ) = 1, so part (a) of Theorem 6.8 shows that dimMλ
L =

m − 2. This is consistent with the fact that L depends on m − 2 real
parameters a1, . . . , am−2 > 0.

The family of all La
HL has 1

2m(m−1) connected components, indexed
by which two of a1, . . . , am are zero. Using the theory of §7, these can
give many topologically distinct ways to desingularize SL m-folds with
conical singularities with these cones.

Our second family, from [10, Ex. 9.4], was chosen for its simplicity.

Example 6.10. Let m, a1, . . . , am, k and La1,...,am
0 be as in Exam-

ple 3.6. For 0 �= c ∈ R define

(36) La1,...,am
c =

{(
ieia1θx1, eia2θx2, . . . , eiamθxm

)
: θ ∈ [0, 2π),

x1, . . . , xm ∈ R, a1x
2
1 + · · · + amx

2
m = c

}
.

Then La1,...,am
c is an AC SL m-fold in Cm with rate 0 and cone La1,...,am

0 .
It is diffeomorphic as an immersed SL m-fold to (Sk−1×Rm−k×S1)/Z2

if c > 0, and to (Rk × Sm−k−1 × S1)/Z2 if c < 0.

Our third family was first found by Lawlor [21], made more explicit
by Harvey [4, p. 139–140], and discussed from a different point of view
by the author in [11, §5.4(b)]. Our treatment is based on that of Harvey.

Example 6.11. Let m > 2 and a1, . . . , am > 0, and define polyno-
mials p, P by

p(x) = (1 + a1x
2) · · · (1 + amx

2) − 1 and P (x) =
p(x)
x2

.
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Define real numbers φ1, . . . , φm and A by

φk = ak

∫ ∞

−∞
dx

(1 + akx2)
√
P (x)

and A = ωm(a1 · · · am)−1/2,(37)

where ωm is the volume of the unit sphere in Rm. Clearly φk, A > 0.
But writing φ1 + · · · + φm as one integral gives

φ1 + · · · + φm =
∫ ∞

0

p′(x)dx
(p(x) + 1)

√
p(x)

= 2
∫ ∞

0

dw
w2 + 1

= π,

making the substitution w =
√
p(x). So φk ∈ (0, π) and φ1 + · · ·+φm =

π. This yields a 1-1 correspondence between m-tuples (a1, . . . , am) with
ak > 0, and (m+1)-tuples (φ1, . . . , φm, A) with φk ∈ (0, π), φ1 + · · · +
φm = π and A > 0.

For k = 1, . . . ,m and y ∈ R, define a function zk : R → C by

zk(y) = eiψk(y)
√
a−1
k + y2, where

ψk(y) = ak

∫ y

−∞
dx

(1 + akx2)
√
P (x)

.

Now write φ = (φ1, . . . , φn), and define a submanifold Lφ,A in Cm by

Lφ,A =
{
(z1(y)x1, . . . , zm(y)xm) : y ∈ R, xk ∈ R, x2

1 + · · · + x2
m = 1

}
.

(38)

Then Lφ,A is closed, embedded, and diffeomorphic to Sm−1 × R,
and Harvey [4, Th. 7.78] shows that Lφ,A is special Lagrangian. One
can also show that Lφ,A is asymptotically conical, with rate 2 −m and
cone the union Π0 ∪ Πφ of two special Lagrangian m-planes Π0,Πφ in
Cm given by

Π0 =
{
(x1, . . . , xm) : xj ∈ R

}
, Πφ =

{
(eiφ1x1, . . . , eiφmxm) : xj ∈ R

}
.

(39)

As λ = 2 − m < 0 we have Y (Lφ,A) = 0 by Proposition 6.3.
Now Lφ,A ∼= Sm−1 × R so that Hm−1(Lφ,A,R) ∼= R, and Σ = (Π0 ∪
Πφ) ∩ S2m−1 is the disjoint union of two unit (m−1)-spheres Sm−1,
so Hm−1(Σ,R) ∼= R2. The image of Hm−1(Lφ,A,R) in Hm−1(Σ,R) is{
(x,−x) : x ∈ R

}
in the natural coordinates. Calculation shows that

Z(Lφ,A) = (A,−A) ∈ Hm−1(Σ,R), which is why we defined A this way
in (37).
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Apply Theorem 6.8 with L = Lφ,A and λ ∈ (2 − m, 0). As L ∼=
Sm−1 × R we have b1cs(L) = 1, so part (b) of Theorem 6.8 shows that
dimMλ

L = 1. This is consistent with the fact that when φ is fixed, Lφ,A

depends on one real parameter A > 0. Here φ is fixed in Mλ
L as the

cone C = Π0 ∪ Πφ of L depends on φ, and all L̂ ∈ Mλ
L have the same

cone C, by definition.

7. Desingularizing singular SL m-folds

We now discuss the work of [19, 20] on desingularizing compact
SL m-folds with conical singularities. Here is the basic idea. Let
(M,J, ω,Ω) be an almost Calabi-Yau m-fold, and X a compact SL m-
fold in M with conical singularities x1, . . . , xn and cones C1, . . . , Cn.
Suppose L1, . . . , Ln are AC SL m-folds in Cm with the same cones
C1, . . . , Cn as X.

If t > 0 then tLi = {tx : x ∈ Li} is also an AC SL m-fold with
cone Ci. We construct a 1-parameter family of compact, nonsingular
Lagrangian m-folds N t in (M,ω) for t ∈ (0, δ) by gluing tLi into X at
xi, using a partition of unity.

When t is small, N t is close to special Lagrangian (its phase is nearly
constant), but also close to singular (it has large curvature and small
injectivity radius). We prove using analysis that for small t ∈ (0, δ)
we can deform N t to a special Lagrangian m-fold Ñ t in M , using a
small Hamiltonian deformation. The proof involves a delicate balancing
act, showing that the advantage of being close to special Lagrangian
outweighs the disadvantage of being nearly singular.

Doing this in full generality is rather complex. There are two kinds
of obstructions to the existence of Ñ t. Firstly, if Y (Li) �= 0 then N t

may not exist as a Lagrangian m-fold. Secondly, if X ′ is not connected
then we may not be able to deform N t to a special Lagrangian m-fold
Ñ t because of problems with small eigenvalues of the Laplacian ∆ on
N t. In each case, Ñ t exists for small t if the Y (Li) or Z(Li) satisfy an
equation.

We also extend the results to desingularization in families of almost
Calabi-Yau m-folds (M,Js, ωs,Ωs). The cohomology classes [ωs], [Im Ωs]
contribute to the obstruction equations in Y (Li) and Z(Li) for the ex-
istence of Ñ t. Thus, a singular SL m-fold X which has no desingu-
larizations Ñ t in (M,J, ω,Ω) can still admit desingularizations Ñ s,t in
(M,Js, ωs,Ωs) for small s �= 0.
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We begin in §7.1 by explaining desingularization in the simplest case,
in one almost Calabi-Yau m-fold (M,J, ω,Ω) when Y (Li) = 0 and X ′

is connected. Section 7.2 extends this to X ′ not connected, and §7.3
to Y (Li) �= 0, introducing the two kinds of obstructions. Section 7.4
discusses desingularization in families (M,Js, ωs,Ωs).

7.1 Desingularization in the simplest case

Our simplest desingularization result is [19, Th. 6.13].

Theorem 7.1. Suppose (M,J, ω,Ω) is an almost Calabi-Yau m-fold
and X a compact SL m-fold in M with conical singularities at x1, . . . , xn
and cones C1, . . . , Cn. Let L1, . . . , Ln be asymptotically conical SL m-
folds in Cm with cones C1, . . . , Cn and rates λ1, . . . , λn. Suppose λi < 0
for i = 1, . . . , n, and X ′ = X \ {x1, . . . , xn} is connected.

Then there exists ε > 0 and a smooth family
{
Ñ t : t ∈ (0, ε]

}
of

compact, nonsingular SL m-folds in (M,J, ω,Ω), such that Ñ t is con-
structed by gluing tLi into X at xi for i = 1, . . . , n. In the sense of
currents, Ñ t→X as t→0.

Here is a sketch of the proof, divided into seven steps.

Step 1. Apply Theorem 4.1 to Ci for i = 1, . . . , n, and Theorem 4.3 to X,
and Theorem 6.5 to Li for i = 1, . . . , n. This gives Lagrangian
neighbourhoods UCi

,ΦCi
for Ci, and UX′ ,ΦX′ for X ′, and ULi

,ΦLi

for Li.
Moreover UX′ ,ΦX′ and UCi

,ΦCi
are related via Υi and an exact

1-form ηi on Σi × (0, R′) from Theorem 4.2, and ULi
,ΦLi

and
UCi

,ΦCi
are related via an exact 1-form χi on Σi × (T,∞) from

Theorem 6.4.
Step 2. Let t > 0 be small. We define a nonsingular Lagrangian m-fold

N t in (M,ω), roughly as follows. Choose τ ∈ (0, 1) satisfying
certain conditions. At distance at least 2tτ from x1, . . . , xn we
define N t to be X ′. At distance up to tτ from xi we define N t

to be Υi(tLi ∩BR).
Between distances tτ and 2tτ from xi we define N t to be a La-
grangian annulus Σi × (tτ , 2tτ ) interpolating between X ′ and
Υi(tLi ∩ BR), using the Lagrangian neighbourhoods UCi

,ΦCi
,

UX′ ,ΦX′ and ULi
,ΦLi

. This is equivalent to choosing a closed 1-
form ξti(σ, r) on Σi× [tτ , 2tτ ] interpolating between t2χi(σ, t−1r)
at r = tτ and ηi(σ, r) at r = 2tτ .
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Step 3. Let eiθ
t

be the phase function of N t, so that N t is special La-
grangian if sin θt ≡ 0. We bound various norms of ψm sin θt in
terms of powers of t. These bounds imply that N t is close to
special Lagrangian when t is small. We also estimate other ge-
ometrical quantities, like the curvature and injectivity radius of
N t, in terms of powers of t.

Step 4. We glue together the Lagrangian neighbourhoods UCi
,ΦCi

, UX′ ,
ΦX′ and ULi

,ΦLi
to define a Lagrangian neighbourhood UNt ,ΦNt

for N t.
Step 5. Let f ∈ C∞(N t). Then df is a 1-form on N t, and the graph

Γ(df) is a submanifold of T ∗N t. If f is small in C1 then Γ(df) ⊂
UNt ⊂ T ∗N t, and then Ñ t = ΦNt

(
Γ(df)

)
is a nonsingular La-

grangian m-fold in (M,ω). Every small Hamiltonian deforma-
tion of N t can be written in this way.
We show that Ñ t is special Lagrangian if and only if

d∗(ψm cos θtdf)(x) = ψm sin θt +Qt
(
x,df(x),∇2f(x)

)
(40)

for all x ∈ N t, as in (25), (27), whereQt is smooth andQt(x, y, z)
= O

(
t−2|y|2 + |z|2) for small y, z.

Step 6. Working in the Sobolev space L2m
3 (N t), we show that the oper-

ator

P t :
{
u∈L2m

3 (N t) :
∫
Nt u dV t=0

}→{
v∈L2m

1 (N t) :
∫
Nt v dV t=0

}
given by P t(u) = d∗(ψm cos θtdu)

(41)

has an inverse (P t)−1 which is (in a rather weak sense) bounded
independently of t. The restriction to u with

∫
Nt u dV t = 0 is

necessary as P t(1) = 0, so P t is not invertible on spaces includ-
ing 1.

Step 7. We inductively construct a sequence (fk)∞k=0 in L2m
3 (N t) with

f0 = 0,
∫
Nt fk dV t = 0 and fk = (P t)−1

(
ψm sin θt+Qt(x,dfk−1,

∇2dfk−1)
)
, so

d∗(ψm cos θtdfk) ≡ ψm sin θt +Qt
(
x,dfk−1(x),∇2fk−1(x)

)
.

(42)

Using the bounds on ψm sin θt from Step 3 and on (P t)−1 from
Step 6 we show that (fk)∞k=0 exists and converges in L2m

3 (N t)
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for small t. The limit f satisfies (40), and is smooth by elliptic
regularity. Then Ñ t = ΦNt

(
Γ(df)

)
is the SL m-fold we seek.

The condition λi < 0 in Theorem 6.3 is there for two reasons. Firstly,
it forces Y (Li) = 0 by Proposition 6.3, and therefore χi is an exact 1-
form on Σi × (T,∞), since [χi] = Y (Li) ∈ H1(Σi,R) by Theorem 6.6.
This exactness makes it possible to define the closed 1-form ξti in Step 2.

Secondly, we need λi < 0 so that the contributions to ψm sin θt from
tapering χi off to zero on the annulus Σi× [tτ , 2tτ ] are small enough for
the method to work. If λi > 0 then ‖ψm sin θt‖L2 is too large, and we
cannot prove that the sequence (fk)∞k=0 in Step 7 converges.

7.2 Desingularization when X ′ is not connected

In [19, Th. 7.10] we extend Theorem 7.1 to X ′ not connected.

Theorem 7.2. Suppose (M,J, ω,Ω) is an almost Calabi-Yau m-
fold and X a compact SL m-fold in M with conical singularities at
x1, . . . , xn and cones C1, . . . , Cn. Define ψ : M → (0,∞) as in (4).
Let L1, . . . , Ln be asymptotically conical SL m-folds in Cm with cones
C1, . . . , Cn and rates λ1, . . . , λn. Suppose λi < 0 for i = 1, . . . , n. Write
X ′ = X \ {x1, . . . , xn} and Σi = Ci ∩ S2m−1.

Set q = b0(X ′), and let X ′
1, . . . , X

′
q be the connected components of

X ′. For i = 1, . . . , n let li = b0(Σi), and let Σ1
i , . . . ,Σ

li
i be the connected

components of Σi. Define k(i, j) = 1, . . . , q by Υi ◦ ϕi
(
Σj
i × (0, R′)

) ⊂
X ′
k(i,j) for i = 1, . . . , n and j = 1, . . . , li. Suppose that∑

1�i�n, 1�j�li:
k(i,j)=k

ψ(xi)mZ(Li) · [Σj
i ] = 0 for all k = 1, . . . , q.(43)

Suppose also that the compact m-manifold N obtained by gluing Li
into X ′ at xi for i = 1, . . . , n is connected. A sufficient condition for
this to hold is that X and Li for i = 1, . . . , n are connected.

Then there exists ε > 0 and a smooth family
{
Ñ t : t ∈ (0, ε]

}
of

compact, nonsingular SL m-folds in (M,J, ω,Ω) diffeomorphic to N ,
such that Ñ t is constructed by gluing tLi into X at xi for i = 1, . . . , n.
In the sense of currents in geometric measure theory, Ñ t → X as t→ 0.

The new issues when X ′ is not connected occur in Steps 6 and 7 of
§7.1. Suppose b0(X ′) = q > 1, so that X ′ has q connected components
X ′

1, . . . , X
′
q. Then the operator P t of (41) turns out to have q− 1 small
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positive eigenvalues λ1, . . . , λq−1 of size O(tm−2). The corresponding
eigenfunctions w1, . . . , wq−1 are approximately constant on the parts of
N t coming from each X ′

k, and change rapidly on the ‘small necks’ in
between.

As (P t)−1wk = λ−1
k wk and λk = O(tm−2) we see that (P t)−1 is

O(t2−m) on 〈w1, . . . , wq−1〉, and so cannot be bounded independently of
t. To repair the proof, roughly speaking we set W t = 〈1, w1, . . . , wq−1〉,
and let (W t)⊥ be the orthogonal subspace to W t in L2(N t). Then P t

maps

P t : L2m
3 (N t) ∩ (W t)⊥ → L2m

1 (N t) ∩ (W t)⊥(44)

and has an inverse (P t)−1 bounded independently of t on these spaces,
in a weak sense. (Actually, we do something more complicated than this,
in which W t is an approximation to 〈1, w1, . . . , wq−1〉 defined explicitly
in terms of bounded harmonic functions on L1, . . . , Ln.)

In Step 7, the sequence (fk)∞k=0 is constructed as before. The bound
on the inverse of (44) can be used to inductively bound the components
of fk in (W t)⊥. But we still need to bound the components πWt(fk)
of fk in W t. Since f0 = 0 and Q(x, 0, 0) = 0, Equation (42) gives
P tf1 = ψm sin θt, so that f1 = (P t)−1(ψm sin θt). It turns out that we
need πWt(f1) = o(t2) for fk to remain small as k → ∞.

As (P t)−1 = O(t2−m) on 〈w1, . . . , wq−1〉, this holds if πWt(ψm sin θt)
= o(tm). Calculation shows that the dominant term in πWt(ψm sin θt)
is O(tm), and proportional to the left-hand side of (43). Therefore
πWt(ψm sin θt) = o(tm) if and only if (43) holds, and this is the condition
for the sequence (fk)∞k=0 to remain bounded and converge to a small
solution of (40).

If X ′ is connected, so that q = 1, then k(i, j) ≡ 1 and (43) becomes

n∑
i=1

ψ(xi)mZ(Li) ·
li∑
j=1

[Σj
i ] = 0.

But
∑li

j=1[Σ
j
i ] = [Σi], and Z(Li) · [Σi] = 0 as Z(Li) is the image of

a class in Hm−1(Li,R), and Σi is the boundary of Li. Therefore (43)
holds automatically when X ′ is connected, and Theorem 7.2 reduces to
Theorem 7.1 in this case.

7.3 Desingularization when Y (Li) �= 0

In [20, Th. 6.13] we extend Theorem 7.1 to λi � 0, allowing Y (Li) �= 0.
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Theorem 7.3. Let (M,J, ω,Ω) be an almost Calabi-Yau m-fold
for 2 <m< 6, and X a compact SL m-fold in M with conical singu-
larities at x1, . . . , xn and cones C1, . . . , Cn. Let L1, . . . , Ln be asymp-
totically conical SL m-folds in Cm with cones C1, . . . , Cn and rates
λ1, . . . , λn. Suppose that λi � 0 for i = 1, . . . , n, that X ′ = X \
{x1, . . . , xn} is connected, and that there exists � ∈ H1(X ′,R) such
that

(
Y (L1), . . . , Y (Ln)

)
is the image of � under the map H1(X ′,R) →⊕n

i=1H
1(Σi,R) in (16), where Σi = Ci ∩ S2m−1.

Then there exists ε > 0 and a smooth family
{
Ñ t : t ∈ (0, ε]

}
of

compact, nonsingular SL m-folds in (M,J, ω,Ω), with Ñ t constructed
by gluing tLi into X at xi for i = 1, . . . , n. In the sense of currents,
Ñ t→X as t→0.

There is also [20, Th. 6.12] an analogue of Theorem 7.2, combining
the modifications of Theorems 7.2 and 7.3, but for brevity we will not
give it.

The new issues when Y (Li) �= 0 come mostly in Step 2 of §7.1. As
[χi] = Y (Li) ∈ H1(Σi,R) by Theorem 6.6, if Y (Li) �= 0 then χi is no
longer an exact form. Therefore, in Step 2 we cannot choose a closed
1-form ξti on Σi × [tτ , 2tτ ] interpolating between t2χi at r = tτ and ηi
at r = 2tτ , since t2χi and ηi have different cohomology classes.

Thus we cannot choose N t to coincide with X away from xi, and
work locally near xi, as we did in §7.1. Instead, we define N t away
from xi to be ΦX′

(
Γ(t2α)

)
, where α is a 1-form on X ′ satisfying dα =

d∗(ψmα) = 0, and |α| = O(r−1) near xi. We show using analysis on
manifolds with ends that there is a unique such 1-form α with [α] = �
for each � ∈ H1(X ′,R).

To glue Υi(tLi ∩ BR) and ΦX′
(
Γ(t2α)

)
together as Lagrangian m-

folds the cohomology classes of t2χi and t2α must agree in H1(Σi,R).
This holds if the image of � under the mapH1(X ′,R) → ⊕n

i=1H
1(Σi,R)

is
(
Y (L1), . . . , Y (Ln)

)
, as in the theorem. Thus, the existence of �

with this property is a necessary condition for the existence of N t as a
Lagrangian m-fold in (M,ω).

After constructing N t we need to estimate norms of ψm sin θt in
Step 3. The condition d∗(ψmα) = 0 means that linear terms in t2α con-
tribute 0 to ψm sin θt. However, quadratic terms in t2α contribute O(t4)
to ψm sin θt on most of N t, so all norms of ψm sin θt are at least O(t4).

Now to show that (fk)∞k=0 converges in Step 7 we need ‖ψm sin θt‖L2

= o(t1+m/2) for small t. As ‖ψm sin θt‖L2 has O(t4) contributions, this
is possible only if m < 6. Therefore we have to restrict to complex
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dimension m < 6 when Y (Li) �= 0 for this method of proof to work.

7.4 Desingularization in families (M, Js, ωs, Ωs)

Next we explain the work of [20, §7–§8] on desingularization in families
of almost Calabi-Yau m-folds (M,Js, ωs,Ωs). The analogue of Theo-
rem 7.1 is [20, Th. 7.15], but for brevity we will not give it. Here [20,
Th. 7.14] is the families analogue of Theorem 7.2.

Theorem 7.4. Suppose (M,J, ω,Ω) is an almost Calabi-Yau m-
fold and X a compact SL m-fold in M with conical singularities at
x1, . . . , xn and cones C1, . . . , Cn. Define ψ : M → (0,∞) as in (4).
Let L1, . . . , Ln be asymptotically conical SL m-folds in Cm with cones
C1, . . . , Cn and rates λ1, . . . , λn. Suppose λi < 0 for i = 1, . . . , n. Write
X ′ = X \ {x1, . . . , xn} and Σi = Ci ∩ S2m−1.

Set q = b0(X ′), and let X ′
1, . . . , X

′
q be the connected components of

X ′. For i = 1, . . . , n let li = b0(Σi), and let Σ1
i , . . . ,Σ

li
i be the connected

components of Σi. Define k(i, j) = 1, . . . , q by Υi ◦ ϕi
(
Σj
i × (0, R′)

) ⊂
X ′
k(i,j) for i = 1, . . . , n and j = 1, . . . , li. Suppose the compact m-

manifold N obtained by gluing Li into X ′ at xi for i = 1, . . . , n is
connected. A sufficient condition for this to hold is that X and Li for
i = 1, . . . , n are connected.

Suppose
{
(M,Js, ωs,Ωs) : s ∈ F}

is a smooth family of deforma-
tions of (M,J, ω,Ω), with base space F ⊂ Rd. Let ι∗ : H2(X,R) →
H2(M,R) be the natural inclusion. Suppose that

[ωs] · ι∗(γ) = 0 for all s ∈ F and γ ∈ H2(X,R).(45)

Define G ⊆ F × (0, 1) to be the subset of (s, t) ∈ F × (0, 1) with[
Im Ωs

] · [X ′
k] = tm

∑
1�i�n, 1�j�li:

k(i,j)=k

ψ(xi)mZ(Li) · [Σj
i ] for k = 1, . . . , q.(46)

Then there exist ε ∈ (0, 1) and κ > 1 and a smooth family{
Ñ s,t : (s, t) ∈ G, t ∈ (0, ε], |s| � tκ+m/2

}
,(47)

such that Ñ s,t is a compact, nonsingular SL m-fold in (M,Js, ωs,Ωs)
diffeomorphic to N , which is constructed by gluing tLi into X at xi
for i = 1, . . . , n. In the sense of currents in geometric measure theory,
Ñ s,t → X as s, t→ 0.
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To prove it we modify Steps 1–7 of §7.1 in the following ways. In
Step 1 we generalize Theorem 4.3 to give smooth families of maps Υs

i :
BR → M and Φs

X′ : UX′ → M for small s ∈ F with (Υs
i )

∗(ωs) = ω′,
(Φs

X′)∗(ωs) = ω̂ and Υ0
i = Υi, Φ0

X′ = ΦX′ . Using these, in Step 2 we
define a smooth family of Lagrangian m-folds N s,t in (M,ωs) for small
s ∈ F and t ∈ (0, δ). In the rest of the proof we make everything depend
on s ∈ F , and deform N s,t to an SL m-fold Ñ s,t in (M,Js, ωs,Ωs) for
small s ∈ F and t ∈ (0, δ).

To allowX ′ not connected, as in §7.2, we introduce a vector subspace
W s,t ⊂ C∞(N s,t), and we need πWs,t(ψm sin θs,t) = o(tm). The domi-
nant terms in πWs,t(ψm sin θs,t) are of two kinds: O(tm) terms involving
the Z(Li), as in §7.2, and also terms in

[
Im Ωs

] · [X ′
k]. Equation (46)

requires these two terms to cancel, so that πWs,t(ψm sin θs,t) = o(tm),
and the rest of the proof works.

Here [20, Th. 8.10] is the families analogue of Theorem 7.3.

Theorem 7.5. Let (M,J, ω,Ω) be an almost Calabi-Yau m-fold for
2<m<6, and X a compact SL m-fold in M with conical singularities
at x1, . . . , xn and cones C1, . . . , Cn. Let L1, . . . , Ln be asymptotically
conical SL m-folds in Cm with cones C1, . . . , Cn and rates λ1, . . . , λn.
Suppose λi � 0 for i = 1, . . . , n, and X ′ = X \{x1, . . . , xn} is connected.

Suppose
{
(M,Js, ωs,Ωs) : s ∈ F}

is a smooth family of deforma-
tions of (M,J, ω,Ω), with base space F ⊂ Rd, satisfying

[Im Ωs] · [X] = 0 for all s ∈ F , where [X] ∈ Hm(M,R).(48)

Define � ∈ H2
cs(X

′,R) to be the image of
(
Y (L1), . . . , Y (Ln)

)
under the

map
⊕n

i=1H
1(Σi,R) → H2

cs(X
′,R) in (16). Define G ⊆ F × (0, 1) to be

G =
{
(s, t) ∈ F × (0, 1) : [ωs] · ι∗(γ) = t2� · γ for all γ ∈ H2(X,R)

}
,

(49)

where ι∗ : H2(X,R) → H2(M,R) is the natural inclusion.
Then there exist ε ∈ (0, 1), κ > 1 and ϑ ∈ (0, 2) and a smooth family{

Ñ s,t : (s, t) ∈ G, t ∈ (0, ε], |s| � tϑ
}
,(50)

such that Ñ s,t is a compact, nonsingular SL m-fold in (M,Js, ωs,Ωs),
which is constructed by gluing tLi into X at xi for i = 1, . . . , n. In the
sense of currents in geometric measure theory, Ñ s,t → X as s, t→ 0.

In §7.3 we saw that when Y (Li) �= 0 there is a topological obstruction
to defining N t as a Lagrangian m-fold in (M,ω), so that N t exists
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only if the Y (Li) satisfy an equation. In this case there is also an
obstruction to defining N s,t as a Lagrangian m-fold in (M,ωs), but
now the condition in (49) for N s,t to exist involves both Y (Li), which
determine �, and [ωs].

Here is how to understand the relation between the conditions for
N t to exist in Theorem 7.3, and for N s,t to exist in Theorem 7.5. As
(16) is exact,

(
Y (L1), . . . , Y (Ln)

)
is the image of � ∈ H1(X ′,R) if and

only if the image � of
(
Y (L1), . . . , Y (Ln)

)
in H2

cs(X
′,R) is zero.

Now ω0 = ω and [ω] · ι∗(γ) = 0 for all γ ∈ H2(X,R), as X ′ is
Lagrangian in (M,ω). Thus when s = 0, Equation (49) reduces to
t2� · γ = 0 for all γ. But H2

cs(X
′,R) ∼= H2(X,R)∗ by (18). Thus when

s = 0 Equation (49) is equivalent to � = 0, which is equivalent to the
existence of � in Theorem 7.3.

Note that as the conditions (46) and (49) for the existence of Ñ s,t

involve both s and t, it can happen that an SL m-fold X with conical
singularities admits no desingularizations Ñ t in (M,J, ω,Ω), but does
admit desingularizations Ñ s,t in (M,Js, ωs,Ωs) for small s �= 0. Thus
we can overcome obstructions to the existence of desingularizations by
varying the underlying almost Calabi-Yau m-fold (M,J, ω,Ω).

We also prove a theorem [20, Th. 8.9] combining Theorems 7.4
and 7.5, desingularizing in families when Y (Li) �= 0 and X ′ is not con-
nected. However, for technical reasons it is not as strong as the author
would like, in that we must assume both sides of (46) are zero rather
than just that (46) holds.

8. Discussion: How moduli spaces fit together

We now consider the boundary ∂MN of a moduli space MN of SL
m-folds.

Definition 8.1. Let (M,J, ω,Ω) be an almost Calabi-Yau m-fold,
N a compact, nonsingular SL m-fold in M , and MN the moduli space of
deformations of N in M . Then MN is a smooth manifold of dimension
b1(N), by Theorem 2.10. In general MN will be a noncompact manifold,
but we can construct a natural compactification MN as follows.

Regard MN as a moduli space of special Lagrangian integral currents
in the sense of geometric measure theory, as discussed in [17, §6]. An
introduction to geometric measure theory can be found in Morgan [27].
Let MN be the closure of MN in the space of integral currents. As
elements of MN have uniformly bounded volume, MN is compact by [27,
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5.5].
Define the boundary ∂MN to be MN \MN . Then elements of ∂MN

are singular special Lagrangian integral currents. Essentially, they are
singular SL m-folds X in M which are limits of nonsingular N̂ ∈ MN

in an appropriate sense. By a result of Almgren [1], the singular set of
each X ∈ ∂MN has Hausdorff dimension at most m− 2.

In good cases, say if (M,J, ω,Ω) is suitably generic, it seems rea-
sonable that ∂MN should be divided into a number of strata, each of
which is a moduli space of singular SL m-folds with singularities of a
particular type, and is itself a manifold with singularities. In particular,
some or all of these strata could be moduli spaces MX of SL m-folds
with isolated conical singularities, as in §5.

In this case, using §7 for each X̂ ∈ MX we can try to construct
desingularizations Ñ t in MN by gluing in AC SL m-folds L̂i at the
singular points x̂i of X̂ for i = 1, . . . , n. In good cases, say when the
cones Ci of X̂ are stable, every N̂ ∈ MN close to MX might be con-
structed uniquely from some X̂, L̂1, . . . , L̂n, and so we could identify an
open neighbourhood of MX in MN with a submanifold of the prod-
uct MX ×M0

L1
× · · · ×M0

Ln
.

The goal of this section is to work towards such a description of MN

near a boundary stratum MX which is a moduli space of SL m-folds
with conical singularities. Our treatment will be informal or conjectural
in places, and is far from giving a complete picture of ∂MN .

8.1 Topological calculations and dimension counting

We shall consider the following situation.

Definition 8.2. Let (M,J, ω,Ω) be an almost Calabi-Yau m-fold
for 2 < m < 6. Here the assumption m < 6 is only so that we can apply
Theorem 7.3 and [20, Th. 6.12], and all of the topological calculations
below actually hold when m > 2. Define ψ : M → (0,∞) as in (4).

Let X be a compact SL m-fold in M with conical singularities
x1, . . . , xn and cones C1, . . . , Cn. Write Σi = Ci ∩ S2m−1 and X ′ =
X \ {x1, . . . , xn}. Let MX be the moduli space of deformations of X in
M , as in Definition 5.1. Write X̂ for a general element of MX . Let IX′

be the image of H1
cs(X

′,R) in H1(X ′,R), as in Theorem 5.2.
Let L1, . . . , Ln be asymptotically conical SL m-folds in Cm with

cones C1, . . . , Cn and rate 0. Let M0
Li

be the moduli space of defor-
mations of Li with rate 0, as in Definition 6.7. Write L̂i for a general
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element of M0
Li

.
Let q = b0(X ′) and X ′

1, . . . , X
′
q be the connected components of X ′.

For i = 1, . . . , n let li = b0(Σi), and let Σ1
i , . . . ,Σ

li
i be the connected

components of Σi. Define k(i, j) = 1, . . . , q by Υi ◦ ϕi
(
Σj
i × (0, R′)

) ⊂
X ′
k(i,j), as usual.

Define Yi ⊂ H1(Σi,R) and Zi ⊂ Hm−1(Σi,R) to be the images
of the map Hk(Li,R) → Hk(Σi,R) of (29) for k = 1,m − 1. Define
maps πYi

: M0
Li

→ Yi and πZi
: M0

Li
→ Zi by πYi

(L̂i) = Y (L̂i) and
πZi

(L̂i) = Z(L̂i). These are well-defined as Y (Li), Z(Li) are images of
classes in Hk(Li,R) by Definition 6.2. Write general elements of Yi as
γi, and of Zi as δi.

Let the vector subspace Y in Y1 × · · · × Yn be the intersection of
Y1 × · · · × Yn with the image of the map H1(X ′,R) → ⊕n

i=1H
1(Σi,R)

in (16). Let the vector subspace Z in Z1 × · · · × Zn be the set of all
(δ1, . . . , δn) for which∑

1�i�n, 1�j�li:
k(i,j)=k

ψ(xi)mδi · [Σj
i ] = 0 for all k = 1, . . . , q.(51)

Suppose
(
Y (L1), . . . , Y (Ln)

) ∈ Y. This is equivalent to the exis-
tence of � in Theorem 7.3. Suppose

(
Z(L1), . . . , Z(Ln)

) ∈ Z. This is
equivalent to Equation (43) of Theorem 7.2. Let N be the compact
m-manifold obtained by gluing Li into X ′ at xi for i = 1, . . . , n, as in
Theorem 7.2. Suppose N is connected.

Let Ñ t for t ∈ (0, ε] be the desingularizations of X constructed in
Theorem 7.2 when Y (Li) = 0 (as then Li is actually AC with rate λi < 0
by [17, Th. 7.11(b)]), and in Theorem 7.3 when X ′ is connected, and in
[20, Th. 6.12] in the general case. Then each Ñ t is a compact SL m-fold
in M diffeomorphic to N . Let MN be the moduli space of deformations
of Ñ t, which is independent of t. Then MN is a smooth manifold of
dimension b1(N), by Theorem 2.10.

The next four results compute the dimensions of various spaces.

Lemma 8.3. In the situation above we have dim IX′ = b1cs(X
′) +

q − ∑n
i=1 li.

Proof. From (16) we see that IX′ fits into an exact sequence

0 → H0(X ′,R) →
n⊕
i=1

H0(Σi,R) → H1
cs(X

′,R) → IX′ → 0.
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The lemma follows by alternating sum of dimensions. q.e.d.

Proposition 8.4. In the situation above, M0
Li

is a smooth manifold
with

dimYi = b1(Li) − b0(Li) + li − b1cs(Li), dimZi = li − b0(Li)

and dimM0
Li

= b1(Li) − b0(Li) + li.
(52)

Also the projection πYi
×πZi

: M0
Li

→ Yi×Zi is a smooth submersion.

Proof. From (29) we see that Yi fits into an exact sequence

0 → H0(Li,R) → H0(Σi,R) → H1
cs(Li,R) → H1(Li,R) → Yi → 0.

Taking alternating sums of dimensions gives dimYi in (52). Similarly,
Zi fits into an exact sequence

0 → Zi → Hm−1(Σi,R) → Hm
cs (Li,R) → Hm(Li,R) → 0.

But Poincaré duality gives bm−1(Σi) = b0(Σi) = li, bmcs(Li) = b0(Li) and
bm(Li) = b0cs(Li) = 0, so we deduce dimZi in (52).

Suppose 0 < λi < min
(DΣi

∩ (0,∞)
)
. Then [17, Th. 7.11(b)] shows

that any AC SLm-fold L̂i with cone Ci and rate λi is also asymptotically
conical with rate 0. Hence Mλi

Li
= M0

Li
, in the notation of Definition 6.7.

Part (a) of Theorem 6.8 then shows that M0
Li

is smooth with dimension
given in (52).

We can deduce that πYi
×πZi

is a smooth submersion from the proof
of Theorem 6.8 in Marshall [23, §6]. Smoothness holds for fairly general
reasons. To show that πYi

× πZi
is a submersion we need to verify that

the natural projection TLi
M0

Li
→ Yi ×Zi is surjective, and this follows

from the determination of TLi
M0

Li
in [23, §5.2]. q.e.d.

Proposition 8.5. dimZ = 1−q+∑n
i=1 dimZi = 1−q+∑n

i=1 li−∑n
i=1 b

0(Li).

Proof. Let δi ∈ Zi for i = 1, . . . , n. Then δi · [Σi] = 0, since δi
is the image of a class in H1(Li) and Σi is a boundary in Li. As
[Σi] =

∑li
j=1[Σ

j
i ], summing the left hand side of (51) over k = 1, . . . , q

yields
∑n

i=1 ψ(xi)mδi · [Σi], which is zero. Thus, for any (δ1, . . . , δn) ∈
Z1 × · · · × Zn, the sum of (51) over k = 1, . . . , q holds automatically.
That is, the q Equations (51) on δ1, . . . , δn are dependent, and represent
at most q − 1 independent restrictions on δ1, . . . , δn.
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We claim that (51) is exactly q − 1 independent restrictions on
δ1, . . . , δn. Then dimZ = 1 − q +

∑n
i=1 dimZi, and the proposition

follows from (52). To see this, note that X ′ has q connected compo-
nents X ′

1, . . . , X
′
q, which are joined into one connected N by gluing in

L1, . . . , Ln. Define a link to be a triple (X ′
j , X

′
k, L

l
i), where 1 � j < k � q

and Lli is a connected component of some Li which is glued into both
X ′
j and X ′

k at xi.
Then we can choose a minimal set of q−1 links which join X ′

1, ..., X
′
q

into one component. It is not difficult to show that from (X ′
j , X

′
k, L

l
i)

we can construct δi ∈ Zi as the image of a class in Hm−1(Lli,R), such
that the q − 1 classes δi obtained from the minimal set of q − 1 links
give linearly independent left-hand sides of (51), thought of as vectors
in Rq. Hence (51) is at least q−1 independent restrictions on δ1, . . . , δn,
and the proof is complete. q.e.d.

Proposition 8.6. b1(N) = dimY + 1 + b1cs(X
′) +

∑n
i=1 b

1
cs(Li) −∑n

i=1 li.

Proof. Regard X ′ as the interior of a compact manifold X
′ with

boundary
∐m
i=1 Σi, and Li as the interior of a compact manifold Li

with boundary Σi. Then N is constructed by gluing X ′ and L1, . . . , Ln
together along Σ1, . . . ,Σn.

Thus the disjoint union
∐n
i=1 Σi is a subset of N , with N \ ∐n

i=1 Σi

diffeomorphic to the disjoint union of X ′ and L1, . . . , Ln. The pair
(N ;

∐n
i=1 Σi) gives an exact sequence in cohomology:

· · · → Hk−1(N,R) →
n⊕
i=1

Hk−1(Σi,R) → Hk
cs(X

′,R) ⊕
n⊕
i=1

Hk
cs(Li,R)

→ Hk(N,R) → · · · ,

(53)

since Hk(N ;
∐n
i=1 Σi,R) ∼= Hk

cs(X
′,R) ⊕ ⊕n

i=1H
k
cs(Li,R) by excision.

Now from the definitions of Yi,Y and exactness of (16) and (29) we
find that the kernel of

⊕n
i=1H

1(Σi,R) → H2
cs(X

′,R)⊕⊕n
i=1H

2
cs(Li,R)

in (53) is Y. Thus as b0cs(X
′) = b0cs(Li) = 0 we have an exact sequence

0 → H0(N,R) →
n⊕
i=1

H0(Σi,R) → H1
cs(X

′,R) ⊕
n⊕
i=1

H1
cs(Li,R)

→ H1(N,R) → Y → 0.
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The result follows by alternating sums of dimensions, as b0(N) = 1.
q.e.d.

8.2 Describing the moduli space MN near its boundary

We continue to use the notation of §8.1. From Lemma 8.3 and Proposi-
tions 8.4–8.6 we deduce the following theorem. Smoothness of FX

L1,...,Ln

and the first line of (55) follow as πYi
× πZi

is a smooth submersion by
Proposition 8.4, and the rest of (55) from the dimension formulae above.

Theorem 8.7. In the situation of Definition 8.2, define a family
FX

L1,...,Ln
of n-tuples of AC SL m-folds by

FX
L1,...,Ln

=
{

(L̂1, . . . , L̂n) ∈ M0
L1

× · · · ×M0
Ln

:(
Y (L̂1), . . . , Y (L̂n)

) ∈ Y, (
Z(L̂1), . . . , Z(L̂n)

) ∈ Z
}
.

(54)

Then FX
L1,...,Ln

is a smooth manifold with

dimFX
L1,...,Ln

= dimY + dimZ +
∑n

i=1(dimM0
Li

− dimYi − dimZi)
= dimY + 1 − q +

∑n
i=1 b

1
cs(Li)

= b1(N) − dim IX′ .

(55)

The significance of the theorem is that FX
L1,...,Ln

is the family of n-
tuples of AC SL m-folds L̂1, . . . , L̂n which can be used to desingularize
X using the results of §7. Now MN is smooth with dimMN = b1(N) by
Theorem 2.10. If the cones Ci are stable then Corollary 5.3 shows that
MX is smooth with dimMX = dim IX′ . So we see from Theorem 8.7
that:

Corollary 8.8. Suppose the SL cones C1, . . . , Cn are stable, in the
sense of Definition 3.4. Then the moduli spaces MX ,MN and FX

L1,...,Ln

are smooth manifolds with dimMX + dimFX
L1,...,Ln

= dimMN .

We claim that in the stable singularities case, MN is roughly speak-
ing locally diffeomorphic to MX × FX

L1,...,Ln
near MX ⊂ ∂MN . That

is, each N̂ in this region of MN can be constructed from some unique
X̂ ∈ MX and (L̂1, . . . , L̂n) ∈ FX

L1,...,Ln
by gluing L̂i into X̂ at x̂i. This

is the reason for the formula dimMX + dimFX
L1,...,Ln

= dimMN . To
explain why, we make the following definition:
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Definition 8.9. Suppose (M,J, ω,Ω) is Calabi-Yau, so that ψ ≡ 1.
Choose X̂ ∈ MX with singular points x̂1, . . . , x̂n and (L̂1, . . . , L̂n) ∈
FX

L1,...,Ln
. Then the definition of FX

L1,...,Ln
implies that X̂, L̂i satisfy the

hypotheses of Theorem 7.2 if X(L̂i) = 0, or Theorem 7.3 if q = 1, or
[20, Th. 6.12] in the general case. Thus, these theorems give ε > 0 such
that for t ∈ (0, ε] there exists a compact SL m-fold Ñ t in M constructed
by gluing L̂i into X̂ at x̂i.

Observe that (tL̂1, . . . , tL̂n) ∈ FX
L1,...,Ln

for t > 0. Define a subset U
in MX × FX

L1,...,Ln
and Ψ : U → MN by (X̂, (tL̂1, . . . , tL̂n)) ∈ U if t ∈

(0, ε], where ε > 0 depends on X̂, L̂i as above, and then Ψ(X̂, (tL̂1, . . . ,
tL̂n)) = Ñ t.

To make Ψ well-defined we have to ensure that Ñ t is independent of
choices made in its construction. Actually the choice of � ∈ H1(X ′,R)
in Theorem 7.3 does affect Ñ t. Now � is unique up to addition of
the kernel of H1(X ′,R) → ⊕n

i=1H
1(Σi,R) in (16). Choose a vector

subspace of H1(X ′,R) transverse to this kernel, and restrict � to lie in
this subspace.

This gives a way to choose � uniquely. Once this is done the N t are
independent of choices up to a small Hamiltonian isotopy, and Ñ t is the
unique SL m-fold in this Hamiltonian isotopy class close to N t, so Ñ t

is independent of the remaining choices.

Here is why we assumed M is Calabi-Yau above. If M is only almost
Calabi-Yau, then ψ need not be constant. But Z depends on ψ(xi) by
(51). Thus, if we vary X to X̂ ∈ MX then we should define F X̂

L1,...,Ln

using Ẑ defined with ψ(x̂i) in (51) instead of Z. So the family FX
L1,...,Ln

should vary with X̂ ∈ MX rather than being constant, but only in a
rather trivial way.

We claim that when the Ci are stable, the map Ψ is a local dif-
feomorphism from the interior U◦ of U to its image in MN . One can
justify this as follows. By [16, §9.4] we can define natural coordinates
on MN , local diffeomorphisms MN → H1(N,R) defined uniquely up
to translations in H1(N,R). In the same way [18, §6.5] defines local
diffeomorphisms MX → IX′ uniquely up to translations in IX′ , and a
similar thing applies for M0

Li
, so that we can construct natural coordi-

nate systems on FX
L1,...,Ln

.
Using the topological calculations of §8.1, one can show that for Ci

stable the natural coordinate systems on MN can be identified with
products of the natural coordinate systems on MX and FX

L1,...,Ln
, and

Ψ is just the product map in these coordinates. Thus Ψ is a local
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diffeomorphism on U◦.
When the Ci are not stable, things are more complicated. Then

MX may be singular. If X is transverse, which we expect for generic
(M,J, ω,Ω) by Conjecture 5.12, then MX is smooth of dimension dim IX′

−dimOX′ near X. In this case Theorem 8.7 implies that dimMX +
dimFX

L1,...,Ln
= dimMN − dimOX′ . We expect Ψ to be a smooth im-

mersion wherever MX is smooth, with image of codimension dimOX′

in MN .
Thus, when the Ci are not stable and X is transverse, the desingu-

larization results of §7 do not yield the whole of MN locally, but only
a subset of codimension dimOX′ =

∑n
i=1 s-ind(Ci). Where do these

extra degrees of freedom in MN come from? A rough answer is that the∑n
i=1 s-ind(Ci) reduction in dimMX reappears as an extra s-ind(Ci)

degrees of freedom to deform each Li as an AC SL m-fold, but with
rate λi < 2 rather than rate 0.

Choose λi with max(DΣi
∩ [0, 2)) < λi < 2. Then by part (a) of

Theorem 6.8, the moduli space Mλi
Li

of deformations of Li with rate λi
is smooth with

dimMλi
Li

= b1(Li) − b0(Li) +NΣi
(λi)(56)

= dimM0
Li

+NΣi
(2) −mΣi

(2) − b0(Σi),

using the notation of Definition 3.3, and the fact that NΣi
is monotone

increasing and upper semicontinuous, and increases by mΣi
(2) at 2.

Suppose Ci is rigid, as in Definition 3.4. Then (9) and (56) give

dimMλi
Li

= dimM0
Li

+ s-ind(Ci) + 2m.(57)

Thus, deforming Li with rate λi rather than 0 gives an extra s-ind(Ci)+
2m degrees of freedom. Here the 2m comes from translations in Cm,
since the AC SL m-folds of rate λ � 1 are closed under translations,
and the s-ind(Ci) from new, nontrivial deformations of Li.

So when X is transverse and the Ci are rigid, we can understand
the difference in dimension

∑n
i=1 s-ind(Ci) between MX ×FX

L1,...,Ln
and

MN as coming from an extra s-ind(Ci) nontrivial deformations of Li an
an AC SL m-fold with rate λi rather than 0. If the Ci are not rigid, we
should take into account also extra infinitesimal deformations of Ci as
an SL cone.
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8.3 The index of singularities of SL m-folds

We can now make more rigorous some speculations by the author in
[16, §10.3]. Suppose, as above, that MN is a moduli space of compact,
nonsingular SL m-folds in (M,J, ω,Ω), and that MX is a moduli space
of singular SL m-folds in ∂MN with singularities of a particular type,
and X ∈ MX .

Define the index of the singularities of X to be ind(X) = dimMN −
dimMX , provided MX is smooth near X so dimMX is well-defined.
Note that ind(X) depends not just onX and its singularities, but also on
N through dimMN = b1(N). Thus there could be topologically distinct
desingularizations N1, N2, . . . yielding different values of ind(X).

We can also work in families F of almost Calabi-Yau m-folds. Defin-
ing MF

N as in Definition 2.15 and MF
X as in Definition 5.6, the index

of X in F is indF(X) = dimMF
N − dimMF

X . Note that ind(X) �
dimMN = b1(N), as dimMX � 0, and indF(X) � dimMF

N .
Combining Corollary 5.5 and Theorem 8.7, we can compute ind(X)

when X is transverse with conical singularities. In the families case, if
X is transverse in F then a similar proof shows that indF(X) is given
by the same formula (58).

Theorem 8.10. Let X be a compact, transverse SL m-fold in
(M,J, ω,Ω) with conical singularities at x1, . . . , xn and cones C1, . . . ,
Cn. Construct desingularizations N of X by gluing AC SL m-folds Li
in at xi for i = 1, . . . , n, as in §7. Let q,Y be as in Definition 8.2. Then

ind(X) = dimY + 1 − q +
∑n

i=1 b
1
cs(Li) +

∑n
i=1 s-ind(Ci).(58)

When n = 1 this proves [9, Conj. 2.13], in the transverse case.
Suppose Ci is not rigid, for instance if Σi is not connected. Then

Ci may lie in a smooth, connected moduli space Ci of SL cones in Cm,
upon which SU(m) does not act transitively. In this case, as in [18,
§8.3], it is better to define MX to be the moduli space of X̂ with cones
Ĉi ∈ Ci, rather than with fixed cones Ci. Under suitable transversality
assumptions, this increases the dimension of MX by the codimension of
the SU(m) orbit of Ci in Ci, so this codimension should be subtracted
from the r.h.s. of (58).

Here is why the index is an important idea. As ind(X) is the codi-
mension of MX in MN , the largest pieces of ∂MN are the MX with
smallest index. So we argue that singularities with small index are the
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most generic, and the most interesting. In good cases, we expect MN to
be a compact manifold with singular boundary. Thus the largest pieces
of ∂MN should have codimension 1 in MN , and hence index 1. If ∂MN

has no index 1 strata, then MN is roughly a compact, singular manifold
without boundary.

As tools, ind(X) or indF(X) probably work best together with a
genericity assumption on (M,J, ω,Ω) or F . Suppose that ω is generic
in its Kähler class. Then as in Conjecture 5.12, we expect SL m-folds
X in (M,J, ω,Ω) with conical singularities to be transverse, so we can
compute ind(X) using (58).

Since ind(X) � b1(N), this places strong restrictions on the kinds
of singularities that can occur in ∂MN . In the families case, when F
is generic in a suitable sense we expect SL m-folds X in (M,Js, ωs,Ωs)
with conical singularities to be transverse in F . Then we can compute
indF(X) using (58). Since indF(X) � dimMF

N , this again places strong
restrictions on the kinds of singularities that can occur in ∂MF

N .
For some problems we only need to know about singularities with

index up to a certain value. For example, in [9] the author proposed
to define an invariant of almost Calabi-Yau 3-folds by a weighted count
of SL homology 3-spheres in a given homology class. To understand
how this invariant transforms as we deform (M,J, ω,Ω), we restrict to
a generic 1-dimensional family F , and then we meet only singularities
with index 1.

The index may also be useful in the SYZ Conjecture [29]. This ex-
plains mirror symmetry of (almost) Calabi-Yau 3-folds M, M̌ in terms
of fibrations by SL 3-tori N , Ň . The corresponding moduli spaces MN ,
MŇ have dimension 3, so that ∂MN , ∂MŇ can only contain singulari-
ties of index 1, 2 or 3.

9. Applications to connected sums

We shall now apply the results of §7 to the case where the SL m-fold
X with conical singularities is actually a nonsingular, immersed SL m-
fold, the singular points xi are self-intersection points of X satisfying an
angle criterion, and the AC SL m-folds Li are chosen from the Lφ,A of
Example 6.11 due to Lawlor [21]. The desingularizations N are multiple
connected sums of X with itself.

For the connected sum X1#X2 of two SL 3-folds at one point in
a Calabi-Yau 3-fold, our results were conjectured by the author in [9,



328 d. joyce

§5–§6]. Butscher [3] proves existence of SL connected sums X1#X2 at
one point by gluing in Lawlor necks Lφ,A, where X1, X2 are compact
SL m-folds in Cm with boundary.

Closer to our results, Lee [8] considers a compact, connected, im-
mersed SL m-fold X in a Calabi-Yau m-fold M , whose self-intersection
points xi satisfy an angle criterion. She glues in Lφ,A at xi to get a
family of compact, embedded SL m-folds in M . Her result is re-proved
in Theorem 9.5 below.

9.1 Transverse intersections of SL planes Π+, Π− in Cm

Let Π+,Π− be two SL m-planes Rm in Cm. We call Π± transverse if
they intersect transversely, that is, if Π+ ∩ Π− = {0}. Note that this
has nothing to do with the use of ‘transverse’ in §5. We now classify
transverse pairs of SL m-planes up to the action of SU(m). Related
results may be found in [3, §1] and [8, §2], but we believe our approach
is clearer.

Proposition 9.1. Let Π+,Π− be transverse SL m-planes Rm in
Cm. Then there exists B ∈ SU(m) and φ1, . . . , φm ∈ (0, π) such that
B(Π+) = Π0 and B(Π−) = Πφ, where φ = (φ1, . . . , φm) and

Π0 =
{
(x1, . . . , xm) : xj ∈ R

}
, Πφ =

{
(eiφ1x1, . . . , eiφmxm) : xj ∈ R

}
,

(59)

as in (39). Moreover φ1, . . . , φm are unique up to order, so that we
can make them unique by assuming that φ1 � φ2 � · · · � φm, and
φ1 + · · · + φm = kπ for some k = 1, . . . ,m− 1.

To prove this, first find B′ ∈ SU(m) with B′(Π+) = Π0, and then
find B′′ ∈ SO(m) which ‘diagonalizes’ B′(Π−) to get Πφ, and set B =
B′′B′. The process is like diagonalizing a real quadatic form on Rm with
an SO(m) matrix. We use the proposition to divide transverse pairs Π±

into types.

Definition 9.2. Let Π+,Π− be transverse SL m-planes Rm in Cm.
Then Proposition 9.1 gives B ∈ SU(m) and unique 0 < φ1 � φ2 � · · · �
φm < π with φ1 + · · · + φm = kπ for some k = 1, . . . ,m − 1, such that
B(Π+) = Π0 and B(Π−) = Πφ. We say that the intersection point 0 of
Π+, Π− is of type k.

Note that this depends on the order of Π+,Π−. Exchanging Π±

replaces φj by π − φm+1−j for j = 1, . . . ,m, and therefore Π+,Π−

intersect with type k if and only if Π−,Π+ intersect with type m− k.
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When k = 1 in Proposition 9.1, Example 6.11 gives AC SL m-folds
Lφ,A for A > 0 with cone Π0 ∪ Πφ. Thus L±,A = B−1Lφ,A is an AC
SL m-fold with cone Π+ ∪ Π−. When k = m − 1 we can exchange Π±

to get k = 1, and do the same thing. So combining Example 6.11 and
Proposition 9.1 gives:

Proposition 9.3. Let Π+,Π− be transverse SL m-planes Rm in
Cm, for m > 2. Regard C = Π+ ∪ Π− as an SL cone in Cm with
isolated singularity at 0. Then Σ = C ∩ S2m−1 is a disjoint union
Σ+ ∪ Σ−, where Σ± are the unit spheres Sm−1 in Π±. Then:

(a) Suppose Π+,Π− intersect with type 1. Then there is a 1-parameter
family of AC SL m-folds L±,A in Cm asymptotic to C with rate
2−m for A > 0, with Z(L±,A)·[Σ+] = A and Z(L±,A)·[Σ−] = −A.

(b) Suppose Π+,Π− intersect with type m − 1. Then there is a 1-
parameter family of AC SL m-folds L±,A in Cm asymptotic to C
with rate 2−m for A > 0, with Z(L±,A)·[Σ+] = −A and Z(L±,A)·
[Σ−] = A.

The L±,A are images of the Lφ,A of Example 6.11 under SU(m) rota-
tions.

We will call the L±,A Lawlor necks. They are diffeomorphic to
Sm−1 × R.

9.2 Desingularizing immersed SL m-folds

Here is some notation for self-intersection points of immersed SL m-
folds.

Definition 9.4. Let (M,J, ω,Ω) be an almost Calabi-Yau m-fold
for m > 2, and define ψ : M → (0,∞) as in (4). Let X be a compact,
nonsingular immersed SL m-fold in M . That is, X is a compact m-
manifold (not necessarily connected) and ι : X → M an immersion,
with special Lagrangian image.

Call x ∈ M a self-intersection point of X if ι∗(x) is at least two
points in X. Call such an x transverse if ι∗(x) is exactly two points
x+, x− in X, and ι∗(Tx+X) ∩ ι∗(Tx−X) = {0} in TxM .

Let x be a transverse self-intersection point of X, and x± as above.
Choose an isomorphism υ : Cm → TxM with υ∗(ω) = ω′ and υ∗(Ω) =
ψ(x)mΩ′, where ω′,Ω′ are as in (2). Define Π± = υ∗

(
ι∗(Tx±X)

)
. Then

Π+,Π− are transverse SL planes Rm in Cm.



330 d. joyce

Define the type k = 1, . . . ,m − 1 of x to be the type of Π+,Π−, in
the sense of Definition 9.2. This is independent of the choice of υ, but
it does depend on the order of x+, x−, and exchanging x± replaces k
by m− k.

We now apply Theorem 7.1 to desingularize connected, immersed
SL m-folds X in M . Our result is equivalent to Lee’s main result [8,
Theorems 3 & 4], save that Lee also allows m = 2, and considers only
the Calabi-Yau case.

Theorem 9.5. Let (M,J, ω,Ω) be an almost Calabi-Yau m-fold
for m > 2, and X a compact, connected, immersed SL m-fold in M .
Suppose x1, . . . , xn are transverse self-intersection points of X with type
1 or m− 1.

Then there exists ε > 0 and a smooth family
{
Ñ t : t ∈ (0, ε]

}
of com-

pact, immersed SL m-folds in (M,J, ω,Ω), such that Ñ t is constructed
by gluing a Lawlor neck L±,tmAi into X at xi for i = 1, . . . , n, and so
is a multiple connected sum of X with itself. In the sense of currents,
Ñ t → X as t→ 0. If x1, . . . , xn are the only self-intersection points of
X then Ñ t is embedded.

Proof. For each i = 1, . . . , n let ι∗(xi) be x+
i , x

−
i , and define υi :

Cm → TxiM and Π±
i as in Definition 9.4. Then Π+

i ,Π
−
i are transverse

SL planes with type 1 or m − 1, by assumption. Therefore Proposi-
tion 9.3 gives a 1-parameter family L±,A

i for A > 0 of AC SL m-folds in
Cm asymptotic to Π+

i ∪ Π−
i .

Choose some A1, . . . , An > 0, for instance Ai ≡ 1, and let Li = L±,Ai
i

for i = 1, . . . , n. Apply Theorem 7.1 to X with conical singular points
xi, cones Ci = Π+

i ∪ Π−
i and AC SL m-folds Li for i = 1, . . . , n. As

X is connected X ′ = X \ {x±1 , . . . , x±n } is connected, and Li has rate
λi = 2 −m < 0, so the hypotheses hold.

Thus Theorem 7.1 gives ε > 0 and the family Ñ t, and most of the
theorem follows. If X has other self-intersection points than x1, . . . , xn
then the Ñ t are immersed. But if x1, ..., xn are the only self-intersection
points then X ′ and the Li are embedded, so the Ñ t are embedded for
small t. q.e.d.

When m = 3 the only possible types are 1 and m− 1, giving:

Corollary 9.6. Let X be a compact, connected, immersed SL 3-fold
with transverse self-intersection points in an almost Calabi-Yau 3-fold
M . Then X is a limit of embedded SL 3-folds.
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Next we apply Theorem 7.2 to desingularize non-connected X. If a
self-intersection point xi has type m−1 we can swap x+

i , x
−
i to get type

1, so for simplicity we suppose the xi all have type 1.

Theorem 9.7. Let (M,J, ω,Ω) be an almost Calabi-Yau m-fold
for m > 2, and X a compact, immersed SL m-fold in M . Define
ψ : M → (0,∞) as in (4). Suppose x1, . . . , xn ∈ M are transverse
self-intersection points of X with type 1, and let x±i ∈ X be as in
Definition 9.4. Set q = b0(X), and let X1, . . . , Xq be the connected
components of X. Suppose A1, . . . , An > 0 satisfy∑

i=1,...,n:

x+
i ∈Xk

ψ(xi)mAi =
∑

i=1,...,n:

x−i ∈Xk

ψ(xi)mAi for all k = 1, . . . , q.(60)

Let N be the oriented multiple connected sum of X with itself at the
pairs of points x+

i , x
−
i for i = 1, . . . , n. Suppose N is connected.

Then there exists ε > 0 and a smooth family
{
Ñ t : t ∈ (0, ε]

}
of

compact, immersed SL m-folds in (M,J, ω,Ω) diffeomorphic to N , such
that Ñ t is constructed by gluing a Lawlor neck L±,tmAi into X at xi for
i = 1, . . . , n. In the sense of currents, Ñ t → X as t → 0. If x1, . . . , xn
are the only self-intersection points of X then Ñ t is embedded.

Proof. Use the notation of the proof of Theorem 9.5. The assump-
tion that N is connected above is one of the hypotheses of Theorem 7.2.
Part (a) of Proposition 9.3 gives Z(Li) · [Σ±

i ] = ±Ai, and using this
we find that (43) is equivalent to (60). The other hypotheses of Theo-
rem 7.2 are established in the proof of Theorem 9.5. Thus Theorem 7.2
applies, and the rest of the proof follows Theorem 9.5. q.e.d.

To decide whether desingularizations Ñ t of X exist, we need to know
when (60) admits solutions Ai > 0. Since q − 1 of Equations (60) are
independent as in the proof of Proposition 8.5, there can only exist
nonzero solutions Ai if n � q.

Here is a graphical method for deciding. Draw q vertices, numbered
1, . . . , q. For i = 1, . . . , n draw a directed edge from vertex j to vertex
k, where x+

i ∈ Xj and x−i ∈ Xk. Then (60) admits solutions Ai > 0 if
and only if whenever we divide the q vertices into two nonempty disjoint
subsets B and C, there is at least one directed edge going from B to C,
and at least one going from C to B.

As in §8 we can compare the dimensions of moduli spaces MX ,MN

in Theorem 9.7. Since m > 2 it is easy to show that each connected
sum either reduces b0 by 1 and fixes b1, or fixes b0 and increases b1 by
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1. As b0(X) = q, b0(N) = 1, and dimMX = b1(X) by Theorem 2.10 in
the immersed case, we see that

dimMN = b1(N) = n+ 1 − q + b1(X) = n+ 1 − q + dimMX .(61)

If n = q then dimMN = 1 + dimMX , and MN is a manifold with
boundary MX near X, and the singularities of X have index ind(X) = 1
in the sense of §8.3. Note that (58) does not give the right answer for
ind(X) in this case, as Ci = Π+

i ∪ Π−
i is not rigid, and to get the right

definition of MX we have to allow singular cones Ĉi not just some fixed
Π+
i ∪Π−

i , but any union Π̂+
i ∪ Π̂−

i of transverse SL m-planes Π̂±
i in Cm

with type 1.

9.3 Desingularizing immersed SL m-folds in families

Next we extend Theorem 9.7 to families of almost Calabi-Yau m-folds.
Following the proof of Theorem 9.7 and using Theorem 7.4 we prove:

Theorem 9.8. Let (M,J, ω,Ω) be an almost Calabi-Yau m-fold for
m > 2, and X a compact, immersed SL m-fold in M with immersion
ι. Define ψ : M → (0,∞) as in (4). Suppose x1, . . . , xn ∈ M are
transverse self-intersection points of X with type 1, and let x±i ∈ X be
as in Definition 9.4. Set q = b0(X), and let X1, . . . , Xq be the connected
components of X. Let N be the oriented multiple connected sum of X
with itself at the pairs of points x+

i , x
−
i for i = 1, . . . , n. Suppose N is

connected.
Suppose

{
(M,Js, ωs,Ωs) : s ∈ F}

is a smooth family of deforma-
tions of (M,J, ω,Ω) with ι∗

(
[ωs]

)
= 0 in H2(X,R) for all s ∈ F . Let

A1, . . . , An > 0. Define G ⊆ F × (0, 1) to be the subset of (s, t) ∈
F × (0, 1) with

[Im Ωs] · [Xk] = tm
∑

i=1,...,n:

x+
i ∈Xk

ψ(xi)mAi − tm
∑

i=1,...,n:

x−i ∈Xk

ψ(xi)mAi(62)

for all k = 1, . . . , q. Then there exist ε ∈ (0, 1), κ > 1 and a smooth
family {

Ñ s,t : (s, t) ∈ G, t ∈ (0, ε], |s| � tκ+m/2
}
,(63)

such that Ñ s,t is a compact, nonsingular SL m-fold in (M,Js, ωs,Ωs)
diffeomorphic to N , constructed by gluing a Lawlor neck L±,tmAi into X
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at xi for i = 1, . . . , n. In the sense of currents, Ñ s,t → X as s, t → 0.
If x1, . . . , xn are the only self-intersection points of X then Ñ s,t is
embedded.

Thus, the main condition for the existence of desingularizations Ñ s,t

of X in (M,Js, ωs,Ωs) is that there should exist solutions A1, . . . , An >
0 to (62). Note that the sum of (62) over k = 1, . . . , q gives [Im Ωs]·[X] =
0, which is clearly a necessary condition for Ñ s,t to exist with [Ñ s,t] =
[X].

In [9] the author proposed to define an invariant I3 : H3(M,Z) → Q

of almost Calabi-Yau 3-folds (M,J, ω,Ω) by counting SL homology 3-
spheres in a given homology class with a topological weight. Theo-
rem 9.8 will be important for this programme, because it determines
the transformation rules I3 satisfies as we deform (M,J, ω,Ω) so that
J passes through certain real hypersurfaces in the complex structure
moduli space.

To explain this we need the idea of SL m-folds with phase eiθ, as
in [9, 10].

Definition 9.9. Let (M,J, ω,Ω) be an almost Calabi-Yau m-fold,
and N an oriented real m-dimensional submanifold of M . Fix θ ∈ R.
We call N a special Lagrangian submanifold, or SL m-fold for short,
with phase eiθ if

ω|N ≡ 0 and (sin θ Re Ω − cos θ Im Ω)|N ≡ 0,(64)

and cos θ Re Ω + sin θ Im Ω is a positive m-form on the oriented m-
fold N .

If N is compact it easily follows that [Ω] · [N ] = Reiθ, where [Ω] ∈
Hm(M,R) and [N ] ∈ Hm(M,Z), and R =

∫
N cos θ Re Ω + sin θ Im Ω >

0. Thus the homology class [N ] determines the phase eiθ of N .

The definition of SL m-fold used in the rest of the paper, Defini-
tion 2.9, is of SL m-fold with phase 1. If N has phase eiθ in (M,J, ω,Ω)
then it has phase 1 in (M,J, ω, e−iθΩ), so if we are dealing with SL
m-folds in only one homology class then we can rescale Ω to make the
phase 1. But when we consider several SL m-folds N1, N2, . . . we cannot
always take them to have phase 1.

Using this notation, we rewrite Theorem 9.8 when n = 1 and q = 2,
so that we take the connected sum X1#X2 of SL m-folds X1, X2 at one
point x.



334 d. joyce

Theorem 9.10. Let (M,J, ω,Ω) be an almost Calabi-Yau m-fold
for m > 2, and X1, X2 be compact, connected SL m-folds in M with
the same phase eiθ, which intersect transversely at x∈M with type 1.
Suppose

{
(M,Js, ωs,Ωs) : s∈F}

is a smooth family of deformations of
(M,J, ω,Ω) with ι∗

(
[ωs]

)
=0 in H2(Xk,R) for all k = 1, 2 and s ∈ F .

Write

[Ωs] · [Xk] = Rske
iθs

k for k = 1, 2 and [Ωs] · ([X1] + [X2]
)

= Rseiθ
s
,

(65)

where Rsk, R
s > 0 and θsk, θ

s ∈ R depend continuously on s with θ0
k =

θ0 = θ. Make F smaller if necessary so that Rsk, θ
s
k, R

s, θs are well-
defined. Define

G =
{
(s, t) ∈ F × (0, 1) : Rs1 sin(θs1 − θs) = tmψ(x)m

}
.(66)

Then there exist ε ∈ (0, 1), κ > 1 and a smooth family{
Ñ s,t : (s, t) ∈ G, t ∈ (0, ε], |s| � tκ+m/2

}
,(67)

such that Ñ s,t is a compact SL m-fold with phase eiθ
s

in (M,Js, ωs,Ωs)
diffeomorphic to X1#X2, constructed by gluing a Lawlor neck L±,tm

into X1 ∪X2 at x. In the sense of currents, Ñ s,t → X as s, t → 0. If
X1, X2 are embedded and x is their only intersection point then Ñ s,t is
embedded.

This follows from Theorem 9.8 with X = X1 ∪ X2, n = 1, x1 = x
and A1 = 1, replacing (M,J, ω,Ω), (M,Js, ωs,Ωs) by (M,J, ω, e−iθΩ),
(M,Js, ωs, e−iθs

Ωs) so that X1, X2 and Ñ s,t have phase 1. Equation
(62) becomes

[e−iθ
s
Im Ωs] · [X1] = tmψ(x)m and [e−iθ

s
Im Ωs] · [X2] = −tmψ(x)m.

By (65) these are equivalent to

Rs1 sin(θs1 − θs) = tmψ(x)m and Rs2 sin(θs2 − θs) = −tmψ(x)m.(68)

But Rs1 sin(θs1 − θs) = −Rs2 sin(θs2 − θs) as Rs1e
iθs

1 + Rs2e
iθs

2 = Rseiθ
s

by
(65). Thus both equations of (68) are equivalent, so we use only the
first in (66).

We can interpret Theorem 9.10 like this. From (65) we see that θs

always lies between θs1 and θs2 for small s ∈ F . Thus making F smaller
if necessary we can divide F into three regions:

F+ = {s ∈ F : θs1 > θs > θs2}, F− = {s ∈ F : θs1 < θs < θs2},
and F0 = {s ∈ F : θs1 = θs = θs2}.

(69)
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If [X1], [X2] are linearly dependent in Hm(M,R) then θs1 ≡ θs2 ≡ θs,
giving G = ∅ in (66), and the theorem is trivial.

So suppose [X1], [X2] are linearly independent. Then for F suitably
generic F0 will be a smooth real hypersurface in F , which divides F \F0

into two open regions F±. Call F+ the positive side and F− the negative
side of F0. Now θs1 − θs is small close to F0 in F , and so sin(θs1 − θs)
has the same sign as θs1 − θs. Therefore Rs1 sin(θs1 − θs) = tmψ(x)m in
(66) admits a unique solution t > 0 for small s if and only if θs1 > θs,
that is, if and only if s ∈ F+.

We thus have the following picture, described when m = 3 in Con-
jecture 6.5 of [9], which we have now proved. By Theorem 2.16 we
can extend X1, X2 to families of SL m-folds Xs

k with phase eiθ
s
k in

(M,Js, ωs,Ωs) for k = 1, 2 and small s ∈ F , such that Xs
1 , X

s
2 intersect

transversely with type 1 at xs ∈M close to x. On the hypersurface F0

in F the phases of Xs
1 , X

s
2 are equal.

On the positive side F+ of F0 there exist SL m-fold connected sums
Xs

1#Xs
2 with phase eiθ

s
. On the negative side F− there are no such

Xs
1#Xs

2 . Thus, as we cross hypersurfaces F0 in F where the phases
of two SL m-folds X1, X2 become equal, we create or destroy new SL
m-folds X1#X2 by connected sum at points x where X1, X2 intersect
transversely with type 1 or m− 1.

The conjectured invariant I3 : H3(M,Z) → Q of [9] should change
in a predictable fashion as we cross hypersurfaces F0, owing to the cre-
ation and destruction of SL homology 3-spheres. Theorem 9.8 also gives
criteria for the existence of multiple connected sums X1#X2# · · ·#Xq

of SL m-folds. Using this I can derive a complete set of transformation
rules for I3, and also extend the programme to all m � 3. I am writing
papers about this.

10. Stable T 2-cone singularities in SL 3-folds

We now study SL 3-folds with conical singularities modelled on the
stable T 2-cone C = C3

HL of Example 3.5, given by

C =
{
(z1, z2, z3) ∈ Cm : z1z2z3 ∈ [0,∞), |z1| = |z2| = |z3|

}
.(70)

Example 6.9 gives three families of AC SL 3-folds La
HL with rate 0 and

cone C, which we will write as Laj for j = 1, 2, 3 and a > 0, given by
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La1 =
{
(z1, z2, z3) ∈ C3 : z1z2z3 ∈ [0,∞), |z1|2 − a = |z2|2 = |z3|2

}
,

La2 =
{
(z1, z2, z3) ∈ C3 : z1z2z3 ∈ [0,∞), |z1|2 = |z2|2 − a = |z3|2

}
,

La3 =
{
(z1, z2, z3) ∈ C3 : z1z2z3 ∈ [0,∞), |z1|2 = |z2|2 = |z3|2 − a

}
.

Then Laj is diffeomorphic to S1 × R2.
Identify Σ = C ∩ S5 with T 2 = U(1)2 by the map

(eiθ1 , eiθ2) �−→ (
1√
3

eiθ1 , 1√
3

eiθ2 , 1√
3

e−iθ1−iθ2
)
.(71)

This identifies H1(Σ,R) ∼= H1(T 2,R) = R2. Under this identification,
as in Example 6.9 we have Z(Laj ) = 0 for all j, a and

Y (La1) = (πa, 0), Y (La2) = (0, πa) and Y (La3) = (−πa,−πa).(72)

For all j, a define a holomorphic disc Da
j with ∂Da

j ⊂ Laj and area πa by

Da
j =

{
(z1, z2, z3) ∈ C3 : |zj |2 � a, zk = 0 for j �= k

}
.(73)

The cone C is interesting as it has three topologically distinct fam-
ilies of AC SL 3-folds asymptotic to it, giving three different ways to
desingularize singularities of SL 3-folds with cone C. It is also signif-
icant as it is the only nontrivial example of a stable SL cone in Cm

known to the author. Mark Haskins [7, Th. A] has proved that C is the
only stable T 2-cone in C3 up to SU(3) isomorphisms. But SL m-folds
with stable conical singularities have particularly good properties, as in
Corollaries 5.3 and 8.8.

The author discussed singular SL 3-folds with cone C in [9, §3–§4]
and [13]. We can now prove some of the conjectures in these papers,
and give nontrivial applications of Theorems 7.3 and 7.5. For simplicity
we consider only SL 3-folds with one or two singular points, but the
results of §7 apply to arbitrarily many singularities x1, . . . , xn.

10.1 SL 3-folds with one T 2-cone singularity

We shall need a lemma on 3-manifolds with boundary.

Lemma 10.1. Let N be a compact, oriented 3-manifold with bound-
ary Σ. Then the natural map H1(N,R) →H1(Σ,R) has image of di-
mension 1

2b
1(Σ).
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Proof. Let N◦ = N \ Σ. The pair (N,Σ) has an exact sequence in
cohomology

· · · → H1(N,R) = H1(N◦,R) → H1(Σ,R) → H2
cs(N

◦,R) → · · · .(74)

But H1(N,R) ∼= H2
cs(N

◦,R)∗ and H1(Σ,R) ∼= H1(Σ,R)∗ by Poincaré
duality for N and Σ. These isomorphisms identify the map H1(N,R) →
H1(Σ,R) with the dual of the map H1(Σ,R) → H2

cs(N
◦,R) in (74).

Hence the image of H1(N,R) → H1(Σ,R) has the same dimension
as the cokernel of H1(Σ,R) → H2

cs(N
◦,R), and the lemma follows by

exactness in (74). q.e.d.

Consider the following situation, as in [9, §4].

Definition 10.2. Let (M,J, ω,Ω) be an almost Calabi-Yau 3-fold,
and X a compact, connected SL 3-fold with exactly one conical singu-
larity at x, with cone C in (70). Then X ′ = X \ {x} is connected. Let
Σ = C ∩ S5, and identify H1(Σ,R) ∼= R2 as above. Since X ′ is the
interior of a compact, oriented 3-manifold X

′ with boundary Σ ∼= T 2,
Lemma 10.1 shows that the map H1(X ′,R) → H1(Σ,R) of (16) has
image R.

Similarly, the map H1(X ′,Q) → H1(Σ,Q) has image Q ⊂ Q2. Thus
there exist coprime integers k1, k2, such that (k2,−k1) ∈ Z2 ⊂ Q2 ⊂
R2 generates the images of H1(X ′,R) → H1(Σ,R) and H1(X ′,Q) →
H1(Σ,Q). Define k3 = −k1 − k2. By exactness in (16), the map R2 =
H1(Σ,R) → H2

cs(X
′,R) has kernel

〈
(k2,−k1)

〉
. Therefore this map is

given by

(y1, y2) �→ (k1y1 + k2y2)χ for some nonzero χ ∈ H2
cs(X

′,R).(75)

Then k1, k2, k3 and χ are unique up to an overall change of sign.

The integers k1, k2, k3 were introduced in [9, Def. 4.3]. We now carry
out the topological calculations of §8 for desingularizing X by gluing in
Laj at x.

Proposition 10.3. In the situation of Definition 10.2, fix j = 1, 2
or 3 and let Nj be the compact 3-manifold obtained by gluing Laj into
X ′ at x. Use the notation of §8, with n = 1 and L1 = Laj . Then
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Z1 = Z = {0} and

dim IX′ = b1cs(X
′), Y1 =


〈
(1, 0)

〉
, j = 1,〈

(0, 1)
〉
, j = 2,〈

(1, 1)
〉
, j = 3,

Y =

{
Y1, kj = 0,
{0}, kj �= 0,

(76)

FX
L1

=

{
{Laj : a > 0}, kj = 0,
∅, kj �= 0,

b1(Nj) =

{
b1cs(X

′) + 1, kj = 0,
b1cs(X

′), kj �= 0.

(77)

Proof. In §8.1 as L1
∼= S1 × R2 and Σ1

∼= T 2 we have l1 = 1,
b0(L1) = 1 and b1cs(L1) = 0, and q = 1 as X ′ is connected. Thus (52)
gives dimZ1 = 0, and Z ⊆ Z1, so Z1 = Z = {0}, and Lemma 8.3
gives dim IX′ = b1cs(X

′).
Now Y1 ⊂ H1(Σ,R) = R2 is the image of H1(Laj ,R) → H1(Σ,R) by

Definition 8.2, and calculation shows it is as in (76). But the image of
H1(X ′,R) → H1(Σ,R) is

〈
(k2,−k1)

〉
by Definition 10.2, and Y is the

intersection of this image with Y1. As k3 = −k1 − k2, we see that Y is
as given in (76).

Equation (52) gives dimM0
L1

= 1, so M0
L1

= {Laj : a > 0}. But
by (54), as Z1 = {0} we see that FX

L1
is the subset of L̂1 ∈ M0

L1
with

Y (L̂1) ∈ Y, so (76) gives the first equation of (77). The second follows
from Proposition 8.6, since dimY is 1 if kj = 0 and 0 if kj �= 0 by (76).

q.e.d.

Now from §8.2, FX
L1

is the family of AC SL 3-folds L1 which satisfy
the hypotheses of the desingularization results of §7. Thus if kj = 0,
applying Theorem 7.3 with L1 = L1

j gives:

Theorem 10.4. Suppose (M,J, ω,Ω) is an almost Calabi-Yau 3-
fold, and X a compact, connected SL 3-fold with exactly one conical
singularity at x, with cone C in (70). Let k1, k2, k3 be as in Definition
10.2, and suppose kj = 0 for j = 1, 2 or 3. Then there exists ε > 0 and
a smooth family

{
Ñ t
j : t ∈ (0, ε]

}
of compact SL 3-folds in (M,J, ω,Ω)

constructed by gluing Lt
2

j into X at x. In the sense of currents, Ñ t
j → X

as t→ 0.

If kj �= 0 then for topological reasons there exist no Lagrangian 3-
folds N t

j constructed by gluing tL1
j into X at x, and hence no SL 3-folds
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Ñ t
j . As the kj are not all zero and k1 +k2 +k3 = 0 there can be at most

one j with kj = 0.
In the situation of Theorem 10.4, by Corollary 5.3 and (76) the

moduli space MX of deformations of X is a smooth manifold of dimen-
sion b1cs(X

′), and by Theorem 2.10 and (77) the moduli space MNj
of

deformations of Ñ t
j is a smooth manifold of dimension b1cs(X

′) + 1.
Hence the singularities of X have index one in the sense of §8.3, and

MNj
is near X a nonsingular manifold with boundary MX . So in this

case we have a very good understanding of the boundary ∂MNj
of MNj

,
as discussed in §8.

Following [9, §3.3] we can explain why Ñ t
j becomes singular as t→ 0,

using the Da
j of (73). As Ñ t

j is made by gluing Lt
2

j into X at x, and
there is a holomorphic disc Dt2

j with area πt2 and ∂Dt2
j ⊂ Lt

2

j , we expect
there to exist a holomorphic disc D̃t with area πt2 and ∂D̃t ⊂ Ñ t

j , for
small t.

As t → 0 the area of D̃t goes to zero, and D̃t collapses to a point.
Its boundary S1 in Ñ t

j also collapses to a point, giving the singular SL
3-fold X. The author expects that singularities with cone C are the
generic singularity of SL 3-folds occurring when areas of holomorphic
discs become zero.

10.2 SL 3-folds with one T 2-cone singularity in families

Next we apply Theorem 7.5 to desingularize SL 3-folds with one singu-
larity x with cone C in families of almost Calabi-Yau 3-folds (M,Js, ωs,
Ωs).

Theorem 10.5. Suppose (M,J, ω,Ω) is an almost Calabi-Yau 3-
fold, and X a compact, connected SL 3-fold with exactly one conical
singularity at x, with cone C in (70). Let k1, k2, k3, χ be as in Defi-
nition 10.2. Suppose

{
(M,Js, ωs,Ωs) : s ∈ F}

is a smooth family of
deformations of (M,J, ω,Ω) with

[Im Ωs] · [X] = 0 for all s ∈ F , where [X] ∈ H3(M,R).(78)

Let ι∗ : H2(X,R) → H2(M,R) be the inclusion, fix j = 1, 2 or 3, and
define

Gj =
{

(s, t) ∈ F × (0, 1) : [ωs] · ι∗(γ) = πt2kj(χ · γ)
for all γ ∈ H2(X,R)

}
.

(79)
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Then there exist ε ∈ (0, 1), κ > 1 and ϑ ∈ (0, 2) and a smooth family{
Ñ s,t
j : (s, t) ∈ Gj , t ∈ (0, ε], |s| � tϑ

}
,(80)

such that Ñ s,t
j is a compact SL 3-fold in (M,Js, ωs,Ωs) constructed by

gluing Lt
2

j into X at x. In the sense of currents, Ñ s,t
j → X as s, t→ 0.

Proof. We apply Theorem 7.5, with L1 = L1
j . As X is connected,

X ′ is connected. Equation (78) gives (48). The values of Y (Laj ) in
H1(Σ,R) ∼= R2 are given in (72), and the map H1(Σ,R) → H2

cs(X
′,R)

is given in (75). Combining these two shows that the image of Y (Laj )
in H2

cs(X
′,R) is πakj χ. Thus putting a = 1 as L1 = L1

j , we have
� = πkj χ in Theorem 7.5, and so Gj in (79) agrees with G in (49). The
result then follows from Theorem 7.5. q.e.d.

We now specialize to the case that b1cs(X
′) = 0. Then b2(X ′) = 0 by

(17), so (16) gives an exact sequence

0 → H1(X ′,R) → H1(Σi,R) ∼= R2 → H2
cs(X

′,R) → 0.

As b1(X ′) = b2cs(X
′) by (17), this gives b1(X ′) = b2cs(X

′) = 1.
Now H2(X,R) ∼= H2

cs(X
′,R)∗ ∼= R by (18), and χ �= 0 by (75). Thus

there exists a unique γ0 ∈ H2(X,R) with χ · γ0 = 1. The condition
[ωs] · ι∗(γ) = πt2kj(χ · γ) for all γ ∈ H2(X,R) in (79) then becomes the
single real equation [ωs] · ι∗(γ0) = πt2kj .

As in (69), let us divide the family F into three regions:

F+ =
{
s ∈ F : [ωs] · ι∗(γ0) > 0

}
,

F− =
{
s ∈ F : [ωs] · ι∗(γ0) < 0

}
,

and F0 =
{
s ∈ F : [ωs] · ι∗(γ0) = 0

}
.

(81)

If ι∗(γ0) �= 0 and F is sufficiently generic, then F0 will be a smooth real
hypersurface in F , which divides F \F0 into two open regions F±. Call
F+ the positive side and F− the negative side of F0.

We investigate the existence of deformations Xs and desingulariza-
tions Ñ s,t

j of X in (M,Js, ωs,Ωs), for small s in each of these regions.

(a) From §5, a necessary condition for the existence of any SL 3-fold
Xs with a conical singularity isotopic to X in (M,Js, ωs,Ωs) is
that ι∗(γ) · [ωs] = 0 for all γ ∈ H2(X,R). Thus, such Xs can exist
only if s ∈ F0.
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As dim IX′ = b1cs(X
′) = 0, Corollary 5.8 then shows that for

small s ∈ F0, there is a unique deformation Xs of X close to
X in (M,Js, ωs,Ωs).

(b) If s ∈ F0 then [ωs] · ι∗(γ0) = πt2kj has solutions t > 0 if and only
if kj = 0, and then any t > 0 is a solution. For small s ∈ F0

we may apply Theorem 10.4 to the unique Xs above to get a 1-
parameter family of SL 3-folds Ñ s,t

j in (M,Js, ωs,Ωs) for small
t > 0, with b1(Ñ s,t

j ) = b1(Nj) = 1.

(c) If s ∈ F+ then [ωs] · ι∗(γ0) = πt2kj has a unique solution t > 0
if and only if kj > 0. Theorem 10.5 then shows that a desingu-
larization Ñ s,t

j exists provided t � ε and |s| � tϑ, which is unique
as b1(Ñ s,t

j ) = b1(Nj) = 0.

By applying Theorem 10.5 not just to X but to Xs for small s ∈
F0, one can show that such Ñ s,t

j actually exist for all small s ∈ F+.

(d) If s ∈ F− then [ωs] · ι∗(γ0) = πt2kj has a unique solution t > 0
if and only if kj < 0. As for s ∈ F+, we find that a unique
desingularization Ñ s,t

j then exists for small s ∈ F−.

As k1, k2, k3 are not all zero with k1 + k2 + k3 = 0, there is at least
one kj < 0, and at least one kj > 0. Suppose k1 < 0 and k2, k3 > 0, for
example. Imagine s ∈ F moving along a curve near 0 starting in F−,
crossing F0 and ending in F+. Then initially there is one SL homology
3-sphere Ñ s,t

1 in (M,Js, ωs,Ωs). As s crosses F0 this SL 3-fold collapses
to a singular SL 3-fold Xs, with a conical singularity with cone C.

As s moves into F+ it is desingularized in two topologically distinct
ways to give two SL homology 3-spheres Ñ s,t

2 , Ñ s,t
3 . We have found

a process by which one SL homology 3-sphere can turn into two SL
homology 3-spheres as we deform the underlying almost Calabi-Yau 3-
fold (M,Js, ωs,Ωs). This was described in [9, §4.2], and we have now
proved [9, Conj. 4.4].

In [9, Prop. 4.5] we compute H1(X,Z), H1(Nj ,Z) and show:

Proposition 10.6. In the situation of Definition 10.2, let Nj be
the compact, nonsingular 3-manifold obtained by gluing Laj into X ′ at
x, for j = 1, 2, 3. Suppose b1cs(X

′) = 0. Then H1(X,Z) is finite. If
kj �= 0 then H1(Nj ,Z) is also finite with |H1(Nj ,Z)| = |kj | · |H1(X,Z)|.

In the situation above with k1 < 0 and k2, k3 > 0, as k1+k2+k3 = 0
we have |k1| = |k2| + |k3|, and therefore |H1(N1,Z)| = |H1(N2,Z)| +
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|H1(N3,Z)| by Proposition 10.6. Now |H1(Nj ,Z)| is the number of flat
U(1)-connections on Nj . Thus when Ñ s,t

1 turns into Ñ s,t
2 and Ñ s,t

3 , the
number of SL homology 3-spheres with flat U(1)-connections does not
change.

This is physically significant since 3-branes in string theory corre-
spond in a classical limit to SL 3-folds with flat U(1)-connections, as in
[29] for instance. The proposal of [9] is to count SL homology 3-spheres
with flat U(1)-connections in a given homology class. We have shown
that this number is conserved under a nontrivial kind of transition in
the family of SL homology 3-spheres.

10.3 SL 3-folds with two T 2-cone singularities

Next we study SL 3-folds with two singularities with cone C.

Definition 10.7. Let (M,J, ω,Ω) be an almost Calabi-Yau 3-fold,
and X a compact, connected SL 3-fold with exactly two conical singu-
larities at x1, x2, both with cone C in (70). Then X ′ = X \ {x1, x2}
is connected. Write Σ1,Σ2 for the two copies of Σ = C ∩ S5 at x1, x2,
and identify H1(Σi,R) ∼= R2 as above. Write elements of H1(Σ1,R) ⊕
H1(Σ2,R) = R2 ⊕ R2 as

(
(u, v), (y, z)

)
.

Since X ′ is the interior of a compact, oriented 3-manifold X
′ with

boundary Σ1 ∪ Σ2, the map H1(X ′,R) → H1(Σ1,R) ⊕ H1(Σ2,R) of
(16) has image R2 by Lemma 10.1. Choose a basis

(
(u1, v1), (y1, z1)

)
,(

(u2, v2), (y2, z2)
)

for this image. As it is also a basis over R for the image
of H1(X ′,Q) → H1(Σ1,Q) ⊕H1(Σ2,Q) we can take u1, . . . , z2 ∈ Q.

Let α1, α2 be closed 1-forms on X ′ such that the images of [α1], [α2]
in H1(Σ1,R) ⊕ H1(Σ2,R) are this basis. Then α1 ∧ α2 is a closed
2-form on X

′, an oriented 3-manifold with boundary Σ1 ∪ Σ2, so by
Stokes’ Theorem we have

∫
Σ1∪Σ2

α1∧α2 = 0. This gives the consistency
condition

u1v2 − u2v1 + y1z2 − y2z1 = 0.(82)

Applying Theorem 7.3 gives a necessary and sufficient criterion for
when we can desingularize X by gluing in AC SL 3-folds La1

j1 , L
a2
j2 at

x1, x2.
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Theorem 10.8. Suppose (M,J, ω,Ω) is an almost Calabi-Yau 3-
fold, and X a compact, connected SL 3-fold with exactly two conical
singularities at x1, x2, both with cone C in (70). Let u1, . . . , z2 be as in
Definition 10.7. Choose j1, j2 = 1, 2, 3 and a1, a2 > 0, and set Li = Lai

ji
for i = 1, 2. Then there exists ε > 0 and a smooth family

{
Ñ t : t ∈

(0, ε]
}

of compact SL 3-folds in (M,J, ω,Ω) constructed by gluing tLi
into into X at xi if and only if

(
Y (L1), Y (L2)

) ∈ 〈(
(u1, v1), (y1, z1)

)
,
(
(u2, v2), (y2, z2)

)〉 ⊂ R2 ⊕ R2,

(83)

where Y (Li) are given in (72). In the sense of currents, Ñ t → X
as t→ 0.

Here � exists in Theorem 7.3 if and only if
(
Y (L1), Y (L2)

)
lies in

the image of H1(X ′,R) → H1(Σ1,R)⊕H1(Σ2,R), that is, if and only if
(83) holds. We are interested in how many topologically distinct ways of
desingularizing X there are, and in the index of the singularities of X.

Let us use the notation of §8, so that IX′ is the image ofH1
cs(X

′,R) in
H1(X ′,R), and MX the moduli space of deformations of X in (M,J, ω,
Ω) as in §5, and N the compact 3-manifold obtained by gluing Li = Lai

ji
into X at xi for i = 1, 2, and MN the moduli space of deformations of
Ñ t in (M,J, ω,Ω).

Corollary 5.3 and Theorem 2.10 show that MX ,MN are smooth
with

dimMX = dim IX′ and dimMN = b1(N).(84)

As q = l1 = l2 = 1, Lemma 8.3 gives dim IX′ = b1cs(X
′) − 1. Equation

(52) shows that Zi = Z = {0} and dimYi = 1, so that Yi = 〈Y (Li)〉.
Therefore

Y =
〈(
Y (L1), 0

)
,
(
0, Y (L2)

)〉 ∩ 〈(
(u1, v1), (y1, z1)

)
,
(
(u2, v2), (y2, z2)

)〉
.

(85)

Proposition 8.6 then gives

b1(N) = dimY + b1cs(X
′) − 1 = dimY + dim IX′ ,(86)

so that dimMN = dimMX +dimY, and ind(X) = dimY in the sense
of §8.3.

For generic u1, . . . , z2 there will be no choices of j1, j2, a1, a2 for
which (83) holds, and so no way to desingularize X in (M,J, ω,Ω).
Here are four examples where other things happen.
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Example 10.9. Suppose u1, . . . , z2 are given by

(
(u1, v1), (y1, z1)

)
=

(
(1, 0), (0, 0)

)
,

(
(u2, v2), (y2, z2)

)
=

(
(0, 0), (1, 0)

)
,

(87)

so that (82) holds. Then we can desingularize X using L1 = La1
1 and

L2 = La2
1 for any a1, a2 > 0, with ind(X) = dimY = 2. We must have

j1 = j2 = 1, so there is only one topological possibility.

Example 10.10. Let
(
(u1, v1), (y1, z1)

)
=

(
(1, 0), (r, 0)

)
for r > 0

in Q, and
(
(u2, v2), (y2, z2)

)
be generic with v2 + rz2 = 0. The only

way to desingularize X is with L1 = La1 and L2 = Lra1 for a > 0,
with ind(X) = dimY = 1.

Example 10.11. Let r > 0 be in Q with r �= 1, and let

(
(u1, v1), (y1, z1)

)
=

(
(1, 0), (0, r)

)
,

(
(u2, v2), (y2, z2)

)
=

(
(0, r), (1, 0)

)
.

(88)

Then there are exactly two topologically distinct ways to desingular-
ize X:

(a) j1 = 1, j2 = 2, a1 = a > 0, a2 = ra > 0, L1 = La1 and L2 = Lra2 ,

(b) j1 = 2, j2 = 1, a1 = ra > 0, a2 = a > 0, L1 = Lra2 and L2 = La1.

Both have ind(X) = dimY = 1.

Example 10.12. Suppose u1, . . . , z2 are given by

(
(u1, v1), (y1, z1)

)
=

(
(1, 0), (0, 1)

)
,

(
(u2, v2), (y2, z2)

)
=

(
(0, 1), (1, 0)

)
,

(89)

which is the case r = 1 in Example 10.11. Then there are exactly
three topologically distinct ways to desingularize X, each with ind(X)=
dimY=1:

(a) j1 = 1, j2 = 2, a1 = a2 = a > 0, L1 = La1 and L2 = La2,

(b) j1 = 2, j2 = 1, a1 = a2 = a > 0, L1 = La2 and L2 = La1,

(c) j1 = j2 = 3, a1 = a2 = a > 0, and L1 = L2 = La3.
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We can explain this using the holomorphic discsDa
j of (73). For each

desingularization Ñ t when t is small, we expect there to exist unique
holomorphic discs D̃t

1, D̃
t
2 in (M,J), where D̃t

i is near xi, has area πai
and boundary ∂D̃t

i ⊂ Ñ t for i = 1, 2.
In Example 10.9 the homology classes [∂D̃t

1], [∂D̃
t
2] ∈ H1(Ñ t,R) are

linearly independent. Therefore by deforming Ñ t as an SL 3-fold we can
vary the areas of D̃t

1, D̃
t
2 independently. These two areas give two real

parameters for the desingularization of X, which is why ind(X) = 2.
However, in Examples 10.10–10.12 the homology classes [∂D̃t

1], [∂D̃
t
2]

are proportional in H1(Ñ t,R). This forces area(D̃t
2) = c · area(D̃t

1) to
hold under deformations of Ñ t, where c = r in Example 10.10 and part
(a) of Example 10.11, c = r−1 in part (b) of Example 10.11, and c = 1
in Example 10.12. In particular, the areas of D̃t

1, D̃
t
2 can only become

zero simultaneously.
Therefore the two singularities x1, x2 in X are not independent,

but coupled together. For an SL m-fold X with conical singularities
x1, . . . , xn one might näıvely expect each xi to be desingularized sepa-
rately, and ind(X) to be the sum of contributions from each xi. But
in Examples 10.10–10.12 we see that x1, x2 can only be desingular-
ized together, and ind(X) = 1 is not a sum of separate contributions
from x1, x2.

In Examples 10.10–10.12 the moduli spaces MX , MN are smooth
with dimMN = dimMX + 1. Therefore MN is near X a nonsingular
manifold with boundary MX . So we have a good understanding of the
boundary ∂MN of MN , as in §8. It is also interesting that in Examples
10.11 and 10.12 we have two or three different moduli spaces MN with
common boundary MX .

Finally we discuss the ideas of [13] on SL fibrations of (almost)
Calabi-Yau 3-folds, as required by the SYZ Conjecture [29]. Let (M,J,
ω,Ω) be an almost Calabi-Yau 3-fold and f : M → B an SL fibra-
tion. That is, B is a compact 3-manifold, f is continuous and piece-
wise smooth, and for some ∆ ⊂ B with B \ ∆ open and dense the
fibres Xb = f−1(b) are SL 3-tori for b ∈ B \ ∆, and singular SL 3-folds
for b ∈ ∆.

The idea of [13, §7–§8] is that for ω generic in its Kähler class, ∆
should be of codimension 1 in B, and for b ∈ ∆ generic Xb should have
2 (or 2n) singularities with cone C, as in Definition 10.7. Then ∆ is
locally a hypersurface which divides B \ ∆ into two pieces. These are
two different moduli spaces of SL 3-tori with common boundary ∆, as
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in Examples 10.11 and 10.12. Our results provide a partial proof of
speculations in [13, §8.2(a)].
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