ISOPERIMETRIC INEQUALITY FOR THE SECOND EIGENVALUE OF A SPHERE

NIKOLAI NADIRASHVILI

Abstract

We prove Hersch's type isoperimetric inequality for the second positive eigenvalue on a two dimensional sphere.

1. Introduction

Let $\left(S^{2}, g\right)$ be a Riemannian manifold diffeomorphic to the twodimensional sphere. Assume that the area of $\left(S^{2}, g\right)$ is equal to the area of a unit sphere in \mathbb{R}^{3} :

$$
\operatorname{Area}\left(S^{2}, g\right)=4 \pi .
$$

Denote by

$$
0=\lambda_{0}<\lambda_{1} \leq \lambda_{2} \leq \ldots
$$

the spectrum of the Laplacian on $\left(S^{2}, g\right)$. The classical isoperimetric inequality of Hersch states that

$$
\lambda_{1} \leq 2,
$$

and equality is attained only when $\left(S^{2}, g\right)$ is a standard sphere in \mathbb{R}^{3} (see [1]).

The goal of this paper is to prove a similar inequality for λ_{2}.
Theorem. Let g be a metric on S^{2} such that $\operatorname{Area}\left(S^{2}, g\right)=4 \pi$. Then

$$
\lambda_{2}<4 .
$$

[^0]In the theorem, the inequality turns into equality if we break the sphere $\left(S^{2}, g\right)$ into two round spheres, both of area 2π. The inequality is isoperimetric, i.e., there exists a sequence of metrics on S^{2} of areas 4π for which λ_{2} tends to 4 . To get such metrics, one can simply connect two round spheres of area 2π by a thin passage.

It is an interesting question to get sharp upper bounds for all the eigenvalues λ_{n} in terms of $\operatorname{Area}\left(S^{2}, g\right)$. In [2], Korevaar proved that there exists a constant C such that

$$
\lambda_{n} \leq \frac{1}{\operatorname{Area}\left(S^{2}, g\right)} C \cdot n
$$

We expect that the last inequality holds for $C=8 \pi$, with equality when the sphere is broken into n equal round spheres.

2. Proof of the theorem

(1) Let $(d s)^{2}$ be the standard metric on the round sphere (S^{2}, can). We may assume without loss of generality that the metric g is conformally equivalent to $(d s)^{2}$, i.e., that $g=\omega(d s)^{2}$. There exists a unique point $e \in \mathbb{R}^{3},|e|<1$, so that, for the Möbius map

$$
\mu: S^{2} \rightarrow S^{2}
$$

given by the formula

$$
\mu(x)=\mu_{e}(x)=\frac{\left(1-|e|^{2}\right) x-\left(1-2\langle e, x\rangle+|x|^{2}\right) e}{1-2\langle e, x\rangle+|e|^{2}|x|^{2}}, \quad x \in \mathbb{R}^{3},
$$

we have the orthogonality relations

$$
\int_{S^{2}} X_{i} \circ \mu d g=0, \quad i=1,2,3,
$$

where the X_{i} are the coordinate functions in $\mathbb{R}^{3}([1],[3])$. The same result is also true for any nonsingular measure ω on S^{2}.

For $X \in \mathbb{R}^{3}$ and $s \in S^{2}$, put $X_{s}=\langle X, s\rangle$. Let s_{0} maximize the integral

$$
\int_{S^{2}} X_{s}^{2} \circ \mu d g
$$

over all $s \in S^{2}$. Put

$$
u=u_{\mu}=X_{s_{0}} \circ \mu
$$

Then since $X_{1}^{2}+X_{2}^{2}+X_{3}^{2}=1$ on S^{2}

$$
\int_{S^{2}} u^{2} d g \geq \frac{1}{3} \int_{S^{2}} d g
$$

and

$$
\int_{S^{2}}|\nabla u|^{2} d g=\int_{S^{2}}|\nabla u|^{2} d s=\int_{S^{2}}\left|\nabla X_{i}\right|^{2} d s=\frac{8 \pi}{3}
$$

Hence

$$
\lambda:=\int_{S^{2}}|\nabla u|^{2} d g / \int_{S^{2}} u^{2} d g \leq 2
$$

We call the function u a quasieigenfunction and λ a quasieigenvalue of the metric g. If there is only one choice of the point s_{0} which maximizes the above integral, then we say that the quasieigenfunction u is simple. The nodal set of u is a circle on S^{2}, which we denote by $N=N_{u}=N_{g}$. The center of N will be $-e$.
(2) Denote by M the set of all spherical caps on S^{2}. Take $a \in M$. We denote by a^{*} the adjacent cap to a, namely $S^{2} \backslash \bar{a}$, and by $B(a) \subseteq S^{2}$ the boundary circle of a. Recall that $B(a)=B\left(a^{*}\right)$. For each $a \in M$, there exists a unique conformal reflection $C_{a}: S^{2} \rightarrow S^{2}$ which changes the orientation of S^{2} and is the identity on $B(a)$. We have that $C_{a}=C_{a^{*}}$ and $C_{a}(a)=a^{*}$. Let $g_{a}=\omega_{a}(d s)^{2}$ be the image of the metric g under C_{a}. Put

$$
G_{a}= \begin{cases}\left(\omega+\omega_{a}\right)(d s)^{2} & \text { on } a \\ 0 & \text { on } a^{*} .\end{cases}
$$

Then $\operatorname{Area}\left(S^{2}, G_{a}\right)=\operatorname{Area}\left(a, G_{a}\right)=4 \pi$.
(3) Take $a \in M$ and let $u=u_{a}$ be a quasieigenfunction of G_{a}. Define

$$
U= \begin{cases}u & \text { on } a, \\ u \circ C_{a} & \text { on } a^{*}\end{cases}
$$

Then

$$
\begin{aligned}
\int_{S^{2}} U d g & =0 \\
\int_{S^{2}} U^{2} d g & =\int_{S^{2}} u^{2} d G_{a}
\end{aligned}
$$

and

$$
\int_{S^{2}}|\nabla U|^{2} d s=2 \int_{a}|\nabla u|^{2} d s
$$

Since

$$
\int_{S^{2}}|\nabla u|^{2} d s / \int_{S^{2}} u^{2} d G_{a} \leq 2,
$$

we get

$$
\int_{S^{2}}|\nabla U|^{2} d s / \int_{S^{2}} U^{2} d g<4
$$

Thus, if the quasieigenfunction u is non-simple, then we get a twodimensional space of functions U on S^{2} for which the last inequality will hold. Hence, by the variational principle for eigenvalues, it follows that the second eigenvalue of $\left(S^{2}, g\right)$ will be less than 4 . Therefore, we may assume without loss of generality that, for all $a \in M$, the quasieigenfunction u_{a} of the metric G_{a} is simple. Then, for any $a \in M$, the function u_{a} is determined up to a sign. The circle $n(a):=N_{u_{a}}$ depends continuously on a. Denote by $\Omega \subseteq M$ the set of all a such that $n(a) \cap B(a)=\varnothing$.
(4) Since $M \cong S^{2} \times I$, we have $\pi_{1}(M)=0$. Thus, by a suitable choice of sign of u_{a}, we may assume that the functions u_{a} are continuously dependent on the parameter $a \in M$. Hence, if we denote by $s(a) \in S^{2}$ the point where u_{a} attains its supremum, then we get a continuous map

$$
s: M \rightarrow S^{2} .
$$

Denote by $p(a) \in S^{2}$ the center of the cap a. Denote by $g(a)$ the orthogonal projection of the vector $s(a)$ on the plane tangent to S^{2} at $p(a)$, namely, $T_{p(a)} S^{2}$. Note that $g(a)=0$ if and only if $g\left(a^{*}\right)=0$.

There exists a finite collection of sets $E_{i} \subseteq M, i=1, \ldots, N$, such that each E_{i} is diffeomorphic to a ball and $\bigcup E_{i}=M$. By Sard's theorem for any $\varepsilon>0$ there exists a smooth map $\varphi_{1}: M \rightarrow T S^{2}$ with $\varphi_{1}(a) \in T_{p(a)} S^{2}$ for all $a \in M$ such that $\left|\varphi_{1}\right|<\varepsilon$; and, if we define $F_{1}=f+\varphi_{1}$, then $F_{1}^{(-1)}(0) \cap E_{1}$ is a nonsingular one-dimensional set. We can define inductively a sequence of φ_{i} and $F_{i}=F_{i-1}+\varphi_{i-1}$ such that $\left|\varphi_{i}\right|<\varepsilon$ and $F_{i}^{(-1)}(0) \cap\left(E_{1} \cup \cdots \cup E_{i}\right)$ is a nonsingular one-dimensional set. If we put $F=F_{N}$, then $F^{(-1)}(0)$ is a union of nonsingular curves and $|f-F|<N \varepsilon$ Since, for all $a \in M, n(a)$ does not coincide with $B(a)$, for sufficiently small $\varepsilon>0$ we have $F^{(-1)}(0) \subseteq \Omega$.
(5) Let Γ be the zero set of F. As discussed above, we assume that $\varepsilon>0$ is so small that $\Gamma \subseteq \Omega$. Then Γ is a finite union of smooth curves, without intersection.

Let $Q \subseteq M$ be the set of all points $q \in M$ such that $B(q)$ is a big circle on S^{2}. Then $Q \cong S^{2}$ and p maps Q into S^{2}.

If we restrict the map F to Q, then we get a vector field on S^{2} which we denote by v. Put $Z=Q \cap \Gamma$. Then the critical points of v are precisely the image of Z under p. By taking a small variation of F, we may assume without loss of generality that Γ intersects Q transversally at Z.

Let $\gamma \subseteq \Gamma$ be a curve. Assume that the intersection $\gamma \cap Q$ has more than one point. Let z_{1} and z_{2} be subsequent points on γ of $\gamma \cap Q$. Let $\xi_{t} \subseteq M, t \in[1,2]$, be a continuous family of small loops around γ such that $\xi_{1} \subseteq Q, \xi_{2} \subseteq Q$ and $p\left(\xi_{i}\right)$ is a loop around $p\left(z_{i}\right), i=1,2$. The orientations of ξ_{1} and ξ_{2} on Q are clearly opposite. Therefore, the orientations of $p\left(\xi_{1}\right)$ and $p\left(\xi_{2}\right)$ on S^{2} are also opposite. On the other hand, the rotation of the vector $F(a)$ as the point a goes around the loop ξ_{t} is independent of t. Therefore, the indices of v at the points $p\left(z_{1}\right)$ and $p\left(z_{2}\right)$ are opposite.

Therefore, there exists a curve $\zeta \subseteq \Gamma$ which has odd points of intersection with Q. Such a curve ζ is necessarily unclosed, and hence the endpoints of ζ are on ∂M. Let us parametrize ζ by $\zeta=\left\{\zeta_{t}, t \in[0,1]\right\}$, so that $\zeta_{0}, \zeta_{1} \in \partial M$. By the oddness of $\zeta \cap Q, \zeta_{t}$ tends to a point as $t \rightarrow 0$ and to S^{2} as $t \rightarrow 1$. Consequently,

$$
\begin{array}{ll}
\operatorname{Area}\left(\zeta_{t}, g\right) \rightarrow 0 & \text { as } t \rightarrow 0 \\
\operatorname{Area}\left(\zeta_{t}^{*}, g\right) \rightarrow 0 & \text { as } t \rightarrow 1
\end{array}
$$

Denote $u_{t}:=u_{\zeta_{t}}, \quad N_{t}:=N_{u_{t}}$. Then

$$
\int_{\zeta_{t}} u_{t}^{2} d g \rightarrow 0 \quad \text { as } t \rightarrow 0
$$

and

$$
\int_{\zeta_{t}^{*}} u_{t}^{2} d g \rightarrow 0 \quad \text { as } t \rightarrow 1
$$

Thus there exists $t_{0} \in(0,1)$ so that

$$
\int_{\zeta_{t_{0}}} u_{t_{0}}^{2} d g=\int_{\zeta_{t_{0}}^{*}} u_{t_{0}}^{2} d g
$$

Define

$$
U= \begin{cases}u_{t_{0}} & \text { on } \zeta_{t_{0}}, \\ u_{t_{0}} \circ C_{\zeta_{t_{0}}} & \text { on } \zeta_{t_{0}}^{*} .\end{cases}
$$

Since $\zeta_{t_{0}} \in \Omega, N_{t_{0}} \cap N_{t_{0}}^{*}=\emptyset$. Hence the function U has three nodal domains: $\mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{D}_{3}$ such that $\partial \mathcal{D}_{1}=N_{t_{0}}, \partial \mathcal{D}_{2}=N_{t_{0}}^{*}$ and $\mathcal{D}_{3}=S^{2} \backslash$ $\left(\mathcal{D}_{1} \cup \mathcal{D}_{2}\right)$. Since

$$
\int_{\mathcal{D}_{1}} U^{2} d g=\int_{\mathcal{D}_{2}} U^{2} d g,
$$

we have for $i=1,2,3$ that

$$
\frac{\int_{\mathcal{D}_{i}}|\nabla U|^{2} d g}{\int_{\mathcal{D}_{i}} U^{2} d g}=2 \lambda,
$$

where λ is the quasieigenvalue of the quasieigenfunction $u_{\zeta_{t_{0}}}$. Since $\lambda<2$, the theorem follows from the variational principle for the second eigenvalue of $\left(S^{2}, g\right)$.

References

[1] J. Hersch, Quatre propriétés isopérimétriques de membranes sphérique homogènes, C.R. Acad. Paris 270 (1970) 1645-1648, MR $45 \# 1444$, Zbl 0224.73083.
[2] N. Korevaar, Upper bounds for eigenvalues of conformal metrics, J. Differential Geom. 37 (1993) 73-93, MR 94d:58153, Zbl 0794.58045.
[3] R. Schoen \& S.-T. Yau, Lectures on Differential Geometry, International Press, 1994, MR 97d:53001, Zbl 0830.53001.

University of Chicago
Chicago, IL 60637

[^0]: Received 09/03/2002.

