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ISOPERIMETRIC INEQUALITY FOR THE SECOND
EIGENVALUE OF A SPHERE

NIKOLAI NADIRASHVILI

Abstract
We prove Hersch’s type isoperimetric inequality for the second positive
eigenvalue on a two dimensional sphere.

1. Introduction

Let (S2, g) be a Riemannian manifold diffeomorphic to the two-
dimensional sphere. Assume that the area of (S2, g) is equal to the
area of a unit sphere in R

3:

Area(S2, g) = 4π.

Denote by
0 = λ0 < λ1 ≤ λ2 ≤ . . .

the spectrum of the Laplacian on (S2, g). The classical isoperimetric
inequality of Hersch states that

λ1 ≤ 2,

and equality is attained only when (S2, g) is a standard sphere in R
3

(see [1]).
The goal of this paper is to prove a similar inequality for λ2.

Theorem. Let g be a metric on S2 such that Area(S2, g) = 4π.
Then

λ2 < 4.
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In the theorem, the inequality turns into equality if we break the
sphere (S2, g) into two round spheres, both of area 2π. The inequality
is isoperimetric, i.e., there exists a sequence of metrics on S2 of areas
4π for which λ2 tends to 4. To get such metrics, one can simply connect
two round spheres of area 2π by a thin passage.

It is an interesting question to get sharp upper bounds for all the
eigenvalues λn in terms of Area(S2, g). In [2], Korevaar proved that
there exists a constant C such that

λn ≤ 1
Area(S2, g)

C · n.

We expect that the last inequality holds for C = 8π, with equality when
the sphere is broken into n equal round spheres.

2. Proof of the theorem

(1) Let (ds)2 be the standard metric on the round sphere (S2, can). We
may assume without loss of generality that the metric g is conformally
equivalent to (ds)2, i.e., that g = ω(ds)2. There exists a unique point
e ∈ R

3, |e| < 1, so that, for the Möbius map

µ : S2 → S2

given by the formula

µ(x) = µe(x) =
(1 − |e|2)x − (1 − 2〈e, x〉 + |x|2)e

1 − 2〈e, x〉 + |e|2|x|2 , x ∈ R
3,

we have the orthogonality relations∫
S2

Xi ◦ µdg = 0, i = 1, 2, 3,

where the Xi are the coordinate functions in R
3 ([1], [3]). The same

result is also true for any nonsingular measure ω on S2.
For X ∈ R

3 and s ∈ S2, put Xs = 〈X, s〉. Let s0 maximize the
integral ∫

S2

X2
s ◦ µdg

over all s ∈ S2. Put
u = uµ = Xs0 ◦ µ.
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Then since X2
1 + X2

2 + X2
3 = 1 on S2

∫
S2

u2dg ≥ 1
3

∫
S2

dg

and ∫
S2

|∇u|2dg =
∫

S2

|∇u|2ds =
∫

S2

|∇Xi|2ds =
8π

3
.

Hence

λ :=
∫

S2

|∇u|2dg
/ ∫

S2

u2dg ≤ 2.

We call the function u a quasieigenfunction and λ a quasieigenvalue of
the metric g. If there is only one choice of the point s0 which maximizes
the above integral, then we say that the quasieigenfunction u is simple.
The nodal set of u is a circle on S2, which we denote by N = Nu = Ng.
The center of N will be −e.

(2) Denote by M the set of all spherical caps on S2. Take a ∈ M . We
denote by a∗ the adjacent cap to a, namely S2\a, and by B(a) ⊆ S2 the
boundary circle of a. Recall that B(a) = B(a∗). For each a ∈ M , there
exists a unique conformal reflection Ca : S2 → S2 which changes the
orientation of S2 and is the identity on B(a). We have that Ca = Ca∗

and Ca(a) = a∗. Let ga = ωa(ds)2 be the image of the metric g under
Ca. Put

Ga =

{
(ω + ωa)(ds)2 on a,

0 on a∗.

Then Area(S2, Ga) = Area(a, Ga) = 4π.

(3) Take a ∈ M and let u = ua be a quasieigenfunction of Ga. Define

U =

{
u on a,

u ◦ Ca on a∗.

Then ∫
S2

Udg = 0,∫
S2

U2dg =
∫

S2

u2dGa
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and ∫
S2

|∇U |2ds = 2
∫

a
|∇u|2ds.

Since ∫
S2

|∇u|2ds
/ ∫

S2

u2dGa ≤ 2,

we get ∫
S2

|∇U |2ds
/ ∫

S2

U2dg < 4.

Thus, if the quasieigenfunction u is non-simple, then we get a two-
dimensional space of functions U on S2 for which the last inequality
will hold. Hence, by the variational principle for eigenvalues, it follows
that the second eigenvalue of (S2, g) will be less than 4. Therefore,
we may assume without loss of generality that, for all a ∈ M , the
quasieigenfunction ua of the metric Ga is simple. Then, for any a ∈ M ,
the function ua is determined up to a sign. The circle n(a) := Nua

depends continuously on a. Denote by Ω ⊆ M the set of all a such that
n(a) ∩ B(a) = ∅.

(4) Since M ∼= S2 × I, we have π1(M) = 0. Thus, by a suitable choice
of sign of ua, we may assume that the functions ua are continuously
dependent on the parameter a ∈ M . Hence, if we denote by s(a) ∈ S2

the point where ua attains its supremum, then we get a continuous map

s : M → S2.

Denote by p(a) ∈ S2 the center of the cap a. Denote by g(a) the
orthogonal projection of the vector s(a) on the plane tangent to S2 at
p(a), namely, Tp(a)S

2. Note that g(a) = 0 if and only if g(a∗) = 0.
There exists a finite collection of sets Ei ⊆ M , i = 1, . . . , N , such

that each Ei is diffeomorphic to a ball and
⋃

Ei = M . By Sard’s
theorem for any ε > 0 there exists a smooth map ϕ1 : M → TS2

with ϕ1(a) ∈ Tp(a)S
2 for all a ∈ M such that |ϕ1| < ε; and, if we define

F1 = f+ϕ1, then F
(−1)
1 (0)∩E1 is a nonsingular one-dimensional set. We

can define inductively a sequence of ϕi and Fi = Fi−1 + ϕi−1 such that
|ϕi| < ε and F

(−1)
i (0)∩ (E1 ∪ · · · ∪Ei) is a nonsingular one-dimensional

set. If we put F = FN , then F (−1)(0) is a union of nonsingular curves
and |f − F | < Nε Since, for all a ∈ M , n(a) does not coincide with
B(a), for sufficiently small ε > 0 we have F (−1)(0) ⊆ Ω.
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(5) Let Γ be the zero set of F . As discussed above, we assume that
ε > 0 is so small that Γ ⊆ Ω. Then Γ is a finite union of smooth curves,
without intersection.

Let Q ⊆ M be the set of all points q ∈ M such that B(q) is a big
circle on S2. Then Q ∼= S2 and p maps Q into S2.

If we restrict the map F to Q, then we get a vector field on S2

which we denote by v. Put Z = Q∩Γ. Then the critical points of v are
precisely the image of Z under p. By taking a small variation of F , we
may assume without loss of generality that Γ intersects Q transversally
at Z.

Let γ ⊆ Γ be a curve. Assume that the intersection γ ∩Q has more
than one point. Let z1 and z2 be subsequent points on γ of γ ∩ Q.
Let ξt ⊆ M , t ∈ [1, 2], be a continuous family of small loops around γ
such that ξ1 ⊆ Q, ξ2 ⊆ Q and p(ξi) is a loop around p(zi), i = 1, 2.
The orientations of ξ1 and ξ2 on Q are clearly opposite. Therefore, the
orientations of p(ξ1) and p(ξ2) on S2 are also opposite. On the other
hand, the rotation of the vector F (a) as the point a goes around the
loop ξt is independent of t. Therefore, the indices of v at the points
p(z1) and p(z2) are opposite.

Therefore, there exists a curve ζ ⊆ Γ which has odd points of inter-
section with Q. Such a curve ζ is necessarily unclosed, and hence the
endpoints of ζ are on ∂M . Let us parametrize ζ by ζ = {ζt, t ∈ [0, 1]},
so that ζ0, ζ1 ∈ ∂M . By the oddness of ζ ∩ Q, ζt tends to a point as
t → 0 and to S2 as t → 1. Consequently,

Area(ζt, g) → 0 as t → 0,

Area(ζ∗t , g) → 0 as t → 1.

Denote ut := uζt , Nt := Nut . Then∫
ζt

u2
t dg → 0 as t → 0

and ∫
ζ∗t

u2
t dg → 0 as t → 1.

Thus there exists t0 ∈ (0, 1) so that∫
ζt0

u2
t0dg =

∫
ζ∗t0

u2
t0dg.



340 n. nadirashvili

Define

U =

{
ut0 on ζt0 ,

ut0 ◦ Cζt0
on ζ∗t0 .

Since ζt0 ∈ Ω, Nt0 ∩ N∗
t0 = ∅. Hence the function U has three nodal

domains: D1,D2,D3 such that ∂D1 = Nt0 , ∂D2 = N∗
t0 and D3 = S2 \

(D1 ∪ D2). Since ∫
D1

U2dg =
∫
D2

U2dg,

we have for i = 1, 2, 3 that∫
Di

|∇U |2dg∫
Di

U2dg
= 2λ,

where λ is the quasieigenvalue of the quasieigenfunction uζt0
. Since

λ < 2, the theorem follows from the variational principle for the second
eigenvalue of (S2, g).

References
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