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FLOPS AND EQUIVALENCES OF DERIVED
CATEGORIES FOR THREEFOLDS WITH ONLY

TERMINAL GORENSTEIN SINGULARITIES

JIUN-CHENG CHEN

Abstract
The main purpose of this paper is to show that Bridgeland’s moduli space
of perverse point sheaves for certain flopping contractions gives the flops,
and the Fourier-Mukai transform given by the birational correspondence of
the flop is an equivalence between bounded derived categories.

1. Introduction

1.1 The minimal model program

One of the most important problems in birational geometry is the min-
imal model program (MMP). The main goal of the MMP is to find
in each birational class of varieties some distinguished representatives
(minimal models) which are “easier” to understand, then to use these
minimal models to study the birational properties of varieties.

In dimension 2, satisfactory answers have been known for a long
time. The procedure for producing a minimal model for X is repeatedly
contracting a (−1)-curve. The final result of the MMP for a nonruled
surface is a smooth surface such that it is minimal in the category of
smooth surfaces (minimal in the classical sense), and its canonical bun-
dle is nef (minimal in the sense of the MMP). In higher dimensions, the
situation is much more complicated. Certain kinds of singularities are
needed even if we start with a smooth variety. Besides singularities, we
also need to consider flops and flips, which do not occur in dimension 2.
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Based on contributions from Reid, Mori, Kawamata, Kollár, Shokurov
and others, the MMP program was completed in dimension 3 by Mori
in 1988.

The proof of the MMP in dimension 3 uses a very careful analy-
sis on two-dimensional Du Val singularities and threefold singularities.
It is very difficult to generalize the proof along these lines to higher
dimensions. A more conceptual proof is very desirable.

Flops can be considered as a sort of “birational surgery”, an analogue
of surgery in algebraic topology. A very natural and interesting question
is what kind of invariants remain the same under flops. An example in
this direction is that two birational nonsingular Calabi-Yau manifolds
have the same Hodge numbers (see [3] for a result on Betti numbers, or
[24] for a more general theorem). In dimension 3, this theorem was first
proven in [14].

1.2 Flops and derived categories

Following Bondal-Orlov [5] and Bridgeland [8], it is plausible that the
MMP may be understood in the context of derived categories. Given
a variety X, the minimal model(s) might be viewed as some minimal
triangulated subcategories inside Db(X). In this picture, it is very nat-
ural to view flops as taking different triangulated subcategories which
are equivalent to one another, and flips as taking suitable fully faithful
triangulated subcategories. There is considerable evidence to support
this picture. A very important and interesting theorem to support this
picture is a theorem by Bridgeland.

In [8] Bridgeland gives a moduli construction of smooth threefold
flops. The moduli space he constructs is actually a fine moduli space.
Furthermore, he is able to prove a result on the equivalence of derived
categories by using techniques in [7] and [9]. As a corollary of his
theorem, he proves again that two birational nonsingular Calabi-Yau
threefolds have the same Hodge numbers. An interesting question is:
Is Bridgeland’s theorem true for singular varieties? In this paper we
generalize his theorem to threefolds with terminal Gorenstein singular-
ities. We remark here that these singularities are isolated hypersurface
singularities (see [16] p. 169). The main theorem in our paper is:

Theorem 1.1. Let X be a quasi-projective threefold with only ter-
minal Gorenstein singularities and let f : X → Y be a flopping con-
traction. Denote by W = W (X/Y ) the distinguished component of the
moduli space of perverse point sheaves M(X/Y ) (see Appendix A for the
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definitions). Denote the canonical morphism W → Y by g : W → Y .
Then:

(1) W has only terminal Gorenstein singularities.

(2) The Fourier-Mukai type transform Ψ : Db(W ) → Db(X) induced
by the universal perverse point sheaves is an equivalence.

(3) W → Y is a flop of f : X → Y .

1.3 Reduction to the local cases

We outline the proof of this theorem in the subsequent subsections.
First, a few comments on Fourier-Mukai type transforms. A Fourier-
Mukai type transform F may not send Db(W ) to Db(X) since X and
W may be singular. However, the kernel we consider is [ I → OW×X ],
where I is the universal perverse ideal sheaf and hence is flat over W .
We show in Section 2 that such a kernel does define a transform Ψ :
Db(W ) → Db(X). Let {Yi} be an affine cover of Y . We pull back this
universal perverse point sheaf to each Yi. These kernels give Fourier-
Mukai type transforms Ψi : Db(Wi) → Db(Xi).

We note that Theorem 1.1 is local in Y : Since the moduli space W
is local in Y (see Remark A.8 in Appendix A), this is clear for part (1)
and part (3) of Theorem 1.1. It is not obvious that part (2) is also local
in Y since we can not check whether a functor is an equivalence or not
locally. The next proposition shows that part (2) of the theorem is also
local in Y . The main point of the proof is that Ψ has a right adjoint Φ.

Proposition 1.2 (see Proposition 3.2). Let the notation be as
above. If there is an affine cover {Yi} of Y such that Ψi : Db(Wi) →
Db(Xi) are equivalences of derived categories, then Ψ : Db(W ) → Db(X)
is also an equivalence of derived categories.

1.4 Results from [8] and [9]

The argument in [8] uses the nonsingularity assumption in a significant
way. The techniques used in his proof do not seem to generalize directly
to singular varieties. Our idea is that instead of studying the singular
threefold directly, we study a nonsingular fourfold, which is a smoothing,
and see how much information about the singular threefold we can get
from this smooth fourfold.
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The starting point of our approach in this paper is the following
theorem, which is a restatement of a combination of results in [8] and
[9]. We sketch a proof in Appendix B for the reader’s convenience.

Theorem 1.3 ([8] & [9]). Let f : X → Y be a flopping contrac-
tion where X is an n-dimensional smooth quasi-projective variety and
the dimension of every fiber is at most 1. Let W be the distinguished
component of the moduli space of perverse point sheaves M(X/Y ). As-
sume dim(W ×Y W ) ≤ n + 1. Then:

(1) W is smooth.

(2) The transform Db(W ) → Db(X) induced by the universal perverse
point sheaf is an equivalence.

(3) W → Y is a flop of f : X → Y .

The next corollary follows immediately from Theorem 1.3.

Corollary 1.4. Let f : X → Y be a flopping contraction with X
smooth. Then:

(1) If dim(X) = 3, then the conclusions in Theorem 1.3 always hold.

(2) If dim(X) = 4, every fiber of f : X → Y is of dimension at most
1, and g : W → Y does not contract any divisor to a point, then
the conclusions in Theorem 1.3 hold.

The next proposition is a combination of results in [9] and [8] as
indicated by Bridgeland in the introduction in [8]. We shall not need
this result in this paper.

Proposition 1.5 (see [8] & [9]). With notation as in Theorem 1.3,
assume that dim(X) = 3. Then M(X/Y ) = W (X/Y ).

1.5 Relations between W (X/Y ) and W (S/T ) for a Cartier
divisor T ⊂ Y

Let X be a variety with at worst terminal Gorenstein singularities. As-
sume that dim(X) is either 3 or 4 and f : X → Y satisfies the following
two conditions:

(B.1) Rf∗OX = OY .

(B.2) Every fiber of f is of dim ≤ 1.
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Let T ⊂ Y be an effective Cartier divisor; for simplicity we assume
that it is an integral subscheme of Y . Let S be the preimage of T
in X. Denote by WT = W (X/Y )T the restriction of the moduli space
W (X/Y ) to T ⊂ Y . The underlying philosophy of our approach is that:

(1) We find a smoothing F : X → Y of f : X → Y .

(2) We relate the fiber of the moduli spaces W (X/Y) to the moduli
space W (X/Y ).

The next proposition shows that (2) is possible.

Proposition 1.6 (see Proposition 4.4). With the notation as
above, there is a canonical morphism W (X/Y )T ↪→ M(S/T ), which
is an inclusion of components.

Remark 1.7. It is also true that M(X/Y )T = M(S/T ). We shall
not need this stronger result in our paper.

1.6 Smoothing and smooth hyperplane sections

The following proposition shows that smoothing is always possible after
passing to an affine cover.

Proposition 1.8 (see Proposition 5.2 for the precise statement).
Let X → Y be a flopping contraction between threefolds where X has at
worst terminal Gorenstein singularities. Then there is an affine cover
{Yi} of Y such that each fi : Xi → Yi is a smoothable morphism.

In the remainder of this subsection and the next subsection, we work
over Yi. We shall suppress the indices when no confusion is possible.

Let F : X → Y be a one-parameter deformation of f : X → Y such
that X is nonsingular. Let Ysing = {pi : i = 1, . . . , m} be the finite set
of singular points of Y. We also consider them as points of Y. Let T be
a general hyperplane section passing through Ysing ⊂ Y ⊂ Y. Denote by
S the preimage of T .

The following proposition enables us to use results on the smooth
threefolds in [8].

Proposition 1.9 (see Proposition 5.3 for the precise statement).
The hyperplane section S is nonsingular.
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1.7 Proofs of “no divisor is contracted to a point” and
Theorem 1.1

Denote by W the distinguished component of the moduli space of per-
verse point sheaves for F : X → Y. Denote by G : W → Y the natural
birational morphism. We explain briefly how to prove that G : W → Y
contracts no divisor to a point. Assume that there is a divisor con-
tracted to a point, say p, by G. This point p must be one of the singular
points in Y. Take a general hyperplane section T of Y passing through
p. The preimage of T , denoted by S ⊂ X , is smooth. By [8] the
connected component of W (S/T ) ⊂ M(S/T ) is smooth. Every compo-
nent Wj of W (X/Y)T is a component of M(S/T ) by Proposition 1.6.
The fiber W (X/Y)T is connected. Therefore, the distinguished compo-
nent W (S/T ) is the only component by the smoothness result. Since
W (S/T ) → T is birational, it follows that the preimage of p is at most
two-dimensional, a contradiction.

By Corollary 1.4, it follows that the Fourier-Mukai type transform
Db(W) → Db(X ) is an equivalence and W ∼= X+.

By standard results on flops, it follows easily that W ∼= X+ is the
flop and hence has only terminal Gorenstien singularities (see Section 6).
This concludes the proof of part (1) and (3) in Theorem 1.1.

To prove Db(W ) ∼= Db(X), more work is needed. Let Ψ : Db(W) →
Db(X ) be the Fourier-Mukai type transform defined by the universal
perverse point sheaf, i.e., the structure sheaf of the fiber product W×Y
X . Let i0 be the inclusion morphism W → W (see Proposition 4.4).
Denote by Ψ0 : Db(W ) → Db(X) the Fourier-Mukai type transform
defined by Li∗0OW×YX . Note that this Fourier-Mukai type transform is
equivalent to the Fourier-Mukai type transform defined by the kernel
OW×Y X (see Proposition 4.4 and Corollary 4.5). We shall denote both
of these two functors by Ψ0. Denote by Φ : Db(X ) → Db(W) the right
adjoint to Ψ. This functor is also a Fourier-Mukai type transform (see
Lemma 4.5 in [7]).

To complete the proof of part (2) in Theorem 1.1, we use the next
proposition. The proof of this proposition is given in Section 6. The
main point is to show that Ψ(i0 ∗(−)) ∼= i0 ∗(Ψ0(−)).

Proposition 1.10 (see Proposition 6.2).

Ψ : Db(W) ∼= Db(X ) =⇒ Ψ0 : Db(W ) ∼= Db(X).

Remark 1.11. Using the results in [19] and [20], our results imply
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the K-theories of coherent sheaves (i.e., G-theories) of X+ and X are
isomorphic.

1.8 Comments and further developments

Finally, we would like to say a few words on the limitation of the smooth-
ing approach and our speculation on the possible generalizations.

It is well-known that quotient singularities in dimension ≥ 3 are
rigid. Therefore our smoothing approach would not work for the most
general threefold flops. To settle general three-dimensional flops us-
ing Bridgeland’s approach, it seems that new ideas and techniques are
needed. We speculate that algebraic stacks should play certain roles in
the complete picture. Recently Kawamata proved an interesting result
on n-dimensional toric flips and derived categories (see [12]). His result
provides some evidence to support our speculation.

In the flips cases, D. Abramovich and I are working on some simple
toric flips ([1]). In that case, we use the natural stack structure on
threefolds in question instead of using deformations. We also plan to
use the similar stack structure to extend our results to Q-Gorenstein
case.

1.9 Plan of the paper

The plan of this paper is as follows. In Section 2 we present a few
basic facts about the Fourier-Mukai type transforms. In Section 3, we
explain how to reduce the proof to an affine Zariski neighborhood of Y .
In Section 4, we prove several facts on the moduli space of perverse point
sheaves. In Section 5, we give the proofs of lemmas on the deformation
and general hyperplane sections needed for our proof. We give a proof
on how to deduce the equivalence of derived categories in dimension 3
from the corresponding result in dimension 4 in Section 6.

The first appendix contains basic facts about triangulated categories
and perverse coherent sheaves. All the material is taken from [8]. We
sketch the proof of Theorem 1.3 in the second appendix. The proof is
the same as the proof in [9].

1.10 Notation

All schemes T are schemes of finite type over C. Denote by Tn the nor-
malization of T . Denote by Dqc(T ) the derived category of the abelian
category Qcoh(T ) of quasi-coherent OT -modules. Denote by D+(T ) the
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full subcategory of Dqc(T ) consisting of complexes whose cohomology
sheaves are bounded below and coherent. Denote by D−(T ) the full sub-
category of Dqc(T ) consisting of complexes whose cohomology sheaves
are bounded above and coherent. Denote by Db(T ) the full subcategory
of Dqc(T ) consisting of complexes with bounded and coherent cohomol-
ogy sheaves. Denote by Db

c(T ) the full subcategory of Db(T ) consisting
of complexes whose cohomology sheaves are of proper support.

Let f : T → S be a projective birational morphism such that the
conditions (B.1) and (B.2) are satisfied. We denote by M(T/S) the fine
moduli space of perverse point sheaves. Let U ⊂ S be the maximal open
set such that f−1 |XU

is an isomorphism. Denote by W the irreducible
component of M(T/S) which contains U ⊂ S.

Acknowledgments. This paper would not exist without very
helpful discussions with many people. The author would like to thank
Tom Bridgeland for his help. His comments on the first version of
this paper are very essential to this current version. Without his help,
the author would not be able to prove the result on the equivalence of
derived categories. The author would also like to express his thanks
to J. de Jong, J. Kollár, S.-H. Moon, A. Neeman, A. Polishchuk, M.
Reid, J. Starr and S.-T. Yau. Last but not least, the author would
like to thank Dan Abramovich, his thesis advisor, for his guidance and
encouragement. Without his insistence, the author would not have tried
to prove the equivalence of categories result.

2. Fourier-Mukai type transforms on singular varieties

This section contains several basic lemmas on Fourier-Mukai type
transforms. We essentially follow [5].

2.1 Boundedness of a transform

Let X and Y be quasi-projective varieties. Consider the diagram

X × Y
p1

����
��

��
��

�
p2

���
��

��
��

��

X Y.

One can use the formula

Rp2 ∗(E
L
⊗Lp∗1(−))
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to define a functor F : Dqc(X) → Dqc(Y ) by results in [22]. When
X and Y are smooth, every object E ∈ Db(X × Y ) is of finite Tor-
dimension. If p2|Supp(E) : Supp(E) → Y is proper, then the functor F is
also a functor of triangulated categories F : Db(X) → Db(Y ).

However, an object E ∈ Db(X × Y ) may not be of finite Tor-
dimension when X and Y are not smooth. Hence this transform F
may not send Db(X) to Db(Y ). The next easy lemma shows that many

such transforms Rp2 ∗(E
L
⊗Lp∗1(−)) send Db(X) to Db(Y ).

Lemma 2.1. Assume that E ∈ Db(X × Y ) is isomorphic to a
complex F of coherent OX×Y -sheaves such that each of these sheaves
is flat over OX , and Supp(E) → Y is a proper morphism. Then

Rp2 ∗(E
L
⊗Lp∗1(−)) sends Db(X) to Db(Y ).

Proof. We first check the functor E
L
⊗Lp∗1(−) sends Db(X) to Db(X×

Y ). This can be checked locally and follows from the identity:

(
M

L
⊗
C

(
N

L
⊗
A

C

))
∼=

(
M

L
⊗
A

N

)
,

where C is a ring flat over A and M is a finite complex of finitely
presented C-modules and N is a finite complex of A-modules. Our

assumption on Tor-dimension (of M over A) implies that (M
L
⊗
A

N) is

a finite complex of finitely presented C-modules when N is a finite
complex of finitely presented A-modules.

Let F be any object in Db(X). Write G = E
L
⊗Lp∗1(F) ∈ Db(X×Y ).

Note that Supp(G) ⊂ Supp(E) is a closed subset, so Rp2 ∗(G) ∈ Db(Y )
by the assumption that Supp(E) → Y is proper. q.e.d.

Lemma 2.2. Let Z be a closed subscheme of X × Y and E be an
object in Db(Z). Denote by i : Z → X ×Y the inclusion map. Then we
have

Rp2 ∗

(
i∗E

L
⊗Lp∗1(−)

)
∼= R(i ◦ p2)∗

(
E

L
⊗L(i ◦ p1)∗(−)

)
.

Proof. This follows easily from the projection formula. q.e.d.

We use this lemma to prove the following fact. Consider the diagram
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X ×C Y
i
��

X × Y
p1

�����������
p2

���
��������

X

f ���
�������� Y

g
�����������

C .

Let E ∈ Db(X × Y) be an object which comes from Db(X ×C Y).
Then the Fourier-Mukai type transform FE can be defined as

R(p2 ◦ i)∗

(
L

(
(p1 ◦ i)∗(−)

L
⊗E

))

by the lemma.

2.2 Compositions of Fourier-Mukai type transforms

The next proposition shows that the composition of two Fourier-Mukai
type transforms is still a Fourier-Mukai type transform. This is a gen-
eralization of Proposition 1.4 in [5].

Let X, Y and Z be quasi-projective varieties and I, J objects of
Db(X × Y ) and Db(Y ×Z)(resp.). We assume that I and J satisfy the
assumptions in Lemma 2.1.

Consider the diagram of projections

X × Y × Z
p12

�������������
p13

��

p23

�������������

X × Y

π1
12

�� π1
13 �������������� X × Z

π2
12

��������������

π2
23 �������������� Y × Z

π3
13

��������������
π3
23

��
X Y Z

and the functors

FI : Db(X) → Db(Y ),
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FJ : Db(Y ) → Db(Z),

defined by the formulas

FI = Rπ2
12 ∗(I

L
⊗Lπ1 ∗

12 (−)),

FJ = Rπ3
23 ∗(J

L
⊗Lπ2 ∗

23 (−)).

Proposition 2.3. The composition functor of FI and FJ is isomor-
phic to FK with

K = Rp13 ∗(Lp∗23J
L
⊗Lp∗12I).

Proof. We follow the argument in [5]:

FJ ◦ FI = Rπ3
23 ∗(J

L
⊗Lπ2 ∗

23 (Rπ2
12 ∗(I

L
⊗Lπ1 ∗

12 (−))))

∼= Rπ3
23 ∗(J

L
⊗Rp23 ∗(Lp∗12(I

L
⊗Lπ1 ∗

12 (−))))(2.1)

∼= Rπ3
23 ∗Rp23 ∗(Lp∗23J

L
⊗(Lp∗12(I

L
⊗Lπ1 ∗

12 (−))))(2.2)

∼= Rπ3
13 ∗Rp13 ∗(Lp∗23J

L
⊗(Lp∗12(I)

L
⊗Lp∗12Lπ1 ∗

12 (−)))(2.3)

∼= Rπ3
13 ∗Rp13 ∗((Lp∗23J

L
⊗Lp∗12I)

L
⊗Lp∗13Lπ1 ∗

13 (−))(2.4)

∼= Rπ3
13 ∗(Rp13 ∗(Lp∗23J

L
⊗Lp∗12I)

L
⊗Lπ1 ∗

13 (−)).(2.5)

The isomorphism (2.1) follows from the flat base change theorem, the
isomorphisms (2.2) and (2.5) follow from the projection formula. The
isomorphisms (2.3) and (2.4) are obvious. q.e.d.

3. Reduction of the proof to affine cases

Let f : X → Y be a flopping contraction between two quasi-
projective three-dimensional normal varieties. Assume that the variety
X has only terminal Gorenstein singularities. We explain in this section
how to reduce the proof of part (2) in Theorem 1.1 to an affine cover
{Yi}. Consider the diagram

W

g
���

��
��

��
� X

f		��
��

��
��

Y.
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Fix an affine cover {Yi} of Y . Pull back everything to Yi

Wi

gi ��	
		

		
		

	 Xi

fi		��
��

��
�

W

f ��













 X

g


��

��
��

��

Yi
�� Y.

Let F : Db(W ) → Db(X) be a Fourier-Mukai type transform defined
by an object E ∈ Db(W ×X). Assume that E is of finite Tor-dimension
over W and the projection morphism W × X → X is proper when
restricted to Supp(E) → X.

Denote by Fi the corresponding Fourier-Mukai type transforms when
we pull back everything to Yi. Note that any Fourier-Mukai type trans-
form also defines a functor on Dqc. We show that if we can check the
equivalence of categories locally, then by the existence of a global adjoint
functor, we are able to prove the equivalence of derived categories.

Remark 3.1. In the proof on Lemma 3.6, we need to work on
Dqc since we invoke a theorem by Neeman on a very general form of
Grothendieck duality (see [17]). Since this is the only reason for passing
to Dqc, we would like to have a proof without using these huge categories.
For the time being, however, we are not able to give such a proof.

Proposition 3.2 (= Proposition 1.2). With the notation as above,
assume that all Fi : Db(Wi) → Db(Xi) are equivalences of derived cat-
egories. Then the Fourier-Mukai type transform F : Db(W ) → Db(X)
is an equivalence of derived categories.

We give several lemmas needed for the proof in the subsequent sub-
sections. The proof of this proposition is given at the end of this section.

3.1 A spanning class

We recall the definition of spanning classes for a triangulated category
A (see Definition 2.1. in [7]).

Definition 3.3. A subclass Ω of objects of A is called a spanning
class for A, if for every object a ∈ A

Homi
A(b, a) = 0 ∀ b ∈ Ω ∀i ∈ Z =⇒ a ∼= 0,

Homi
A(a, b) = 0 ∀ b ∈ Ω ∀i ∈ Z =⇒ a ∼= 0.
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Lemma 3.4. Let X be a normal projective variety with only isolated
singular points {xi : i = 1, . . . , k}. Let Ω1 = {Ox : x ∈ X} and Ω2 =
{OZ : Supp(Z) ⊂ Xsing = {xi : i = 1, . . . , k}}. Then Ω = Ω1

⋃
Ω2 is a

spanning class for Db(X).

Proof. (a) We check the condition

Homi
Db(X)(a, b) = 0 ∀ b ∈ Ω ∀i ∈ Z =⇒ a ∼= 0

by using the argument in [7]. For any object a ∈ Db(X) and any x ∈ X,
there is a spectral sequence

Ep,q
2 = Extp

X(H−q(a),Ox) ⇒ Homp+q
Db(X)

(a,Ox).

If a is nonzero, let q0 be the maximal value of q such that Hq is
nonzero. Take any point x ∈ Supp(a). There is a nonzero element
of E0,−q0

2 , which survives at the E∞ stage. This gives an element of
HomDb(X)(a,Ox), a contradiction.

(b) The condition

Homi
Db(X)(b, a) = 0 ∀ b ∈ Ω ∀i ∈ Z =⇒ a ∼= 0

is equivalent to the following statement:

a �∼= 0 =⇒ HomDb(X)(b, a) �= 0 for some b ∈ Ω.

We use a similar spectral sequence

Ep,q
2 = Extp

X(b, Hq(a)) ⇒ Homp+q
Db(X)

(b, a)

to prove this statement.
Fix any x ∈ Xreg.

Claim 3.5. Homi
Db(X)(Ox, a) = 0 ∀ i =⇒ x �∈ Supp(a).

It is clear that for each i the sheaf Homi
Db(X)

(Ox, a) is a coherent
Ox-sheaf. Take an affine neighborhood U = Spec(A) of x. There is no
higher derived functor for Γ(Spec (A) ,−). Thus Homi

Db(X)
∼= Homi

A.
Since x is a nonsingular point, the sheaf Ox has a finite flat resolution.

Thus RHomDb(X)(Ox, a)
L
⊗Ox

∼= RHomDb(X)(Ox, a
L
⊗Ox). By assump-

tion we have

RHomDb(X)(Ox, a) = 0,
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and hence

RHomDb(X)(Ox, a
L
⊗Ox) = 0.

Replacing a by a
L
⊗Ox, we may assume that a is with proper support.

Since X is projective, Xreg is quasi-projective. Both a and Ox are
with proper supports. Serre duality implies that Homi

Db(X)(a,Ox) = 0.

By the argument in (a) above, it follows that x �∈ Supp(a). This shows
that Supp(a) ⊂ Xsing, which is equivalent to Claim 3.5.

Since a ∈ Db(X), there is a subscheme structure z on x0 such
that a ∈ Db(z) (i.e., every cohomology group is an Oz-module). Let
q1 be the minimal value of q such that Hq(a) �= 0. It is clear that
RHomDb(X)(Oz, H

q1(a)) �= 0 and its elements survive at the E∞ level.
This concludes the proof. q.e.d.

3.2 Right adjoints

Lemma 3.6. Let X and Y be projective Gorenstein varieties and
E an object of Dqc(X × Y ). Consider the diagram

X × Y
p1

����
��

��
��

�
p2

���
��

��
��

��

X Y.

Denote by F : Dqc(X) → Dqc(Y ) this Fourier-Mukai type transform.
Then F has a right adjoint G.

Proof. We use the following isomorphisms:

HomDqc(Y )(Rp2 ∗Lp∗1(A)
L
⊗E , B)

∼= HomDqc(X×Y )(Lp∗1(A)
L
⊗E , p!

2B)(3.1)
∼= HomDqc(X×Y )(Lp∗1(A),RHom(E , p!

2B))(3.2)
∼= HomDqc(X)(A,Rp1 ∗ RHom(E , p!

2B)).(3.3)

The isomorphism (3.1) follows from Grothendieck duality (see [17]). The
isomorphism (3.2) follows from the fact that (⊗, Hom) is an adjoint
pair. The last isomorphism is a consequence of the fact that (Lp∗1,
Rp1 ∗) is an adjoint pair. Thus F has a right adjoint G. q.e.d.



flops and equivalences of derived categories 241

Remark 3.7. When the object E satisfies the assumptions in
Lemma 2.1, we have G(b) ∈ D+(X) for all b ∈ Db(Y ) by the explicit
formula of the right adjoint G.

3.3 Conclusion of the proof

Proof of Proposition 3.2. By Lemma 3.6, the Fourier-Mukai type trans-
form F : Dqc(W ) → Dqc(X) has a right adjoint G : Dqc(X) → Dqc(W ),
so we have the natural transforms idDqc(W ) → GF and FG → idDqc(X).
To show F : Db(W ) → Db(X) is an equivalence, it suffices to show that
a ∼= GF (a) for all a ∈ Db(W ) and FG(b) ∼= b for all b ∈ Db(X).

For each a ∈ Db(W ) we have a distinguished triangle in Dqc(W )

(∗) → a → GF (a) → c → a[1] → .

To show that a ∼= GF (a), it amounts to showing c ∼= 0. We first show a
weaker claim.

Claim 3.8. c ∈ Db(W ).

Note that Claim 3.8 is equivalent to the fact that GF (a) ∈ Db(W ).
Pulling back everything to each Yi, we get a distinguished triangle in
Dqc(Wi)

(∗)i → ai → GiFi(ai) → ci → ai[1] →

for each Yi.
Note that for every x ∈ Db(X) we have G(x) ∈ D+(W ) by the

explicit formula of the right adjoint functor, so GF (c) ∈ D+(W ) (see
Remark 3.7).

Since Fi : Db(Wi) → Db(Xi) is an equivalence by assumption, it
follows that Homj

Dqc(Wi)
(xi, ci) = 0 for all j and all xi ∈ Db(Wi). In

fact, we only need Fi to be fully faithful for this assertion. To show
ci

∼= 0, we use the following triangle for each k

→ τ≤kci → ci → τ≥k+1ci → τ≤kci[1] → .

Since ci ∈ D+(Wi), it follows that τ≤kci ∈ Db(Wi) for all k. Taking
Hom(τ≤kci,−) into the above triangle, and noticing that

Hom0
Dqc(Wi)

(τ≤kci, τ≥k+1ci) = 0

and
Hom−1

Dqc(Wi)
(τ≤kci, τ≥k+1ci) = 0,
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it follows that

Hom0
Dqc(Wi)

(τ≤kci, τ≤kci) ∼= Hom0
Dqc(Wi)

(τ≤kci, ci),

which is 0 since τ≤kci ∈ Db(Wi).
If ci �∼= 0, then we can choose a k such that τ≤kci �∼= 0. For such a

k, we have Hom0
Dqc(Wi)

(τ≤kci, τ≤kci) �= 0, a contradiction. This shows
that ci

∼= 0. In particular, ci ∈ Db(Wi), so c ∈ Db(W ). This proves
Claim 3.8.

Let Ω be as in Lemma 3.4. Let y ∈ Ω. Taking Hom(y,−) into the
distinguished triangle (∗) and the distinguished triangle (∗)i for each Yi,
we get the following exact sequences

Homj(y, a) ��

��

Homj(y, GF (a)) ��

��

Homj(y, c) ��

��

Homj+1(y, a) ��

��
Homj(yi, ai)

�� Homj(yi, GiFi(ai))
�� Homj(yi, ci)

�� Homj+1(yi, ai)
�� .

Note that the support of y lies in some Yi since y ∈ Ω. Fix such a
scheme Yi. We have yi

∼= y and all vertical arrows are isomorphisms.
Since (F, G) and (Fi, Gi) are adjoint pairs, it follows that

Homj
Dqc(W )(y, GF (a)) ∼= Homj

Dqc(X)(F (y), F (a))

and
Homj

Dqc(Wi)
(yi, GiFi(ai)) ∼= Homj

Dqc(Xi)
(Fi(yi), Fi(ai)).

Together with our assumption that all Fi are equivalences, this implies
Homj

Dqc(W )(y, c) = 0 for all y ∈ Ω. Since c ∈ Db(W ) and Ω is a spanning
class for Db(W ), it follows that c ∼= 0.

To show FG(b) ∼= b for all b ∈ Db(X), we need to use the assumption
that Fi is an equivalence. Note that from Claim 3.8 we have GiFi(ai) ∈
Db(Wi) for all ai ∈ Db(Wi), and since Fi : Db(Wi) → Db(Xi) is an
equivalence it follows that Gi : Db(Xi) → Db(Wi). Therefore (Fi, Gi) is
also an adjoint pair when we work on Db, so Gi : Db(Xi) → Db(Wi) is
also an equivalence. Using another distinguished triangle

→ FG(b) → b → c → FG(b)[1] →,

one can show that FG(b) ∼= b by a similar argument. This concludes
the proof. q.e.d.
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4. Basic properties of M(X/Y ) and W (X/Y )

We prove some basic lemmas on the distinguished component W of
M(X/Y ).

4.1 Characterization of the universal perverse ideal sheaf

We begin with the next lemma.

Lemma 4.1. Let S and T be two integral schemes and F be a
coherent sheaf on S × T . Let π be the projection map S × T → T .
Assume the following two conditions:

(1) F is flat over S.

(2) There is a dense open set U ⊂ S such that F is torsion free on
π−1(U).

Then the sheaf F is torsion free.

Proof. The problem is local, so we may assume that both S and T
are affine schemes. We use torsion sections to get a contradiction.

Assume that F is not torsion free. Let x be a torsion section. Denote
by V (y) the zero scheme of y for a regular function y on S. By the
assumption (2), the image of the support of x under the projection,
denoted by πS(Supp(x)), is a proper subscheme of S. We can find a
regular function s on S such that πS(Supp(x)) ⊂ V (s) and the regular
function s annihilates x (we consider s as a regular function on S × T
by the natural map of rings induced by the projection map).

Consider the exact sequence

0 �� OS×T
· s �� OS×T

�� OV (s)×T �� 0.

Tensoring this with F , we get a right exact sequence

F �� F �� F ⊗OV (s)×T �� 0.

The map on the left is the multiplication by s. Since xs = 0, it is
not injective. This shows that Tor1(F,OV (s)×T ) �= 0. This implies that
F is not flat, a contradiction. q.e.d.

We give a proposition on the universal ideal sheaf.

Proposition 4.2. The universal perverse ideal sheaf is the ideal
sheaf IW×Y X of the fiber product, consequently the universal perverse
point sheaf is OW×Y X .
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Proof. Let F be the universal ideal sheaf and α : F → OW×X be
the corresponding homomorphism between sheaves. Denote by Γ the
graph of g : W → Y . The sheaf F is flat over W by definition. It is
clear that F is torsion free on the dense open set U ×X, where U is the
isomorphic locus of f : X → Y and is considered as an open set inside
both X, Y and W.

By Lemma 4.1, it follows that F is indeed torsion free. Since the
morphism α : F → OW×X is generically injective, the kernel is a torsion
subsheaf. By Lemma 4.1 again, it follows that the homomorphism α is
injective. So we can identify F as an ideal sheaf of OW×X .

We show that F = IW×Y X . As shown in [8], we have that f∗(F ) =
IΓ, the ideal sheaf of the graph in W × Y . By Proposition 5.1 in [8] , it
follows that the natural map f∗f∗(F ) → F is surjective.

Since f∗(F ) = IΓ, the images of f∗f∗(F ) and f∗f∗(IW×Y X) in
OW×X coincide. This shows that F = IW×Y X . q.e.d.

4.2 Flatness lemma

Proposition 4.3. Let X1 be an irreducible quasi-projective variety.
Consider the diagram:

X1 ×Y X ��

��

X

��
X1 f1

�� Y.

If the ideal IX1×Y X in OX1×X is flat over OX1 and the image of X1

is not contained in the image of the exceptional set of X/Y in Y , then
there is a canonical morphism h : X1 → W (X/Y ).

Proof. Let U be the isomorphic locus of X → Y. We consider U
as an open subset both in X and Y . Pick a point x1 ∈ X1 such that
u = f1(x1) ∈ U . The sheaf IX1×Y X, x1 is Iu, the ideal of the point u ∈ U.
Since IX1×Y X is flat, this family of sheaves has the correct numerical
class, say γ.

The scheme W (X/Y ) is isomorphic to MPI(X/Y, γ), the moduli
space of perverse ideal sheaves with the numerical equivalence class γ. It
suffices to show that there is a morphism h : X1 → MPI(X/Y, γ), which
amounts to showing that IX1×Y X is a family of perverse ideal sheaves.
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This would follow if we can show that the natural homomorphisms

f∗f∗(IX1×Y X, x1) → IX1×Y X, x1

are surjections for all x1 ∈ X1. This holds if the natural homomorphism

f∗
X1

fX1 ∗(IX1×Y X) → IX1×Y X

is a surjection, which follows since fX1 ∗(IX1×Y X) is the ideal of the
graph f1 : X1 → Y . q.e.d.

4.3 Relations between W (X/Y )T and W (S/T )

Let X → Y be a flopping contraction between three-dimensional normal
varieties. Assume that X has at worst terminal Gorenstein singulari-
ties. By standard results on flops, the variety Y has at worst terminal
Gorenstein singularities (see Theorem 6.14 in [16]). Let T ⊂ Y be an
effective Cartier divisor; for simplicity we assume that it is an integral
subscheme of Y. Consider the diagram

S

fT

��

iS
�� X

f
��

T
iT

�� Y.

Note that the conditions (B.1) and (B.2) hold for the morphism
S → T .

The condition (B.2) is clear. We now show the condition (B.1). It
is clear that fT ∗(OS) = OT . To show RifT (OS) = 0 for all i ≥ 1, we
apply the theorem on formal functions (see p.277 in [11]). It suffices to
show that

H i(St,Ot) = 0 ∀ i ≥ 1

for all t ∈ T . Since

Rif(OX) = 0 ∀ i ≥ 1

by assumption, it follows that

H i(Xy,Oy) = 0 ∀ i ≥ 1
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for all y ∈ Y. For any t ∈ T ⊂ Y the fibers Xt and St are canonically
isomorphic to each other. This implies that

RifT (OS) = 0 ∀ i ≥ 1.

Thus the condition (B.1) also holds for S → T.

Proposition 4.4 (= Proposition 1.6). There is a natural embed-
ding W (X/Y )T ↪→ M(S/T ), which is an inclusion of components.

Proof. (a) We show that there is a canonical morphism M(S/T ) →
M(X/Y )T .

Let p ∈ M(S/T ). Denote the corresponding perverse point sheaf
for S → T by Ep. It is clear that if for a point p ∈ M(S/T ), the
corresponding object Ep is also a perverse point sheaf for X → Y , then
this point, which we still denote by p, must lie in the fiber M(X/Y )T .
Let

0 → IEp → OS → Ep → 0

be the exact sequence in the abelian category Per (S/T ).

Step 1. We show that for every point p ∈ M(S/T ), the correspond-
ing perverse point sheaf Ep for S → T is a perverse sheaf for X → Y.

This follows easily by checking the conditions (PS.1)-(PS.3) of
Lemma A.2.

Step 2. We show that IEp is also a perverse sheaf.
This again follows by checking the conditions (PS.1)-(PS.3).
Combining results from Step 1 and Step 2, it follows that

0 → IEp → OS → Ep → 0

is also an exact sequence in the abelian category Per (X/Y ).

Step 3. The sheaf OS is a perverse structure sheaf for X → Y.

Consider the exact sequence of sheaves

0 → IS → OX → OS → 0.

It suffices to check that IS is a perverse ideal sheaf. This follows since
the conditions (PIS.1) and (PIS.2) of Proposition A.5 are satisfied.

Composing two surjections OX → OS and OS → Ep, we obtain the
surjection OX → Ep in the abelian category Per(X/Y ). This shows that
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Ep is a perverse point sheaf for X → Y. Since M(X/Y ) is a fine moduli
space, we have an embedding M(S/T ) → M(X/Y )T .

(b) We show that there is an embedding W (X/Y )T → M(S/T ).
For each point w ∈ W (X/Y )T , let Ew be the corresponding perverse

point sheaf.

Step 1. We prove that Ew is a perverse sheaf for S → T.

The main point is that Ew is indeed a complex of OS-modules since
the universal perverse point sheaf is the structure sheaf of the fiber prod-
uct W ×Y X. By checking the conditions (PS.1)-(PS.3) of Lemma A.2
in Appendix A, it follows that Ew ∈ Per(S/T ).

Step 2. The sheaf OS is a perverse structure sheaf for X → Y.

This is proven in part (a).

Step 3. The sheaf Ew is a perverse point sheaf for S → T .
The morphism OX → Ew factors through OS . By Step 2 the mor-

phism OX → OS is a surjection in the abelian category Per(X/Y ), so
OS → Ew is also a surjection by standard results on abelian categories,
which shows the corresponding kernel, denoted by IEw , is also a per-
verse sheaf. Note that the object IEw is also a shifting of the cone of
OS → Ew, from which follows that IEw is a complex of OS-modules.
Abusing the notation, we denote by IEw and Ew the objects in Per(S/T )
such that IEw → OS → Ew is a distinguished triangle in Db(S) and the
push-forward of this triangle is the exact sequence

0 → IEw → OS → Ew → 0

in the abelian category Per(X/Y ). Since Ew is in the correct numerical
class, it follows that Ew is a perverse point sheaf for S → T . This gives
an embedding W (X/Y )T ↪→ W (S/T ) since W (S/T ) is a fine moduli
space.

Combining the results in (a) and (b), we obtain two morphisms
M(S/T ) → M(X/Y )T , and W (X/Y )T → M(S/T ). Each of these two
morphisms is an embedding. By our construction, the composition
W (X/Y )T → M(S/T ) → M(X/Y )T is an inclusion of components,
which implies that each morphism is an inclusion of components. This
concludes the proof. q.e.d.

Since W (X/Y ) is a fine moduli space, pulling back the universal
object over W (X/Y ) via the canonical embedding W (S/T ) → W (X/Y )
in part (a), one obtains the following corollary of Proposition 4.4.
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Corollary 4.5. The universal perverse point sheaf for the mor-
phism S → T is OW (S/T )×T S

∼= Li∗(OW (X/Y )×Y X).

5. Deformations and general hyperplane sections

The proof in this section was inspired by helpful discussions with M.
Reid. Throughout this section we assume that Y is an affine variety.
Let f : X → Y be a crepant projective birational morphism between
two quasi-projective three-dimensional normal Gorenstein varieties. As-
sume that the variety X has at worst terminal singularities. Denote the
exceptional set by C. Under these assumptions, all singularities of X are
isolated hypersurface singularities (see [16] p. 169). By standard results
in the MMP, it is well-known that Y is also terminal (see Theorem 6.14
in [16]).

We first show that for a general one-parameter deformation F : X →
Y of f : X → Y the total space X is nonsingular. Then we show that
the hyperplane section S, the preimage of a general member T of a
suitable linear system of divisors passing through the singular points
Ysing = {pi : i = 1, . . . , m} ⊂ Y , is nonsingular. In the first part we
use the fact that these singularities are hypersurface singularities. The
second part can be reduced to showing that the preimage of a general
hyperplane passing through Ysing ∈ Y has only canonical singularities.

Let V0 ⊂ H0(Y,OY ) = H0(X,OX) be any linear subsystem of divi-
sors passing through Ysing = {pi : i = 1, . . . , m} such that |BsV0| = Ysing

(as a scheme). Let T be a general element of V0. Denote the preimage
of T in X by S.

Proposition 5.1. The preimage S of a general element T of V0 ⊂
H0(Y,OY ) = H0(X,OX) has only canonical singularities.

Proof. First note that S is a Gorenstein variety since it is a hy-
perplane section of a Gorenstein variety X. The divisor T has only
canonical singularities. By a Bertini type theorem, the Cartier divisor
T is nonsingular outside Ysing. Therefore S is nonsingular outside the
exceptional curves C.

We show that S is normal and has only canonical (Du Val) singu-
larities. We have KS = f∗KT by:

(1) KS = KX |S + S|S and KT = KY |T + T |T (by the adjunction
formula).

(2) KX = f∗KY .
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Consider the normalization g : Sn → S. We have ωSn = (C)g∗(ωS),
where C is the conductor ideal. Since T has only Du Val singularities,
we have (g ◦ f)∗(ωT ) ⊂ ωSn . This shows that S is normal. To complete
the proof, we compute the discrepancies. Take a resolution h : V → S
of S. We have

KV = h∗KS +
∑

aiEi = (h ◦ f)∗KT +
∑

aiEi

where Ei’s are the exceptional divisors. Since T has only canonical
singularities, it follows that S has only canonical singularities. q.e.d.

Proposition 5.2 (= Proposition 1.8). A general one-parameter
deformation of f : X → Y is nonsingular.

Proof. Let Xuniv be the semiuniversal object over the semiuniver-
sal deformation space Def(X). Let Y = Spec(OXuniv). Then Y is a
deformation of Y , and hence the natural morphism F : Xuniv → Y
is a deformation of f : X → Y. Thus it suffices to deform a Zariski
neighborhood of f−1(p) in X.

Since X has only isolated hypersurface singularities, the deformation
space of X is Ext1(ΩX ,OX). We show below that the obstruction group
Ext2(ΩX ,OX) = 0. To compute Ext2(ΩX ,OX), we use the following
spectral sequence

Hp(X, Extq(ΩX ,OX)) ⇒ Extp+q(ΩX ,OX).

Since X has only isolated hypersurface singularities, it is clear that
Ext2(ΩX ,OX) is 0. We also know that H1(X, Ext1(ΩX ,OX)) = 0 since
Supp(Ext1(ΩX ,OX)) is isolated. It remains to show that

H2(X, Ext0(ΩX ,OX)) = 0.

This follows from the Leray spectral sequence

Hp(Y,Rqf∗(F)) ⇒ Hp+q(X,F)

and H i(Spec (A),F) = 0 for i ≥ 1. By a similar argument, one could
obtain that Ep,q

2 = 0 for p + q ≥ 2, though we do not need this more
general fact in our proof.

Since every Ep,q
2 = 0 for p + q = 2, we get the following short exact

sequence

0 → H1(X,Hom(ΩX ,OX)) → Ext1(ΩX ,OX)

→ H0(X, Ext1(ΩX ,OX)) → 0.
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The important point is that the map

Ext1(ΩX ,OX) → H0(X, Ext1(ΩX ,OX))

is surjective. Thus every deformation of the singularity can be lifted to
a deformation of X. Since X has finitely many singularities and that
smoothness at a given point is an open condition, it suffices to check the
smoothness statement in neighborhoods of each singular point of X.

Note that we can check whether a variety is nonsingular at a given
point x locally analytically. Thus we shall work locally analytically in
the remainder of this argument. Denote the semiuniversal deformation
space of the singularity x ∈ X by Def (x ∈ X) and the semiuniversal
object over Def (x ∈ X) by X . For an isolated hypersurface singularity,
the total space X over the semiuniversal deformation space Def (x ∈ X)
is nonsingular by the explicit description of the semiuniversal space and
the total space.

The variety X is analytically isomorphic to f(x, y, z, w) + t1f1 +
· · · + tnfn = 0 where n is the dimension of Def(x ∈ X) and fi are
suitable polynomials such that at least one of the fi, say f1, is nonzero
at (0, 0, 0, 0).

The canonical morphism {0 ∈ Def(X)} → {0 ∈ Def(x ∈ X)}
gives a linear map on tangent spaces. This map is surjective. We
write the defining equation for the semiuniversal object Xuniv as F =
f(x, y, z, w)+t1g1+· · ·+tmgm = 0. Choose a direction of c = (c1, ..., cm)
in the tangent space of Def(X) such that its image under the induced
linear map is (1, 0, . . . , 0). This gives a smoothing of the singular point
x by the Jacobi criterion. q.e.d.

Let F : X → Y be a one-parameter deformation of f : X → Y
such that X is smooth. Let T be a general hyperplane section passing
through Ysing ∈ Y . Denote by S the preimage of T .

Proposition 5.3. There exists a finite-dimensional vector space
V ⊂ H0(Y,OY) such that the preimage S of a general hyperplane section
passing through p is nonsingular.

Proof. Fix any V0 satisfying the conditions at the beginning of this
section. Let V be a finite-dimensional linear subsystem V ⊂ H0(Y,OY).
Denote by Im(V ) the image of V in H0(Y,OY ) under the natural ho-
momorphism H0(Y,OY) → H0(Y,OY ). We choose a finite-dimensional
linear subsystem V ⊂ H0(Y,OY) such that Im(V ) ⊂ H0(Y,OY ) con-
tains V0 and |BsV | ∩ Y = Ysing = {pi : i = 1, . . . , m}. A general hyper-
plane section S of V0 has only canonical surface singularities and hence
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has only hypersurface singularities. The subset of this linear system
V such that the corresponding members are nonsingular at a specific
point is an open set. There are only finitely many singular points on S.
Combining these two facts, it suffices to check the corresponding open
set is nonempty for each singular point. We divide the singular points
of S into two types.

A point x ∈ Ssing is called of type 1 if x ∈ Ssing
⋂

Xsing. A point
y ∈ Ssing is called of type 2 if y ∈ Ssing/Xsing.

We now show that every section s ∈ H0(X,OX) can be lifted to a
section in H0(X ,OX ). This follows easily from the exact sequence

0 → H0(X ,O(−X)) → H0(X ,OX ) → H0(X,OX) → H1(X ,O(−X))

and the fact that H1(X ,OX (−X)) = 0 (by the Leray spectral sequence
and the fact that Y has only rational singularities). We still denote a
lifting of s by s.

The variety S ⊂ X is a complete intersection. Denote the ideal by
IS = (s, g) ⊂ OX .

For a singular point x of type 1, we show that the divisor defined
by g is nonsingular near x. We prove this by computing the embedding
dimension of X at x. Passing to a formal or analytic neighborhood
of x ∈ X , we may assume that the ring of this formal neighborhood
is k[[x, y, z, w]]. We have mx, S/m2

x, S = (x, y, z, w)/(m2
x, S , s, g). This

vector space is of dimension 3 since S has a canonical surface singularity
at x. Since x is a singular point of X = {s = 0}, it follows that
s ⊂ m2

x, S , which implies {g = 0} is nonsingular at x.
For a singular point y of type 2 in S, the defining equation s of X is

nonsingular at y. For a small enough ε the hyperplane section defined
by ε · g + s gives a divisor, which is nonsingular at y. q.e.d.

6. Equivalences of derived categories: dimension 4 to
dimension 3

The proof in this section is based on suggestions of T. Bridgeland.
We again assume that Y is an affine quasi-projective variety throughout
this section. Let X be a quasi-projective threefold with only terminal
Gorenstein singularities and f : X → Y be a flopping contraction. Let
W = W (X/Y ) be the distinguished component of the moduli space of
perverse point sheaves M(X/Y ). We prove in Section 5 that there is a
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deformation F : X → Y of f : X → Y with smooth X . We summarize
what we know:

(1) The Fourier-Mukai type transform Ψ : Db(W) → Db(X ) defined
by the universal perverse point sheaf is an equivalence.

(2) W is smooth and is a flop of X → Y.

(3) W ∼= WY .

From what we know, it is a standard argument to deduce that W (X/Y )
→ Y is the flop of X → Y . We sketch the argument here for the reader’s
convenience.

Since W is Gorenstein and generically reduced, it is a reduced scheme
and hence is an integral scheme. Using the argument given in Propo-
sition 5.1, it follows that W is normal and has at worst terminal sin-
gularities. By the adjunction formula, we have KW · C = KW · C for
every curve C ⊂ W ⊂ W, which implies the canonical bundle KW is
g-trivial for g : W → Y since KW is G-trivial. Let D2 ⊂ W be the
effective divisor such that −D2 is G-ample and its birational transform
D1 in X is F -ample. Intersect D1 with X, and denote the intersection
by D1. Similarly, let D2 = D2 ∩ Y . Then −D2 is a g-ample divisor and
D1 is an f -ample divisor. To show W is a flop, it remains to show that
the morphism g is not a divisorial contraction, which is evident since
KW = g∗KY and Y has only terminal singularities.

Our goal in this section is to prove that Ψ0 : Db(W ) → Db(X) is an
equivalence of categories (see below for the notation Ψ0).

Consider the diagram

W × X
(p1)0

�����������
(p2)0

���
�������� W ×C X

p1

�����������
p2

��











W

f0 ���
��

��
��

��
� X

g0
�����

��
��

��
� W

f
���

��������� X

g
������������

Y

��

Y

��
{0}

i0
�� C .

Denote by Ψ0 : Db(W ) → Db(X) the Fourier-Mukai type trans-
form defined by the kernel Li∗0(OW×YX ), which is equivalent to the
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Fourier-Mukai type transform defined by the universal perverse point
sheaf OW×Y X for X → Y (see Corollary 4.5).

We claim that Ψ(i0 ∗F) ∼= i0 ∗ ◦ Ψ0(F) for F ∈ Db(W ). In fact, we
prove a stronger lemma below.

Let E ∈ Db(W ×C X ) be an object satisfying the assumptions in
Lemma 2.1. We may also consider it as an object in Db(W × X ). Let
F : Db(W) → Db(X ) be the Fourier-Mukai type transform defined by

E . By Lemma 2.2, the functor F can be defined as Rp1 ∗(Lp∗2((−)
L
⊗E)).

Denote by F0 : Db(W ) → Db(X) the Fourier-Mukai transform defined
by the object Li∗0E ∈ Db(W × X).

Lemma 6.1 (= Proposition 1.9). Notation as above. Denote
by F the Fourier-Mukai type transform defined by the object E. Then
F (i0 ∗(−)) ∼= i0 ∗ ◦ F0(−).

Proof. We use the following isomorphisms:

F (i0 ∗(−)) = Rp1 ∗(Lp∗2(i0 ∗(−)
L
⊗E))

∼= Rp2 ∗(Ri0 ∗(L(p1)0 ∗(−))
L
⊗E)(6.1)

∼= Rp2 ∗(Ri0 ∗(L(p1)0 ∗(−)
L
⊗Li∗0E))(6.2)

∼= Ri0 ∗(R(p2 ∗)0(L(p1)0 ∗(−)
L
⊗Li∗0E)).(6.3)

The isomorphism (6.1) follows from the flat base change theorem. The
isomorphism (6.2) follows from the projection formula. The isomor-
phism (6.3) is obvious. The last line is, by definition, the functor
i0 ∗ ◦ F0(−). q.e.d.

Proposition 6.2 (=Proposition 1.10). Notation as above. Then

Ψ : Db(W) ∼= Db(X ) =⇒ Ψ0 : Db(W ) ∼= Db(X).

Proof. Applying Lemma 6.1 to Ψ, it follows that Ψ(i0 ∗(−)) ∼=
i0 ∗(Ψ0(−)). Let Φ : Db(X ) → Db(W) be the right adjoint functor
of Ψ : Db(W) → Db(X ), and E1 be the object corresponding to the
Fourier-Mukai type transform Φ.

Denote by Φ0 : Db(X) → Db(W ) the Fourier-Mukai type trans-
form defined by the object Li∗0E1. Lemma 6.1 also implies Φ(i0 ∗(−)) ∼=
i0 ∗(Φ0(−)). These two facts give the following commutative diagram
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Db(W )
i0

��

Ψ0

��

Db(W)

Ψ
��

Db(X)
i0

��

Φ0

��

Db(X )

Φ
��

Db(W )
i0

�� Db(W).

Combining the top and the bottom parts of this diagram, it follows
that Φ ◦Ψ(i0 (−)) ∼= i0 ∗(Φ0 ◦Ψ0(−)). The functor Φ ◦Ψ is the Fourier-
Mukai type transform defined by the diagonal ∆W ↪→ W ×C W (see
[9] or Appendix B), so it is equivalent to the identity functor idDb(W).
Since i0 is a closed embedding, Rii0 ∗(−) = 0 for i �= 0. Therefore
Φ0 ◦ Ψ0(F) ∼= F for all objects F ∈ Db(W ).

To show Ψ0◦Φ0
∼= id, we first note that Φ is an equivalence when Ψ is

an equivalence. By a similar argument, one can show that Ψ0 ◦Φ0
∼= id.

q.e.d.

A. Perverse coherent sheaves

We give the definitions and related results of perverse coherent shea-
ves in this section. The main reference for this appendix is [8].

Let f : X → Y be a projective birational morphism between quasi-
projective varieties. The following two assumptions are the same as in
[8]:

(B.1) Rf∗OX = OY .

(B.2) Every fiber of f is of dimension at most 1.

Any flopping contraction of a canonical threefold satisfies these two
conditions.

We write A = D(X) and B = D(Y ). By Proposition 2.3 in [8], we
can identify B with a right admissible triangulated subcategory of A.
We thus have a semiorthogonal decomposition (C,B) where

C = B⊥ = {E ∈ D(X) : Rf∗(E) = 0}.

Lemma A.1. An object E ∈ D(X) lies in C precisely when its
cohomology sheaves H i(E) lie in C.
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Proof. This is Lemma 3.1 in [8]. The proof is an easy spectral
sequence argument. The condition (B.2) is needed in the proof. q.e.d.

Now we can get a t-structure on A by gluing the t-structures on
B and C (see [4] 1.4.8-10). The standard t-structure on A induces a
t-structure C≤0 = C ∩ A≤0 on C. Shifting this by p and gluing it to the
standard t-structure on B gives a new t-structure on A.

This t-structure has the following properties:

A≤0
p = {E ∈ A : Rf∗(E) ∈ B≤0 and HomA(E, C) = 0 for all C ∈ C≥p},

A≥0
p = {E ∈ A : Rf∗(E) ∈ B≥0 and HomA(E, C) = 0 for all C ∈ C≤p}.

The heart of this t-structure is an abelian category Perp(X/Y ) = A≤0
p ∩

A≥0
p .

We shall only consider p = −1 and call this category Per (X/Y ). Follow-
ing Bridgeland, the objects of Per (X/Y ) are called perverse coherent
sheaves.

The next lemma gives an explicit description of Per(X/Y ).

Lemma A.2. An object E of D(X) is a perverse sheaf if and only
if the following three conditions are satisfied:

(PS.1) Hi(E) = 0 unless i = 0 or 1.

(PS.2) R1f∗H0(E) = 0 and R0f∗H1(E) = 0.

(PS.3) HomX(H0(E), C) = 0 for any sheaf C on X satisfying Rf∗(C) =
0.

Proof. This is Lemma 3.2 in [8]. q.e.d.

Definition A.3. Two objects A1 and A2 of Db(X) are numeri-
cally equivalent if for any locally-free sheaf L on X we have χ(L, A1) =
χ(L, A2).

Definition A.4. An object F of D(X) is a perverse ideal sheaf if
there is an injection F ↪→ OX in the abelian category Per (X/Y ). An
object E of D(X) is a perverse structure sheaf if there is a surjection
OX → E in Per(X/Y ). A perverse point sheaf is a perverse structure
sheaf which is numerically equivalent to the structure sheaf of a point
x ∈ X.

A perverse ideal sheaf F determines and is determined by a perverse
structure sheaf E, which fit in an exact sequence in Per (X/Y )
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0 �� F �� OX
�� E �� 0.

It turns out that a perverse ideal sheaf is a sheaf. We quote propo-
sition 5.1 in [8].

Proposition A.5. A perverse ideal sheaf on X is, in particular, a
sheaf on X. A sheaf on X is a perverse ideal sheaf if and only if the
following two conditions are satisfied:

(PIS.1) The sheaf f∗(F ) on Y is an ideal sheaf.

(PIS.2) The natural map of sheaves f∗f∗(F ) → F is surjective.

Let S be a scheme. Given a point s ∈ S, let js : s × X → S × Y be
the embedding. As indicated in Bridgeland [8], a family of sheaves on
X over S can be characterized as an object F of D(S × X) such that
for each point s ∈ S the object Fs = Lj∗s (F) of D(X) is a sheaf.

Following [8], we define the moduli functor of perverse sheaves.

Definition A.6. A family of perverse sheaves on X over a scheme
S is an object E of D(S ×X) such that for each point s ∈ S the object
Es = Lj∗s (F) of D(X) is a perverse sheaf. Two such families E1 and E2

are equivalent if E2 = E1 ⊗ L for some line bundle pulled back from S.
The moduli functor of perverse coherent sheaves assigns to each scheme
S the set of equivalence classes of perverse coherent sheaves on X × S.

The following theorem can be found in [8]:

Theorem A.7. The functor which assigns to a scheme S the set of
equivalence classes of families of perverse point sheaves on X over S is
representable by a projective scheme M(X/Y ).

The scheme M(X/Y ) has a distinguished irreducible component
which is birational to Y . We shall call it W (X/Y ). When no confusion
is possible, we denote it by W .

Remark A.8. In [8] Bridgeland proved the existence of a fine mod-
uli space of perverse ideal sheaves when X and Y are projective varieties.
We can generalize his existence result to quasi-projective varieties. A
simple observation below shows how to weaken the projectivity assump-
tion on Y .

Let f : X → Y be a projective morphism between two quasi-
projective varieties satisfying the conditions (B.1) and (B.2). We can
find a completion of f : X → Y as in the following diagram
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X
i1

��

f

��

X

f
��

Y
i2

�� Y .

The problem is that such a compactification may no longer satisfy
conditions (B.1) and (B.2). But we can define another moduli functor
which parameterizes the pairs of a sheaf F and a homomorphism α :
F → OX satisfying conditions (PIS.1)-(PIS.2) in Proposition A.5 (see
also Proposition 5.1 in [8]), and the condition that f∗(F ) is the ideal of
some point y ∈ Y .

The proof of the existence of such a moduli space is the same as the
proof of the existence of the moduli space of perverse point sheaves in
[8]. When restricted to Y , this scheme is the moduli space of perverse
point sheaves for f : X → Y . It is also evident that this construction is
local in Y .

B. Proof of Theorem 1.3

We sketch the proof of Theorem 1.3 in this appendix. The argument
is taken from [9]. We adapt the notation from Theorem 1.3. The state-
ment that W is a flop is an easy corollary of the result on the equivalence
of derived categories (see [8]). We shall omit its proof.

Consider the diagram

W × X
πW

�����������
πX

���
��������

W X.

Let P ∈ Db(W ×X) be the universal perverse point sheaf. We define
a functor (using results in [22])

Ψ = RπX ∗(P
L
⊗π∗

W (−)) : Dqc(W ) → Dqc(X).

It turns out that Ψ sends Db(W ) to Db(X) (see Step 1 below).

Step 1.
Each Pw has bounded homology sheaves. The variety X is nonsin-

gular. These imply that P is of finite homological dimension. So we
have Ψ : Db

c(W ) → Db
c(X).
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Step 2.
We define another functor Υ : Dqc(X) → Dqc(W ) by

Υ(−) = [RπW∗(P∨ ⊗ π∗
X(ωX)[n])

L
⊗π∗

X(−)],

where P∨ is the derived dual of P. Note that this functor sends objects
in Db

c(X) to Db
c(W ) since P∨ is of finite homological dimension. We now

restrict this functor to Db
c. Then Υ : Db

c(X) → Db
c(W ) is left adjoint

to Ψ : Db
c(W ) → Db

c(X) as shown in [9] (p. 16). The composite functor

Υ◦Ψ is given by Rπ2∗(Q
L
⊗π∗

1(−)), where π1, π2 : W ×W → W are the
projections and Q is some object of Db

c(W × W ).
If iw : w×W ↪→ W ×W be the embedding, then Li∗w(Q) = ΥΨOw.

We have the following isomorphisms

Homi
D(W×W )(Q,Ow1,w2) = Homi

D(W )(ΥΨOw1 ,Ow2)

= Exti
X(ΨOw1 , ΨOw2)

= Exti
X(Pw1 ,Pw2).

Each Pw is simple, so its support is connected and since Rf∗(Pw) = Oy,
where y = g(w), it follows that Pw is supported on a fiber of f over y.
Since f is crepant, we have Pw ⊗ ω = Pw. For distinct w1, w2, Serre
duality together with Lemma 3.6 in [8] implies that Homi

Dc
(Pw1 ,Pw2) =

0 unless g(w1) = g(w2) and 1 ≤ i ≤ n − 1. Since X → Y is crepant, it
follows that Pw ⊗ ωX = Pw.

Step 3.
We proved in Step 2 that h.d.(Q) ≤ (n − 1) − 1 = n − 2 when

restricted to W × W − ∆W . We know that dim (W ×Y W ) ≤ n + 1
by assumption, and Supp(Q) is contained in W ×Y W . Since we have
codim(Q) ≥ n − 1, the intersection theorem implies Q ∼= 0 outside the
diagonal.

Fix a point w ∈ W , put E = Υ ◦ Ψ(Ow). We prove above that E is
supported at the point w.

Claim B.1. H0(E) = Ow.

The proof of this claim can be found in [9] (p. 18). Corollary 5.3 in
[9] then implies that E ∼= Ow and W is nonsingular. Applying Theorem
2.3 in [9], it follows that Ψ : Db

c(W ) → Db
c(X) is an equivalence of

derived categories. The essence of Theorem 2.3 in [9] is the using of
Serre duality and adjoint pairs.
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We remark that their argument also shows that

Ψ : Exti
W (Ow1 ,Ow2) → Exti

X(Pw1 ,Pw2)

are isomorphisms for all i (see [9] p. 18), from which one can prove that
W is actually a connected component of M(X/Y ).

Step 4.
The functor Ψ : Db

c(W ) → Db
c(X) has a right adjoint Φ : Db

c(X) →
Db

c(W ), which is also a Fourier-Mukai type transform. The reader can
see [9] for an explicit formula. We show that Ψ is fully faithful in this
step. It suffices to show that Φ ◦ Ψ ∼= id.

The composition functor Φ ◦ Ψ is Rπ2∗(Q1

L
⊗π∗

1(−)) where π1, π2

are the projections W × W → W and Q1 is some object of D(W ×
W ). It suffices to show that Q1 is quasi-isomorphic to O∆W

. We have
Li∗w(Q1) = Φ ◦ Ψ(Ow). By an argument similar to the one given in
Step 3, we have Φ ◦ Ψ(Ow) = Ow for all w. This shows that Q1 is
actually the push-forward of a line bundle on W to the diagonal W ×W .
So Φ◦Ψ is just twisting by L. To prove Q1 is quasi-isomorphic to O∆W

,
it remains to show L is trivial.

There is a natural transform ε : id → Φ ◦ Ψ, which gives a commu-
tative diagram for every w:

OW
ε(OW ) ��

a

��

L

L⊗a
��

Ow
ε(Ow) �� Ow

where a is nonzero. Since ε is an isomorphism on the subcategory
Dc(W ), it implies ε(OW ) is an isomorphism. This shows that Q1 is
quasi-isomorphic to O∆W

.

Step 5.
By Lemma 2.1 in [9], the statement that the Fourier-Mukai type

transform Ψ is an equivalence of derived categories follows from the
following statement

Φ(E) ∼= 0 =⇒ E ∼= 0 ∀E ∈ D(X).

A proof of this statement can be found in Step 9 in [9].
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