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ON THE ZARISKI CLOSURE OF THE LINEAR PART
OF A PROPERLY DISCONTINUOUS GROUP OF

AFFINE TRANSFORMATIONS

H. ABELS, G.A. MARGULIS & G.A. SOIFER

Abstract
Let Γ be a subgroup of the group of affine transformations of the affine space
R2n+1. Suppose Γ acts properly discontinuously on R2n+1. The paper deals
with the question which subgroups of GL(2n+1, R) occur as Zariski closure

�(Γ) of the linear part of such a group Γ. The two main results of the paper

say that SO(n + 1, n) does occur as �(Γ) of such a group Γ if n is odd, but
does not if n is even.

1. Introduction

A well known classical theorem due to Bieberbach says that every
discrete group Γ of isometries of the n-dimensional Euclidean space
R

n with compact quotient Γ \ R
n contains a subgroup of finite index

consisting of translations. Hence such a group Γ is virtually abelian,
i.e., Γ contains an abelian subgroup of finite index.

Let us now look at the group of affine transformations instead of the
group of isometries of R

n. More precisely, let Gn = Aff(Rn) denote the
group of affine transformations of R

n. The group Gn is the semidirect
product GLn(R) � R

n where R
n is identified with its group of transla-

tions. A subgroup Γ of Gn is said to act properly discontinuously on R
n

if for every compact subset K of R
n the set {γ ∈ Γ | γK ∩ K �= ∅} of

recurrencies is finite. If a discrete group Γ consists of isometries then Γ
acts properly on R

n. But this is not true for all discrete subgroups of
Gn, e.g., for an infinite discrete subgroup of GLn(R).
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A subgroup Γ of Gn will be called crystallographic if Γ acts properly
discontinuously on R

n and the orbit space Γ \ R
n is compact. In [4]

Auslander conjectured that every crystallographic subgroup Γ of Gn is
virtually solvable, i.e., contains a solvable subgroup of finite index. In
[19] Milnor asked whether Auslander’s conjecture is true without the
assumption that the orbit space Γ \ R

n be compact. Milnor’s question
has a positive answer for n ≤ 2 (easy for n = 2, trivial for n = 1).
But for n = 3 the answer to Milnor’s question is negative. In fact, the
second named author proved that there is a nonabelian free subgroup
Γ of Aff(R3) acting properly discontinuously on R

3 ([15, 16]). On the
other hand, D. Fried and W. Goldman [11] proved Auslander’s conjec-
ture for n = 3 using cohomological arguments. For higher dimensions
the existing results confirming the Auslander conjecture are proved un-
der the assumption that the linear part l(Γ) of Γ belongs to some special
subgroup of GLn(R) where l : Gn → GLn(R) denotes the natural ho-
momorphism ([12, 14]). For a survey on existing results see [1].

The two main results of the present paper are:

Theorem A. For n even there is no properly discontinuous sub-
group Γ of G2n+1 with linear part l(Γ) Zariski dense in SO(n + 1, n).

Theorem B. For n odd there are properly discontinuous free sub-
groups Γ of G2n+1 with linear part l(Γ) Zariski dense in SO(n + 1, n).

Theorem A, its proof and the statement were contained in the pre-
print [17] of Margulis circulated in 1991. The proof of Theorem B is
based on our results [2] and the strategy is essentially the same as in
[15, 16]. The results of the present paper and more were announced in
[3].

The authors would like to thank different institutions and foun-
dations for their support during the preparation of this paper: the
MSRI Berkeley, the SFB 343 Bielefeld, the MPI Bonn, Yale Univer-
sity, Columbia University, the NSF under grant DMS 9800607 and the
German–Israeli foundation for Scientific Research and Development un-
der grant number G–454–213.06/95. Without their help this paper
whose authors live on three different continents would not have seen
the light of day.
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2. A sufficient condition for failure of proper discontinuity

In this section we prove a general criterion for certain pairs of affine
transformations to generate a subgroup of the affine group which is not
properly discontinuous. Recall that Gn = Aff (Rn) and that l : Gn −→
GLn(R) is the natural epimorphism. For any g ∈ Gn let us consider
the decomposition of R

n into a direct sum of the l(g)-invariant linear
subspaces

(2.1) R
n = A−(g) ⊕ A0(g) ⊕ A+(g),

where A−(g), A0(g) and A+(g) are determined by the condition that
their sum is R

n and all eigenvalues of the restriction l(g) | A−(g)
(resp. l(g) | A0(g), l(g) | A+(g)) are of modulus less than 1 (resp. equal
to 1, greater than 1). We set D−(g) = A−(g) ⊕ A0(g) and D+(g) =
A+(g) ⊕ A0(g). It is clear that A0(g) = D−(g) ∩ D+(g). Let us call an
element g ∈ Gn pseudohyperbolic if dimA0(g) = 1 and the only eigen-
value of l(g) | A0(g) is 1 (not −1). Let Ω be the set of pseudohyperbolic
elements of Gn and let Ω0 = {g ∈ Ω | g x �= x for every x ∈ R

n} be the
subset of pseudohyperbolic fixed–point–free elements of G.

For g ∈ Ω there is exactly one g–invariant line Cg and Cg is parallel
to A0(g). We call Cg the axis of g. The restriction of g to Cg is a
parallel translation by a vector τ(g) ∈ A0(g). The vector τ(g) is the
A0(g)-component with respect to the decomposition (2.1) of g x− x for
any x ∈ R

n. We call τ(g) the translational part of g. We have g ∈ Ω0 if
and only if τ(g) �= 0.It is easy to see that

Cgm = Cg and τ (gm) = m τ(g) for m �= 0.

If g ∈ Ω0 then every x ∈ D+(g) has a unique decomposition x =
λ(x)τ(g) + a(x) where λ(x) ∈ R and a(x) ∈ A+(g). We say that a
vector x ∈ D+(g) is positive with respect to g ∈ Ω0 if λ(x) > 0.

Two elements g1, g2 ∈ Ω0 will be called transversal if

R
n = A+ (g1) ⊕ D+ (g2) = D+ (g1) ⊕ A+ (g2)

or, equivalently, if dim (D+ (g1) ∩ D+ (g2)) = 1 and

R
n = A+ (g1) ⊕ A+ (g2) ⊕

(
D+ (g1) ∩ D+ (g2)

)
.

For two transversal elements g1, g2 ∈ Ω0, we say that g1 and g2 form a
positive pair if the semiline {x ∈ D+ (g1) ∩ D+ (g2) | x is positive with
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respect to g1} coincides with the semiline {x ∈ D+ (g1) ∩ D+ (g2) | x is
positive with respect to g2}.

We shall denote by E−
g and E+

g the affine subspaces containing Cg

and parallel to D−(g) and D+(g), respectively. We will use throughout
the whole paper the following notational conventions: affine subspaces
corresponding to g will be denoted by attaching g as lower index, like Cg,
E+

g etc., whereas vector subspaces corresponding to g will be denoted
by putting g into brackets, like A+(g), D−(g), etc. Let us introduce an
order on E+

g by saying that u ∈ E+
g is greater than v ∈ E+

g if u − v is
positive with respect to g. The condition that g1 and g2 form a positive
pair is equivalent to the condition that the orders on E+

g1
∩E+

g2
induced

from E+
g1

and E+
g2

coincide.

Lemma 2.2. Let g1, g2 ∈ Ω0 be two transversal elements which
form a positive pair. Then there exist a compact set K ⊂ R

n and two
sequences {mi} and {ni} of positive integers such that

mi → ∞ and ni → ∞ as i → ∞ and(
g−mi
1 gni

2 K
) ∩ K �= ∅.

Proof. For x ∈ R
n and g ∈ Ω0, let B+

g (x) denote the affine subspace
containing x and parallel to A+(g). Let us define the projection Pg :
E+

g → Cg by the equality

Pg(x) = Cg ∩ B+
g (x) for x ∈ E+(g).

Cg ∩ B+
g (x) is a point since D+(g) = A+(g) ⊕ A0(g) and Cg is parallel

to A0(g). The subspace A+(g) is l(g)-invariant. Therefore,

(1) Pg(g x) = Pg(x) + τ(g) for x ∈ E+
g .

Let d denote the Euclidean metric on R
n. The absolute values of all

eigenvalues of the restriction l
(
g−1

) | A+(g) are less than 1. This easily
implies that there exist positive constants c and b such that for any
x ∈ E+

g and n ∈ N
+

(2) d
(
g−nx, Pg

(
g−nx

)) ≤ ce−bnd(x, Pg(x)).

Let us fix a point r(g) ∈ Cg and let R(g) denote the interval [r(g), r(g)+
τg) ⊂ Cg. It follows from (1) that, for every x ∈ E+(g), there is a unique
integer k(x, g) such that

Pg

(
gk(x,g)x

)
∈ R(g).
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Note that if x is greater than r(g) in E+(g) then k(x, g) ≤ 0.
Since g1 and g2 form a positive pair one can find a vector v ∈

D+ (g1) ∩ D+ (g2) such that v is positive with respect to both g1 and
g2. Let us fix x0 ∈ E+

g1
∩ E+

g2
and set xi = x0 + i v, i ∈ N

+. We have
xi ∈ E+

g1
∩ E+

g2
. Let

mi = −k(xi, g1) and ni = −k(xi, g2).

Let v1 ∈ A0 (g1) and v2 ∈ A0 (g2) be such that v ∈ v1 + A+ (g1) and
v ∈ v2 + A+ (g2). Since v is positive with respect to both g1 and g2 we
have that v1 = λ1τ (g1) and v2 = λ2τ (g2) where λ1 > 0 and λ2 > 0.
Then it is easy to see that

(3) lim
i→∞

i

mi
= λ1 and lim

i→∞
i

ni
= λ2.

It is clear that the growth of the functions fj(i) = d
(
xi, Pgj (xi)

)
, j =

1, 2, is asymptotically linear. Thus (1), (2) and (3) imply that

(4) lim
i→∞

d
(
g−mi
1 xi, R (g1)

)
= lim

i→∞
d

(
g−ni
2 xi, R (g2)

)
= 0.

We get from (4) that there exists a compact set K ⊂ R
n such that for

all i

(5) g−mi
1 xi ∈ K and g−ni

2 xi ∈ K.

We have g−mi
1 xi =

(
g−mi
1 gni

2

)
g−ni
2 xi. This and (5) imply that K is a

compact set as claimed. q.e.d.

Corollary 2.3. Let g1, g2 ∈ Ω0 be two transversal elements which
form a positive pair. Then the subgroup of Gn generated by g1 and g2

is not properly discontinuous.

Proof. Let {mi} and {ni} be as in Lemma 2.2. Then it is enough to
check that the set

{
g−mi
1 gni

2 | i ∈ N
+
}

is infinite. We may assume that
mi < mi+1 and ni < ni+1 for every i since mi → +∞ and ni → +∞ as
i → ∞. Then for i < j we have g−mi

1 gni
2 �= g

−mj

1 g
nj

2 because otherwise
g

mj−mi

1 = g
nj−ni

2 . But gm
1 = gn

2 for positive m and n implies A+(g1) =
A+(gm

1 ) = A+(gn
2 ) = A+(g2) contradicting transversality. q.e.d.
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3. Orientations on subspaces of R
2n+1

In this section we introduce orientations on certain lines. In the next
section we shall compare these orientations with the ones defined in the
last section.

We fix a positive natural number n. Let X = R
n+1 and Y = R

n

and let B be the quadratic form on X × Y = R
2n+1 given by

B (x1, . . . , xn+1, y1, . . . , yn) = x2
1 + · · · + x2

n+1 − y2
1 − · · · − y2

n,

where (x1, . . . , xn+1) ∈ X and (y1, . . . yn) ∈ Y . Consider the set Ψ of all
maximal B-isotropic subspaces V of R

2n+1. We have the two projections

p : R
2n+1 −→ X and q : R

2n+1 −→ Y.

The restriction of q to V ∈ Ψ is a linear isomorphism V −→ Y . Hence
if we fix an orientation on Y we have also fixed an orientation on each
V ∈ Ψ. For V ∈ Ψ let us denote the B-orthogonal complement of V
by V ⊥ = {z ∈ R

2n+1; B(z, V ) = 0}. We have V ⊂ V ⊥ since V is
B-isotropic. We also have

dim V ⊥ = 1 + dimV = n + 1.

The restriction of p to V ⊥ is a linear isomorphism V ⊥ −→ X. Hence
if we fix an orientation on X we have also fixed an orientation on V ⊥

for each V ∈ Ψ. Thus we have orientations on both V and V ⊥ and
we can single out one of the two halfspaces of V ⊥

� V as positive by
the following definition: if (v1, . . . , vn) is a positively oriented basis of
V then a vector v in V ⊥ not in V is positive (with respect to V ) if
the basis (v1, . . . , vn, v) of V ⊥ is positively oriented. Accordingly, every
affine line L in V ⊥ transversal to V is oriented: For two points x0, x1 of
L we have x0 < x1 if v = x1−x0 belongs to the positive half of V ⊥

�V .
If V1 ∈ Ψ and V2 ∈ Ψ are transversal then V ⊥

1 ∩ V ⊥
2 is a line which

is transversal to both V1 and V2. So there are two orientations ω1 and
ω2 on L, where ωi is defined if we consider L as a line in V ⊥

i . We have:

Lemma 3.1. The orientations defined above on L are the same if
n is even and are opposite if n is odd.

Proof. One can easily show that there exists a basis (e1, . . . , e2n+1)
in R

2n+1 such that V1 (resp. V2) is the linear span of (e1, . . . , en) (resp. of
(en+1, . . . , e2n)) and the form B with respect to this basis is given by
the equation

B (x1, . . . , x2n+1) = −x1xn+1 · · · − xnx2n + x2
2n+1.
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Let us note that V ⊥
1 (resp. V ⊥

2 ) is the linear span of (e1, . . . , en, e2n+1)
(resp. of (en+1, . . . , e2n+1)).

Let us denote by HB the group of elements of GL2n+1(R) preserving
the form B, and let H0

B denote the connected component (in the Eu-
clidean topology) of the identity in HB. Direct calculations show that,
for every j, 1 ≤ j ≤ n, and every t ∈ R, the transformation hj(t) defined
by

ei → ei, en+i → en+i if 1 ≤ i ≤ n, i �= j

ej → ej + en+j

2
+

cos t(ej − en+j)
2

+
sin te2n+1

2

en+j → ej + en+j

2
− cos t(ej − en+j)

2
− sin te2n+1

2
e2n+1 → − sin t(ej − en+j) + cos te2n+1

belongs to HB. We have

hj(π)ei, = ei, hj(π)en+i = en+i if 1 ≤ i ≤ n, i �= j,

hj(π)ej = en+j , hj(π)en+j = ej ,

hj(π)e2n+1 = −e2n+1.

Therefore, if we denote h1(π) . . . hn(π) by hπ, we have

(1) hπ(ei) = en+i, hπ(en+i) = ei and hπ(e2n+1) = (−1)ne2n+1.

Since hj(0) = Id and hj(t) ∈ HB depends continuously on t we have

(2) hπ ∈ H0
B.

The orientations on V and V ⊥ defined above depend continuously on
V ∈ Ψ. Hence these orientations are invariant under the action of the
group H0

B. Now assuming that the basis (e1, . . . , en) (resp. (e1, . . . , en,
e2n+1)) is positively oriented in V1 (resp. in V ⊥

1 ) we get from (1) and
(2) that the basis (en+1, . . . , e2n) (resp. (en+1, . . . , e2n, (−1)ne2n+1)) is
positively oriented in V2 (resp. in V ⊥

2 ). This immediately implies the
desired statement. q.e.d.

4. The sign of an affine transformation

In this section we define the notion of sign for certain affine trans-
formations g. It tells us whether the translational part of g is positive
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or negative with respect to the orientation of the preceding section. We
translate this into the orientations of the second section thus obtaining
a criterion for (non–) proper discontinuity. The proof of Theorem A
will follow.

Let HB = SO(n + 1, n) be the special orthogonal group of the
quadratic form B on R

2n+1 and let GB be the subgroup of those el-
ements of G2n+1 whose linear part is in HB. Let g be a pseudohy-
perbolic element of GB, i.e., g ∈ GB ∩ Ω, then dimA0(g) = 1 and
dim A−(g) = dimA+(g) = n. The subspaces A−(g) and A+(g) are
isotropic, thus A−(g) and A+(g) are in Ψ. In the preceding section we
fixed orientations on A+(g) and on D+(g) = A+(g)⊕A0(g) = (A+(g))⊥

and similarly on A−(g) and on D−(g) = A−(g) ⊕ A0(g) = (A−(g))⊥.
We define the sign σ(g) of g ∈ GB ∩ Ω as +1 or −1 or 0 according to
whether the translational part τ(g) of g is a positive or a negative vector
of D+(g) � A+(g) or is zero. Recall that g ∈ Ω is fixed point free, i.e.,
g ∈ Ω0, iff τ(g) = 0. For g ∈ GB ∩ Ω and m > 0 we have

(4.1) σ (gm) = σ(g)

since τ (gm) = m τ(g) and

A◦(g) = A◦ (gm)
A+(g) = A+ (gm)
A−(g) = A− (gm) .

For g ∈ GB ∩ Ω we have

(4.2) σ
(
g−1

)
= (−1)n+1σ(g).

This follows from τ
(
g−1

)
= −τ(g) ∈ A0(g) = A0

(
g−1

)
and Lemma 3.1

since A+(g) and A−(g) = A+
(
g−1

)
are transversal.

We shall need to compute σ(g). Let g ∈ GB ∩ Ω. Note that B
restricts to a positive definite form on A0(g). Let e0(g) be the unique
vector of A0(g) with B

(
e0(g), e0(g)

)
= 1 and positive with respect to

the orientations of A+(g) and D+(g). Define α(g) ∈ R by

τ(g) = α(g)e0(g).(4.3)

Then

σ(g) = sgn α(g).(4.4)
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We have

α(g) = B
(
e0(g), g x − x

)
(4.5)

for every point x of the affine space. To see this recall the decomposition
(2.1):

(4.6) R
n = A−(g) ⊕ A0(g) ⊕ A+(g).

Now (4.5) follows from (4.3) since the translational part τ(g) is the
A0(g)–component of g x − x for every point x and A0(g) is orthogonal
to both A+(g) and A−(g). Note that

α (gm) = m α(g) for m > 0(4.7)

and

α
(
g−1

)
= (−1)n+1α(g) ,(4.8)

which is proved like (4.2).
The following proposition is basic for our approach.

Proposition 4.9. Let g1, g2 be transversal pseudohyperbolic ele-
ments of GB. If σ (g1) σ

(
g−1
2

)
< 0 then the group generated by g1 and

g2 is not properly discontinuous.

Proof. Note that g1, g2 ∈ GB ∩Ω0 since their signs are not zero. The
proposition now follows from Corollary 2.3 and the following lemma.

Lemma 4.10. Let g1, g2 be transversal elements of GB ∩ Ω0. If
σ (g1) σ

(
g−1
2

)
< 0 then g1 and g2 form a positive pair.

Proof. Given gi ∈ GB ∩ Ω0 we have defined orientations on Vi =
A+(gi) and V ⊥

i = D+(gi) and thus can talk about the positive half
space of V ⊥

i � Vi. The vector e0(gi) defined before (4.3) is positive with
respect to Vi. Let L be the line V ⊥

1 ∩ V ⊥
2 . An element � �= 0 in L is

positive with respect to V1 iff (−1)n� is positive with respect to V2, by
Lemma 3.1. Write

� = v1 + β1τ(g1)
= v2 + β2τ(g2),

vi ∈ Vi, βi ∈ R. Then g1, g2 form a positive pair iff β1β2 > 0. But

τ(gi) = α(gi)e0(gi).
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Thus, � is positive for V1 iff β1α(g1) > 0 iff (−1)n� = (−1)nv2 +
(−1)nβ2α(g2)e0(g2) is positive for V2 iff β2(−1)nα(g2) = −β2α(g−1

2 ) >
0, by (4.8). Thus g1, g2 form a positive pair iff α(g1)α(g−1

2 ) < 0, which
proves our claim in view of (4.4). q.e.d.

Proof of Theorem A. Let Γ be a subgroup of Gn and let H(Γ) be
the Zariski closure of its linear part �(Γ). Suppose we have H(Γ)◦ = H◦

B

for the connected components with respect to the Euclidean topology.
It then follows from the main algebraic result of [13] that Γ contains
an element γ0 such that �(γ0) is pseudohyperbolic. To see this look at
the natural representation ρ of HB on

∧n
R

2n+1. The representation ρ
restricted to H◦

B is irreducible. Then ρ(h) is proximal in the sense of [2]
iff there is only one eigenvalue of h of modulus 1, counting multiplici-
ties, see [2, 5.1]. The main algebraic result of [13] implies that ρ(�(Γ))
contains a proximal element since ρ(H◦

B) does and the representation
ρ | H◦

B is irreducible, see [2, Theorem 4.1].
We have γ0 ∈ Ω0 if Γ is properly discontinuous because otherwise

γ0 has a fixed point and hence the cyclic subgroup of Γ generated by γ0

does not act properly discontinuously on R
2n+1. We can find an element

γ ∈ Γ such that

(4.11) (A+(γ0) ∪ A−(γ0)) ∩ �(γ)(A+(γ0) ∪ A−(γ0)) = 0

since H(Γ)0 = H◦
B. Put γ1 = γγ0γ

−1. Then A+(γ1) = γA+(γ0) and
A−(γ1) = γA−(γ0). Then (4.11) implies that γ1 is transversal to both γ0

and γ−1
0 . On the other hand we see from (4.2) for n even that the signs

of γ0 and γ−1
0 are different. It now remains to apply Proposition 4.9

either to the pair (g1 = γ0, g2 = γ1) or to the pair (g1 = γ−1
0 , g2 = γ1).

q.e.d.

5. Pseudohyperbolicity of products

We are now heading for a proof of Theorem B. In this section we
give a sufficient condition for when the product of two linear maps is
pseudohyperbolic. In the next section we prove a generalization of the
basic additivity lemma.

We need the following concept of pseudohyperbolicity which is both
more general and more precise.

Before we give the actual definition which is somewhat technical we
give some explanation. Let V be a real vector space of dimension m.
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We fix a natural number p with 1 ≤ p ≤ m − 1. Let g ∈ GL(V ). We
order the complex eigenvalues of g according to their moduli |λ1| ≥
|λ2| ≥ · · · ≥ |λm|. The condition of (p, ε)-pseudohyperbolicity stipulates
among other things that |λp| > |λp+1|. We thus can talk about the
p eigenvalues {λ1, . . . , λp} of maximal modulus and also of the m − p
eigenvalues of minimal modulus {λp+1, . . . , λm}. Then V is the direct
sum of two g–invariant subspaces V + and V − such that every eigenvalue
of g | V + resp. g|V − is a λi with i ≤ p resp. i > p. In particular V + and
V − have dimension p and m − p, resp. The number ε in the following
definition of pseudohyperbolicity denotes the distance between these two
subspaces. The number s is related to the size of the gap between |λp|
and |λp+1|, more precisely, s is an upper bound for |λp+1| · |λp|−1, see
(5.3). The actual definition of pseudohyperbolicity is formulated not in
terms of eigenvalues but in terms of norms. The reason is that we want
to have pseudohyperbolicity of products of pseudohyperbolic elements,
see Lemma 5.6.

Here is the definition. Let V be a real vector space of dimension m.
Fix a norm ‖ · ‖ on V and let d be the corresponding metric. Let S(V )
be the sphere {x ∈ V ; ‖x‖ = 1}. For p ∈ {1, . . . , m − 1}, 0 < s < 1,
ε > 0 let Ω(p, s, ε) be the set of elements g ∈ GL(V ) with the following
properties: There is a p-dimensional linear subspace V + of V and a
complementary linear subspace V − of V , both g-invariant, such that

(5.1) ‖g|V −‖ ≤ s · ‖g−1|V +‖−1

and d(v−, v+) ≥ ε for any two vectors v− ∈ S(V −), v+ ∈ S(V +), where,
of course, S(V −) = S(V ) ∩ V − etc. Note that

(5.2) ‖g−1|V +‖−1 = min{‖gv‖; v ∈ S(V +)}.

We have for every eigenvalue λ− of g on V − and λ+ of g on V +:

(5.3) |λ−| ≤ ‖g|V −‖ ≤ s‖g−1|V +‖−1 ≤ s · |λ+|.

Since s < 1, it follows that the eigenvalues of g | V + are the p eigenvalues
of g of maximal modulus and the eigenvalues of g | V − are the m − p
eigenvalues of g of minimal modulus. In particular, the g-invariant
subspaces V + and V − are uniquely determined by this condition.

5.4 (Inverses of pseudohyperbolic elements). Note that g ∈ Ω(p, s, ε)
iff g−1 ∈ Ω(n − p, s, ε) with V −(g−1) = V +(g) and V +(g−1) = V −(g).
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An element g ∈ ⋃
s<1

Ω(p, s, ε) will be called (p, ε)-pseudohyperbolic

and we put for such g

(5.5) sp(g) := ‖g|V −‖ · ‖g−1|V +‖.
So sp(g) is the smallest s such that g ∈ Ω(p, s, ε) for some ε > 0.
Note that g is (r, ε)-proximal in the terminology of [2] iff g is (1, ε)-
pseudohyperbolic with s1(g) ≤ r−1. Two (p, ε)-pseudohyperbolic el-
ements g, h are called (p, ε)-transversal if d(v, w) ≥ ε whenever v ∈
S(V −(g)) ∪ S(V −(h)) and w ∈ S(V +(g)) ∪ S(V +(h)). In the follow-
ing lemma we will use the Hausdorff distance associated with ‖ · ‖, also
denoted by d. Thus, for any two compact subsets A, B of V put

d(A, B) = max
{

max
b∈B

min
a∈A

d(a, b), max
a∈A

min
b∈B

d(a, b)
}

.

So d(A, B) is the minimum of the numbers r such that A ⊂ Br(B) and
B ⊂ Br(A), where Br(X) =

⋃
x∈X

Br(x) and Br(x) = {y ∈ V ; d(x, y) ≤
r} is the ball of radius r with center x. For two linear subspaces V1, V2

of V put
d(V1, V2) = d(S(V1), S(V2)).

Assume now, that g ∈ HB, where HB = O(B) and B is the quadratic
form of the signature (n + 1, n). Let g be (n, ε)-pseudohyperbolic, then
g−1 is also (n, ε)-pseudohyperbolic and V +(g) = A+(g), V +(g−1) =
A−(g), V −(g) = D−(g), V −(g−1) = D+(g). In that case we will define
s(g) as s(g) = max{sn(g), sn(g−1)}.

Lemma 5.6. For any ε > 0 there are two real numbers a(ε) and
s(ε), s(ε) > 1 such that if g and h are (p, ε)-transversal, sp(g) < s(ε)−1

and sp(h) < s(ε)−1 then:

(1) gh is
(
p, ε

2

)
-pseudohyperbolic.

(2) a(ε)−1sp(g)sp(h) < sp(gh) < a(ε)sp(g)sp(h).

(3) d(V +(gh), V +(g)) < a(ε)sp(g).

(4) d(V −(gh), V −(h)) < a(ε)sn−p(h).

We often call real numbers like a(ε) constants because, although
they do depend on ε, they do not depend on the other variables, in
particular not on g, V +(g), . . . .
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Proof. We start with the case p = 1. We only show the claims (1),
(3) and the second inequality of (2). The remaining inequality of (2)
and also (4) will be obtained later by passing to inverses, using 5.4, but
for a different dimension. If g is (1, ε)-pseudohyperbolic then V +(g) is
a g-invariant line corresponding to a real eigenvalue of g which we call
λ(g), so gv = λ(g)v for v ∈ V +(g).

Lemma 5.7. For every ε > 0 there is a constant a(ε) > 1 with
the following property. For any two (1, ε)-transversal elements g, h in
GL(V ) with s1(g) < a(ε)−1 and s1(h) < a(ε)−1 we have:

(1) gh is (1, ε
2)-proximal.

(2) s1(gh) < a(ε)s1(g)s1(h).

(3) a(ε)−1|λ(g)λ(h)| < |λ(gh)| < a(ε)|λ(g)λ(h)|.

(4) d(V +(gh), V +(g)) < a(ε)s1(g).

Proof. Let B(x, r) = {y ∈ V ; d(x, y) ≤ r} be the ball of radius r
with center x. For any (1, ε)-pseudohyperbolic element g fix one vector
x+(g) in S(V +(g)). Put

g1(x) =
g(x)

‖g(x)‖ for x �= 0

and
U(g) = B

(
x+(g),

ε

2

)
.

It is easy to see that there is a constant a(ε) > 0 for every ε > 0 such that
if g and h are (1, ε)-transversal with s1(g) ≤ a(ε)−1 and s1(h) ≤ a(ε)−1

then

(5.8) h1 U(g) ⊂ B(x+(g), r) or h1 U(g) ⊂ B(−x+(g), r)

with r = min
(
a(ε)s1(h),

ε

2

)

(5.9) a(ε)−
1
2 |λ(h)| · ‖x‖ < ‖h(x)‖ < a(ε)

1
2 |λ(h)| · ‖x‖ for x ∈ U(g)

(5.10) ‖h1(x) − h1(y)‖ < a(ε)
1
2 s1(h)‖x − y‖ for x, y ∈ U(g).
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The same holds with g und h interchanged. So we have by (5.8)

h1U(g) ⊂ ±
◦
U(h)(5.11)

and

g1U(h) ⊂ ±
◦
U(g).(5.12)

Thus g1 ◦ h1 : U(g) → ±
◦
U(g) and

(5.13) ‖g1h1(x) − g1h1(y)‖ < a(ε)s1(g)s1(h)‖x − y‖

for x, y ∈ U(g). We then obtain the following facts from Tits’s lemma [2,
2.1] and thus basically from the Banch fixed point theorem: gh is prox-

imal, V −(g h) does not intersect
◦
U(g) and the projective map induced

by g h on the projective space P has a unique fixed point in the image of
U(g) in P and this fixed point is V +(g h). This proves Claim (1). Claim
(4) follows from inequality (5.8) and the corresponding inequality with
g and h interchanged, and Claim (3) follows from inequality (5.9) for g
and h. Finally inequality (5.13) implies that s1(gh) < b(ε)s1(g)s1(h) for
some constant b(ε) depending only on ε and of course the given norm.
We may assume that b(ε) ≥ a(ε) and thus replace a(ε) by b(ε) to retain
everything and also obtain Claim (2). q.e.d.

5.14. We shall constantly use the following notion. Fix p. Let
k ≥ 1 be a natural number and let two functions f1, f2 be given on
some subset E of the direct product of k copies of GL(V ). We say
that f1 is dominated by f2 and write f1 � f2 if for every ε > 0 there
is a c(ε) > 0 such that f1(g1, . . . , gk) ≤ c(ε)f2(g1, . . . , gk) whenever
(g1, . . . , gk) ∈ E and the elements gi, i = 1, . . . , k, are pairwise (p, ε)-
transversal. If f1 � f2 and f2 � f1 then we write f1 ∼ f2 and say that
f1 and f2 are equivalent.

Proof of Lemma 5.6 for arbitrary p. Note that if g ∈ Ω(p, s, ε)
then

∧p g :
∧p V −→ ∧p V is proximal, i.e., has a unique eigenvalue

of maximal modulus and this eigenvalue has multiplicity one. The
corresponding line V +(

∧p g) is
∧p V +(g), the hyperplane V <(

∧p g) is{
x ∈ ∧p V ; x ∧ ∧n−p V −(g) = 0

}
, the eigenvalue λ+(

∧p g) of maximal
modulus is the product of the p eigenvalues of g of largest modulus and
all the eigenvalues of

∧p g on V <(
∧p g) are of modulus ≤ s · |λ+(

∧p g)|.
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In order to proceed we need the quantitative specifications of prox-
imality as follows:

d
(
x+ (

∧pg) , S
(
V < (

∧pg)
)) ∼ 1(5.15)

‖g | V <(
∧p g)‖

|λ+(
∧p g)| ∼ s(g).(5.16)

To see this we may assume that our norm comes from a positive definite
quadratic form Q on V . Now change the form Q to the form Qg with the
following properties: V − := V −(g) is orthogonal to V + := V +(g) with
respect to Qg, Qg|V + = Q|V +, Qg|V − = Q|V −. Then sup

Q(x)=1
Qg(x)

and inf
Q(x)=1

Qg(x) are ∼ 1 as functions of g, i.e., there is a compact set

K = K(ε) of quadratic forms, depending on ε, such that Qg ∈ K for
every (p, ε)-pseudohyperbolic g. For the induced form on

∧p V , also
denoted Qg, and which also belongs to a compact set K ′(ε) of quadratic
forms, we then have V +(

∧p g) ⊥ V <(
∧p g), which implies (5.15).

For orthonormal vectors x1, . . . , xr in V +, xr+1, . . . , xp in V − we
have for the norm ‖ · ‖ corresponding to Qg:

(5.17) ‖g(x1 ∧ · · · ∧ xp)‖ = ‖g(x1 ∧ · · · ∧ xr)‖ · ‖g(xr+1 ∧ · · · ∧ xp)‖.

The second factor can be estimated by

(5.18) ‖gxr+1∧· · ·∧gxp‖ ≤ ‖gxr+1‖·‖gxr+2‖·· · ··‖gxp‖ ≤ ‖g | V −‖p−r,

since
‖z1 ∧ · · · ∧ zt+1‖ = ‖z1 ∧ · · · ∧ zt‖ · ‖π(zt+1)‖

where π is the orthogonal projection of zt+1 onto the span of z1, . . . , zt.
As to the first factor in (5.17), take the Cartan decomposition of g |

V + = k1·d·k2 where k1, k2 are unitary with respect to Qg | V + = Q | V +

and d is diagonal with entries d1 ≥ d2 ≥ · · · ≥ dp > 0 with respect to
an orthonormal basis y1, . . . , yp of V +. Assuming that x1, . . . , xr forms
part of the basis k−1

2 y1, . . . , k
−1
2 yp, as we may, we obtain

(5.19) ‖g(x1 ∧ · · · ∧ xr)‖ =
∏

i

di ≤ d1 . . . dr,

where the index i runs through an r–element subset of {1, . . . p}. We
thus obtain ∥∥g |V < (

∧pg)
∥∥ < C · s · ∣∣λ+ (

∧p(g))
∣∣
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for some constant C, since we have a corresponding inequality for every
element of an orthonormal basis of V <(

∧p g) by (5.17)-(5.19). Changing
back to the original quadratic form Q gives the inequality � in (5.16).
The opposite inequality is easily proved using the Cartan decomposi-
tions of g | V + and g | V − with respect to Qg.

It follows now from Lemma 5.7, the case p = 1, that there is a
constant s(ε) > 1 such that if g and h are (p, ε)-transversal and s(g) <
s(ε)−1, s(h) < s(ε)−1 then

∧p(gh) is proximal since (p, ε)-transversality
of g and h implies (1, c(ε))-transversality of

∧p g and
∧p h for some

c(ε) > 0. The proof of 5.7 and of the Banach fixed point theorem
show furthermore that then V +(

∧p(gh)) = lim (gh)nV +(
∧p g) which

implies that the sequence (gh)n V +(g) converges to a p-dimensional
linear subspace of V which we call V +. Similarly, using inverses and
5.4, the sequence (gh)−n V −(h) converges to an n − p-subspace V − of
V . By 5.7(4) we have

d(V +(g), V +) < a2(ε)sp(g)(5.20)

and

d(V −(h), V −) < a2(ε)sn−p(h).(5.21)

Finally, for x ∈ U(g) := B(S(V +(g)), ε/2) we have

a3(ε)−1‖π+
h (x)‖ · ‖h−1 | V +(h)‖−1 ≤ ‖hx‖

(5.22)

≤ a3(ε)‖π+
h (x)‖ · ‖h | V +(h)‖

where π+
h and π−

h are the projections in V = V +(h) ⊕ V −(h), and
similarly with g and h interchanged. This implies

‖(gh)(x)‖ ≥ a4(ε)−1 · ‖g−1 | V +(g)‖−1 · ‖x‖
for x ∈ V + by (5.20) and that there is a point x ∈ S(V +) with

‖gh(x)‖ ≤ a4(ε) · ‖g−1 | V +(g)‖−1 · ‖h−1 | V +(h)‖−1 · ‖x‖,
since π+

h : V + −→ V +(h) is surjective and inf
x∈S(V +)

‖π+
h (x)‖ ≥ a5(ε)‖x‖,

and similarly for g. Thus

a4(ε)−1 · ‖g−1 | V +(g)‖−1 · ‖h−1 | V +(h)‖−1

≤ ‖(gh)−1 | V +‖−1 ≤ a4(ε) · ‖g−1 | V +(g)‖−1 · ‖h−1 | V +(h)‖−1.
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Similarly for (gh)−1:

a4(ε)−1 · ‖g | V −(g)‖ · ‖h | V −(h)‖
≤ ‖gh | V −‖
≤ a4(ε) · ‖g | V −(g)‖ · ‖h | V −(h)‖.

Hence for a(ε) = max(2, ai(ε)) and sp(g) ≤ a(ε)−1, sn−p(h) ≤ a(ε)−1,
we obtain that gh is pseudohyperbolic with V +(gh) = V +, V −(gh) =
V −,

sp(gh) ∼ sp(g)sp(h)

and d(V +(gh), V +(g)) � sp(g), d(V −(gh), V −(h)) � sp(h). q.e.d.

We obtain:

Corollary 5.23. Let g and h be ε-hyperbolic, ε-transversal elements
then there is a constant s(ε) < 1 such that if s(g) < s(ε), s(h) < s(ε)
then gh is ε/2-hyperbolic and gh and h, gh and g are ε/2-transversal.

Proof. By Lemma 5.6 there is a constant s(ε), such that for s(g) <
s(ε), s(h) < s(ε) we have d(A+(g), A+(gh))=d(V +(g), V +(gh)) < ε/4
and therefore d(A+(gh), D−(h)) ≥ − d(A+(gh), A+(g)) + d(A+(g),
D−(h)) ≥ ε/2. The same is true for the other subspaces. q.e.d.

The next lemma will be applied in the following situation. Let
h1, . . . , hm be ε-hyperbolic, pairwise ε-transversal elements and let H
be the group generated by h1, . . . , hm. Under certain hypotheses for the
hi’s we can guarantee that certain elements h of H are still hyperbolic,
but h will not be ε-hyperbolic, in general. E.g., think of h−n

1 h2 hn
1 .

The lemma shows that we can keep our elements ε-hyperbolic and ε-
transversal, namely by multiplying by a fixed element g0.

Lemma 5.24. Let g0, h1, . . . , hm be ε-hyperbolic, pairwise ε-trans-
versal elements and let s = max{s(g0), s(h1), . . . , s(hm)}. Let g� =
g0 · hn1

i1
. . . hn�

i�
, ik �= ik+1, � ∈ Z, � > 0, ni ∈ Z, ni �= 0 for i = 1, . . . , �

and M� = |n1|+ · · ·+ |n�|. Then there is a constant b(ε) > 1, such that
if s < b(ε)−2, then for every s0, such that s < s2

0 < b(ε)−2, and � ∈ Z,
� > 0, we have:

(1) s(g�) ≤ sM�+1
0 .

(2) d(A+(g�−1), A+(g�)) ≤ ε

2
s
M�−1

0 .
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(3) d(A+(g0), A+(g�)) ≤ ε

2
.

(4) d(A−(g�), A+(hi) ∪ A−(hi)) ≥ ε

2
for i �= i�.

(5) g� is ε/2-hyperbolic.

Proof. Let us consider a(ε/2), given by Lemma 5.6 and put b(ε) =
4ε−1a (ε/2). Let us assume that s < b(ε)−2 and let s0 be any number
such that s < s2

0 < b(ε)−2. Let us first to show, that the statements of
the the lemma follow from the following inequalities:

s(g�) ≤ ε

4
sM�+2
0

d(A+(g�), A+(g�+1)) ≤ ε

4
sM�+1
0

d(A−(g�)), A−(hi�)) ≤
ε

4
s
|n�|
0 .

In fact,

d(A+(g0), A+(g�)) ≤
�∑

i=1

d(A+(gi−1), A+(gi))

≤ ε

4
s0 +

ε

4
sM1+1
0 + · · · + ε

4
s
M�−1+1
0 ≤ ε

4
.

and
d(A−(g�)), A−(hi�)) ≤ ε/4.

Therefore, for all �, � ≥ 0

d(A+(g�), A−(g�)) ≥ d(A+(g0), A−(hi�)) − d(A+(g�), A+(g0))
− d(A−(g�), A−(hi�))

≥ ε − ε

4
+

ε

4
≥ ε

2

which means, that for all �, � ≥ 0, g� is ε/2-hyperbolic.
Additionally, if i �= i� we have

d(A−(g�), A+(hi) ∪ A−(hi))
≥ d(A−(hi�), A

+(hi) ∪ A−(hi)) − d(A−(g�), A−(hi�))

≥ ε − ε

4
>

ε

2
,
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for all � and i, i� �= i. So for all � and i if i� �= i elements the g� and hi

are ε/2-transversal.
We will prove the inequalities above by induction on the index �.

We will assume, that they are true if the index is ≤ �. Therefore, the
elements g� and hi are ε/2-hyperbolic and ε/2-transversal, if i� �= i ,
therefore we can use the statements of Lemma 5.6. First of all, because
of (2) in Lemma 5.6,

s(g�+1) ≤ a(ε/2)s(g�) · s|n�+1| ≤ a(ε/2)sM�+2
0 · s2|n�+1|

0 ≤ ε

4
s
M�+1+2
0 .

Now, by (3) of Lemma 5.6,

d(A+(g�), A+(g�+1)) ≤ a(ε/2)s(g�) ≤ a(ε/2)sM�+2
0 ≤ ε

4
sM�+1
0 .

d(A−(g�), A−(hi�)) ≤ α(ε/2)s2|n�|
0 ≤ ε

4
s
|n�|
0 .

q.e.d.

6. The Basic Lemma

The main claim of the Basic Lemma states additivity of the function
α of (4.3).

So in this section we return to affine maps. Recall that HB =
SO(n+1, n) is the orthogonal group of the form B of signature (n+1, n)
on R

2n+1 and GB is the subgroup of G2n+1 = Aff(R2n+1) of those ele-
ments with linear part in HB. Also, Ω was the set of those g ∈ Gn for
which dimA0(g) = 1 and the eigenvalue of �(g) | A0(g) is +1, see para-
graphs following (2.1). These elements were called pseudohyperbolic in
Sections 2-4. Let us clarify how this notion of pseudohyperbolicity is re-
lated to the one of Section 5. If �(g) is in Ω(n, s, ε) of Section 5 for some
s < 1 and ε > 0 and g ∈ G◦

B then g is pseudohyperbolic. Conversely, if
g ∈ Ω then some power of �(g) is in Ω(n, s, ε) for some s < 1 and ε > 0.
Cf. the corresponding discussion for proximality in [2, Section 2].

We need some auxiliary lemmas before we can prove the Basic
Lemma.

Lemma 6.1.

(a) Let g ∈ G◦
B, �(g) ∈ Ω(n, s, ε). Then �(g) ∈ Ω(n + 1, s′, b(ε)) for

some constant b(ε) and s′
s and s

s′ are bounded, independently of ε,
if s is sufficiently small.
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(b) d(v, w) ≥ c(ε) for every g ∈ Ω(n, s, ε), v ∈ S(A0(g)) and every
isotropic vector w with ‖w‖ = 1.

(c) For the given norm ‖·‖ and the norm ‖·‖B induced by B on A0(g)
we have ‖ · ‖ ∼ ‖ · ‖B, i.e.,

c1(ε) > sup
x∈A0(g)

‖x‖
‖x‖B

> inf
x∈A0(g)

‖x‖
‖x‖B

> c1(ε)−1

for some c1(ε) and every g ∈ Ω(n, s, ε).

(d) ‖g | A0(g)‖ ∼ 1 and ‖g−1 | A0(g)‖ ∼ 1.

(e)

s(g) = ‖g | D−(g)‖ · ‖g−1 | A+(g)‖
∼ ‖g | A−(g)‖ · ‖g−1 | D+(g)‖ = s(g−1).

Proof.
(a) Take a basis e1, . . . e2n+1 of V such that B(ei, ej) = 0 for i �= j

and B(ei, ei) = 1 for i ≤ n + 1, B(ei, ei) = −1 for i > n + 1. Suppose
our norm ‖ · ‖ is given by the Euclidean form Q with respect to this
basis. Then for a ∈ HB we have a−1 = P at P−1. Write a = k1dk2 in

Cartan form, so k1, k2 ∈ O(Q), d = (d1, . . . , d2n+1) is diagonal with
d1 ≥ d2 ≥ · · · ≥ d2n+1 > 0. Then a is (n, s, ε1)-pseudohyperbolic
iff dn+1 ≤ sdn iff at is (n, s, ε2)-pseudohyperbolic iff a−1 = P at P−1

is (n, s, ε3)-pseudohyperbolic, since P ∈ O(Q) iff a is (n + 1, s, ε4)-
pseudohyperbolic, by 5.4.

To see the claim concerning b(ε), look at the map ⊥ which associates
to every subspace W of V its orthogonal space with respect to B. Regard
it as a map from a subset of a Grassmannian to another Grassmannian.
Then ⊥ is continuous and the claim follows from D+(g) = A+(g)⊥ and
D−(g)⊥ = A−(g).

(b) Otherwise there are sequences gi of (n, ε)-pseudohyperbolic el-
ements such that D+(gi) and D−(gi) converge to spaces D+, D− con-
taining an isotropic vector w. Then A+(gi) = D+(gi)⊥ and A−(gi) =
D−(gi)⊥ converge to spaces A+ = D+⊥ and A− = D−⊥ containing w,
contradicting (n, ε)-pseudohyperbolicity.

(c) By part (b) of the proof the set of pairs of spaces {(A+(g), A−(g)),
g (n, ε)-pseu-dohyperbolic} in the product of Grassmannians is compact,
hence so is the set of A0(g)′s since A0(g) = D+(g) ∩ D−(g).
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(d) follows from (c) since g is a unitary operator on A0(g) with
respect to B | A0(g).

(e) is proved by the same method as (a). q.e.d.

We also need the following inequality:

(6.2) d(x, E+
g ) � s(g)d(x, g−1x)

for s(g) � 1.
To see this first note that d(x, E+

g ) ∼ ‖p−(x − c)‖ for arbitrary
c ∈ C(g) where p− is the projection to A−(g) in the decomposition
V = A−(g) ⊕ A0(g) ⊕ A+(g), by (n, s, ε)-pseudohyperbolicity. Thus

d(x, E+
g ) � s(g)d(g−1x, E+

g )

by 6.1 (c) and (a). The triangle inequality gives

s(g)−1d(x, E+
g ) � d(g−1x, x) + d(x, E+

g )

which yields (6.2).

Lemma 6.3. Let g and h be two ε-hyperbolic ε-transversal ele-
ments, such that gh is ε/2-hyperbolic, gh and g, gh and h are ε/2-
transversal. Let q be any point in the affine space. Then there is a
constant d(ε) such that

d(q, E+
gh) ≤ d(q, E+

g ) + d(ε)s(g) [|α(g)|
+d(q, Cg) + s(h)(|α(h)| + d(q, Ch))] ,

d(q, E−
gh) ≤ d(q, E−

h ) + d(ε)s(h) [|α(h)|
+d(q, Ch) + s(g)(|α(g)| + d(q, Cg))] ,

d(q, Cgh) ≤ d(ε)(s(h) + s(g))d(q, Cg)
+ d(ε)(d(q, E+

g ) + d(q, Ch)) + s(g)|α(g)| + s(h)|α(h)|.

Proof. We know that |α(g)| = |α(g−1)|, s(g) = s(g−1), d(q, Cg) =
d

(
q, Cg−1

)
and E+

g−1 = E−
g for every hyperbolic element g, then the

second inequality follows from the first one, and because d(q, Cgh) �
d(q, E+

gh) + d(q, E−
gh), the third inequality is just a corollary of the first

and the second. So we have to prove just the first inequality.
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Let now q0 be a point on L = E+
h ∩ E−

g such that d(q, q0) =
d(q, L). Let y = h−1q0 and x = gq0, then d(y, E+

gh) � s(gh)d(ghy, y) =
s(gh)d(x, y). We have the inequalities

d(q0, y) � d(q0, Ch) + |α(h)|
d(x, q0) � d(q0, Cg) + |α(g)|.

Therefore,

d(x, y) � d(q0, Ch) + α(q0, Cg) + |α(h)| + |α(g)|.

Now,

d(q0, Ch) � d(q, Ch) + d(q, q0) � d(q, Ch) + d(q, Cg).

The same for d(q0, Cg) i.e.,

d(q0, Cg) � d(q, Cg) + d(q, Ch).

Then

d(y, E+
gh) � s(gh) [ |α(h)| + |α(g)| + d(q, Cg) + d(q, Ch)] ,

and

d(q, E+
gh) � d(q, q0) + d(q0, y) + d(y, E+

gh)

� d(q, Cg) + d(q, Ch) + α(h)
+ s(gh) · [ |α(h)| + |α(g)| + d(q, Cg) + d(q, Ch)] .

An elementary geometrical fact says, that

|d(q, E+
gh) − d(q, E+

g )| � sin
(
� E+

gh, E+
g

) [
d

(
q, E+

gh

)
+ d

(
q, E+

g

)]
.

Now, using Lemma 5.6, we immediately have

|d(q, E+
gh) − d(q, E+

g )| � s(g)
[
d(q, E+

gh) + d(q, E+
g )

]
and

s(gh) � s(g) · s(h)

with d(q, E+
g ) ≤ d(q, Cg).
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Combining these two inequalities we have

d(q, E+
gh) ≤ d(q, E+

g ) + d(ε)s(g) [ |α(g)| + d(q, Cg)

+s(h) · (|α(h)| + d(q, Ch))]

for some constant d(ε). q.e.d.

6.4. Basic Lemma. Let g and h be ε-hyperbolic, ε-transversal
elements such that gh is ε/2-hyperbolic, gh and g, gh and h are ε/2-
transversal. Let q be any point in affine space. Then there is a constant
c(ε), such that

|α(gh) − α(g) − α(h)| ≤ c(ε) (s(g)|α(g)| + s(h)|α(h)|
+d(q, Cg) + d(q, Ch)) .

Proof. Let q0 be a point on L = E+
h ∩ E−

g , such that d(q, q0) =
d(q, L). The elements g and h are ε-transversal, so d(q, q0) � d(q, E+

h )+
d(q, E−

g ), but d(q, E+
h ) ≤ d(q, Ch), d(q, E−

g ) ≤ d(q, Cg), thus

d(q, q0) � d(q, Cg) + d(q, Ch).(i)

Let us consider the two vectors vg = g q0 − q0 and vh = q0 − h−1q0.
By definition,

α(gh) = B(gq0 − h−1q0, e
0(gh)) = B(vg, e

0(gh)) + B0(vh, e0(gh)).(ii)

We have vg ∈ D−(g) and vg = α(g)e0(g) + w1, w1 ∈ A−(g), and for the
vector vh we have vh = α(h)e0(h) + w2, w2 ∈ A+(h).

Now by ε-hyperbolicity of g and h, we have ‖w1‖ � d(q0, Cg) and
‖w2‖ � d(q0, Ch). Let now w and w be the projections of the vector
α(g)e0(g) onto D−(gh) parallel to A+(g) and A+(gh) respectively. Then
w = α(g)e0(g) + u1, u1 ∈ A+(g) and w = α(g)e0(g) + u2, u2 ∈ A+(gh).
Let us show that w = α(g)e0(gh) + u3, where u3 ∈ A−(gh). In fact,
w ∈ D−(gh), and w = α e0(gh) + u3, u3 ∈ A−(gh). So we have to
prove that α = α(g). We have B(w, w) = B(α e0(gh) + ue, α e0(gh) +
ue) = α2B(e0(gh), e0(gh)) = α2 and on the other hand B(w, w) =
B(α(g)e0(g)+u1, α(g)e0(g)+u1) = α(g)2B(e0(g), e0(g)) = α(g)2. Then
α = α(g) or −α(g) and because of the orientation procedure α = α(g).
By (3) of Lemma 5.6 d(A+(gh), A+(g)) � s(g) therefore ‖w − w‖ �
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s(g)(‖w‖ + ‖w‖). It is easy to see, using ε/2-hyperbolicity of g and gh,
that ‖w‖ � |α(g)| and ‖w‖ � |α(g)| and so

‖w − w‖ � s(g)|α(g)|.

Then

|B(w, e0(gh)) − B(w, e0(gh))| = |B(w − w, e0(gh)|(iii)
� ‖w − w‖ � s(g)|α(g)|.

We have, by definition of vg,

|α(g) − B(vg, e
0(gh))|

≤ |α(g) − B(α(g)e0(g), e0(gh))| + |B(w1, e
0(gh)|,

but
B(w, e0(gh) = B(α(g)e0(gh) + u3,

e0(gh)) = α(g) and |B(w1, e
0(gh))| � ‖w1‖ � d(q0, Cg). Therefore,

|α(g)−B(vg, e
0(gh))| � |B(w, e0(gh)−B(α(g)e0(g), e0(gh))|+d(q0, Cg)

= |B(w, e0(gh) − B(w, e0(gh)| + d(q0, Cg). Now by (iii)

|α(g) − B(vg, e
0(gh)| � s(g)|α(g)| + d(q0, Cg).

The same is true for h, namely,

|α(h) − B(vh, e0(gh)| � s(h)|α(h)| + d(q0, Ch).

Then by (ii)

|α(gh)− α(g)− α(h)| ≤ |α(g)−B(vg, e
0(gh))|+ |α(h)−B(vh, e0(gh))|.

Now from (i)

d(q0, Cg) ≤ d(q0, q) + d(q, Cg) � d(q, Ch) + d(q, Cg)

and
d(q0, Ch) � d(q, Ch) + d(q, Cg).

Therefore,

|α(gh) − α(g) − α(h)| � s(g)|α(g)| + s(h)|α(h)| + d(q, Cg) + d(q, Ch).

Which proves the statement of the Basic Lemma. q.e.d.
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Let g0, h1, . . . , hm be ε-hyperbolic ε-transversal elements. Let us
now put g� = g0h

n1
i1

. . . hn�
i�

, ik �= ik+1, � ∈ Z, � > 0, M� = |n1|+· · ·+|n�|.
We will fix a point q ∈ R

2n+1 and put a� = d(q, E+
g�

), b� = d(q, Cg�
),

C = max{d(q, Cg0), d(q, Ch1), . . . , d(q, Chm)}. Let now t� = α(g�), T =
max{|α(g0)|, |α(h1)|, ..., α(hm)|} and s = max{s(g0), s(h1), ..., s(hm)}.
Let a(ε), b(ε), c(ε) and d(ε) be the constants given by Lemmas 5.6,
5.24, 6.3 and 6.4, respectively. Put a0(ε) = max{a(ε), b(ε), c(ε), d(ε)}.
We can rewrite the results of Lemmas 6.3 and 6.4 in the following form.

(6.5) a�+1 ≤ a�+a0(ε)s(g�)
(
|t�| + b� + s

(
hi�+1

)|ni�+1
| [|ni�+1

|T + C
])

.

(6.6) b�+1 ≤ a0(ε)
(
s(hi�+1

)|ni�+1
| + s(g�)

)
b�

+ a0(ε)(a� + C + s(g�)|t�| + s(hi�+1
)|ni�+1

||ni�+1
|T ).

(6.7) |t�+1 − t� − ni�+1
α

(
hi�+1

) |
≤ a0(ε)

(
a� + C + s

(
hi�+1

)|ni�+1
| |ni�+1

|T + s(g�)|t�|
)

.

We would like to explain now the final steps in the proof of Theorem B.
The goal of the first step is to show that a� � 1, b� � 1 and |t�| � M�

for all �.
The value of a�+1 depends by (6.5) on the values of a�, b�, t� and the

same for b�+1, and t�+1. So the idea is as follows. Let r� =max{10a0(ε)a�,
b�, 10a0(ε)C, 10a0(ε)T , |t�|/10 M�a0(ε)}. We will show, see (6.18), that

r�+1 ≤ r�

(
1 + 2a2

0(ε)s
M�
0 M�

)
,

and then, because s0 < 1, we will have that

Q =
∏(

1 + 2a2
0(ε)s

M�
0 M�

)
< ∞

and therefore r� ≤ r0Q for all �, i.e., r� � 1. Then, from the definition
of r�, we have ae � 1, b� � 1, |t�| � M�.

The fact that b� � 1 has a clear geometrical meaning: Let H be the
group generated by the hyperbolic transversal affine transformations
h1, . . . , hs. Then under certain conditions, there is a universal constant
C(H), such that for every h ∈ H, d(q, Ch) ≤ C(H). Then we will show
that |t�| ∼ M�, so one can interpret the statement of the Basic Lemma
as an additive property of the function α.
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Lemma 6.8. Let r� = max{10a0(ε)a�, b�, 10a0(ε)C, 10a0(ε)T ,
|t�|/10M�a0(ε)}. There are constants b0(ε) > 1 and Q0(ε) such that if
s < b0(ε)−1, then for all �, � ∈ Z, � ≥ 1 we have a� ≤ Q0(ε), b� ≤ Q0(ε),
|t�| ≤ Q0(ε)M�, r� ≤ Q0(ε).

Proof. Let us first take s0 ∈ R, s0 < 1 such that a0(ε/2)2sm
0 m ≤ 1

10
for all natural numbers m. Note that in particular s0 < b(ε)−1. Put
b0(ε) = s−2

0 and let s < b−1
0 (ε). Then in view of Lemma 5.24 we can

assume that the elements g� are ε/2-hyperbolic and ε/2-transversal for
all �. Using again Lemma 5.24, we can rewrite inequalities (6.5)-(6.7)
as follows:

(6.9) a�+1 ≤ a� + a0(ε/2)sM�+1
0

[
|t�| + b� + s

2|ni�+1
|

0 |ni�+1
|T + C

]
,

(6.10) b�+1 ≤ a0(ε/2)
(

s
2|ni�+1

|
0 + sM�+1

0

)
b�

+ a0(ε/2)
[
C + a� + s

2|ni�+1
|

0 |ni�+1
|T + sM�+1

0 |t�|
]

,

(6.11)
∣∣t�+1 − t� − |ni�+1

|α (
hi�+1

)∣∣
≤ a0(ε/2)

[
sM�+1
0 |t�| + s2|ni�+1

||ni�+1
|T + C + b�

]
.

Now using the fact that a0(ε/2)2sm
0 m ≤ s0/10 in particular

a0(ε/2)2s0 ≤ 1/10, we have from (6.9)-(6.11)

a�+1 ≤ a� +
sM�
0

10

[
|t�| + b� +

T

10a0(ε/2)2
+ C

]
,(6.12)

b�+1 ≤ b�

10
+

T

10
+ sM�

0 |t�| + a0(ε/2)[C + a�],(6.13)

|t�+1| ≤ |t�| + |ni�+1
|T + sM�

0 |M�|T +
s
|ni�+1

|
0 · T

10
+ a0(ε/2)[C + b�].

(6.14)

Because of our notation we have

a�+1 ≤ r�

10a0(ε/2)
+ sM�

0 M�a0(ε/2)r� +
sM�
0 r�

1000
+

sM�
0 r�

100
(6.15)

≤ r�

10a0(ε/2)
+ 2sM�

0 M�a0(ε/2)r� ≤

≤ r�

10a0(ε/2)

[
1 + 2a2

0(ε/2)sM�
0 M�

]
.
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From (6.13) we have

(6.16) b�+1 ≤ r�

and from (6.14) we have

|t�+1| ≤ 10M�a0(ε/2)r� +
|ni�+1

|r�

10d0(ε/2)
+

r�

100d0(ε/2)
+

r�

10
+ a0(ε/2)r�

(6.17)

≤ 10a0(ε/2)r�(M� + |ni�+1
|)

= 10a0(ε/2)M�+1r�.

Therefore

(6.18) r�+1 ≤ r�(1 + 2a2
0(ε/2)sM�

0 M�).

If Q =
∏

(1 + 2a2
0(ε/2)sm�

0 M�) < ∞, then a� ≤ Qr1/10a0(ε/2), b� ≤
Qr1, |t�| ≤ 10M�a0(ε/2)Qr. Let Q0 = 10M0(ε/2)Qr1 then a� ≤ Q0,
b� ≤ Q0|t�| ≤ Q0M�. q.e.d.

Lemma 6.19. Assume that d(q, Sg0) = α(g0) = 0 and α(hi) > 0 for
all i = 1, . . . , m. There is a constant c0(ε) > 1 such that if s < c0(ε)−1

and C ≤ c0(ε)−1T , then t� ≥ 2
3M�T .

Proof. Let s0 be a positive real number < 1 such that a0(ε/2)2s0 <
1/10 and s0 < b0(ε)−1. Put c0(ε) = s−2

0 . For s < c0(ε)−1 we have
s < b0(ε)−1 and we can therefore use the statements of Lemma 6.8. So
a� ≤ Q0(ε), b� ≤ Q0(ε), |t�| ≤ M�Q0(ε). We have from (6.11)

(6.20) t�+1 ≥ t� + |ni�+1
|T − a0(ε/2)C − a0(ε/2)b�

− sm�
0 |t�| − s|ni�+1

||ni�+1
|T.

Now from (6.12) we have a�+1 ≤ a� + sM�
0 M�Q0, therefore for some

constant Q1 = Q1(ε), a�+1 ≤ a0 + s0Q1(ε), but a0 = 0 then

(6.21) a�+1 ≤ s0Q1(ε).

Assume that c ≤ T/10a2
0(ε/2) then from (6.10) we have

b�+1 ≤ s0b�

10
+

s0T

10
+ a0(ε/2)C + a0(ε/2)s0Q1(ε).
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Then, because b0 = 0, there is a constant Q2(ε) such that

b�+1 ≤ s0Q2(ε) + a0(ε/2)C.

Let us now assume that s0Q2(ε)a0(ε/2) ≤ T
10 . We know that C ≤

T
10a2

0(ε/2)
, then from (6.20) we have

t�+1 ≥ t� + |ni�+1
|T − T

10a2(ε/2)
− T

10
− T

10

≥ t� +
(
|ni�+1

| − 3
10

)
T

≥ t� +
2
3
|ni�+1

|T.

Now t0 = 0, hence t�+1 ≥ 2
3M�. q.e.d.

Proof of Theorem B. Using [2], we can find elements h̃1, . . . , h̃m in
Aff (R2n+1) such that:

(1) �
(
h̃1

)
, . . . , �

(
h̃m

)
are hyperbolic and pairwise transversal.

(2) The group
〈
�(h̃1), . . . , �(h̃m)

〉
generated by �

(
h̃1

)
, . . . , �

(
h̃m

)
is

free and Zariski dense in O(n + 1, n).

(3) The Zariski closure of every group
〈
�
(
h̃i

)〉
, i = 1, . . . , m is con-

nected.

We will assume that h̃i = �
(
h̃i

)
, i = 1, . . . , m, in other words,

that all these elements fix the point zero. Let now g0 ∈ Aff (R2n+1)
be a hyperbolic element transversal to every h̃i, i = 1, . . . , m. We
can assume that we choose g0 such that there is a point q in R

2n+1

such that g0(q) = q. Let now ε, ε ∈ R, be a positive number such
that g0, h̃1, . . . , h̃m are ε-transversal and ε-hyperbolic. Then there are
vectors v1, . . . , vm such that if hi = h̃ivi, i = 1, . . . , m then α(hi) > 0,
for all i = 1, . . . , m, see (4.3) and (4.5) for the definition of α.

It is clear that for every n,n ∈ Z, n > 0 and hyperbolic element h
we have: s(hn) = s(h)n, d(q, Chn) = d(q, Ch), α(hn) = nα(h). So, there
is N , N ∈ Z, N > 0 such that the elements gN

0 , hN
1 , . . . , hN

m satisfy the
requirements of Lemma 6.8, but on the other hand for every n, n > N ,
the elements hn

1 , . . . , hn
m have Property (2).
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We will assume therefore that the elements g0, h1, . . . , hm satisfy
Lemma 6.19 and so for g� = g0h

n1
i1

. . . hn�
i�

, we have α(g�) ≥ 2
3M�T ,

where M� = |n1| + · · · + |h�| and T = max{α(h1), . . . , α(hm)}.
Let us now show that group 〈h1, . . . , hm〉 = H acts properly dis-

continuously on R
2n+1. Let K be any compact subset in R

2n+1 then
{h ∈ H : h K ∩ K �= ∅} = {h ∈ H : g0h K ∩ g0K �= ∅}.

There is a constant c = c(K), such that if

g0h K ∩ g0K �= ∅, then d(g0h x, g0x) ≤ c(K)

for some point x ∈ K, hence

{h ∈ H : g0h K ∩ g0K �= ∅} ⊆ {h ∈ H : α(g0h) � c(K)}.

As we explained above, if h = hn1
i1

, . . . , hn�
i�

is in the latter set, then

M� ≤ 3α(g0h)
2T

� 3c(K)
2T

and therefore

#{h ∈ H : h K ∩ K �= ∅} ≤ #
{

h ∈ H : M� ≤ 3c(K)
2T

}
< ∞.

q.e.d.
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