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AN EIGENVALUE ESTIMATE FOR THE
∂-LAPLACIAN

BO BERNDTSSON

Abstract
We study the ∂ -Laplacian on forms taking values in Lk, a high power of
a semipositive line bundle over a compact complex manifold, and give an
estimate of the number of eigenvalues smaller than λ. Examples show that
the estimate gives the right order of magnitude in terms of the two spectral
parameters k and λ.

1. Introduction

Let X be an n-dimensional compact complex manifold and let F
be a holomorphic line bundle over X. If we fix a hermitian metric on
X and a line bundle metric on F we can define the formal adjoint of
the ∂-operator acting on F -valued differential forms and then form the
corresponding Laplace operator

� = ∂∂
∗ + ∂

∗
∂.

Let
Hp,q

≤λ(F,X)

be the linear span of (p, q)-eigenforms of �, with corresponding eigen-
values smaller than or equal to λ. Thus in particular , Hp,q

≤0 =: Hp,q is
the space of harmonic forms, which by Hodge’s theorem is isomorphic
to the Dolbeault cohomology groups. Put also

hp,q≤λ(F ) = dimHp,q
≤λ(F )
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so that hp,q≤λ is the number of eigenvalues, counting multiplicity, of �
acting on (p, q)-forms.

We now choose F to be of the special form

F = Fk = Lk ⊗ E,

where k ∈ N , and L and E are holomorphic line bundles. The metric
on Fk is taken to be the natural metric induced by given smooth metrics
on E and L.

The main result of this paper is the following asymptotic estimate
for the distribution of eigenvalues of �.

Theorem 1.1. Assume L is given a metric of semipositive curva-
ture. Take q ≥ 1. Then, if 0 ≤ λ ≤ k,

hn,q≤λ(L
k ⊗ E,X) ≤ C(λ+ 1)qkn−q.(1.1)

If 1 ≤ k ≤ λ, then

hn,q≤λ(L
k ⊗ E,X) ≤ Cλn.(1.2)

Since E is allowed to be an arbitrary line bundle, we see by substi-
tuting E ⊗K−1 (where K−1 is the dual of the canonical bundle of X)
for E, that the same asymptotic estimate also holds for the numbers
h0,q
≤λ.

In particular, we get the bound

h0,q(Fk, X) =: h0,q
≤0(Fk, X) ≤ Ckn−q

for the dimensions of the Dolbeault cohomology groups.
The first result of this type is due to Siu, [8], [9], in connection with

his proof of the Grauert-Riemenschneider conjecture, [6]. Siu proved
that for q ≥ 1

h0,q(Lk) = o(kn).

He then went on to prove that if we assume that moreover the metric
of L is strictly positive somewhere, one gets from this together with the
Hirzebruch Riemann-Roch theorem a bound from below on the dimen-
sion of the space of holomorphic sections

h0,0(Lk) ≥ ckn.

This in turn implies that a manifold X which admits a line bundle
L having these properties (i.e., curvature semipositive everywhere and
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strictly positive somewhere), must be Moishezon, thus proving the con-
jecture of Grauert and Riemenschneider. A further consequence of all
this is that we actually have

hn,q(Lk) = 0

if q and k are greater than or equal to 1. It is important to real-
ize however that if we drop the assumption that L be strictly positive
somewhere, then the cohomology no longer needs to vanish, and the
estimate that we get from Theorem 1.1 is in general of the best possible
order of magnitude (see Section 4).

Very shortly after Siu’s work Demailly found another approach to
the Grauert-Riemenschneider conjecture based on his so called “Holo-
morphic Morse inequalities”, see [3], [4], [5].

Here we no longer assume that L is even semipoistive. For an arbi-
trary (smooth) metric on L, Demailly found an asymptotic estimate for
the alternating sums

m∑
q=0

(−1)m−qh0,q(Lk ⊗ E)

(m ≤ n) in terms of certain integrals involving L’s curvature form.
These estimates immediately imply Siu’s upper estimate on the coho-
mology as well as the lower bound on the dimension on the space of
holomorphis sections.

Demailly obtained his estimate from an asymptotic formula for the
numbers hp,q≤λ, for λ = λ0k, combined with an idea used in Witten’s
proof of the classical Morse inequalities, [12]. Demailly’s formulas are
however only exact up to an error term of size o(kn), so they appear to
be less precise than Theorem 1.1 when L is semipositive.

After Demailly’s work, estimates of lower order error terms were
given by Bouche [1], [2]. Like Demailly, Bouche has no assumption on
positivity of the line bundle, but instead supposes that the curvature
form is everywhere degenerate. He then, among other things, obtained
bounds on the dimensions of cohomology groups of the form O(kr) as-
suming that the curvature form everywhere has no more than r nonzero
eigenvalues, and that moreover there exists a codimension r foliation of
X such that the tangent space of the foliation is everywhere included
in the kernel of the curvature form. The precise relation of Bouche’s
results and Theorem 1.1 is for the moment not clear to me, but one
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might note that the example we have of when Theorem 1.1 is optimal
is of the type studied by Bouche.

Our proof of Theorem 1.1 is rather different from the proofs of both
Siu and Demailly-Bouche. It is based on an estimate for the Bergman
kernel for the spaces Hn,q

≤λ. By this we mean the function

B(x) =
∑

|αj(x)|2 x ∈ X,

where {αj} is an orthonormal basis for Hn,q
≤λ, and the norm is the point-

wise norm defined by the metrics on F and X. More precisely, B(x) is
the pointwise trace on the diagonal of the true Bergman kernel, defined
as the reproducing kernel for Hn,q

≤λ.
The relevance of B(x) for our problem lies in the formula∫

X
B(x) = hn,q≤λ,

which is evident since each term in the definition of B contributes a 1 to
the integral. On the other hand, B is intimately related to the solution
of the extremal problem

S(x) = sup |α(x)|2/‖α‖2,

where the supremum is taken over all α in Hn,q
≤λ. In fact, it is easy to

see, and well known, that

S(x) ≤ B(x) ≤ cn,qS(x),

where cn,q are binomial coefficients. Theorem 1.1 therefore follows if
we can prove a submeanvalue inequality that estimates the values of a
form α ∈ Hn,q

≤λ at any point x ∈ X by its norm in L2 (see Theorem 2.3).
We next explain how this is done for a harmonic form (i.e., for λ = 0),
assuming X is Kähler. The general case is similar, modulo additional
complications.

The first observation is that we always have, in local coordinates, z,
where z(x) = 0 and the metric is approximately Euclidean, that

|α(0)|2 ≤ Ckn
∫
|z|≤k−1/2

|α|2.(1.3)

This holds even if L is not semipositive. The reason is that on this
small scale the metric on Fk is essentially independent of k, so the
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inequality follows from a submeanvalue inequality for a k-independent
elliptic operator.

The next, and most important, step is to apply Siu’s so called ∂∂-
Bochner Kodaira formula, see [10]. To explain what this amounts to,
first recall that the main idea in the classical Bochner method is to draw
conclusions about, e.g., harmonic forms by considering

�|α|2,
i.e., the Laplacian of the function |α|2. In the ∂∂ Bochner formula we
instead consider, for α an F -valued (n, q)-form, the new differential form
locally defined as

Tα = cn−qγ ∧ γe−φ,
where cn−q is choosen so that Tα becomes a nonnegative (n− q, n− q)-
form, γ = ∗α is the Hodge-∗ of α, and e−φ locally defines the metric on
F . A similar construction is possible also for (0, q)-forms, and indeed
for forms of arbitrary bidegree, but for semipositive bundles it is better
to work with (n, q) and then draw conclusions about (0, q) by tensoring
with the inverse of the bundle of (n, 0)-forms. Then

|α|2ωn = Tα ∧ ωq
where ω is the metric form on X, so the norm of α is given by the trace
of Tα. One computes ∂∂Tα and finds that

i∂∂Tα ∧ ωq−1 ≥ 0

if α is harmonic and the metric is Kähler. It then follows from a result
of Skoda, [11], that the function σ(r)/r2q, where

σ(r) =
∫
|z|<r

|α|2,

is essentially nondecreasing in r for r small. More precisely, Skoda’s
theorem says that if the metric is Euclidean in the coordinates z, then
σ(r)/r2q is nondecreasing, and from this one can deduce that it is almost
nondecreasing if ω is almost Euclidean. Combining with (1.3) we obtain,

|α(0)|2 ≤ Ckn−q
∫
|z|<1

|α|2

and as explained above this submeanvalue inequality proves Theorem 1.1
in this case.
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The plan of this paper is as follows. In Section 2 we prove the
submeanvalue inequality for forms in Hn,q

≤λ by a variant of Skoda’s ar-
gument. The proof uses a generalization of Siu’s ∂∂-Bochner Kodaira
formula for non-Kähler manifolds, the proof of which we postpone to
Section 3. (This replaces the use of the non-Kählerian Kodaira-Nakano
formula of Griffiths-Demailly in Siu’s and Demailly’s arguments.) In
Section 4 we complete the proof of Theorem 1.1, and give examples
showing our estimates give the right order of magnitude. In the final
section we relate Theorem 1.1 to L2-estimates for ∂, and show how these
imply the Grauert-Riemenschneider conjecture.

I would like to thank the referee for several valuable comments on
the manuscript.

2. A submeanvalue inequality for (almost-)harmonic forms

Fix a point x in X and choose local coordinates, z = (z1, . . . zn) near
x such that z(x) = 0 and such that the metric form on X, ω, satisfies

ω = i/2∂∂|z|2 = β

at the point x. The next proposition is the crucial step in our argu-
ments. We formulate it for (n, q)-forms since that makes the proofs
more natural, but the same statement also holds for (0, q)-forms as we
can see by substituting

E = E′ ⊗K−1
X ,

where KX is the canonical bundle.

Theorem 2.1. Let α ∈ Hn,q
≤λ(L

k ⊗ E,X) satisfy ∂α = 0. Assume
the metric on L has semipositive curvature. Then, for r < λ−1/2 and
r < c0 ∫

|z|<r
|α|2 ≤ Cr2q(λ+ 1)q

∫
X
|α|2.

The constants c0 and C are independent of k, λ and the point x.

For the proof of Theorem 2.1 we associate to α a certain form, Tα,
of bidegree (n−q, n−q). To define Tα we represent α by a scalar valued
form αj with the aid of a local trivialization of F = Fk = Lk ⊗ E. We
then let γj = ∗αj , where * is the Hodge operator of the metric ω on X,
and put

Tα = cn−qγj ∧ γje−φj ,
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where φj defines the metric on F , and cn−q = (i)(n−q)2 is choosen so
that Tα ≥ 0. It is easy to see that Tα is well defined globally. We shall
now use the following differential inequality.

Proposition 2.2. Let α be an F -valued (n, q)-form. If α is ∂-closed

i∂∂Tα ∧ ωq−1 ≥ −(2Re 〈�α, α〉 + 〈ΘF ∧ Λα, α〉 − c|α|2)ωn.(2.1)

The constant c is equal to zero if ∂ωq−1 = ∂ωq = 0, hence in particular
if ω is Kähler.

Here Λ is the adjoint of the operator exterior multiplication with ω,
and ΘF is the curvature form on F . Alternately the curvature term in
(2.1) can be expressed as

〈ΘF ∧ Λα, α〉ωn = ΘF ∧ cn−qγj ∧ γj ∧ ωq−1e
−φj .

In particular, in our case F = Fk = Lk ⊗ E so ΘF = kΘL + ΘE . From
now on we assume that ΘL ≥ 0 so the curvature term is always bigger
than

〈ΘE ∧ Λα, α〉ωn.
This expression is independent of k and can be estimated from below
by a constant times |α|2, so we get

i∂∂Tα ∧ ωq−1 ≥ −(2Re 〈�α, α〉 − c′|α|2)ωn.(2.2)

Put, for r small

σ(r) =
∫
|z|<r

|α|2ωn =
∫
|z|<r

Tα ∧ ωq.

In the proof of Theorem 1.1 we may clearly assume that λ ≥ 1. Theo-
rem 2.1 then says that the inequality

σ(r) ≤ Cr2qλq,(2.3)

holds if we have normalized so that the L2-norm of α is equal to 1.
From (2.2) we see that

∫
|z|<r

(r2 − |z|2)i∂∂Tα ∧ ωq−1 ≥ −c′r2σ(r) − 2r2
∫
|z|<r

|�α||α|ωn.
(2.4)
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Put

λ(r) =

(∫
|z|<r

|�α|2
)1/2

,

and use Cauchy’s inequality to obtain∫
|z|<r

|�α||α|ωn ≤ λ(r)σ(r)1/2.

Trivially λ(r) ≤ λ if α ∈ Hn,q
≤λ, but we shall see later that we can get a

better estimate. Applying Stokes’ formula to the left hand side of (2.4)
we get, since β = i/2∂∂|z|2,

2
∫
|z|<r

Tα ∧ ωq−1 ∧ β(2.5)

≤
∫
|z|=r

Tα ∧ ωq−1 ∧ ∂|z|2 + cr2σ(r) + 2r2σ(r)1/2λ(r).

By the choice of local coordinates we have, since ω is smooth,

(1 −O(r))ω ≤ β ≤ (1 −O(r))ω.

Hence
Tα ∧ ωq−1 ∧ β ≥ q(1 −O(r))|α|2ωn.

Next, if ω = β the boundary integral in (2.5) can be estimated by an
integral with respect to surface measure

r

∫
|z|=r

|α|2dS,

and this implies that in our case∫
|z|=r

Tα ∧ ωq−1 ∧ ∂|z|2 ≤ r(1 −O(r))
∫
|z|=r

|α|2(ωn/βn)dS.

But ∫
|z|=r

|α|2(ωn/βn)dS = σ′(r),

so if we also incorporate the term cr2σ(r) in O(r)σ(r), we get

2q(1 −O(r))σ(r) ≤ rσ′(r) + 2r2σ(r)1/2λ(r).
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Finally we substitute σ(r) = s(r)2 and divide by 2rs(r) to obtain

q(1/r −O(1))s(r) ≤ s′(r) + rλ(r).(2.6)

We shall now prove
s(r) ≤ Crmλm/2

for m ≤ q by induction over m. The statement is trivial for m = 0,
since we have assumed that the L2-norm of α is 1, so assume it has
been proved for a certain value of m < q. Then (2.6) implies

(m+ 1)(1/r −O(1))s(r) ≤ s′(r) + rλ(r).

The form �α also lies in Hn,q
≤λ and has L2 norm bounded by λ. By the

induction hypothesis we then get that

λ(r) ≤ Crmλm/2+1.

We therefore have

(m+ 1)(1/r −O(1))s(r) ≤ s′ + Crm+1λm/2+1.

Put

Φ = (m+ 1)
∫

1/r −O(1)dr ∼ (m+ 1) log r

and multiply by the integrating factor e−Φ. The result is that

(se−Φ)′ ≥ −Cλm/2+1.

Integrate this inequality from r to λ−1/2. Since e−Φ ∼ 1/rm+1 we
obtain

r−(m+1)s(r) ≤ Cλm/2+1/2 + s(λ−1/2)λm/2+1/2 ≤ Cλm/2+1/2.

By induction we therefore have that

s(r) ≤ Crqλq/2,

which after squaring gives the desired estimate for σ(r). This completes
the proof of Theorem 2.1.

We are now ready to state and prove the submeanvalue inequality.
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Theorem 2.3. Let α ∈ Hn,q
≤λ(L

k ⊗ E) satisfy ∂α = 0. Assume the
line bundle L is equipped with a metric of semipositive curvature. Then
for any x ∈ X

|α(x)|2 ≤ Ckn−q(λ+ 1)q
∫
X
|α|2ωn(2.7)

if λ ≤ k and

|α(x)|2 ≤ Cλn
∫
X
|α|2ωn(2.8)

if λ ≥ k ≥ 1. The constant C is independent of k, λ and x.

Proof. Assume first λ ≤ k and fix x. Choose as before local coordi-
nates, z, near x such that z(x) = 0 and ω = i/2∂∂|z|2 = β at the point
x. Choose also local trivializations of L and E near x. We may assume
the local trivializations are chosen so that the metric of L has the form

φ(z) =
∑

µj |zj |2 + o(|z|2).

For any form α we express α in terms of the trivialization and local
coordinates and put

α(k)(z) = α(z/
√
k),

so that α(k) is defined for |z| < 1 if k is large enough. We also scale the
laplacian by putting

k�(k)α(k) = (�α)(k).

It is not hard to see that if � is defined by the metric ψ on Fk, then
�(k) is associated to the line bundle metric ψ(z/

√
k). In particular, if

Fk = Lk ⊗ E and ψ = kφ+ ψ0, then �(k) is associated to∑
µj |zj |2 + ψ0(0) + o(1),

and hence converges to a k-independent elliptic operator. It therefore
follows from G̊arding’s inequality together with Sobolev estimates that

|α(0)|2 ≤ C

(∫
|z|<1

|α(k)|2ωn +
∫
|z|<1

|
(
�(k)

)m
α(k)|2ωn

)
,(2.9)

if m > n/2. Now ∫
|z|<1

|α(k)|2ωn = kn
∫
|z|<1/

√
k
|α|2ωn
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and ∫
|z|<1

∣∣(�(k)
)m
α(k)

∣∣2ωn = kn−2m

∫
|z|<1/

√
k
|(�)mα|2ωn.

Normalize so that the L2-norm of α is one. By Theorem 2.1

kn
∫
|z|<1/

√
k
|α|2ωn ≤ Ckn−q(λ+ 1)q,

and

kn−2m

∫
|z|<1/

√
k
|(�)mα|2ωn ≤ Ckn−q(λ+ 1)q(λ/k)2m

≤ Ckn−q(λ+ 1)q.

We have thus proved the first part of Theorem 2.3. The second state-
ment is much easier. We now apply (2.9) to the scaling α(λ) instead,
and get immediately (i.e., without using Theorem 2.1) that

|α(0)|2 ≤ Cλn.

q.e.d.

3. The ∂∂-Bochner formula for non-Kähler manifolds

In this section we prove a differential inequality leading to Proposi-
tion 2.2. The basic idea is due to Siu [10], but we also need to control
the extra terms that occur when the metric is not Kähler.

Let α be an F -valued (n, q)-form. As in Section 2 we define an
associated (n − q, n − q)-form which in a local trivialization is defined
as

Tα = cn−qγ ∧ γe−ψ,
where γ = ∗α, cn−q = i(n−q)2 , and ψ defines the metric on F . (Since the
computation is local we have dropped the subscripts on γ and α.) Here
* denotes the Hodge operator of the hermitian manifold X, defined by
the formula

α ∧ ∗α = |α|2ωn.
In particular, note that with the convention we use, * is a complex linear
operator. The relation ∗α = γ can also be expressed as

α = cn−qγ ∧ ωq,
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and we moreover have

∗γ = (−1)n−qcn−qγ ∧ ωq.
In the following computations we shall also use the relations icq =
(−1)qcq−1 and cq−1 = cq+1. We first compute ∂∂Tα. Put ∂ψ = eψ∂e−ψ

and use
∂(χ ∧ ηe−ψ) = ∂χ ∧ ηe−ψ + (−1)sχ ∧ ∂ψηe−ψ

and a similar formula for ∂, if χ and η are forms and s is the degree of
χ. We get

∂∂(γ ∧ γe−ψ) =
(
∂ψ∂γ ∧ γ + γ ∧ ∂∂ψγ
+ (−1)n−q∂ψγ ∧ ∂ψγ + (−1)n−q+1∂γ ∧ ∂γ

)
e−ψ

which equals

(3.1) (−∂∂ψγ ∧ γ + γ ∧ ∂∂ψγ + ∂∂ψ ∧ γ ∧ γ
+ (−1)n−q∂ψγ ∧ ∂ψγ + (−1)n−q+1∂γ ∧ ∂γ)e−ψ

if we also use the commutator formula

∂ψ∂ + ∂∂ψ = ∂∂ψ.

First note that

∂
∗
α = − ∗ ∂ψγ = (−1)n−qcn−q−1∂ψγ ∧ ωq−1,

which implies

∂∂
∗
α = (−1)n−qcn−q−1(∂∂ψγ ∧ ωq−1 + (−1)n−q−1∂ψγ ∧ ∂ωq−1)

= (−1)n−qcn−q−1(∂∂ψγ ∧ ωq−1 +O(|∂∗α||∂ωq−1|)).
Multiply (3.1) by icn−qωq−1 and recall icn−q = (−1)n−qcn−q−1. We have
five terms. By the last formula, the first term equals

−∂∂∗α ∧ γe−ψ = −〈∂∂∗α, α〉ωn
up to an error of size O(|∂∗α||∂ωq−1||α|). Since the entire expression
is real, the second term must be the conjugate of the first one so these
terms together give

−2Re 〈∂∂∗α, α〉ωn.
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The third term is the curvature term

〈ΘF ∧ Λα, α〉ωn.

Checking signs we see that the fourth term equals∣∣∂∗α∣∣2ωn,
so it only remains to analyse the last term, which is a bit more subtle,
since it defines a non-definite quadratic form.

Consider the bilinear form on (n− q, 1)-forms defined by

[χ, η]ωn = icn−q(−1)n−q+1χ ∧ η ∧ ωq−1 = −cn−q+1χ ∧ η ∧ ωq−1.

It is clear that this form is negative definite on the subspace, V , of forms
that can be written χ = χ0∧ω (it then equals a negative multiple of the
norm squared of χ0). The annihilator of V with respect to [ , ], V ◦,
clearly consists precisely of forms satisfying χ ∧ ωq = 0, and since [ , ]
is definite on V we have V ∩ V ◦ = {0}. One can now verify by brute
calculation in an orthonormal basis for ω that [ , ] is positive definite
on V ◦. Accepting this, it follows in particular that any form χ can be
decomposed uniquely

χ = χ1 + χ0 ∧ ω
with χ1 in V ◦ (this is a special case of the Lefschetz primitive decom-
position).

We now consider χ = ∂γ and recall that

α = cn−qγ ∧ ωq.

From now on we assume that α is ∂-closed, so

∂γ ∧ ωq = (−1)n−q−1γ ∧ ∂ωq.

It follows that when we decompose ∂γ = χ1 + χ0 ∧ ω we have

χ0 ∧ ω ∧ ωq = (−1)n−q−1γ ∧ ∂ωq.

Since χ0 is of bidegree (n−q−1, 0) this means that |χ0| = O(|γ||∂ωq|) =
O(|α||∂ωq|). This means that the only possible negative contribution of
[∂γ, ∂γ] can be estimated by c|α|2. If we also estimate the earlier error
term

O(|∂∗α||∂ωq−1||α|) ≤ Cε|α|2 + ε|∂∗α|2,
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and collect all the terms we get

i∂∂Tα ≥ −2Re 〈�α, α〉 + 〈ΘF ∧ Λα, α〉 + (1 − ε)|∂∗α|2 − Cε|α|2,
(3.2)

which in particular proves Proposition 2.2. (Note that ∂∂∗α = �α if α
is ∂-closed.)

4. Proof of the main result

Let E be an hermitian vector bundle of rank N over a manifold X
which is equipped with a positive measure, dµ. Let V be a subspace
of the space of continuous global sections in L2(X), and let αj be an
orthonormal basis for V . Define for x in X

B(x) =
∑

|αj(x)|2

and
S(x) = sup

α∈V
|α(x)|2/‖α‖2.

The next lemma is classical in Bergman’s theory of reproducing kernels,
but is perhaps most well known when N = 1.

Lemma 4.1. With assumptions as above

S(x) ≤ B(x) ≤ NS(x).(4.1)

In particular ∫
X
S(x)dµ ≤ dim(V ) ≤ N

∫
X
S(x)dµ.(4.2)

Proof. Let α ∈ V have norm less than one. Then

α =
∑

cjαj ,
∑

|cj |2 ≤ 1.

Hence |α(x)|2 ≤∑ |αj(x)|2, so S(x) ≤ B(x). For the second inequality
fix x ∈ X and represent a section α at x by (α1(x), . . . αN (x)) with the
help of a local trivialization chosen so that

|α(x)|2 =
N∑
1

|αl(x)|2.
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Then
B(x) =

∑
l

∑
j

|αlj(x)|2.

For l fixed put cj = αlj(x). Then

∑
j

|αlj(x)|2 =

∣∣∣∣∣∣
∑
j

cjα
l
j(x)

∣∣∣∣∣∣ ≤
∣∣∣∑ cjαj(x)

∣∣∣ ≤ (∑ |cj |2
)1/2

S(x)1/2.

Hence, for any l ∑
j

|αlj(x)|2 ≤ S(x),

and summing over l we get (4.1). We then get (4.2) by integrating over
X. q.e.d.

We now have all the ingredients for the proof of Theorem 1.1. Let
first Zn,q

≤λ be the subspace of Hn,q
≤λ consisting of ∂-closed forms. We

apply Lemma 4.1 with E equal to the bundle of (n, q)-forms with values
in Fk. The estimate for S(x) furnished by Theorem 2.3 together with
Lemma 4.1 then immediately gives Theorem 1.1 for Zn,q

≤λ . We shall now
see that

hn,q≤λ ≤ dimZn,q
≤λ + dimZn,q+1

≤λ ,(4.3)

which completes the proof since our estimate for dimZn,q+1
≤λ is better,

or at least not worse, than our estimate for Zn,q
≤λ .

First note that if α is an eigenform of �, so that

�α = λα

and if we decompose α = α1 +α2 where α1 is ∂-closed and α2 is orthog-
onal to the space of ∂-closed forms then the αj ’s are also eigenforms
with the same eigenvalue. To see this, note that � commutes with ∂,
so ∂�α1 = 0 and

〈�α2, η〉 = 〈α2,�η〉 = 0

if ∂η = 0. Hence
�αj = (�α)j = λαj .

Now decompose
Hn,q

≤λ = Zn,q
≤λ ⊕ (Hn,q

≤λ �Zn,q
≤λ ).
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Since ∂ maps Hn,q
≤λ �Zn,q

≤λ injectively into (Z)n,q+1
≤λ (4.3) follows and the

proof of Theorem 1.1 is complete.

The next simple proposition shows that the order of magnitude given
in Theorem 1.1 can not be improved in general.

Proposition 4.2. For any 0 ≤ q ≤ n there exists a compact Kähler
manifold X and a semipositive line bundle over X such that

hn,q≤λ(L
k) ≥ c(λ+ 1)qkn−q

for large k.

Proof. We use two classical facts. The first one is that if L is a
strictly positive line bundle over an m-dimensional manifold, then

hm,0(Lk) ∼ km

for large k, see, e.g., [5] for references. The second one is that if I denotes
the trivial line bundle over a manifold that is still m-dimensional then

hm,m≤λ (I) ∼ λm.

This is the classical Weyl asymptotics for an elliptic operator, in this case
� on (m,m)-forms. Actually, for the sake of constructing an example
we can take the line bundle O(1) on projective space in the first case,
and a product of tori in the second case and it is then easy to verify
both claims directly. Put

X = S × V,

where S is q-dimensional and V is of dimension n− q, and let L be the
pullback to X of a strictly positive line bundle, L′ over V . Then L is
a semipositive bundle over X. The laplacian on X acting on Lk-valued
forms can be decomposed

� = �S + �V

with the obvious notation. Any form on X of the type α = hη, where
h is the pullback to X of a holomorphic (n− q)-form on V with values
in (L′)k , and η is the pullback of an eigenform of �S , is therefore an
eigenform of �. Hence

hn,q≤λ(L
k, X) ≥ hq,q(I, S)hn−q,0((L′)k, V ) ≥ c(λ+ 1)qkn−q.

q.e.d.
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5. L2-estimates and the Grauert-Riemenschneider conjecture

In the case of a semipositive line bundle with curvature positive
definite at some point, Theorem 1.1 combined with the Riemann-Roch
formula of Hirzebruch leads to a proof of the Grauert-Riemenschneider
conjecture as in Siu, [8],[9]. We shall now give another approach that
does not depend on Riemann-Roch but instead uses L2-estimates for
solutions of the ∂-equation.

It is well known that a ∂-closed form is exact if and only if it is
orthogonal to the space of harmonic forms. We shall now see that if the
form is even orthogonal to Hp,q

≤λ then we can solve the ∂-equation with
an estimate.

Proposition 5.1. Let f be a ∂-closed (p, q)-form with values in F
with q ≥ 1. Assume f is orthogonal to Hp,q

≤λ(F ). Then we can solve

∂u = f

with
‖u‖2 ≤ 1

λ
‖f‖2.

Proof. By the Hodge decomposition

f = �v = ∂∂
∗
v + ∂

∗
∂v,

since f is in particular orthogonal to the harmonic forms. Since ∂f = 0
it follows that

0 = 〈∂∂∗∂v, v〉 = ‖∂∗∂v‖2,

so f = ∂u, u = ∂
∗
v. Expand v in an orthonormal basis of eigenforms

v =
∑

cjvj , �vj = λjvj .

Then
f =

∑
cjλjvj ,

so by the hypothesis on f , cj = 0 if λj ≤ λ. Then

‖u‖2 = 〈∂∗v, ∂∗v〉 = 〈f, v〉 =
∑

|cj |2λj ≤ 1/λ
∑

|cj |2λ2
j = 1/λ‖f‖2.

q.e.d.

Let us now return to the situation of the Grauert-Riemenschneider
conjecture. Consider two open sets, U and V in X, with U compactly
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included in V . We say that a subspace W of sections to F over V is
ε-concentrated on U if ∫

U
|w|2 ≥ (1 − ε)

∫
V
|w|2

for all w ∈ W . It follows from a result of Lindholm [7] that if V is
pseudoconvex and F = Lk with L > 0 then for any ε > 0 there is a
subspace W of holomorphic sections which is ε-concentrated on U with
dimension asymptotic to

cnk
n

∫
U
(ΘL)n

as k tends to infinity. For us it will be enough to use the simpler
fact that if L is strictly positive somewhere we can find U and V and a
corresponding subspaceW which is 1/2-concentrated and has dimension
bounded from below by a constant times kn. For this it suffices to take
as U and V concentric small balls inside the region where L:s curvature
is positive. If we choose local coordinates and trivializations so that the
metric on L has the form

φ(z) =
∑

µj |zj |2 + o(|z|2)

with µj > 0 we can take W as the space of polynomials in z of degree
bounded by, say, n/2.

For any w ∈W we form

fw = ∂χw,

where χ is smooth with support in V and equal to 1 in U . The dimen-
sion of the space of fw’s is then of the order kn so by Theorem 1.1 and
Proposition 5.1 we can for a subspace of this space of almost full dimen-
sion solve ∂uw = fw with ‖uw‖2 ≤ 1/λ‖fw‖2. Put S(w) = χw − uw.
Then S(w) is a global holomorphic section to F , and if λ is chosen large
enough, the map from w to S(w) is injective. Hence it follows that

h0,0(Lk) ≥ ckn

and the Grauert-Riemenschneider conjecture follows from this as in the
papers of Siu and Demailly.
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