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SCALAR CURVATURE AND PROJECTIVE
EMBEDDINGS, I

S.K. DONALDSON

Abstract
We prove that a metric of constant scalar curvature on a polarised Kähler
manifold is the limit of metrics induced from a specific sequence of projective
embeddings; satisfying a condition introduced by H. Luo. This gives, as a
Corollary, the uniqueness of constant scalar curvature Kähler metrics in a
given rational cohomology class. The proof uses results in the literature on
the asymptotics of the Bergman kernel. The arguments are presented in a
general framework involving moment maps for two different group actions.

1. Introduction

Two classical results are:

(1) A compact Riemann surface can be embedded in complex projec-
tive space, as a complex algebraic curve;

(2) A compact Riemann surface admits a metric of constant curvature,
unique up to the action of the holomorphic automorphisms of the
surface.

It is natural to ask if there are connections between these two renowned
results, linking the algebro-geometric and differential-geometric points
of view. Specifically, a complex algebraic curve in CPN has a metric in-
duced from the Fubini-Study metric on projective space and one can ask
how metrics of this kind are related to the constant-curvature metric.
This is the question we study here, not just for a Riemann surface but
for a polarised manifold of any dimension, i.e., a compact complex mani-
fold X of complex dimension n with a given positive line bundle L→ X.
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The main motivation for the work comes from the questions about the
existence and uniqueness of Kähler metrics of constant scalar curvature
on X—generalising the constant curvature metrics in the Riemann sur-
face case. (In the case when the line bundle is a power of the canonical
bundle of the manifold the metrics involved are Kähler-Einstein and the
issues we investigate here fall very much into the mould of ideas which
have been propounded by S.-T. Yau over many years [11].) The thrust
of our results is to establish a precise correspondence between constant
scalar curvature Kähler metrics and the asymptotics of sequences of
projective embeddings, where one replaces L by Lk and lets k → ∞.

A central role in this paper is a played by an idea due to Luo [9]. Let
[Z0, . . . , ZN ] be standard homogeneous coordinates on CPN and define

bαβ =
ZαZβ
‖Z‖2

,

where ‖Z‖2 =
∑

|Zα|2. Clearly the bαβ define functions on CPN . If
V ⊂ CPN is any projective variety we define M(V ) to be the skew-
adjoint (N + 1) × (N + 1) matrix with entries

(1) M(V )αβ = i

∫
V
bαβ dµV ,

where dµV is the standard measure on V induced by the Fubini-Study
metric. Another way of expressing this is that we take the standard
embedding of CPN in the Lie algebra u(N + 1), as a co-adjoint orbit:
then M(V ) ∈ u(N+1) is the centre of mass of (V, dµV ) in the Euclidean
space u(N + 1). Following Luo, we study projective varieties V such
that M(V ) is a multiple of the identity matrix—or in other words the
projection to su(N + 1) is zero. We will call such a variety a “balanced
variety” in CPN . The main result of Luo is that a balanced variety is
stable in the sense of Hilbert-Mumford.

The hypothesis we will make throughout this paper on the polarised
manifold (X,L) is that the group Aut (X,L) of holomorphic automor-
phisms of the pair (X,L) (modulo the trivial automorphisms C∗) is
discrete; i.e., the Lie algebra of this group is trivial. (In the sequel to
this paper we will remove this condition.) We consider the powers Lk

of the positive line bundle L→ X for large k. The Kodaira embedding
theorem asserts that for large enough k the sections H0(Lk) define a
projective embedding

ιk : X → P(H0(Lk)∗),
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and of course a choice of basis in H0(Lk) identifies the target space with
the standard CPN , where N = Nk is (for large enough k) given by the
Riemann-Roch formula
(2)

Nk + 1 = χ(Lk) =
∫
X

exp(kc1(L))Td (X) = a0k
n + a1k

n−1 + · · · + an.

Here the coefficients ai are topological invariants of (X,L), the salient
ones for this paper being the leading coefficient

(3) a0 =
1
n!

∫
X
c1(L)n,

and the subsequent term

(4) a1 =
1

2(n− 1)!

∫
X
c1(L)n−1c1(X).

We say that (X,Lk) is balanced if one can choose a basis in H0(Lk)
such that ιk(X) is a balanced variety in CPN . Our first result is:

Theorem 1. Suppose Aut (X,L) is discrete. If (X,Lk) is balanced
then the choice of basis in H0(Lk) such that ιk(X) is balanced is unique
up to the action of U(N + 1) × R∗.

Another way of expressing this is that, if (X,Lk) is balanced, there
is a unique Hermitian metric, up to scale, on H0(Lk) such that ιk(X) is
balanced if one chooses an orthonormal basis with respect to this metric.
In turn, there is a well-defined Kähler metric ι∗k(ωFS) on X obtained by
the restriction of the Fubini-Study metric on CPN . We normalise this
by setting

(5) ωk =
2π
k
ι∗k(ωFS),

so the cohomology class [ωk] = 2πc1(L) in H2(X) is independent of k.
We will prove:

Theorem 2. Suppose that Aut (X,L) is discrete and (X,Lk) is
balanced for all sufficiently large k. Suppose that the metrics ωk converge
in C∞ to some limit ω∞ as k → ∞. Then ω∞ has constant scalar
curvature.

The main result of this paper is a converse:
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Theorem 3. Suppose that Aut (X,L) is discrete and that ω∞ is a
Kähler metric in the class 2πc1(L) with constant scalar curvature. Then
(X,Lk) is balanced for large enough k and the sequence of metrics ωk
converges in C∞ to ω∞ as k → ∞.

To put these results in context, following the work of Yau, Tian and
others in the Kalher-Einstein case (when L is the canonical bundle KX)
and the general formal picture described in [3], [4], one hopes that the
existence of a constant scalar curvature metric should be related to some
appropriate algebro-geometric notion of stability. The theorems stated
above show that this question can be reduced to, on the one hand, the
finite-dimensional issue of the relation between the balanced condition
and stability and, on the other hand, to the question of the convergence
of the metrics ωk as k → ∞. In principle one might be able to prove the
existence of constant scalar curvature metrics by showing directly that
the ωk converge—avoiding PDE theory—but it is hard to see how one
might go about this. Even in the classical case of Riemann surfaces it
is hard to see how one could obtain this convergence without knowing
the existence of the constant curvature metric.

We can obtain two new results as Corollaries of Theorem 3. First,
using Luo’s work, we have:

Corollary 4. If Aut (X,L) is discrete and X admits a Kähler met-
ric of constant scalar curvature in the class 2πc1(L) then the embedding
ιk(X) is stable in the sense of Hilbert-Mumford for large enough k.

Second, we have:

Corollary 5. Suppose Aut (X,L) is discrete. Then there is at most
one Kähler metric of constant scalar curvature in the cohomology class
2πc1(L).

This follows immediately from Theorems 1 and 3.
We will begin the body of this paper, in Section 2 below, by setting

up a formal context for the work. Following the philosophy of [3], [4]
we express the equations we want to solve as the vanishing of “moment
maps” for appropriate symmetry groups. A key point is that there
are two groups involved in the discussion: a finite dimensional unitary
group and an infinite dimensional symplectomorphism group. These
two groups tie up with the algebro-geometric and differential-geometric
points of view respectively, and the interaction between the two is con-
nected to the classical limit in geometric quantisation (with k−1 playing
the role of Planck’s constant). This interaction, which we will study
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further in the sequel, forms the main theme of the paper and raises a
variety of further questions. For example, in the case when c1(X) < 0,
X. Chen has proved the uniqueness result of Corollary 5 [2]. His proof
involves the construction of a “geodesic path” in the space of Kähler
metrics joining any two given points, and the restriction to c1(X) < 0 is
due to technical complications arising from the fact that this path is not
known to be smooth. Spelling out our proof of Corollary 5 our argu-
ment involves joining two points by a geodesic in the symmetric space
SL(N + 1;C)/SU(N + 1) for large N = Nk. One might expect that
these two approaches are fundamentally the same in that the geodesics
in the space of Kalher metrics are approximated by geodesics in the
symmetric space as k → ∞; or, in other words, that our argument is
the “quantisation” of Chen’s.

The two symmetry groups of the problem alluded to above lead to
two ways of thinking about the balanced condition. On the one hand it
appears as a condition involving finite-dimensional matrix groups. On
the other hand it can be expressed in terms of Kähler geometry, which
brings out the connection with scalar curvature. Suppose we have any
fibre metric h on L such that the corresponding curvature form is −iω,
where ω > 0. The fibre metric h is uniquely determined by ω, up to a
constant scalar multiple. Using ω as a Kähler metric on X, we get a
standard L2-inner product on H0(Lk). Let sα be an orthonormal basis
of this vector space and define a function ρk(ω) on X by

(6) ρk(ω) =
∑
α

|sα|2.

A moment’s thought shows that this function does not depend on the
choice of orthonormal basis. It is also unchanged if we replace h by
a constant scalar multiple. Thus, as the notation suggests, it is an
invariant of the Kähler form ω. The balanced condition for (X,Lk) is
equivalent to the existence of a metric ωk such that the function ρk(ωk)
is constant on X. Now the asymptotic behaviour of the “density of
states” function ρk(ω) as k → ∞, with ω fixed, has been studied by
Catlin [1], Tian [10], Zelditch [12] and Lu [8]. Notice that, for any
metric ω ∫

X
ρk(ω) dµ = dim H0(Lk) = a0k

n + a1k
n−1 + . . . ,

and from the Chern-Weil theory the coefficients ai in this Riemann-Roch
formula can be expressed as integrals involving the curvature of ω. The
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first two coefficients are given by (3) and (4): the first coefficient a0 is
just the Riemannian volume of X and

(7) a1 =
1
2π

∫
X
S(ω)dµ,

where S(ω) is the scalar curvature of ω. The result we need is:

Proposition 6.

(1) For fixed ω, there is an asymptotic expansion as k → ∞

ρk(ω) ∼ A0(ω)kn +A1(ω)kn−1 + . . . ,

where Ai(ω) are smooth functions on X defined locally by ω.

(2) In particular

A0(ω) = 1, A1(ω) =
1
2π
S(ω).

(3) The expansion holds in C∞ in that for any r,N ≥ 0∥∥∥∥∥ρk(ω) −
N∑
i=0

Ai(ω)kn−i
∥∥∥∥∥
Cr(X)

≤ Kr,N,ωk
n−N−1

for some constants Kr,N,ω. Moreover the expansion is uniform in
that for any r,N there is an integer s such that if ω runs over a
set of metrics which are bounded in Cs, and with ω bounded below,
the constants Kr,N,ω are bounded by some Kr,N independent of ω.

Here part (1) is the result of Catlin [1] and Zelditch [12] and part
(2) is proved by Lu in [8]. (It is also clear from Lu’s work that all the
functions Aω,i are polynomials in the curvature of ω and its covariant
derivatives.) The uniformity statement in part (3) is not given explicitly
in those references but can be obtained by tracing through the same
arguments (the author is grateful to Professor Zelditch for advice on
this point). The sequel to this paper will contain a further discussion
of these asymptotic expansions.

The existence of this asymptotic expansion strongly suggests that
results like Theorems 2 and 3 should be true. In fact Theorem 2 is a
straightforward consequence of Proposition 6. To prove Theorem 3 we
have to obtain a solution of the equation ρω,k = Constant, for large k,
starting from solution of the equation A1(ω) = Constant, this being the
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first effective term in the asymptotic expansion. The proof involves two
main parts; in each of which a certain linear differential operator

(8) D∗D : C∞(X) → C∞(X)

plays a vital role. In one part, we construct a formal power series
solution to the problem. This is straightforward (given the results of
Catlin, Lu and Zelditch), and is done in Section 4.1 below. However,
there is no reason to suppose that this formal power series converges,
so in the other, more substantial, part of the proof we pass to the other
point of view and solve an equation in a large but finite-dimensional
matrix group, essentially by means of an implicit function theorem.
This is done is Section 3 below, which is the heart of the paper.

2. Preliminaries

2.1 Formal set-up

In this Section we will explain how the problems we address can be
put in the framework of “moment map geometry”, in the spirit of [3],
[5]. To begin with we consider a general compact symplectic manifold
(M,ω), of dimension 2n, and suppose L→M is a Hermitian line bundle
with connection, having curvature −iω. As usual, the space of functions
C∞(M) is a Lie algebra under the Poisson bracket. The Hamiltonian
construction maps a function f to the symplectic vector field ξf with
iξf (ω) = df , and this is a Lie algebra homomorphism. For each integer
k the space Γ(Lk) of sections of Lk has a standard L2 norm

‖s‖2 =
∫
M

|s|2dµ,

where dµ is the volume form ωn

n! . For any function f on M and section
s of Lk →M we set

(9) Rf (s) = ∇ξf (s) − ikfs.

Proposition 7. The map f 
→ Rf defines a unitary action of the
Lie algebra C∞(M) on the complex vector space Γ(Lk).

This is a standard result and we omit the proof, which is a straight-
forward exercise (see [6], Sect. (6.5.1)). We define the group G to be
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the group of Hermitian bundle maps from L to L which preserve the
connection. Then the Lie algebra of G is C∞(M) and the action of G
on Γ(Lk) induces the Lie algebra action of Proposition 7.

The space of sections Γ(Lk) has a natural symplectic form Ω asso-
ciated to the Hermitian metric:

(10) Ω(s1, s2) = Re
∫
M

(is1, s2) dµ.

Thus it makes sense to ask for a moment map for the action of G on
Γ(Lk). Given a section s of Lk we write

(11) µ(s) =
1
n!

(
− i

2
∇s ∧∇s ∧ ωn−1 + k|s|2ωn

)
.

Here s is the section of the dual bundle L−k defined using the standard
anti-linear isomorphism between Lk and L−k and in (11) we tacitly use
the dual pairing between Lk, L−k. Thus we have a map µ from Γ(Lk) to
the vector space of 2n-forms on M , which in turn has a natural pairing
with the Lie algebra C∞(M).

Proposition 8. The map µ is an equivariant moment map for the
action of G on Γ(Lk).

First, it is clear that µ is G-equivariant. The identity which has to
be established to show that it is a moment map is

(12) δ 〈µ(s), f〉 = Ω(Rfs, δs),

where δ denotes the functional derivative with respect to s. To verify
this, let us write δsσ so the left hand side of (12) is a sum, A+ B say,
where

A = − i

2n!

∫
M

∇s ∧∇σ ∧ ωn−1 + ∇σ ∧∇s ∧ ωn−1,

and

B =
k

n!

∫
M

(s σ + s σ) ωn.

Then we can apply Stokes Theorem to write

A =
−i
2n!

∫
M

(df∧∇s σ−df∧∇s σ)ωn−1+f(d∇(∇s) σ−d∇(∇s) σ)ωn−1.
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We have the curvature identities on L±k

d∇(∇s) = −ikωs, d∇(∇s) = ikωs,

so
A =

−i
2n!

∫
M
df ∧ (σ∇s− σ∇s)ωn−1 − ikf(sσ + sσ)ωn.

Thus the sum A+B is

−i
2n!

∫
M
df ∧ (∇sσ − σ∇s)ωn−1 + ikf(sσ + sσ)ωn.

Now it is easy to check that one has an identity

(13) ∇ξf s ω
n = −df ∧∇s ∧ ωn−1,

so we can write

A+B =
i

2

∫
M

[(
∇ξf s− ikfs

)
σ −

(
∇ξf s− ikfs

)
σ
] ωn
n!
,

and this is precisely Ω(Rfs, σ), as required.

Now suppose that there is a compatible complex struture on the
manifold M , making it into a Kähler manifold with Kähler form ω.
The line bundle L has curvature of type (1, 1) and is thus endowed, by
the connection, with a holomorphic structure. Suppose that the section
s of Lk is also holomorphic. In this situation we can write the moment
map µ(s) in a different way.

Lemma 9. If s is a holomorphic section over a Kähler manifold
then

µ(s) = (1
2∆|s|2 + k|s|2)ωn

n! ,

where ∆ = d∗d is the usual Laplace operator on functions.

To see this we observe that, in this situation, we can write

∇s ∧∇s ∧ ωn−1 =
i

2
|∇s|2ωn.

Now
∆|s|2 = −2|∇s|2 + 2(s,∇∗∇s)

and for a holomorphic section s the Weitzenböck formula gives

∇∗∇s = 2∂∗∂s+ kns = kns.
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So
1
2∆|s|2 = kn|s|2 − |∇s|2

and the result follows.

The action of the group G on Γ(Lk) does not preserve the set of
holomorphic sections, for a fixed holomorphic structure. To get around
this we consider, as in [3], the set Jint of all compatible complex struc-
tures on the manifold M . This is a subset of the set J of all compatible
almost-complex structures—the cross-sections of a fibre bundle over M
with fibre Sp(2n,R)/U(n). (Thus Jint ⊂ J is the set where the Nijen-
huis tensor vanishes.) The group G acts on J , preserving Jint . At the
Lie algebra level this action is given as follows. We identify the tangent
space to J at a given almost-complex structure I with the subspace of
Ω0,1(T ) given by the sections of the bundle of symmetric tensors s2(T ∗)
(embedded in Ω0,1(T ) by the ismorphism of T with T ∗ furnished by the
metric). Then the infinitesimal action of a function f in C∞(M) on J
is given, at a point of Jint , by

(14) Df = ∂(ξf ),

where
∂ : Γ(T ) → Ω0,1(T )

is the ∂-operator on the tangent bundle defined by the given complex
structure (see [3], Lemma 10). To display the nature of the operator
D more clearly, we can choose osculating complex coordinates zλ at a
given point on M . Then, at this point,

Df =
∑
λµ

∂2f

∂zλ∂zµ
dzλdzµ.

With this background in place, we consider the diagonal action of
G on the product Γ(Lk) × Jint . Let H ⊂ Γ(Lk) × Jint be the subset
consisting of pairs (s, I) where s is a nontrivial holomorphic section with
respect to the complex structure I.

Lemma 10. The diagonal action of G preserves H.

On the one hand, this is obviously true on general grounds since
the group G acts as automorphisms of the line bundle Lk, covering
symplectomorphisms of M and the action of G on J is just the natural
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action of these symplectomorphisms of M . Alternatively, the statement
of the Lemma follows from a differential-geometric identity

(15) (Df)∂Lks+ ∂Lk(Rfs) = 0,

for any function f on M and I-holomorphic section s. Here ∂Lk , ∂Lk

are defined in the usual way using the connection and and the pairing
(Df)∂Lks is the algebraic pairing

Ω0,1(T ) ⊗ Ω1,0(Lk) → Ω0,1(T )

defined by the duality between T and Ω1,0.
We introduce an equivalence relation on H by decreeing that (s, I) ∼

(s′, I ′) if there is a bundle-map F̂ of Lk (regarded as a C∗-bundle, and
forgetting the connection) covering a diffeomorphism F of M , taking s
to s′ and I to I ′. This is just saying that the two pairs are equivalent in
the usual sense as pairs “complex manifold plus holomorphic section of
a holomorphic line bundle”. We notice that the action of G preserves the
equivalence classes, since it is defined by an action on the line bundle L.
We also notice that Γ(Lk) and Jint both have natural complex structures
(that in the latter case being discussed in [3]). Now, in the spirit of [4],
we have:

Proposition 11. The equivalence classes in H are formal orbits of
the action of the complexified group Gc on H.

Just as in [4], the point here that while there is in reality no com-
plexified group Gc the equivalence classes play the role of the orbits of
the action, if such a group did exist. More precisely, we mean that each
equivalence class o in H is an infinite-dimensional manifold and the tan-
gent space of o at a point (s, I) is the complexification T + JT where
T is the tangent space to the G-orbit and J is the complex structure
defined by those on Γ(Lk) and J .

Having thus clarified the meaning of Proposition 11 we can now pro-
ceed to the proof. We will be content with a somewhat formal argument,
as in the similar statements in [3], [4], [5], since we will make use of the
statement at this level in the proofs of our main results. Thus we pass
to the corresponding discussion at the level of tangent vectors where we
suppose that we have a C∗-invariant vector field v̂ on the total space of
Lk covering a vector field v on M . The infinitesimal action of v̂ on a
section s of Lk is a section σ = Lv̂s and the action of v on the almost-
complex structure I is µ = LvI. We ask when (σ, µ) is a tangent vector
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in H at the point (s, I). The condition for this, analogous to (15), is

(16) µ∂Lks+ ∂Lkσ = 0.

We write
v̂ = ṽ + ψt,

where ṽ is the horizontal lift of v defined by the connection on Lk, t
is the canonical vertical vector field on Lk and ψ is a complex-valued
function on M . Then we have

σ = −iv(∂Lks) + ψs,

and µ = ∂v. Then

∂Lk(σ) = −(∂v)∂Lks− i0,1v (∂Lk∂Lks) + ∂ψ s,

where i0,1v denotes the (0, 1) part of the contraction. Then (16) gives

i0,1v (∂Lk∂Lks) = ∂ψs.

Now ∂Lk∂Lks = −ikωs so we obtain

(17) ∂ψ = ki0,1v (ω).

If we write ψ = f+ig, in real and imaginary parts, then (17) is equivalent
to

v = k−1(ξf + Iξg)

where ξf , ξg are the Hamiltonian vector fields of f and g and I denotes
the action of complex multiplication on tangent vectors. In turn it
follows that

(18) k(σ, µ) = (Rfs,Df) + (iRgs, IDg),

so (σ, µ) lies in T + JT . Conversely, for any f, g in C∞(M) we can
define (σ, µ) by (18) and the formulae above show that (σ, µ) is a tangent
vector to the equivalence class, where we define the vector field v̂ψ, for
ψ = f + ig, on Lk by

(19) v̂ψ = ṽ + ψt,

with ṽ the horizontal lift of ξf + Iξg.
There is a more concrete way of representing these equivalence classes

in H. Suppose F̂ , F are diffeomorphisms of the kind considered in the



scalar curvature and projective embeddings 491

definition of the equivalence relation above. Then the pull-back of the
Hermitian metric h0 on Lk by F̂ can be viewed as another metric on
the fixed holomorphic bundle Lk. Conversely, if we take any function φ
on M such that ω + i∂∂φ is a positive form (working with respect to a
fixed complex stucture), then we have a triple (s, I, e−φh0) consisting of
a holomorphic Hermitian line with a holomorphic section over the fixed
complex manifold (M, I). We can choose a diffeomorphism F of M so
that F ∗(ω + i∂∂φ) = ω, and this lifts to a bundle map which defines a
point in the equivalence class of (s, I). The ambiguity in the choice of
F and F̂ precisely corresponds to the action of G on H. The conclusion
is that, up to the action of G, the points in an equivalence class can be
identified with the Hermitian metrics of positive curvature on a fixed
holomorphic line bundle.

A result which is related to Proposition 11 and which is central to
this paper is:

Lemma 12. Let I be a point of Jint . The map ψ 
→ v̂ψ of (19)
yields an isomorphism from the kernel of D acting on the complex-valued
functions over M , to the Lie algebra of the group of automorphisms of
(L,M, I).

To prove this, we write an element of the Lie algebra of the auto-
morphisms of (L,M, I) as a vector field v̂ on Lk, covering a vector field
v on M . We can apply the formulae above, with σ = Lv̂s, but in this
case µ = 0 since v preserves the complex structure. It follows as before
that there is a function ψ = f+ ig on M such that σ = k−1(Rfs+ iRgs)
but now we have Dg + iDg = Dψ = 0. Conversly, for any ψ = f + ig
with Dψ = 0 the vector field ṽ + ψt lies in the Lie algebra of the auto-
morphisms of (L,M, I), where ṽ is the horizontal lift of k−1(ξf + Iξg).

We can extend the discussion above to obtain an action of G on

Γ(Lk) × · · · × Γ(Lk) × Jint ,

taking N + 1 copies of Γ(Lk). We let H0 be the subset of this product
consisting of those (s0, . . . , sN ; I) such that the sα are holomorphic with
respect to the complex structure I and are linearly independent, as el-
ements of Γ(Lk). We let N be defined by the Riemann-Roch formula
(2), and suppose that k is sufficiently large: so in other words we are
considering bases for the set of holomorphic sections of Lk defined using
the complex structure I. Just as before we obtain a G-action on H0

and the complexified orbits are equivalence classes under the standard
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equivalence of pairs “complex manifold with basis for holomorphic sec-
tions of a line bundle”. From now on we assume that k is so large that
the holomorphic sections define a projective embedding of the mani-
fold M , for all complex structures I. (In reality we will be restricting
attention presently to a single complex orbit o so this assumption will
be permissible.) Then the complex orbits in H0 are labelled by certain
projective varieties in CPN .

Now consider the projection π1 from H0 to Γ(Lk)N+1. We have:

Proposition 12′. The projection π1 is an injective immersion of
H0 into Γ(Lk)N+1.

(There may be difficulties in interpreting this statement because H
may not be a manifold: again however we can ignore these because
we will be presently concerned with a single complex orbit where these
difficulties disappear.) The fact that the projection is an injection on H0

is rather obvious once one unwinds the statement. It just asserts that
the complex structure on M is determined by a projective embedding.
Similarly for the immersive property: a tangent vector to H0 has the
form (σ0, . . . , σN ;µ) where σα ∈ Γ(Lk) and µ ∈ Ω0,1(T ) satisfy

∂µ = 0; ∂Lkσα + µ∂Lksα = 0.

If this tangent vector projects to zero then all the σα vanish, but this
imples that µ is also zero, since the derivatives ∂Lksα generate T ∗M⊗Lk
at each point.

We use Proposition 12′ to define a symplectic (in fact Kähler) struc-
ture on H0. We start with the standard form Ω on Γ(Lk), take the sum
of this over the N + 1 copies of Γ(Lk) in the usual way and then lift
this form up to H0 using the projection π1. We write Ω again for the
resulting form on H0.

Proposition 13. The group G acts on H0 preserving the complex
structure and Kähler form Ω. The moment map for the action is given
by

µG(s0, . . . , sN ; I) =
(

1
2∆ + k

)
ρ,

where ρ(s0, . . . , sN ; I) =
∑

|sα|2.
Here the calculation of the moment map follows imediately from

Proposition 8, since the projection map π1 is equivariant. (In Proposi-
tion 13 we have dropped the distinction between functions on M and
2n-forms, using the standard volume form to identify the two.)
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There is another natural symmetry group acting on H0. This is the
finite-dimensional unitary group U(N+1) acting on the bases (s0, . . . sN ).
The moment map for this action is a map from H0 to the skew-adjoint
matrices u(N + 1), and one easily verifies that this is given by

µU(s0, . . . , sN ; I) = i (〈sα, sβ〉) ,

where 〈 , 〉 is the usual L2 inner product. (Here we are identifying the
Lie algebra u(N+1) with its dual, using the form (A,B) 
→ −Tr (AB). )
Of course U(N+1) has a genuine complexification GL(N+1,C) and the
action obviously extends to a holomorphic action of this group on H0.
The actions of the groups G and U(N + 1) on H0 commute, so we have
an action of the product G×U(N +1). The orbits of Gc×GL(N +1,C)
are labelled by equivalence classes of pairs (X,L) where L is a positive
line bundle over a complex manifold X.

We now turn to symplectic quotients. Each of the groups G,U(N+1)
has a one-dimensional centre, given by the constant functions and the
multiples of the identity matrix respectively, and these act in the same
way on H0. To avoid this duplication, we restrict to the subgroup
SU(N +1) of U(N +1). The moment map µSU for this is the projection
of µU to the trace-free matrices:

(21) µSU(s0, . . . , sN ; I) = i

(
〈sα, sβ〉 −

1
N + 1

(∑
γ

‖sγ‖2

)
δαβ

)
.

The moment map for the action of the product is just the direct sum
µG ⊕ µSU of the individual moment maps. For fixed a > 0 we may
consider the symplectic quotient

(22) H0//(G × SU(N + 1)) =
µ−1
G (a) ∩ µ−1

SU(0)
G × SU(N + 1)

.

We can think about this in two ways, taking the group actions one
at a time (this is a general pheomenon for the symplectic quotients
of commuting actions). On the one hand we can consider first the
symplectic quotient by G:

(23) H0//G = µ−1
G (a)/G.

The action of SU(N +1) on H0 induces an action on H0//G and we can
take the symplectic quotient for this latter action: this is precisely the
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same as the quotient (22) for the action of the product. On the other
hand, we can interchange the role of the two groups, taking first the
SU(N + 1) quotient. The utility of these two points of view stems from
the fact that the two partial symplectic quotients are easy to understand.
We need a preliminary observation.

Lemma 14. Suppose Lk → X is a Hermitian holomorphic line bun-
dle and s0, . . . , sN are holomorphic sections of Lk such that the function∑

|sα|2 is a nonzero constant on X. Then the curvature of the compati-
ble unitary connection on Lk is −iι∗(ωFS) where ωFS is the Fubini-Study
form on CPN and ι : X → CPN is the map defined by the sections sα.

We leave the proof to the reader.

Proposition 15.

(1) Any Gc-orbit in H0 contains a point in µ−1
G (a), unique up to the

action of G.

(2) Any SL(N + 1,C) orbit in H0 contains a point in µ−1
SU(0), unique

up to the action of SU(N + 1).

For the first part, recall that µG(s0, . . . , sN ; I)
(

1
2∆ + k

)
ρ. If

(
1
2∆ +

k
)
ρ = a we take the L2 inner product with the eigenfunctions of the

Laplacian to see that ρ itself must be constant, in fact ρ = a/k. So the
moment map equation µG = a is equivalent to∑

|sα|2 = a/k.

Now consider the Gc orbit of some point (s̃0, . . . , s̃N ; I). We have seen
that the points of this, up to the action of G, correspond to fixing the
complex structure, holomorphic line bundle and sections and varying
the Hermitian metric on the bundle by a factor eφ. Thus the moment
map equation becomes an equation for φ

eφ
∑

|s̃α|2 = a/k,

and the unique solution is

(24) φ = − log
(
k
∑

|sα|2
a

)
.

Here we use Lemma 14 to see that the metric defined by this formula
has positive curvature.
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The second part is completely straightforward: a point (s0, ..., sN ; I)
lies in µ−1

SU(0) if and only if there is a positive scalar b such that the
rescaled sections bsα form an orthonormal basis for the holomorphic
sections.

To see the relevance of this we can finally go back to fit Luo’s con-
dition into our formalism.

Proposition 16. A pair (X,Lk) is balanced if and only if, for any
a > 0, the corresponding complexified orbit o ⊂ H0 contains a point in
µ−1
G (a) ∩ µ−1

SU(0), or equivalently if and only if the complexified orbit is
represented by a point in the symplectic quotient (22).

To see this we take the G-quotient first. We have seen that points
in H0//G correspond to sections sα with

∑
|sα|2 = a/k. Thus, by

Lemma 14, the pull-back of the Fubini-Study form is a multiple of the
given symplectic form ω on M . The moment map for the induced
SU(N + 1) action on H0//G is given by the same formula (21) and
hence, identifying our manifold with a projective variety, this is exactly
the trace-free part of Luo’s map. Thus a point in µ−1

SU(0) ⊂ H0//G is
exactly the same as a balanced variety in the sense of Section 1.

2.2 Generalities on moment maps and complex orbits

We have now seen how to fit the problem of constructing balanced
varieties into a familar form and we will now recall some standar results
about this set-up. Thus suppose a compact Lie groupG acts on a Kähler
manifold Z and that ν : Z → g is a moment map for the action. Here we
have identified the Lie algebra g with its dual using an invariant inner
product. At each point z ∈ Z we have the infinitesimal action

σz : g → TZz.

We define an endomorphism of g by

(25) Qz = σ∗zσz,

where the adjoint is formed using the metrics on g and TZ. By the
definition of the moment map, this is also given by

(26) Qz = dνz ◦ I ◦ σz

The maps Qz are important in understanding the existence and unique-
ness of zeros of the moment map inside an orbit of the complexified
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group Gc. We recall first the standard proof of uniqueness. Suppose
that ν(z) = ν(gz) = 0, where g ∈ Gc. After acting by an element of G,
we may assume that g = eiξ for some ξ ∈ g. Then define

(27) f(t) = 〈ξ, ν(eitξz)〉.

Differentiating with respect to t gives

(28) f ′(t) = 〈ξ,Qeitξzξ〉,

and this is nonnegative, vanishing if and only if σz(ξ) = 0, which occurs
only when z = z′. This is the well-known fact that the zeros of ν in a Gc-
orbit are unique up to the action of G. The argument above shows more:
let ΓG be the stabiliser in G of the point z, and let ΓGc be the stabiliser
in Gc. Write Γ0

G,Γ
0
Gc for the identity components of these two groups.

Then the inclusion of ΓG in ΓGc induces an isomorphism between the
discrete groups ΓG/Γ0

G and ΓGc/Γ0
Gc , and Γ0

Gc is the complexification of
Γ0
G.

Our main concern is with the question of existence of zeros of the
moment map. Suppose now that the stabilisers of all points under the
G-action are discrete, so σz is injective and Qz is invertible for all z
in Z. Let Λz be the operator norm of Q−1

z : g → g, defined using the
invariant Euclidean metric on g.

Proposition 17. Suppose given z0 ∈ Z and real numbers λ, δ such
that Λz ≤ λ for all z = eiξz0 with |ξ| ≤ δ. Suppose that λ|ν(z0)| < δ.
Then there is point w = eiηz0 with ν(w) = 0, where |η| ≤ λ|ν(z0)|.

To prove this Proposition, we consider the flow on Z defined by

dz

dt
= −Iσz(a(z)),

where
a(z) = Q−1

z (ν(z)).

Taking the initial point z0, this defines a path zt in Z, at least for
parameters t is some interval [0, T ), and we write at = a(zt) for the
corresponding path in the Lie algebra g. By construction, we have

dν(zt)
dt

= −ν(zt),

(using (26)), so ν(zt) = e−tν(z0). We also have

|a(t)| ≤ Λzt |ν(zt)| = Λzt |ν(z0)|e−t.
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Now the path zt lies in a single Gc-orbit: indeed we have zt = gt(z0)
where the path gt in Gc is defined by the ODE

dg

dt
g−1 = iat,

with g0 = 1. We consider the projection p : Gc → Gc/G and the
resulting path ht = p(gt) in the symmetric space Gc/G. To make the
notation more transparent, we will suppose here that the Lie group
G is SU(N + 1) (the case we will need in our application), although
the arguments go through easily to the general situation. In this case
the quotient space Gc/G can be identified with the space S of positive
definite Hermitian matrices with determinant 1, with the map p given
by p(g) = g∗g. The invariant Riemannian metric on Gc/G can be
represented by

1
4
Tr ( (h−1δh)2).

Thus we have ht = g∗t gt and dht
dt = 2g∗t atgt and so the square of the

length of the velocity vector dht
dt , computed using the natural Rieman-

nian metric, is just

1
4
Tr

((
dht
dt
h−1
t

)2
)

= −Tr (a2
t ) = |at|2.

Now the paths eiξt in Gc, for ξ ∈ g, project to geodesics in S and
the Riemannian distance between p(eiξ) and p(1) is just |ξ|. So the
hypothesis in the Proposition, and the G-invariance of the whole set-
up, asserts that so long as ht lies inside the δ-ball Bδ about p(1) in Gc/G
we have Λzt ≤ λ, and in this case we have

|at| ≤ λ|ν(z0)|e−t.

But now the assumption λ|ν(z0)| < δ means that the total length of the
path ht (in the natural Riemannian metric) is less than

δ

∫ ∞

0
e−tdt = δ,

so the path ht must indeed lie inside Bδ for all t < T . It follows easily
that the flow, with this initial condition, is defined for all positive time
and converges to a limit p(eiη) where |η| is bounded by the total path
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length, and hence by λ|ν(z0)|. Clearly eiηz0 is the desired zero of the
moment map ν.

The last general point we need to recall concerns the situation where
the space Z is itself a Kähler quotient Z = W//H say, and the action
of G on Z is induced by an action of G×H on the Kähler manifold W .
For each point w ∈W the derivative of the action gives linear maps

σG,w : g → TWw, σH,w : h → TWw.

Lemma 18. Let z ∈ W//H be represented by a point w ∈ W .
Then for ξ ∈ g the endomorphism Qz of g associated to the G action
on W//H satisfies

〈Qzξ, ξ〉 = |π(σG,wξ)|2

where π : TWw → TWw is the projection onto the orhogonal complement
of the image of σH,w. In particular

Λz =
(

minξ∈g
|π(σG,wξ)|

|ξ|

)−2

.

The proof of this is just a matter of unwinding the definitions. (By
the definition of the symplectic quotient the tangent space of W//H at
z can be isometrically identified with the orthogonal complement of the
complexification of the image of σH,w.)

3. Estimates for the linearised problem

3.1 Explicit formulae

This Section 3 is the heart of the paper. We consider the action of the
group SU(N + 1) on the symplectic quotient

Z = H0//G.

We fix attention on a single orbit of the complexification SL(N + 1,C);
that is, we fix attention on a given polarised variety Lk → X. Our main
goal is to prove the existence of points in µ−1

SU(0) in the given complex
orbit, under appropriate conditions, and to this end we need to estimate
the quantity Λz, for points z ∈ Z, using the formula of Lemma 18 (with
G = SU(N + 1) and Z = Z). We need to hold in mind two points of
view: an element of the orbit is represented by a pair (s0, . . . , sN ; I) with
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∑
α |sα|2 = 1, or equivalently by an embedding of X in CPN . Given a

matrix iA = i(aαβ) of su(N + 1) we write

σα =
∑
β

aαβsβ.

To apply Lemma 18, we need to find the orthogonal projection in the
Hilbert space Γ(Lk)N+1 of

σ = (σ0, . . . , σN )

to the orthogonal complement of the subspace

P = {(Rfs0, . . . , RfsN ) : f ∈ C∞(M)}.

Proposition 19. Given sα and A = (aαβ) as above, define a func-
tion H = HA ∈ C∞(M) by

H =
∑

aαβ(sα, sβ).

Then the orthogonal projection of σ to the subspace P is

p = (k−1RHs0, . . . , k
−1RHsN ).

(Recall, in the definition of the function H, that (sα, sβ) is the point-
wise inner product of the sections, defined by the Hermitian metric on
Lk.)

To prove Proposition 19, write

(29) ψα = ik−1RH(sα) − σα = ik−1RH(sα) −
∑
β

aαβsβ.

We have to show that, for any function f ∈ C∞(M),∑
〈Rfsα, ψα〉 = 0.

We write

〈Rf (sα), ψα〉 = Ω(Rf (sα), iψα) + iΩ(Rf (sα, ψα)

and apply the moment map identity of Proposition 13. Thus we have

〈Rf (sα), ψα〉 =
∫
M
f [δiψαµ(sα) + iδψαµ(sα)],
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where δψα denotes the derivative of µ in the direction ψα and µ is the
moment map

µ(s) =
1
2
∆|s|2 + k|s|2.

Thus, evaluated at sα,

δψαµ+ iδiψαµ = [∆(sα, ψα) + 2k(sα, ψα)] .

So we need to show that∑
α

(∆(ψα, sα) + 2k(ψα, sα)) = 0,

which is certainly true if ∑
α

(ψα, sα) = 0.

Now recall that H =
∑

αβ aαβ(sα, sβ), and that

RHsα = ∇ξHsα − ikHsα.

Thus
(iRHsα, sα) = (i∇ξHsα, sα) + kH|sα|2,

and∑
α

(ψα, sα) =
∑
α

(ik−1∇ξHsα, sα) +H
∑
α

|sα|2 −
∑
αβ

aαβ(sα, sβ).

Using the definition of H, and the fact that
∑

|sα|2 = 1, we see that
the last two terms cancel and we are left with∑

α

(ψα, sα) = ik−1
∑
α

(∇ξHsα, sα).

Now for any vector field v on M we have∑
α

∇v|sα|2 = 2Re
(∑

∇vsα, sα

)
= 0

since
∑

|sα|2 is constant. Taking v = ξH , this shows that imaginary
part of

∑
(ψα, sα) vanishes. On the other hand, taking v = IξH and

using the fact that
∇IξHsα = i∇ξHsα
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(since the sections sα are holomorphic), we see that the real part of∑
(ψα, sα) also vanishes.

We can now apply Lemma 18 to see that the quantity Λz associated
to our problem is given by

(30) Λ−1
z = min

∑
‖ψα‖2 = min

∑
α

∥∥∥∥∥∥ik−1RH(sα) −
∑
β

aαβsβ

∥∥∥∥∥∥
2

,

where the minimum runs over the trace-free Hermitian matrices (aαβ)
with ‖(aαβ)‖2

∑
αβ |aαβ |2 = 1, and H is defined, in terms of the aαβ

and sα, as above. Our problem is to find a lower bound for the sum
appearing on the right hand side of (30).

Proposition 20. Continuing the notation above, we have∑
‖∂Lkψα‖2k−1‖DH‖2,

where ∂Lk is the ∂-operator on sections of Lk defined by the given com-
plex structure I on M and ‖ ‖ is the standard L2 norm defined by the
metric ω.

In fact, more is true: we have a pointwise equality

(31)
∑
α

|∂Lkψα|2 = k|DH|2,

at each point of X. To see this, observe first that

∂Lkψα = k−1∂Lk(RHsα),

since the sections σα are holomorphic. Now we apply the identity (15)
to see that

∂Lkψα = k−1(DH)∂∇sα.

We fix a point x on X and simplify the calculations by using a ba-
sis adapted to this point. Let U = (uαβ) be any unitary matrix and
define s̃α =

∑
β uαβsβ and Ã = U∗AU then the functions H = HA

is the same as
∑
ãαβ(s̃α, s̃β) and the pointwise sums,

∑
|(DH)∂∇sα|2

and
∑

|(DH)∂∇s̃α|2 are equal. Thus it is equivalent to prove the equal-
ity (31) for the original basis sα or the new basis s̃α. By elementary
linear algebra we may as well, therefore, suppose that we are in the
position where the sections s1, . . . , sN vanish at x, as do the derivatives
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∂sn+1, . . . ∂sN . Then the section s0 trivialises the fibre of Lk over x and
the derivatives ∂s1, . . . ∂sn can be viewed as a basis for the cotangent
space (T ∗X)x. We claim that this is an orthonormal basis. Indeed,
if we write sα = fαs0 near x, for local holomorphic functions fα, the
condition that

∑
|sα|2 = 1 shows that

|s0|2 =

(
1 +

N∑
α=1

|fα|2
)−1

,

so the form −ikω, which is the curvature of Lk, is

∂∂ log
(
1 +

∑
|fα|2

)
,

which, evaluated at x, is just
∑N

α=1 ∂fα∂fα. On the other hand, evalu-
ated at x,

∂sα = ∂fαs0,

so only the first n terms in the sum contribute, and we have

−ikω =
n∑

α=1

∂fα∂fα,

and this precisely asserts that k−1/2∂f1, . . . , k
−1/2∂fn form an ortho-

normal basis for the cotangent space. Note also that the condition∑
|sα|2 = 1 implies that ∂s0 vanishes at x. Now it is clear that

k|DH|2 =
n∑

α=1

|DH ∂sα|2 =
N∑
α=0

|DH ∂sα|2 =
∑
α

|∂Lkψα|2,

at x, as required.

3.2 Analytical estimates

In this subsection we will obtain an explicit estimate on the quantity
Λ, using the formulae from (3.1) and some simple analytical arguments.
The estimates we obtain are not sharp, we discuss the scope for im-
provements in Section 4.

The crucial thing is to keep track of the parameter k. In the course
of our arguments we need to estimate the norms of various tensor fields;
one can do this either with respect to metrics in the fixed cohomology
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class 2πc1(L), or in the rescaled class k2πc1(L). Of course it is an
entirely elementary matter to transform between the two points of view,
introducing appropriate powers of k.

Fix any reference metric ω0 in the Kähler class c1(L). We also fix an
integer r ≥ 4. Given k, let ω̃0 be the rescaled metric kω0. For R > 0 we
say that another metric ω̃ in the cohomology class kc1(L) has R-bounded
geometry if ω̃ > R−1ω̃0 and

‖ω̃ − ω̃0‖Cr < R,

where the norm ‖ ‖Cr is the standard Cr norm determined by the metric
ω̃0. These conditions scale to the conditions ω > R−1ω0 and

‖ω − ω0‖Cr(ω0) < kr/2R,

where ‖ ‖Cr(ω0) is the norm determined by the metric ω0. Clearly, at
the cost of a change in R, this notion is independent of the choice of ω0.
Now, as in (3.1), we consider a basis sα for H0(Lk) which determines
a unique metric on Lk such that with

∑
|sα|2 = 1 at each point. We

say that the basis(sα) has R-bounded geometry if the Kähler metric ω̃
induced from the Fubini-Study metric by the embedding of X in CPN

does.
Throughout this section we work with the “large” metric ω̃ on X .

Thus the volume of X in this metric is V kn, where V is the volume of X
in the metric ω0. We use the L2 inner product on sections of Lk defined
by this metric. To fit the preceding discussion into this framework
we need to replace the symplectic form ω by kω and L by Lk, while
removing the explicit k dependence in formulae such as (9), (29), (30)
and Proposition 20. Notice that, working with this large metric,∑

α

‖sα‖2 = V kn.

We write
〈sα, sβ〉 =

V kn

N + 1
δαβ + ηαβ ,

where δαβ is the Kronecker delta. Thus the matrix E(ηαβ) is a trace-free
Hermitian matrix, and E = 0 if and only if the projective embedding is
balanced. (Notice that the factor V kn/N + 1 tends to 1 as k → ∞.)

We continue with the notation from (3.1), so for any matrix A =
(aαβ) ∈ isu(N + 1) we define a function H and sections ψα by (29) and
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the statement of Proposition 19, but setting k = 1 in the formulae as
explained above. We write ψ for the “vector” of sections ψα so

‖ψ‖2 =
∑
α

‖ψα‖2.

We will make use of two standard norms on the Hermitian matrices:
the Hilbert-Schmidt norm

‖F‖2 =
∑
αβ

|Fαβ |2

and the operator norm

‖F‖op = max
|F (ξ)|
|ξ| .

Alternatively, ‖F‖op is the maximum of the moduli of the eigenvalues
of F . We will use the elementary inequalities, for (N + 1) × (N + 1)
Hermitian matrices F,G

|Tr(FGF )| ≤ ‖F‖2‖G‖op(32)

|Tr(FG)| ≤
√
N + 1‖F‖ ‖G‖op .

The goal of this subsection is to prove:

Theorem 21. Suppose Aut (X,L) is discrete. For any R there are
constants C = C(R,ω0) and ε = ε(R,ω0) < 1/10 such that, for any k,
if the basis sα of H0(Lk) has R-bounded geometry and ‖E‖op < ε then
for any trace-free Hermitian matrix A,

‖A‖ ≤ Ck2‖ψ‖.

By Lemma 18, this yields:

Corollary 22. If z is the point in Z determined by a basis (sα) of
satisfying the hypotheses of Theorem 21 we have

Λz ≤ C2k4.

(Here Λ is the operator norm defined by (30), but using the large
metric ω̃ and consequently with the factor of k−1 removed.)

The analytical estimates required to prove Theorem 21 are summed
up in the following:
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Proposition 23. Suppose Aut (X,L) is discrete. If the basis sα
has R-bounded geometry and ‖E‖op ≤ 1

10 then there are constants
C1, . . . , C4, depending only on R and ω0, such that for sufficiently large
k we have:

‖DH‖2 ≤ C1‖ψ‖‖A‖;(i)
9
10

‖A‖2 ≤ 11
10

‖H‖2 + ‖ψ‖2 + C2‖∇H‖2;(ii)

‖∇H‖2 ≤ max (‖DH‖2, C3‖H‖2);(iii)

‖H‖2 ≤ C4k
2‖DH‖2 + 2‖E‖2

op‖A‖2.(iv)

Here the operator D is that defined by the large metric ω̃ and the
norms ‖DH‖, ‖∇H‖, ‖H‖ are the standard L2-norms defined by ω̃.

The proof of Theorem 21 given Proposition 23 is completely ele-
mentary and we give it now. First, if ‖ψ‖2 ≥ 1

10‖A‖2 then the estimate
asserted in Theorem 21 holds rather trivially, with C =

√
10. So we

may as well suppose from now on that ‖ψ‖2 ≤ 1
10‖A‖2 so that (ii) of

Proposition 23 gives

(33)
8
10

‖A‖2 ≤ 11
10

‖H‖2 + C2‖∇H‖2.

Now consider two cases depending on whether ‖DH‖2 ≥ C3‖H‖2 or
not. If ‖DH‖2 ≥ C3‖H‖2 then (iii) gives ‖∇H‖ ≤ ‖DH‖ and then (33)
implies

8
10

‖A‖2 ≤
(

11
10C3

+ 1
)
‖DH‖2.

Combining this with (i) we get

8
10

‖A‖2 ≤ C1

(
11

10C3
+ 1
)
‖ψ‖‖A‖,

so

‖A‖ ≤ 10
8
C1

(
11

10C3
+ 1
)
‖ψ‖,

and the estimate asserted in Theorem 21 holds with

C =
10
8
C1

(
11

10C3
+ 1
)
.
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Now we go to the other case (which we expect to be the one that
actually occurs), when ‖DH‖2 ≤ C3‖H‖2. In this case (iii) gives

‖∇H‖2 ≤ C3‖H‖2

so (ii) implies
8
10

‖A‖2 ≤ 11
10

‖H‖2 + C2C3‖H‖2,

and (iv) implies

8
10

‖A‖2 ≤
(

11
10

+ C2C3

)
(C4k

2‖DH‖2 + 2‖E‖2
op ‖A‖2).

Hence if we define ε by 2ε2 1
11+C2C3

then if ‖E‖op ≤ ε we have (11
10 +

C2C3)‖η‖op ≤ 1
10 and we get, using (i),

7
10

‖A‖2 ≤ C4

10
k2‖DH‖2 ≤ C1C4

10
k2‖ψ‖‖A‖.

This is the desired estimate with C = C1C4
7 .

We now begin the proof of Proposition 23. The most important
of the four inequalities is (i), so we start with that. We begin with
a Lemma which expresses the fact that we can control the size of the
derivatives of the holomorphic sections sα.

Lemma 24. Under the hypotheses of Theorem 21, there is a con-
stant C5 such that for any integer j ≤ 4

(1) ∑
α

|∇jsα|2 ≤ C5

at each point of X;

(2)
‖∇jH‖L2 ≤ C5‖A‖.

(In the second item we have written ‖ ‖L2 to emphasise the distinc-
tion with the pointwise estimate in the first item. We empasise again
that in this Lemma we use the large metric ω̃ and the given connection
and metric on the line bundle Lk.)
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To prove (1) of Lemma 24, fix a point x ∈ X and an embedded
geodesic ball B ⊂ X centred at x. It is standard that there is a constant
K such that for any holomorphic section s of Lk

(34)
∣∣(∇js

)
x

∣∣2 ≤ K

∫
B
|s|2dµ.

It is clear that, under our hypothesis of R-bounded geometry, we can
choose a fixed constant K, depending only on R and ω0, and using a
ball of a some fixed radius, also depending only on R and ω0. Now
apply this to the sections sα, and sum over α to get∑

α

|(∇jsα)x|2 ≤ K

∫
B

∑
|sα|2dµ = K Vol (B) ≤ Constant.

To prove (2) of Lemma 24 we begin with a short digression. Let
Z be a compact complex Hermitian manifold, let E be a Hermitian
holomorphic vector bundle over Z and let P ⊂ Z be a differentiable
(real) submanifold. For each point p of P we can fix a small ball Bp in
Z, of radius ρ say, centred on p so that for any holomorphic section σ of
E the L2 norm of σ over Bp controls the size of the covariant derivative
∇jσ at p, just as in (34) above. If we now integrate over p in P we
obtain an estimate

(35) ‖∇jσ‖2
L2(P ) ≤ K ′‖σ‖2

L2(N),

where N is the ρ-neighbourhood of P in Z. It is clear that, provided the
data Z,P,E has bounded local geometry in a suitable sense, and if the
radius ρ is fixed, then the constant K ′ can be taken to be independent
of the particular manifolds and bundles involved.

To apply this in our situation, consider the manifold Z = X × X,
where X is X with the opposite complex structure. The connection
defined by the Hermitian metric on Lk → X makes Lk → X into a
holomorphic line bundle. Let E → Z be the tensor product of the lift
of Lk from the first factor and the dual of Lk on the second factor:
thus E is a holomorphic line bundle over Z. A holomorphic section s of
Lk → X defines a holomorphic section s̃ of the dual of Lk via the C∞

bundle isomorphism defined by the fibre metric. (This is essentially the
definition of the connection defined on a Hermitian holomorphic bun-
dle.) Thus for any Hermitian matrix A = (aαβ) we get a holomorphic
section

σA =
∑

aαβsα ⊗ s̃β
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of E over Z. We have

‖σA‖2
L2(Z) =

∑
αα′ββ′

aαβaα′β′〈sα, sα′〉〈sβ′ , sβ〉,

or in matrix notation

‖σA‖2
L2(Z) = Tr (A(I + E)(I + E∗)A∗).

Since ‖E‖op ≤ 1/10 we deduce, using (32), that

(35′) ‖σA‖L2(Z) ≤ 11/10‖A‖.

Now let P be the diagonal in X × X. The metric on Lk defines
a C∞ trivialisation of the bundle E over P and our function H =∑

αβ aαβ(sα, sβ) is just the restriction of the section σA to the diago-
nal, in this trivialisation. Taking a suitable neighbourhood N of the
diagonal, we can apply (34) and (35) to obtain

‖∇rH‖2
L2(X) ≤ K ′‖σA‖2

L2(N) ≤ K ′‖σA‖2
L2(Z) ≤ (11/10)2K ′‖A‖2.

Again it is clear that, in our situation, the constant K ′ can be chosen
to depend only on R and ω0. This completes the proof of Lemma 24.

We now give the key argument of this subsection, which establishes
the first inequality of Proposition 23. Recall from Proposition 20 that∑

‖∂ψα‖2 = ‖DH‖2.

Now we write
‖∂ψα‖2 = 〈ψα,∆Lkψα〉,

where ∆Lk is the Laplace-type operator ∂∗Lk∂Lk on sections of Lk. Thus
we have

‖∂Lkψα‖2 ≤ ‖∆Lkψα‖‖ψα‖,

and so

‖DH‖2 =
∑
α

‖∂ψα‖2 ≤
(∑

α

‖∆Lkψα‖2
∑
α

‖ψα‖2

)1/2

(36)

=

(∑
α

‖∆Lkψα‖2

)1/2

‖ψ‖.
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Now, for each α, we have

∆Lkψα = i∂
∗
∂RH(sα) = ∂

∗((DH).∂sα),

by (15). Using a schematic notation, we can write

∆Lkψα = ∇3H ∗ ∇sα + ∇2H ∗ ∇2sα,

where ∗ denotes certain natural bilinear algebraic bundle maps. Thus,
pointwise on X,

|∆Lkψα|2 ≤ c(|∇3H|2|∇sα|2 + |∇2H|2|∇2sα|2),

for a suitable universal constant c. Summing over α we get, using the
first part of Lemma 24,

∑
|∆Lkψα|2 ≤ c

(
|∇3H|

∑
α

|∇sα|2 + |∇2H|2
∑
α

|∇2sα|2
)

≤ cC5(|∇3H|2 + |∇2H|2).

Finally, integrating over X, we get

(37)
∑
α

‖∆ψα‖2 ≤ cC5‖∇3H‖2 + ‖∇2H‖2 ≤ 2cC2
5‖A‖2,

using the second part of Lemma 24. Now (36) and (37) give the first
inequality of Proposition 23 , with C1 =

√
2cC5.

We now go on to the second inequality of Proposition 23. Recall
that we have an equality in the Hilbert space Γ(Lk)N+1

σ = ψ + p

where σα =
∑

β aαβsβ and pα = RHsα. By Proposition 19, ψ and p are
orthogonal vectors in the Hilbert space so

(38) ‖σ‖2 = ‖ψ‖2 + ‖p‖2.

Now

‖σ‖2 =
∑
αβγ

aαβaαγ〈sβ, sγ〉 =
∑
αβ

|aαβ |2 +
∑
αβγ

aαβηβγaγα.
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By (32), the last term is bounded by ‖E‖op ‖A‖2 so, since ‖E‖op ≤ 1
10

by hypothesis, we deduce that

(39) ‖σ‖2 ≥ 9
10

‖A‖2.

Hence
9
10

‖A‖2 ≤ ‖ψ‖2 + ‖p‖2.

Now ‖p‖2 =
∑

α ‖RHsα‖2. Pointwise on X we have

|RHsα|2 = |Hsα − i∇H.∇sα|2 ≤ (1 + c)|Hsα|2 + (1 + c−1)|∇H.∇sα|2,

for any c > 0. We choose c = 1/10 so

|RHsα|2 ≤ 11
10

|H|2|sα|2 + 11|∇H|2|∇sα|2.

Now sum over α and use Lemma 24 to get∑
α

|RHsα|2 ≤ 11
10

|H|2 + 11K|∇H|2.

Integrating over X we get

‖p‖2 ≤ 11
10

‖H‖2 + 11K‖∇H‖2,

and, combined with (38) and (39), this gives the second inequality of
Proposition 23, with C2 = 11K.

To obtain the third inequality of Proposition 23 we use a Weitzenböck
formula. Recall that DH = ∂ξH where ξH is the Hamiltonian vector
field generated by H. For any vector field v on X we have

‖∇v‖2 = 2‖∂v‖2 +
∫
X

Ric (v, v),

where Ric denotes the Ricci tensor of the metric ω̃. On the other hand
|∇ξH | = |∇dH|, and the Bochner formula for closed 1-forms gives

‖∇dH‖2 = ‖∆H‖2 −
∫
X

Ric (ξH , ξH).

Combining these we get

‖∆H‖2 = 2‖DH‖2 + 2
∫
X

Ric (ξH , ξH) ≤ 2‖DH‖2 + c‖∇H‖2,
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for a suitable constant c depending on R. Now we have

‖∇H‖2 = 〈H,∆H〉 ≤ ‖H‖
√

2‖DH‖2 + c‖∇H‖2.

So if ‖DH‖2 ≤ ‖∇H‖2 we have

‖∇H‖2 ≤ ‖H‖
√

(2 + c)‖∇H‖2,

and hence ‖∇H‖ ≤
√

2 + c‖H‖. In other words

‖∇H‖2 ≤ max
(
‖DH‖2, (2 + c)‖H‖2

)
,

and the third item of Proposition 24 holds with C3 = 2 + c.

We come now to the fourth inequality of Proposition 23.

Lemma 25. Suppose Aut (X,L) is discrete. Then for any L > 1
there is a constant C, depending only on ω0 and L, such that if ω is any
metric in the same cohomology class as ω0 with Lω0 > ω > L−1ω0 and
if f is any real-valued function on X

‖f‖2 ≤ C‖Dωf‖2 +
1
V

(∫
X
fdµω

)2

,

where Dω is the operator defined by the metric ω and the norms are the
L2 norms defined by ω.

By our assumption on the automorphism group of (X,L), the kernels
of the operators Dω,Dω0 , acting on the complex-valued functions on X,
consist of the constant functions. Thus an inequality of the kind stated
in the Lemma with some constant, depending on ω, is standard. The
point of the Lemma is that this constant can be controlled in terms of
ω0 and L. In the proof we repeatedly use the fact that the L2 norms of
any tensor field on X defined by the two metrics ω, ω0 are equivalent.

Let U be the finite-dimensional space of holomorphic vector fields
on X. For any metric ω there is a constant cω such that

(40) ‖ξ‖2 ≤ cω‖∂ξ‖2 + ‖πωξ‖2,

for any vector field ξ on X, where πω is the L2- projection to U . The
constant cω can be given by

cω = max
ξ

(
minv∈U

‖ξ − v‖2

‖∂ξ‖2

)
.
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Since the L2 norms defined by the two metrics ω, ω0 are equivalent
we see from this characterisation that we can replace cω in (40) by a
constant c1 depending only on L and ω0. By the same argument, there
is a constant c2, depending only on L and ω0, such that

(41) ‖f‖2 ≤ c2‖∇f‖2 +
1
V

(∫
X
f dµω

)2

,

for any real-valued function f on X. In the case when U = 0 the
inequalities (40), (41) immediately give the desired result, since

‖ξf‖2 = ‖∇f‖2.

To handle the case when U �= 0 we observe that for any v in U the
contraction i0,1v (ω) is a ∂-closed (0, 1)-form, defining a class in H0,1(X),
and this class depends only on v and the cohomology class of ω. So we
can write

i0,1v (ω) = hω,v + ∂ψω,v , i
0,1
v (ω0) = hω0,v + ∂ψω0,v

where hω,v, hω0,v are the harmonic representatives of the same coho-
mology class with respect to the metrics ω, ω0. The hypothesis that
Aut (X,L) is discrete implies that hω0,v is never zero, for nonzero v,
since if it were ψω0,v would lie in the kernel of Dω0 . Since U is finite-
dimensional we have an inequality

‖v‖L2(ω0) ≤ c‖hω0,v‖L2(ω0),

for all v ∈ U . Now the harmonic representative hω0,v minimises the
L2(ω0) norm over the cohomology class so

‖hω0,v‖L2(ω0) ≤ ‖hω‖L2(ω0).

Using again the fact that the L2 norms are equivalent, we see that there
is a constant c3, depending only on ω0 and L, such that

‖v‖L2(ω) ≤ c3‖hω,v‖L2(ω).

Thus
‖∂ψω,v‖2 = ‖v‖2 − ‖hω,v‖2 ≤ (1 − c−2

3 )‖v‖2,

where from here on all norms are those defined by ω. Now the harmonic
representative is L2-orthogonal to ∂f . for any function f on X. Thus

〈ξf , u〉 = 〈∂f, ∂ψω,v〉 ≤ (1 − c−2
3 )1/2‖ξf‖‖v‖.
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It follows that
‖πωξf‖ ≤ (1 − c23)

1/2‖ξf‖,
and so

‖ξf‖2 ≤ c1‖∂ξf‖2 + (1 − c−2
3 )‖ξf‖2,

and thus, by (40),

‖ξf‖2 ≤ c1c
2
3‖∂ξf‖2 = c1c

2
3‖Df‖2.

Then (41) gives the desired result, with C = c1c2c
2
3.

We proceed now to the proof of item (iv) of Proposition 23. Con-
sideration of the scaling behaviour of the various terms of the result of
Lemma 25 shows that if ω̃ is R-bounded

‖f‖2 ≤ Ck2‖Dω̃f‖2 +
1

knV

(∫
X
f dµω̃

)2

,

where the constant C depends only on R and ω0, and all norms are the
L2 norms defined by the large metric ω̃. In particular, this holds for the
function H;

(43) ‖H‖2 ≤ Ck2‖Dω̃H‖2 +
1

knV

(∫
X
H dµω̃

)2

.

The final step is to control the term involving the integral of H. Here
we use the fact that the matrix A = (aαβ) is trace-free. We have∫

X
H dµω̃ =

∑
aαβ〈sα, sβ〉 =

∑
aαβ

(
V

N + 1
δαβ + ηαβ

)
=
∑

aαβηαβ .

Thus, using (32),

(44)
∣∣∣∣∫
X
H dµω̃

∣∣∣∣2 ≤ (N + 1)‖E‖2
op‖A‖2.

Then (43) and (44) give

‖H‖2 ≤ Ck2‖Dω̃H‖2 +
N + 1
V kn

‖E‖2
op ‖A‖2,

which implies the desired result, since

N + 1
V kn

→ 1

as k → ∞.
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4. Synthesis

4.1 Construction of approximate solutions

We now use the asymptotic results of Catlin, Lu and Zelditch to constuct
“nearly balanced” projective embeddings. Let χ(k) = χ(X,Lk) be the
Hilbert polynomial of (X,L). Recall that for any metric ω in the Kähler
class 2πc1(L), ρk(ω) is the function on X given by

∑
α |sα|2 where sα is

an orthonormal basis of H0(Lk).

Theorem 26. Suppose that Aut (X,L) is discrete and that ω∞ is a
metric of constant scalar curvature in the Kähler class c1(L). There are
functions η1, η2 . . . , on X such that for any q > 0 there is a constant Cq
with the property that if ω(k) is the form

ω(k) = ω∞ + i∂∂

 q∑
j=1

ηjk
−j


(which is a Kähler form for large enough k) then

ρk(ω(k)) = V −1χ(k) + σq(k)

where
‖σq(k)‖Cr+2 ≤ Cqk

n−q−1

for all large enough k.

This is a straightforward consequence of the Catlin-Lu-Zelditch re-
sults. Recall that

ρk(ω) = kn +A1(ω)kn−1 + · · · +Aq(ω)kn−q +O(kn−q−1),

where the Ap are polynomials in the curvature tensor of ω and its co-
variant derivatives and the error term is uniformly bounded in Cr+2

for all metrics ω in a bounded family. We can plainly make a Taylor
expansion of the coefficients

(45) Ap(ω + i∂∂η) = Ap(ω) +
q∑
l=1

Ap,l(η) +O
(
‖η‖q+1

Cs

)
where Ap,l(η) is a polynomial of degree l, depending on ω, in η and its
covariant derivatives and s is sufficiently large (depending on r and q).
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Thus, for any η1, . . . , ηq, we can write

(46) Ap

ω + i∂∂

 q∑
j=1

ηjk
−j

 = Ap(ω) +
q∑
l=1

bp,lk
−l +O(k−q−1),

where the bp,l are certain multilinear expressions in the ηj , and their
covariant derivatives, beginning with

bp,1 = Ap,1(η1).

Thus we get

(47) ρk

ω∞ + i∂∂

 q∑
j=1

ηjk
−j


=

q∑
p=0

kn−pap(ω∞) +
r∑

p,l=1

bp,lk
n−p−l +O(kn−q−1).

We now simply choose the ηj so that the terms in the right hand side of
(47) are constant on X. Suppose, inductively, that we have chosen the
ηj for j ≤ p so that the coefficients of kn−j are constants for j ≤ p.The
new term ηp+1 appears only once in the coefficient of kn−p−1, in the
form A1,1(ηp+1). So we have to solve a linear equation for a function
ηp+1 and a constant cp+1,

(48) A1,1(ηp+1) − cp+1 = Pp

where Pp is determined by the previous terms ηj for j ≤ p. The crucial
fact we need now is that

(49) A1,1(η) = D∗D(η).

That is, the operator D∗D gives the first variation of the scalar cur-
vature. This is an old result of Lichnerowicz [7]. In the symplectic
framework of [3], where one fixes the symplectic form on X and varies
the complex structure, it appears as a consequence of the fact that the
scalar curvature is a moment map for the action of the symplectomor-
phism group. In our current framework, with a fixed complex structure
and varying Kähler form, the formula in the general case appears more
complicated: for any Kähler metric ω′

S(ω′ + i∂∂η) = S(ω′) + D∗D(η) + ∇η.∇S +O(η2).
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The term ∇η.∇S appears from the infinitesimal diffeomorphism one
needs to apply to pass between the two frameworks. But in our situ-
ation the scalar curvature of ω is constant by hypothesis, so this term
drops out and we just arrive at (49). Now our hypothesis on the auto-
morphisms of (X,L) means that the kernel of the self-adjoint operator
D∗D consists only of the constants (Lemma 12) so, by the Fredholm
alternative, we can solve Equation (48) and thus complete the proof of
Theorem 26.

Now fix a positive integer q and switch attention to the rescaled
metrics ω̃(k) = kω(k). The conclusion of Theorem 26 rescales to the
condition

ρk(ω̃(k)) =
χ(k)
V kn

(1 + εk),

where εk = O(k−q−1) in Cr+2. Let h be the metric on Lk corresponding
to ω̃(k). Following the discussion in Section 2, we define a new metric
h′ on Lk by h′ = eukh where euk = (1+εk)−1: this gives a Kähler metric

ω̃′(k) = ω̃(k) + i∂∂uk on X. If we pick any orthonormal basis
√

χ(k)
V kn sα

for H0(Lk) with respect to the metrics h, ω̃(k) we have∑
α

|sα|2h′ = 1,

and the metric ω̃′(k) is induced from the Fubini-Study metric by the
embedding of X in CPN given by the sections sα. Thus we are in the
situation considered in Section 3, with a point, z say, in the symplectic
quotient Z = H0//G. For any trace-free Hermitian matrix B ∈ isu(N+
1) we can use the action of SL(N +1,C) on Z to get another point eBz
of the symplectic quotient, which gives another Kähler metric ω̃B on X.
We let EB be the matrix (ηαβ) considered in Section 3, for this Kähler
metric. We take the reference metric ω0 to be ω∞.

Proposition 27. If ‖B‖op ≤ 1/10 then:

(1) There is a constant c such that if

‖B‖op + ‖ε‖Cr+2 + k−1 ≤ cR

then the metrics ω̃B are R-bounded.

(2) There is a constant c′ such that

‖EB‖op ≤ c′(‖B‖op + ‖ε‖C2).
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We now prove Proposition 27. The whole construction is invariant
under the action of SU(N + 1) (the choice of our original orthonormal
basis sα), so we may assume that B is a diagonal matrix B = diag(λα).
By definition the metric ω̃B is ω̃′(k) + i∂∂v where

(50) e−v =
∑

e2λα |sα|2h′ = 1 +
∑

(e2λα − 1)|sα|2 + εk.

Clearly the metric ω̃(k) differs from ω̃ in Cr+2 norm by O(k−1). It is
also clear, using (50), that the Cr+2 norm of v is controlled by that of εk
and by max|λα|‖B‖op. More precisely, assuming ‖B‖op ≤ 1/10 (say),
we have an inequality of the form

(51) ‖v‖Cr+2 ≤ c′(‖B‖op + ‖εk‖Cr+2),

and this gives part (1) of the Proposition. For part (2), recall that
E = (ηαβ) where

(52) ηαβ =
∫
X
F (sα, sβ) ω̃(k)n

and where F is the function on X

(53) F =
(
eλα+λβ

(ω̃k + i∂∂v)n

ω̃nk
e−v − 1

)
.

As in part (1), the C0 norm of F is bounded by a multiple of ‖B‖op +
‖ε‖C2 . We need to recall an elementary fact.

Lemma 28. Let V → Y be a Hermitian vector bundle over a mea-
sure space Y and let sα, α = 0, . . . N be an orthornormal set of sections
of V with respect to the usual L2 inner product. If F is a bounded
function on Y and we define a matrix E = (ηαβ) by

ηαβ =
∫
Y
F (sα, sβ) dµ,

then ‖E‖op ≤ ‖F‖L∞.

The proof of the Lemma is simply to observe that E is the matrix
of the operator π ◦MF ◦ ι where MF : L2 → L2 is multiplication by F ,
π is the projection to the span of the sα and ι is the inclusion of this
span in L2.

Applying this Lemma to our situation we see that

‖E‖op ≤ ‖F‖C0 ≤ c′(‖B‖op + ‖ε‖C2),

and the proof of Proposition 27 is complete.
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4.2 Proofs of the main theorems

The proofs of our main Theorems are now just a matter of putting
together the results of the previous sections.

Proof of Theorem 1. This follows from the uniqueness property
discussed in Section 2.2. Suppose that sα and s′α are two bases of
H0(Lk) such that the two embeddings ιk, ι′k of X in CPN are balanced.
After suitable rescaling, we may suppose that

s0 ∧ · · · ∧ sN = s′0 ∧ · · · ∧ s′N ∈ ΛN+1H0(Lk).

We have seen that the data (X,Lk, sα) defines a point z in µ−1
SU(0) ⊂ Z,

and likewise the data (X,Lk, s′α) define a point z′. By the uniquess result
the points z, z′ lie in the same SU(N+1) orbit in Z. After changing the
s′α by an element of SU(N+1) we may suppose that z = z′. This means
that there is a bundle map F̂ , covering a diffeomeorphism F of X, which
takes the sections sα to the s′α. Now, since the sα and s′α are holomorphic
sections, (F̂ , F ) defines a holomorphic automorphism of (X,Lk). Let Γk
be the group of holomorphic automorphisms of (X,Lk) which act with
determinant 1 on H0(Lk). This is the same as the stabiliser of the point
z under the SL(N + 1) action. Then Γk maps onto Aut (X,Lk) with
finite kernel while Aut (X,L) maps to Aut (X,Lk) with finite kernel
and cokernel. Thus the hypothesis that Aut (X,L) is discrete implies
that Γk is also discrete. By the discussion in Section 2.2, Γk is also the
stabiliser of z under the SU(N + 1) action and it follows that there is a
unitary automorphism of CN+1 taking the sα to the s′α, as required.

Proof of Theorem 2. This is an immediate consequence of the Catlin-
Lu-Zelditch result, Proposition 6. Suppose that the balanced metrics
ωk converge to ω∞. Proposition 6 gives

(54)
∥∥∥∥ρk(ωk) − kn − S(ωk)

2π
kn−1

∥∥∥∥
C0

≤ ckn−2,

for a fixed constant c (since the metrics ωk converge and are a fortiori
bounded). By hypothesis,

ρk(ωk) =
χ(k)
V

.

Let S0 be the average value of S(ωk), so S(ωk) − S0 has integral zero.
Then (54) implies

‖S(ωk) − S0‖C0 = O(k−1),
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and hence S(ω∞) = limS(ωk) = S0.

Proof of Theorem 3. This is, of course, the main result of the paper
and it may be helpful to the reader if we pause to give a summary of
the main line of the argument, before going to the details. Starting
with a constant scalar curvature metric, we use the formal power series
solution, truncated after a suitable number of terms, to get an approx-
imately balanced metric. We then shift to the finite-dimensional point
of view, so that the search for a balanced metric close to this approxi-
mate solution is the search for a solution to an equation for a matrix.
This equation fits into the general moment map set-up of Section 2.2
and we need to show that we can find a solution by using the gradient
flow method of that section. The crux of the argument is to show that
the approximate solution is a sufficiently good approximation for us to
be able to control this gradient flow, and this is underpinned by the
estimates on the linearised problem that we have obtained.

Now for the details: fix any integer r > 0—we will prove that there
is a sequence of balanced metrics converging in Cr. (It follows, by
the uniqueness, that the sequence actually converges in C∞.) Fix an
arbitrary R > 0. We choose a value of q such that q > n

2 + 3 + r.
We first apply Proposition 27, which in turn hinges on the previous
Theorem 26. This gives us metrics ω̃′(k) with ρk(ω̃′(k)) = χ(k)

V kn (1 + εk),
with ‖ε‖Cr+2 = O(k−q−1). We choose k so large that ‖εk‖Cr+2 + k−1 ≤
cR
2 , where c is the constant of Proposition 27. Then Proposition 27 tells

us that if ‖B‖op ≤ min(cR/2, 1/10) then the metric ω̃B is R-bounded.
Under this hypothesis we can apply Theorem 21, which tells us that
Λ(ω̃B) ≤ λ where we take λ = C2k4 for the constant C of Theorem 21.
Now we apply Proposition 17. We take the constant δ of Proposition 17
to be min(cR/2, 1/10). Since we obviously have

‖B‖op ≤ ‖B‖,

we know that ‖B‖ ≤ δ implies Λ(ω̃B) ≤ λ. Now the other ingredient
entering into Proposition 17 is |ν(z0)|, which in our context is ‖E‖. We
have

(55) ‖E‖ ≤
√
N + 1‖E‖op

and since N is O(kn) we see that ‖E‖ ≤ C ′kn/2−q−1. Thus we can apply
Proposition 17 so long as

(56) λC ′kn/2−q−1 = C2C ′kn/2−q+3 ≤ δ.
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Our choice of r with q > n
2 + 3 implies that this holds for large enough

k and we obtain a solution to our problem with

(57) ‖B‖op ≤ ‖B‖ ≤ C2C ′kn/2−q+3.

The inequality (51) then shows that the metric ω̃k which corresponds to
this solution differs from ω̃∞ in Cr by O(kn/2−q+3). Finally we rescale
back to metrics ωk = k−1ω̃k. From the scaling behaviour of the norms,
ωk differs from ω∞ by O(kn/2+3+r−q) in the Cr norm defined by the
fixed metric ω∞. Since q > n/2 + 3 + r the metrics ωk converge to ω∞
in Cr as k → ∞.

4.3 Discussion

The success of our proof of Theorem 3 depends crucially on the fact that
we have, thanks to Catlin, Lu and Zelditch, a full asymptotic expansion
of the “density of states function” ρk. This means that it does not
matter precisely what power of k we have in, for example, the crucial
inequality of Corollary 22. Whatever power we have we can always
increase q—the number of terms in the formal series solution that we
use—to compensate. If we only knew the weaker result that

(58) ρk = kn +
S

2π
kn−1 + o(kn−1),

our proof, as it stands, would fail. To push through the proof one would
need to improve the estimates. There are two main issues here. First,
the power of k appearing in Corollary 22, and second the comparison
between the Hilbert-Schmidt and operator norms. For each point in
our space Z we can define a number Λop in the same manner as Λ
but using the norm ‖ ‖op on the Lie algebra su(N + 1) in place of the
Hilbert-Schmidt norm;

Λop = min
‖Qξ‖op

‖ξ‖op
.

Then, with some modification, our scheme of proof would allow to de-
duce the existence of balanced metrics from the weaker result (58) pro-
vided we knew that Λop is O(k). What we have in fact shown is merely
that Λ is O(k4), and the only way we have of getting information about
Λop is the rather trivial bound Λop ≤ ckn/2Λ ≤ c′kn/2+4. It would
be interesting to know what is the real asymptotic behaviour of Λ and
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Λop . The author guesses that in fact Λop ∼ Λ = O(k). In this direction
we point out that one can refine the argument we used to prove Theo-
rem 21, to obtain a modest improvement, as follows. For any p > 0 we
can write

‖∂Lkψα‖2 ≤ ‖ψα‖2−1/p‖∆p
Lkψα‖1/p.

We can estimate the norm of the ∆pψα in terms of H and then A, much
as before. Summing over α, using Proposition 20 (extended to cover
arbitrarily high derivatives) and Holders inequality, we get

‖DH‖2 ≤ const. ‖ψ‖2−1/p‖A‖1/p.

And from this we deduce, in place of Theorem 21, that

‖A‖ ≤ const.k2p/2p−1‖ψ‖,

or in other words Λ ≤ const.k4p/2p−1. Thus, taking p sufficiently large,
we have Λ = O(k2+ε) for arbitrarily small ε > 0.
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