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A CONSTRUCTION OF NEW FAMILIES OF
MINIMAL LAGRANGIAN SUBMANIFOLDS VIA

TORUS ACTIONS

EDWARD GOLDSTEIN

Abstract
In this paper we investigate connections between minimal Lagrangian sub-
manifolds and holomorphic vector fields in Kähler manifolds. Our main re-
sult is: Let M2n (n ≥ 2) be a Kähler-Einstein manifold with positive scalar
curvature with an effective, structure-preserving action by an n-torus T n.
Then precisely one regular orbit L of the T n-action is a minimal Lagrangian
submanifold of M . Moreover there is an (n − 1)-torus T n−1 ⊂ T n and a
sequence of non-flat immersed minimal Lagrangian tori Lk in M such that
all Lk are invariant under T n−1 and Lk locally converge to L (in particular
the supremum of the sectional curvatures of Lk and the distance between L
and Lk go to 0 as k �→ ∞). This result is new even for M = CP n for n ≥ 3.

1. Introduction

This paper constitutes a part of author’s program in trying to un-
derstand the geometry of minimal Lagrangian submanifolds in Kähler-
Einstein manifolds. Kähler-Einstein manifolds are just Kähler manifolds
whose Ricci form is proportional to their Kähler form. The existence
theory of Kähler-Einstein metrics on complex manifolds was one of the
major recent achievements in complex differential geometry. One should
mention the work of Aubin [2] and Yau [18] for the case of negative scalar
curvature, Yau’s resolution of the Calabi conjecture and the existence
of Calabi-Yau metrics [18] and the work of Tian [17] on the existence of
Kähler-Einstein metrics with positive scalar curvature.

On a given Kähler-Einstein manifold M one has a class of minimal
Lagrangian submanifolds of M . Those are just Lagrangian submanifolds
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of M , which in addition are minimal submanifolds of M , i.e., their mean
curvature vector field vanishes. Compact minimal Lagrangian subman-
ifolds of M are just the critical points of a natural variational problem,
namely minimal Lagrangian submanifolds of M are the critical points
for the volume functional on the space of Lagrangian submanifolds in
M (see [15]).

The geometry of minimal Lagrangian submanifolds in a given Kähler-
Einstein manifold M and the structure of their moduli-space depends
strongly on the sign of the scalar curvature s of M . If the scalar cur-
vature s of M is zero then M is a Calabi-Yau manifold and minimal
Lagrangian submanifolds of M are just the Special Lagrangian subman-
ifolds of M (see [16]). The Special Lagrangian submanifolds are cali-
brated and they come in smooth, finite-dimensional families. Special
Lagrangian submanifolds have recently attracted a lot of attention due
to their role in the Strominger-Yau-Zaslow mirror symmetry conjecture
[16].

If the scalar curvature s of M is negative then minimal Lagrangian
submanifolds of M have interesting strict volume minimization proper-
ties which we hope to explore in a forthcoming paper. In this paper
we will mostly be interested in the case when the scalar curvature of
M is positive. Our aim is to understand certain global properties that
minimal Lagrangian submanifolds possess and to construct some new
examples of minimal Lagrangian submanifolds. The main tools in our
investigation will be holomorphic vector fields in the vicinity of minimal
Lagrangian submanifolds on M (Section 2) and holomorphic isometries
of M (Sections 3 and 4). Our main result is a construction of new
families of minimal Lagrangian submanifolds in toric Kähler-Einstein
manifolds (Theorem 4.3.1 in Section 4). The paper is organized as fol-
lows:

In Section 2 we study some global connections between minimal
Lagrangian submanifolds and holomorphic vector fields in their vicinity
in a Kähler manifold M . In Section 2.1 we present some basic properties
of minimal Lagrangian submanifolds and holomorphic vector fields used
throughout the paper. In Section 2.2 we prove the following Theorem:

Theorem 1. Let N be a Kähler manifold, L be a compact oriented
immersed minimal Lagrangian submanifold of N without boundary and
V be a holomorphic vector field defined in a neighbourhood of L in N .
Then if div(V ) is the holomorphic divergence of V , we have∫

L
div(V ) = 0.
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We also give a simple application of this theorem to minimal La-
grangian submanifolds in CPn (see Corollary 2.2.1). While this theorem
is not directly relevant to the main result of the paper, we nevertheless
include it for its own interest.

In Sections 3 and 4 we use structure-preserving torus actions on
Kähler-Einstein manifolds with positive scalar curvature to construct
invariant minimal Lagrangian submanifolds. Our strategy for doing
this is as follows:

We begin with Section 3.1 reviewing the geometry of the total space
of the canonical bundle K(M) of a Kähler-Einstein manifold M with
positive scalar curvature. We will see that K(M) is naturally a Calabi-
Yau manifold. Moreover there is a correspondence between minimal
Lagrangian submanifolds of M and Special Lagrangian submanifolds of
K(M), invariant under a certain radial vector field Y on K(M) (see
Lemmas 3.1.1 and 3.1.2 of Section 3.1). Thus we recast the problem
of constructing minimal Lagrangian submanifolds of M to a problem of
constructing Special Lagrangian submanifolds of K(M), invariant under
the Y -flow.

In Section 3.2 we suppose that we have a structure-preserving action
by a k-dimensional torus T k on M . We will be interested in finding the
T -invariant minimal Lagrangian submanifolds of M . Now the T k-action
on M induces a T k-action on K(M). We will see that there are canonical
moment maps µ on M and µ′ on K(M) for these actions. Let Z ⊂ M
be the zero set of µ and π : K(M) → M be the projection. Then the
zero set of µ′ on K(M) is Z ′ = π−1(Z). Suppose that T acts freely on
Z ′′ = Z ′−Z (here we view Z ⊂ M and M is the zero section of K(M)).
Then we have a symplectic reduction Q = Z ′′/T . We will see that Q
has a natural holomorphic volume form ϕ′ and a Kähler metric ω′ and
Special Lagrangian submanifolds of (Q, ω′, ϕ′) lift to T -invariant Special
Lagrangian (SLag) submanifolds of K(M). Also the vector field Y is
tangent to Z ′′ and it projects to a vector field Y ′ on Q. Thus we reduced
the problem of finding T -invariant minimal Lagrangian submanifolds of
M to a problem of finding SLag submanifolds of Q, invariant under the
flow of Y ′.

In Section 3.3 we assume that k = n−1. In that case Q had complex
dimension 2. Let X ⊂ Z ′′ be the set of elements of Z ′′ of unit length
in K(M) and S = X/T ⊂ Q. Then S is a compact, 3-dimensional
submanifold of Q. We will see that there is a non-vanishing vector field
W on S such that there is a correspondence between Y ′-invariant SLag
submanifolds of Q and the trajectories of the W -flow on S.
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Next we would like to develop a criterion to see that Tn−1 acts
freely on Z ′′. We also would like to understand the periodic orbits of
the vector field W on S (to construct immersed minimal Lagrangian
tori on M). We can do it if we assume that M is a toric K-E manifold
(see Section 4). In this case we can prove the following theorem, which
is the main theorem of this paper:

Theorem 2. Let M2n (n ≥ 2) be a Kähler-Einstein manifold
with positive scalar curvature with an effective structure-preserving Tn-
action. Then precisely one regular orbit L of the Tn-action is a mini-
mal Lagrangian submanifold of M . Moreover there is an (n − 1)-torus
Tn−1 ⊂ Tn and a sequence of non-flat immersed Tn−1-invariant min-
imal Lagrangian tori Lk ⊂ M such that Lk locally converge to L (in
particular the supremum of the sectional curvatures of Lk and the dis-
tance between L and Lk go to 0 as k → ∞).

Here by local convergence we mean the following: The distance be-
tween Lk and L goes to 0 as k → ∞. Also for any point l ∈ L we can
choose a neighbourhood Ul of l in M such that for k large enough Lk

⋂
Ul

is a finite union
⋃

Lj
k of submanifolds of the form Lj

k = exp(vj
k)(L

⋂
Ul),

where vj
k is a normal vector field to L on L

⋂
Ul. Moreover any subse-

quence vj
k converges to 0 in the C∞ topology as k → ∞.

This result is new even for M = CPn for n ≥ 3. For n = 2 ex-
amples of non-flat S1-invariant immersed minimal Lagrangian tori in
CP 2 were constructed in [5] and in [10] using harmonic maps. After
our paper was completed D. Joyce published a preprint [11], in which
he in particular constructs Special Lagrangian cones in C

n+1, invariant
under a linear action of Tn−1. Those cones project to non-flat immersed
minimal Lagrangian tori in CPn, invariant under Tn−1.

Acknowledgments. This paper was a part of the author’s work
towards his Ph.D. at MIT. He wants to thank his advisor, Tom Mrowka,
for continuing support.

2. Global connections between holomorphic vector fields and
minimal Lagrangian submanifolds

Let (M2n, ω) be a Kähler manifold. In this section we will establish
a global relation between minimal Lagrangian submanifolds of M and
holomorphic vector fields in their vicinity on M (Theorem 2.2.1 of Sec-
tion 2.2). We begin however with Section 2.1, presenting the basic facts
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needed throughout the paper:

2.1 Basic properties

Let (M2n, ω) be a Kähler manifold. In this section we will discuss
holomorphic vector fields on M and present some basic facts on minimal
Lagrangian submanifolds of M . The results of this section are essentially
known, though they are often stated in different terms in the literature.

First we discuss holomorphic vector fields on M . Let V be a vector
field defined on some open subset U of M . The following proposition is
elementary and well known (see [12], Proposition 4.1):

Proposition 2.1.1. The following conditions are equivalent:

1) The flow of V commutes with the complex structure J on M .

2) For any point m ∈ U the endomorphism X �→ ∇XV of TmM is
J-linear on TmM .

3) The vector field V − iJV gives a holomorphic section of T (1,0)U .

A vector field V satisfying the conditions of Proposition 2.1.1 is
called a holomorphic vector field. Let V be a holomorphic vector field
on some open subset U of M and let m be a point in U . Since the
endomorphism X → ∇XV is J-linear on TmM we can define

div(V ) = traceC(X → ∇XV ).(1)

Let f = Re f + iIm f be a holomorphic function on U . From Con-
dition 3) of Proposition 2.1.1 we deduce that the vector field fV =
Re fV + Im fJV is a holomorphic vector field on U . Moreover one
easily computes that

div(fV ) = fdiv(V ) + V (f).(2)

Let K(M) be the canonical bundle of M , i.e., K(M) = Λ(n,0)T ∗M , the
bundle of (n, 0)-forms on M . Let ϕ be a section of K(M) over an open
subset U of M (not necessarily a holomorphic section). Thus ϕ is an
(n, 0)-form on U .

Proposition 2.1.2. Let V be a holomorphic vector field on U .
Then

div(V )ϕ = LV ϕ −∇V ϕ.



238 edward goldstein

Proof. Let m ∈ U . Pick a unitary basis X1, . . . , Xn of TmM (here
TmM is viewed as Hermitian vector space with the complex structure
J). Extend Xi to a unitary frame in a neighbourhood of m. Then

LV ϕ(X1, . . . , Xn) = V (ϕ(X1, . . . , Xn))(3)
− Σϕ(X1, . . . , [V, Xn], . . . , Xn)

and

∇V ϕ(X1, . . . , Xn) = V (ϕ(X1, . . . , Xn))(4)
− Σϕ(X1, . . . ,∇V Xi, . . . , Xn).

Now ∇V Xi = [V, Xi] + ∇XiV . We plug this into (4) and subtract (4)
from (3) to deduce the statement of the proposition. q.e.d.

The following result is due to A. Futaki [6] and we include its proof
for reader’s convenience:

Lemma 2.1.1. Let (M2n, ω) be a Kähler-Einstein manifold with
non-zero scalar curvature s and let t = s/2n. Let V be a holomorphic
infinitesimal isometry defined on some neighbourhood U of M . Then the
function µ = it−1div(V ) is a moment map for the V -action on (M, ω).

Proof. We need to prove that dµ = iV ω. We shall prove it at a point
m such that V (m) �= 0. Pick an element ϕ of K(M) over m which has
unit length. Since the flow of V is given by holomorphic isometries we
can extend ϕ to a unit length section of K(M) invariant under the V -
flow on some neighbourhood U of m. The section ϕ defines a connection
1-form ξ on U , given by ξ ⊗ ϕ = ∇ϕ. The Einstein condition tells that

idξ = tω.(5)

Since ϕ is V -invariant we deduce from Proposition 2.1.2 that

div(V ) = −ξ(V ).(6)

Also since ϕ is V -invariant and the flow of V is given by isometries, we
deduce that ξ is also V -invariant. Thus

0 = LV ξ = d(ξ(V )) + iV dξ

= −d(div(V )) − itiV ω by (5) and (6)

and the lemma follows. q.e.d.
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Next we discuss minimal Lagrangian submanifolds on M . Let L be
an oriented Lagrangian submanifold of M . For any point l ∈ L there is
a unique element κl of K(M) over l which restricts to the volume form
on L (in the induced metric from M). Various kl give rise to a section

κL : L → K(M).(7)

The section κL has constant length
√

2n over L and it defines a connec-
tion 1-form ξ on L for the connection on K(M) over L by the condition
ξ ⊗ κL = ∇κL. Here ∇ is the connection on K(M), induced from the
Levi-Civita connection on M . Since κL has constant length, ξ is an
imaginary valued 1-form on L.

Let h be the trace of the second fundamental form of L (the mean
curvature vector field of L). So h is a section of the normal bundle of L
in M and we have a corresponding 1-form σ = ihω on L. The following
fact is well-known, although it is often stated a bit differently in the
literature (see [13] and [15]):

Lemma 2.1.2. σ = iξ.

Proof. Let l ∈ L and e be some vector in the tangent space to L at l.
To compute ξ(e) we need to compute ∇eκL. Take an orthonormal frame
(vj) of TlL and extend it to an orthonormal frame in a neighbourhood U
of l in L such that ∇Lvi = 0 at l (here ∇L is the Levi-Civita connection
of L). We get that

∇eκL = κL · ∇eκL(v1, . . . , vn)
= κL(e(κL(v1, . . . , vn)) − ΣκL(v1, . . . ,∇evj , . . . , vn)).

Now e(κL(v1, . . . , vn)) = 0. Also clearly

κL(v1, . . . ,∇evj , . . . , vn) = i〈∇evj , Jvj〉
= i〈∇vje, Jvj〉 = i〈−e, J(∇vjvj)〉.

Here J is the complex structure on M . Thus we get that

∇eκL = −i〈e, Jh〉κL = −iσ(e)κl.

Here h = Σ∇vjvj is the trace of the second fundamental form of L.
Thus σ = iξ. q.e.d.

Thus L is minimal (i.e., h = 0) iff κL is parallel over L.



240 edward goldstein

2.2 Integral of the divergence

We now can state and prove the main theorem of Section 2:

Theorem 2.2.1. Let M be a Kähler manifold, L be a compact ori-
ented immersed minimal Lagrangian submanifold of M without bound-
ary and V be a holomorphic vector field defined in a neighbourhood of
L in M . Then

∫
L

div(V ) = 0.

Proof. Let L be a minimal Lagrangian submanifold of M and V be
a holomorphic vector field defined in a neighbourhood of L in M . Let
κL be a section of K(M) over L as in Equation (7). Since κL restricts
to the volume form on L we have

∫
L div(V ) =

∫
L div(V )κL. Let

φ = iV κL|L.(8)

φ is an (n − 1)-form on L. We claim that

dφ = div(V )κL|L.(9)

Thus the assertion of the theorem will follow. To prove (9) let l be
a point in L. By Lemma 2.1.2 we have that for any element w in
the tangent bundle to L, ∇wκL = 0. We can extend κL to a section
κ′

L of K(M) over some neighbourhood Z of l in M such that for any
element w in the normal bundle of L to M in Z

⋂
L we’ll have ∇wκ′

L =
0. Thus we’ll have ∇κ′

L = 0 at every point in L
⋂

Z (here ∇ is the
covariant derivative on M). This implies that dκ′

L = 0 at every point
in L

⋂
Z (here again the exterior derivative d is on M). Now we use

Proposition 2.1.2 for V and ϕ = κ′
L. We deduce that

div(V )κ′
L = LV κ′

L

at every point in L
⋂

Z. Also LV κ′
L = d(iV κL) + iV (dκL) and dκ′

L = 0
along L. Thus we get

div(V )κL = dφ.

q.e.d.

Let us derive a simple corollary of Theorem 2.2.1:
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Corollary 2.2.1. Let L be a compact immersed oriented minimal
Lagrangian submanifold of CPn and let (z1, . . . , zn+1) be the homoge-
neous coordinates on CPn. Then we can’t have |z1| > |z2| at all points
of L.

Proof. Consider the following circle action on CPn:

eiθ(z1, . . . , zn+1) = (eiθz1, e
−iθz2, z3, . . . , zn+1).

Let V be the vector field on CPn generating this action. CPn is Kähler-
Einstein with scalar curvature 2n, hence by Lemma 2.1.1 the function
idiv(V ) is a moment map for the S1-action on CPn. We have computed
in [7] that

idiv(V ) = (|z1|2 − |z2|2)/Σ|zi|2.

In fact we can also deduce this from Theorem 2.2.1. Indeed the map
f = (|z1|2 − |z2|2)/Σ|zi|2 is a moment map for the S1-action on CPn,
hence it differs from idiv(V ) by a constant c. Also the submanifold
L′ = ((z1, . . . , zn+1)||z1| = |zj |) is a minimal Lagrangian submanifold
of CPn (this is the Clifford torus, see [13]). Hence by Theorem 2.2.1∫
L′ div(V ) = 0. From this we deduce that c = 0, i.e., idiv(V ) = f .

Let now L be an immersed oriented minimal Lagrangian submanifold
of CPn. We have

∫
L div(V ) = 0. Hence we obviously can’t have |z1| >

|z2| everywhere on L. q.e.d.

3. Minimal Lagrangian submanifolds and the symplectic
reduction of the canonical bundle

3.1 The Calabi construction and the connection between
minimal and Special Lagrangian submanifolds

Let (M2n, ω) be a Kähler-Einstein (K-E) manifold with positive scalar
curvature. In this section we will show that the total space K(M) of the
canonical bundle of M has a natural Calabi-Yau structure. Moreover
there is a correspondence between minimal Lagrangian submanifolds of
M and certain Special Lagrangian submanifolds of K(M). We begin
this section by studying the geometry of K(M).

Let K(M) be the total space of the canonical bundle of M2n and
π : K(M) → M be the projection. There is a canonical (n, 0)-form
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ρ on K(M) defined by ρ(a)(v1, . . . , vn) = a(π∗(v1), . . . , π∗(vn)). Here
a ∈ K(M) and v1, . . . , vn are tangent vectors to K(M) at a. The form
ϕ = dρ is a holomorphic volume form on K(M). If z1, . . . , zn are local
coordinates on M then dz1 ∧ . . . ∧ dzn is a local section of K(M) over
M which defines a coordinate function y on K(M). The collections of
holomorphic functions (z1, . . . , zn, y) are coordinates on K(M) and

ρ = ydz1 ∧ . . . ∧ dzn , ϕ = dy ∧ dz1 ∧ . . . ∧ dzn.(10)

We also have a radial vector field Y on K(M), given at a point m ∈
K(M) by the vector m (viewed as a tangent vector to the linear fiber
over π(m)). We have iY ρ = 0. Also the Lie derivative LY ρ = ρ. So

ρ = iY dρ = iY ϕ.(11)

For M a Kähler-Einstein manifold with positive scalar curvature E.
Calabi has constructed a complete Ricci-flat Kähler metric on K(M)
(see [4] and [14], p. 108). The metric is constructed as follows:

Definition 3.1.1. The connection on K(M) induces a horizontal
distribution for the projection π, with the corresponding splitting of the
tangent bundle of K(M) into horizontal and vertical distributions. We
can identify the horizontal space at each point m ∈ K(M) with the
tangent space to M at π(m). Let r2 : K(M) → R+ be the square of the
length of an element in K(M) and u : R+ → R+ be a positive smooth
function with a positive first derivative. We define the metric ωu on
K(M) as follows: we put the horizontal and the vertical distributions
to be orthogonal. On the horizontal distribution we define the metric
to be u(r2)π∗(ω) and on the vertical distribution we define it to be
2t−1u′(r2)ω′. Here ω is the Kähler-Einstein metric on M , t is the scalar
curvature of ω, divided by 2n (see Equation (5)) and ω′ is the induced
metric on the linear fibers of π.

The Kähler-Einstein condition ensures that the corresponding 2-
form ωu defining this metric on K(M) is closed, i.e., the metric is Kähler.
If we take u(r2) = (tr2 + l)

1
n+1 , l > 0 then for the corresponding metric

ωu on K(M) we will have that the holomorphic (n + 1, 0)-form ϕ has
constant length, hence ϕ is parallel and ωu is Ricci flat. This metric is
called the Calabi metric on K(M).

From now on we endow K(M) with a Kähler metric ωu as above for
any choice of the function u. We have a certain class of submanifolds
of K(M), called the Special Lagrangian (SLag) submanifolds of K(M).
We make the following general definition, taken from [8]:
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Definition 3.1.2. Let (N2k, ω) be a Kähler manifold of complex di-
mension k with a non-vanishing holomorphic (k, 0)-form ϕ. (N2k, ω, ϕ)
is called an almost Calabi-Yau manifold. Let P k be an k-dimensional
submanifold of N . Then P is called a Special Lagrangian (SLag) sub-
manifold of N iff

ω|P = 0 , Imϕ|P = 0.

We will not discuss the properties of SLag submanifolds here but
refer the interested reader to [8] and [16].

We have an almost Calabi-Yau manifold (K(M), ωu, ϕ) with the
Kähler form ωu and a holomorphic volume form ϕ constructed above.
Let L be an oriented Lagrangian submanifold of M and let κL : L →
K(M) be the canonical section (see Equation (7)). We define a sub-
manifold LK ⊂ K(M) by

LK = (m ∈ K(M)|m = aκL(l) for l ∈ L , a ∈ R).(12)

We have the following:

Lemma 3.1.1 ([7]). L is a minimal Lagrangian submanifold of M
iff LK is a Special Lagrangian submanifold of K(M)

Proof. First we note that LK is Special, i.e., Imϕ|LK = 0. Indeed
Imρ|LK = 0 and hence Imϕ|LK = d(Imρ|LK ) = 0.

We now prove that LK is Lagrangian iff L is minimal. Let m be a
point on LK , l = π(m) ∈ L and m = aκL(l) for a ∈ R. The tangent
space to LK at m is spanned by κL(l) (viewed as a vertical vector
in TmK(M)) and by the vectors of the form (e + a∇eκL). Here e is
any tangent vector to L at l (viewed as an element of the horizontal
distribution of TmK(M)) and ∇eκL lives in the vertical distribution of
TmK(M).

Let ξ be the connection 1-form on L defined by κL i.e., ∇κL = ξ⊗κL.
Then ξ is a purely imaginary 1-form on L and ∇eκl = ξ(e)κL for e ∈ TlL.
From this we easily deduce that LK is a Lagrangian submanifold of
K(M) iff ξ vanishes, which by Lemma 2.1.2 is equivalent to L being a
minimal submanifold of M . q.e.d.

The manifold LK is invariant under the flow of the vector field Y on
K(M) (which is just scaling of K(M) by real numbers). Vice versa we
have the following:

Lemma 3.1.2. Let L′ be a Special Lagrangian submanifold of
K(M) −M , invariant under the flow of Y . Then L = π(L′) is an
(immersed) minimal Lagrangian submanifold of M .
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Proof. Let m ∈ L′. Since L′ is Lagrangian and Y is in the tangent
space TmL′ then the tangent space to L′ at m clearly decomposes as

TmL′ = span(Y ) ⊕ T ′

and T ′ is a subspace of the horizontal distribution to K(M) at m. The
space π∗(T ′) can be viewed as the tangent space to L at l = π(m).
Clearly this tangent space TlL is Lagrangian, i.e., L is Lagrangian. Also
L′ was Special and Equation (11) tells us that iY ϕ = ρ. Thus m (viewed
as an (n, 0)-form on M at l) restricts to a real n-form on TlL, i.e.,
m ∈ LK . Hence locally L′ coincides with LK . From Lemma 3.1.1 we
deduce that L is minimal. q.e.d.

3.2 Torus actions and the symplectic reduction

In the previous section we showed how to find minimal Lagrangian sub-
manifolds of M from certain SLag submanifolds of K(M). In this sec-
tion we will see that if we have a structure-preserving torus action on
M then we can find T -invariant SLag submanifolds of K(M) from SLag
submanifolds of a certain symplectic reduction of K(M).

Let T k act on M . Then this action induces a T k-action on K(M).
Let T be the Lie algebra of T , v ∈ T , Xv be its flow vector field on
M and X ′

v be its flow vector field on K(M). Let t > 0 be the scalar
curvature of M , divided by 2n. Recall from Section 2, Lemma 2.1.1
that we have a natural moment map µ for the T k-action on M given by

µ ⊗ v = −it−1div(Xv).(13)

Here v ∈ T is an element of the Lie algebra of T , Xv if the flow vector
field on M associated to v and ⊗ is the pairing between the Lie algebra
and the dual Lie algebra of T . Let us now return to K(M). The T k-
action on M induces a T k-action on K(M). We need to compute the
moment map for the T k-action on (K(M), ωu) (see Definition 3.1.1).
We have the following lemma, which we proved in [7]. Here we give a
more direct proof, which we present for reader’s convenience:

Lemma 3.2.1. The map µ′ = −it−1uπ−1(σ) = uπ−1(µ) is a
moment map for the T k-action on (K(M), ωu).

Proof. Let v ∈ T be an element in the Lie algebra of T , Xv be the
associated flow vector field on M and let X ′

v be the associated flow vector
field on K(M) for the T -action on K(M). Let m be a point on K(M).
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It is enough to prove that for any tangent vector X in the tangent
space TmK(M) to K(M) at m we have dµ′(X) ⊗ v = ωu(X ′

v, X). Now
the tangent space TmK(M) naturally decomposes into the direct sum
TmK(M) = H ⊕ V of a horizontal and a vertical distributions for the
connection on K(M) at m. By the construction of ωu (Definition 3.1.1)
we have that H and V are ωu-orthogonal. We will prove that dµ′(X)⊗
v = ωu(X ′

v, X) in two cases: X is in H or X is in V .

Case 1. X ∈ H. We have µ′ = u(r2)π−1µ. Since X ∈ H we have
X(r2) = 0. Hence

dµ′(X) ⊗ v = u(r2)dµ(π∗X) ⊗ v = u(r2)ω(Xv, π∗X).

Also we have ωu(X ′
v, X) = u(r2)ω(Xv, π∗X) and we are done.

Case 2. X ∈ V . In that case we have dπ−1(µ)(X) = 0 and X(r2) =
2〈X, Y 〉. Here Y ∈ V is the vector field as in (11) and 〈 , 〉 is the
Riemannian metric on V . So

dµ′(X) ⊗ v = 〈X, Y 〉2u′(r2)µ ⊗ v(14)

= −2iu′(r2)t−1div(Xv)ω′(Y, iX).

Here ω′ is the symplectic form on the linear fiber of K(M) through m
as before.

To compute ωu(X ′
v, X) we need to understand what is the vertical

component of X ′
v at m. We claim that this component is equal to

−div(Xv)Y . It is enough to prove this claim in case Xv doesn’t vanish.
Consider the trajectory mt of m for the X ′

v-flow on K(M). We can
view mt as a section of K(M) over the trajectory lt of the Xv-flow on
M through l = π(m). Moreover we have LXvmt = 0. We also have that
the vertical component of X ′

v is equal to ∇Xvmt. But since LXvmt = 0
we have by Proposition 2.1.2 of Section 2 that ∇Xvmt = −div(Xv)mt

and the claim follows. So we have

ωu(X ′
v, X) = −2t−1u′(r2)ω′(div(Xv)Y, X)(15)

= −2u′(r2)t−1ω′(idiv(Xv)Y, iX).

Since div(Xv) is purely imaginary, the right hand side of Equation (15)
is equal to −2iu′(r2)t−1div(Xv)ω′(Y, iX). Comparing Equations (14)
and (15) we get our claim. q.e.d.

Remark. We have seen in the proof of the previous lemma that if
we pick an element v in the Lie Algebra of T k then on K(M) − M the
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vector field X ′
v is horizontal precisely along the zero set of µ′ ⊗ v. This

fact will be useful later on.

Let now L′ be a (connected) SLag submanifold of K(M)−M , invari-
ant under the T -action and under the Y -flow. Since L′ is Lagrangian and
T -invariant, the moment map µ′ is constant on L′. But µ′ = uπ−1(µ)
and Y (µ′) = 2r2u′π−1(µ). So we must have π−1(µ) = 0 on L′. Thus L′

must live on the zero set of the moment map µ′. Also from this argu-
ment and Lemma 3.1.1 we get that a T k-invariant minimal Lagrangian
submanifold L of M must live on the zero set of the moment map µ.
Since those zero sets will be important in all subsequent discussions, let
us assign them names:

Definition 3.2.1. Let Z ⊂ M be the zero set of the moment map
µ on M and let Z ′ = π−1(Z) ⊂ K(M) be the zero set of the moment
map µ′ on K(M). Let Z ′′ = Z ′ − Z ⊂ K(M). Let Q = Z ′′/T . Let X
be the intersection of the unit circle bundle of K(M) with Z ′ and let
S = X/T ⊂ Q.

We will illustrate the relation between various sets we introduced in
a commutative diagram:

X ⊂ Z ′′ ⊂ Z ′ ν′
−−−→ S ⊂ Q ⊂ Z ′/T

π

� π′
�

Z
ν−−−→ Mred = Z/T.

(16)

From now on we assume that T acts freely on Z ′′. This implies that Z ′′

and Q are smooth. We will demonstrate examples where this holds in
Section 4. We have a symplectic reduction Mred = Z/T and a (smooth)
symplectic reduction Q = Z ′′/T , endowed with a Kähler metric ωred

u (see
(16)). We will now see that Q has a natural non-vanishing holomorphic
(n + 1− k, 0)-form ϕ′, which a differential of a certain (n, 0)-form ρ′ on
Q.

Let v1, ..., vk be a basis for the Lie algebra T of T k and let X ′
1, ..., X

′
k

be the corresponding flow vector fields on K(M). Let ϕ∗ = iX′
1
. . . iX′

k
ϕ

be an (n − k + 1, 0)-form on K(M), obtained by contracting ϕ by
X ′

1, . . . , X ′
k. Let ρ∗ = iX′

1
. . . iX′

k
ρ. We claim that

ϕ∗ = (−1)kdρ∗.(17)

We prove this by induction on k. Namely let ϕ∗
l = iX′

1
. . . iX′

l
ϕ and

ρ∗l = iX′
1
. . . iX′

l
ρ. We claim that ϕ∗

l = (−1)ldρ∗l . For l = 1 we have that
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ρ is X ′
1-invariant. Hence

0 = LX′
1
ρ = dρ∗1 + ϕ∗

1.

Now we use induction. The form ρ∗l−1 is X ′
l -invariant. Hence

0 = LX′
l
ρ∗l−1 = (−1)l−1dρ∗l + ϕ∗

l

and we are done by induction.
Both ϕ∗ and ρ∗ are T -invariant. Let ν : Z → Mred and ν ′ : Z ′′ → Q

be the quotient maps (see (16)). One easily sees that there is a unique
(n − k + 1, 0)-form ϕ′ on Q and a unique (n − k, 0)-form ρ′ on Q such
that

(ν ′)∗(ϕ′) = ϕ∗ , (ν ′)∗(ρ′) = ρ∗ , ϕ′ = (−1)kdρ′.(18)

We state our observations as a Proposition:

Proposition 3.2.1. (Q, ωred
u , ϕ′) is an almost Calabi-Yau manifold

as in Definition 3.1.2.

The vector field Y is tangent to Z ′′ and T -invariant, hence it projects
to a vector field Y ′ on Q. We had iY ϕ = ρ on K(M) (see Equation (11)).
Hence we have

iY ′ϕ′ = (−1)kρ′(19)

on Q. We obviously have the following:

Lemma 3.2.2. Let L′′ be a SLag submanifold of Q, invariant
under the Y ′-flow. Then L′ = (ν ′)−1(L′′) is a SLag submanifold of
K(M), invariant under T k and under the Y -flow. Here ν ′ : Z ′′ → Q is
the quotient map.

3.3 Complexity one actions and periodic orbits

We continue to assume that we have a structure-preserving T k-action
on a compact Kähler-Einstein n-fold M with positive scalar curvature.
In the previous section we have shown that one can reduce the problem
of finding T k and Y -invariant SLag submanifolds of K(M) to finding
Y ′-invariant SLag submanifolds of Q (provided that T k acts freely on
Z ′′, see (16)). In this section we assume that k = n − 1. We continue
to assume that Tn−1 acts freely on Z ′′. Let X ⊂ Z ′′ and S = X/T ⊂ Q
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as in Definition 3.2.1. Thus S is a smooth compact 3-dimensional sub-
manifold of a non-compact almost Calabi-Yau 2-fold Q. We will show
that there is a vector field W on S such that there is a correspondence
between Y ′-invariant SLag submanifolds of Q and the trajectories of the
W -flow on S.

As we saw the tangent bundle of K(M) decomposes as a direct
sum V ⊕ H of the vertical and the horizontal distributions. Let U be
the image of the Lie algebra of T under the differential of the action
on K(M). At a point z ∈ Z ′′, U(z) is an (n − 1)-dimensional vector
subspace of TzK(M), and it is contained in the horizontal distribution
H at z (since on π(Z ′′) the moment map µ vanishes, see Remark after
the proof of Lemma 3.2.1). Also the Kähler form ωu restricts to 0 on
U . Let U c be the complexification of U in the tangent bundle to K(M).
Then U c can be viewed as a complex (n− 1)-dimensional vector bundle
over Z ′′. Let H ′ be the orthogonal complement of U c in the horizontal
distribution H along Z ′′. Then the tangent bundle of K(M) along Z ′′

splits a direct sum V ⊕H ′ ⊕U c. Also the quotient of V ⊕H ′ under the
T -action can be identified with the tangent bundle to the symplectic
reduction Q = Z ′′/T . Since H ′ and V are T -invariant the tangent
bundle to Q splits as a direct sum of 2 complex line bundles:

TQ = V ⊕ H ′.(20)

Also V and H ′ are orthogonal both with respect to the symplectic form
ωred

u and the Riemannian metric on Q.
There is a natural circle action on X (see (16)), given by the multi-

plication by complex numbers of absolute value 1 on K(M). This action
is T -invariant, hence it induces a circle action on S = X/T . Let F be
the vector field generating this action on S. Then F = J(Y ′) (here
J is the complex structure on Q and Y ′ is a vector field on Q as in
Lemma 3.2.2). Also both Y ′ and F are in the vertical distribution V
along S and the tangent bundle TS of S splits as a direct sum

TS = H ′ ⊕ span(F ).(21)

Here H ′ is the horizontal distribution of Q along S. Let γ be some
path in S and let γQ be the orbit of γ under the Y ′-flow in Q. We
wish to understand when γQ is a SLag submanifold of Q. Let W be a
tangent vector to γ. Clearly for γQ to be Lagrangian we need W to be
ωred

u -orthogonal to Y ′, hence W must live in the horizontal distribution
H ′ along S. The form ρ′ = (−1)n−1iY ′ϕ′ (see (19)) is a (non-zero)
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(1, 0)-form on H ′. Hence the form Imρ′ has a 1-dimensional kernel in
H ′. Hence for γQ to be Special we need W to belong to the kernel of
Imρ′. We can normalize W such that Reρ′(W ) = 1. Those conditions
give rise to a non-vanishing horizontal vector field W on S:

Definition 3.3.1. Let W be a vector field on S living in the
horizontal distribution H ′ along S (see (21)) such that Imρ′(W ) = 0
and Reρ′(W ) = 1.

Let γ be a trajectory of W on S and consider γQ ⊂ Q to be the
image of γ under the Y ′-flow. The forms ωred

u and ϕ′ vanish on γQ

along γ ⊂ γQ. Also the Y ′-flow preserves the horizontal distribution and
LY ′ρ′ = ρ′. From this we easily deduce that γQ is a Y ′-invariant SLag
submanifold of Q. From Lemmas 3.1.2 and 3.2.2 we get the following:

Lemma 3.3.1. Let γ be a trajectory of W on S. Then Lγ =
π((ν ′)−1(γ)) (see (16)) is an immersed minimal Lagrangian submanifold
of M . If γ is periodic then Lγ is an immersed minimal Lagrangian torus.

There is one general relation among trajectories of W , which will
later be important: Consider the circle action on K(M) as before. The
(n, 0)-form ρ is equivariant with respect to this action, i.e., if λ ∈ S1 then
λ∗(ρ) = λρ. So ρ′ is also equivariant with respect to the circle action on
Q. Also this action preserves the horizontal distribution H ′ on S (see
Equation (21)). Consider an element −1 ∈ S1. Then −1∗(ρ′) = −ρ′.
From this we deduce that the −1-action on S reverses the vector field
W (see Definition 3.3.1), i.e., −1∗(W ) = −W . We summarize this as:

Proposition 3.3.1. The −1-action on S sends W -trajectories to
W -trajectories, but it reverses their directions.

4. Toric K-E manifolds

4.1 A generic subtorus

Let M be a Kähler-Einstein manifold with positive scalar curvature. In
Section 3.3 we saw that if we have a Tn−1-action on M then one can
construct minimal Lagrangian submanifolds of M from trajectories of
the vector field W on S. In order to do this we needed Tn−1 to act
freely on Z ′′ (see Definition 3.2.1). In this section we assume that M
is toric, i.e., we have an effective structure-preserving Tn-action on M .
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For recent results on toric K-E manifolds we refer the reader to [17] and
[3]. We will find a certain “generic” (n− 1)-subtorus Tn−1 ⊂ Tn whose
action on M accords with our requirements (in particular it will act
freely on Z ′′). We will use this subtorus Tn−1 to construct immersed,
Tn−1-invariant minimal Lagrangian submanifolds. But first we note
that there is a unique minimal Lagrangian torus, invariant under the
whole of Tn.

Suppose L is a regular orbit of the Tn-action on M (i.e., an orbit
with a finite stabilizer). Then the canonical moment map µ for the
Tn-action on M (see (13)) is constant on L, hence L is a Lagrangian
submanifold of M . Suppose that L is a minimal submanifold of M . As
we have seen in Section 3.2 we must have µ = 0 on L i.e., L ⊂ µ−1(0).
By Atyiah’s result [1], µ−1(0) is connected, hence L = µ−1(0). So if
a regular orbit, which is a minimal submanifold of M exists, it must
coincide with µ−1(0). We note that such an orbit does exist:

Lemma 4.1.1 ([7]). There exists (a unique) regular orbit L of
the Tn-action on M , which a is a minimal Lagrangian submanifold of
M . L is precisely the zero set of the canonical moment map µ for the
Tn-action on M as in (13).

Our next goal is to find a certain (n − 1)-dimensional subtorus
Tn−1 ⊂ Tn to proceed with the constructions in Section 3.3. This
is done in the following lemma:

Lemma 4.1.2. Let M2n be a K-E manifold with an effective Tn-
action as above. Then there is an (n − 1)- torus Tn−1 ⊂ Tn such that

i) The differential of the Tn−1-action on M is injective along Z and
Tn acts freely on Z ′′.

ii) There is an element v in the Lie algebra of Tn−1 such that the
flow vector field Xv doesn’t have a constant length along Z.

Here Z is the zero set of the canonical moment map for the Tn−1

action on M as in (13) and Z ′′ is given as in Definition 3.2.1.

Remark. Condition ii) in the lemma will be later used to show
that certain minimal Lagrangian tori we shall construct have Killing
fields of non-constant length, hence they are not flat.

Proof. Let Tn−1 ⊂ Tn be some (n− 1)-torus. First we prove that if
the differential of the Tn−1-action on M is injective along Z (the zero
set of the canonical moment map of Tn−1), then the Tn-action on Z ′′
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is free. Suppose not. Then there is a point l ∈ Z ′′ and an element
1 �= t ∈ Tn s.t. t · l = l. In that case t also preserves the points on the
Tn−1-orbit through l. The tangent space P to this orbit at l is in the
horizontal distribution at l (since we are on the zero set of the moment
map of Tn−1). Also ωu|P = 0. So the differential dt of the t-action
at l acts trivially on the complexification P c of P in the tangent space
TlK(M). Also dt acts trivially on the vertical distribution V (l) at l.
The vector space P c ⊕ V (l) is a complex vector space of dimension n
and dt acts trivially on it. Also dt preserves the holomorphic volume
form ϕ on K(M) at l. Hence dt is trivial at l. Hence t acts trivially on
K(M) and on M , but the Tn-action on M was effective- a contradiction.

Next we wish to understand for which (n − 1)-tori Tn−1 ⊂ Tn the
differential of the Tn−1-action is injective along the zero set Z of the
canonical moment map of Tn−1. Let T ∗ be the dual Lie algebra of Tn

and let Λ ⊂ T ∗ be the weight lattice of Tn. Any element 0 �= v ∈ Λ
defines an (n−1)-torus Tv ⊂ Tn such that v vanishes on the Lie algebra
of Tv. Let µ be the canonical moment map of Tn and µv be the canonical
moment map of Tv. Then µv is just the restriction of µ to the dual Lie
algebra of Tn−1 = Tv. It is therefore clear that µv vanishes at a point
l ∈ M iff µ(l) is proportional to v. Since M is a toric variety, the
moment polytope is convex and has no faces in the interior. Since 0 is
in the interior of the moment polytope by Lemma 4.1.1, it is clear that
Z = µ−1[t1v, t2v] with t1 < 0 < t2. For any t1 < t < t2 the value tv is
in the interior of the moment polytope, while t1v and t2v are not.

Let 0 �= v ∈ Λ and suppose the line span(v) ⊂ T ∗ doesn’t intersect
any of the (n − 2)-faces of the moment polytope of µ. This means
that any point in Z has either a trivial or a 1-dimensional stabilizer in
Tn. We claim that in this case the differential of the Tn−1 = Tv-action
is injective along Z. Suppose not. Then there is a point l ∈ Z and
a vector 0 �= w in the Lie algebra of Tn−1 such that the flow vector
field Xw vanishes at l. Since l ∈ Z the flow vector field X ′

w of w on
K(M) is horizontal along π−1(l) ⊂ K(M) (see Remark after the proof
of Lemma 3.2.1). Hence X ′

w vanishes along π−1(l). Let g = exp(tw) for
some t ∈ R. Then the g-action on π−1(l) is trivial. But this means that
the differential dg of the g-action on the tangent space TlM has Jacobian
1. Also g acts trivially on the orbit L′ of the Tn-action through l. The
tangent space TlL

′ of L′ at l is (n− 1)-dimensional and ω restricts to 0
on it. Hence its complexification (TlL

′)c in TlM is a complex (n − 1)-
dimensional space and dg acts trivially on it. Also dg has Jacobian 1.
Hence dg is trivial, hence g acts trivially- a contradiction.
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A generic line in the projective space PT ∗ doesn’t intersect the
(n− 2)-faces of the moment polytope of µ. Also the set of lines passing
through points of the weight lattice Λ is dense in PT ∗. So we can find
v ∈ Λ so that Condition i) in our lemma holds for Tn−1 = Tv. In
order to ensure that ii) holds, consider a point b in the (n − 2)-face of
the moment polytope (here we use the fact that n ≥ 2). The Tn-orbit
µ−1(b) has a stabilizer of dimension at least 2. Hence we can find a
vector 0 �= w ∈ T in the Lie algebra of Tn such that b ⊗ w = 0 and
the flow vector field Xw vanishes along µ−1(b). We can find a sequence
of elements vk ∈ Λ such that the lines (vk) = span(vk) do not intersect
the (n − 2)-faces of the moment polytope and (vk) converge to the line
(b) = span(b) in PT ∗. We can also find a sequence of vectors wk ∈ T
such that vk ⊗ wk = 0 and wk converge to w.

Each vk defines an (n − 1)-torus Tk ⊂ T . By our construction the
vectors wk are in the Lie algebra of Tk. Let µk be the canonical moment
map of Tk, and Zk be the zero set of µk. We can find points nk on Zk

such that nk converge to a point n ∈ µ−1(b). Let Xk be the flow vector
field of wk. Then the length of Xk at points nk goes to 0 as k → ∞.
On the other hand the torus L = µ−1(0) coming from Lemma 4.1.1 is
contained in all of Zk. Moreover the lengths of Xk along L are a-priori
bounded from below. So we deduce that for k large enough the torus
Tn−1 = Tk satisfies Conditions i) and ii) of the lemma. q.e.d.

4.2 Flow-invariant function and its level sets

We continue to assume that we have a toric Kähler-Einstein n-fold M .
From now on we pick a sub-torus Tn−1 = Tv ⊂ T satisfying the con-
ditions of Lemma 4.1.2. Here v is a non-zero element in the dual Lie
algebra of Tn and v vanishes on the Lie algebra of Tn−1. To avoid con-
fusion we explicitly note that the subsets X, Z, Z ′′ and their reductions
S, Mred, Q we’ve introduced in Equation (16) are for the Tn−1-action on
M and K(M). From Lemma 3.3.1 we deduce that one can construct
minimal Lagrangian submanifolds of M from the trajectories of the vec-
tor field W on S. Moreover periodic orbits of W give rise to immersed
minimal Lagrangian tori in M . Our goal therefor is to understand the
periodic orbits of W on the compact 3-manifold S. In this section we
will show that there is a function f on S which is constant on the orbits
of the W -flow on S. We will also investigate the salient features of the
level sets of f . We construct the function f as follows:

The circle R = T/Tn−1 acts freely on Q and on S by Lemma 4.1.2.
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Definition 4.2.1. Let w �= 0 be some non-zero element in the Lie
algebra of R. Let Aw be the flow vector field for the w-action on Q and
on S.

The vector fields Aw and W commute (since the Aw-flow is structure-
preserving and in particular in preserves the defining conditions 3.3.1
for W ). We also have a (1, 0)-form ρ′ and a holomorphic (2, 0)-form
ϕ′ on Q with ϕ′ = (−1)(n−1)dρ′ (see Equation (18)). The flow of Aw

preserves ρ′ and ϕ′. A key point in finding periodic trajectories of W is
the fact that there is a function on S constant along the trajectories of
W :

Lemma 4.2.1. Let h = ρ′(Aw) and f = Re(h). Then h is an
S1-equivariant function on S and f is constant along the trajectories of
W on S.

Proof. The fact that h is S1-equivariant on S follows from the fact
that Aw is S1-invariant (since the S1 and the Tn-actions on K(M) com-
mute) and ρ′ is an S1-equivariant (1, 0)-form on Q (see the discussion
in the end of Section 3.3).

Next we prove that f is constant along the trajectories of W on S.
We have:

0 = LAwρ′ = d(iAwρ′) + iAwdρ′ = dh + (−1)(n−1)iAwϕ′

(see Equation (18)). So dh = (−1)niAwϕ′. So dh(W ) = (−1)nϕ′(Aw, W ).
The vector field Aw is in the tangent bundle to S, hence we can decom-
pose it into Aw = AH

w + λF . Here AH
w is the horizontal part of Aw

(i.e., the part in the distribution H ′; see Equation (21)), F is the gen-
erator of the S1-action on S and λ ∈ R. W is horizontal and H ′ is a
1-dimensional complex vector bundle. The form ϕ′ is a (2, 0)-form on Q.
Hence ϕ′(AH

w , W ) = 0. Also F = JY ′. Hence ϕ′(F, W ) = iϕ′(Y ′, W ).
By the construction of W we had that ϕ′(Y ′, W ) is real. From all this
we deduce that dh(W ) is purely imaginary, hence df(W ) = 0. q.e.d.

From the previous lemma we deduce that the trajectories of W live
on level sets of the function f . Next we need to understand those level
sets in more detail.

We had our symplectic reductions Mred = Z/Tn−1 and Q and we
have a natural projection π′ : Q → Mred (see (16)). Let v be an ele-
ment of the weight lattice Λ of T ∗ defining the torus Tn−1 = Tv (so v
vanishes on the Lie algebra of Tn−1). As we have seen in the proof of
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Lemma 4.1.2, Z is equal to µ−1[t1v, t2v] for t1 < 0 < t2. Here µ is the
canonical moment map for the Tn-action on M . We have the following:

Proposition-Definition 4.2.1. Let Z0 = µ−1(t1v, t2v) and Z ′
0 =

π−1(Z0) ⊂ K(M). Tn−1 acts freely on Z0 and we have M0 = Z0/Tn−1

⊂ Mred, which is the smooth part of Mred. Let S0 = (π′)−1(M0)
⋂

S =
(Z ′

0

⋂
X)/Tn−1 (see (16)). Then the circle S1 acts freely on S0 and S0

is an S1 fiber bundle over M0.
Let Ki = π−1(µ−1(tiv))

⋂
X, i = 1, 2 (here µ is the canonical mo-

ment map for the Tn-action on M). Let ai = µ−1(tiv)/Tn−1 ∈ Mred

and Ki = Ki/Tn−1 = (π′)−1(ai)
⋂

S (see (16)). Then each ai is a point
in Mred, Ki is a circle in S and S1 acts locally freely on Ki.

Proof. We have that Tn acts freely on M0, and so in particular
Tn−1 acts freely on M0 and so S1 acts freely on S0, i.e., S0 is an S1

fiber bundle over M0.
Also µ−1(tiv) is connected (being a Tn orbit on M) and is (n − 1)-

dimensional and Tn−1 acts locally freely on it (see Lemma 4.1.2). From
this it is clear that ai = µ−1(tiv)/Tn−1 ∈ Mred is 1 point. Also the
Tn−1 action is free on Ki and Ki is n-dimensional and connected, hence
Ki is a circle in S. Also since the Tn−1 action on µ−1(tiv) is locally
free we deduce that the generating vector field F of the S1-action on
Ki (see (21)) is not contained in the image of the differential of the
Tn−1-action on Ki, hence the S1-action on Ki = Ki/Tn−1 is locally
free. q.e.d.

We will represent the setup in the previous Proposition-Definition
in a commutative diagram.

Z ′′ ⋂ X = (Ki)
⋃

(Z ′
0

⋂
X) −−−→

ν′
S = (Ki)

⋃
S0�π

�π′

Z = (µ−1(tiv))
⋃

Z0 −−−→
ν

Mred = (ai)
⋃

M0.

(22)

On Z0 (see Proposition-Definition 4.2.1) we have an oriented Lagrangian
distribution D, given by the image of the Lie algebra T of Tn under
the differential of the Tn-action on M . This distribution gives rise to a
section κ of K(M) over Z0 such that κ restricts to the Riemannian vol-
ume form on this Lagrangian distribution. This section is Tn-invariant
and has constant length

√
2

n
. Hence it gives rise to an R = Tn/Tn−1-
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invariant section

κ′ = κ/
√

2
n

: M0 → S0.(23)

By definition κ′ restricts to a positive real n-form on the Lagrangian
distribution D. From this we deduce that h = ρ′(Aw) is real and positive
along κ′(M0).

We can normalize w (the generator of the Lie algebra of R =
Tn/Tn−1) such that v ⊗ w = 1 (here v as before is the element of
the dual Lie algebra of Tn defining the sub-torus Tn−1). On Mred we
have a function

τ = µ ⊗ w.(24)

The image of τ is the interval [t1, t2]. For each t1 ≤ t ≤ t2 the level set
τ−1(t) is an orbit of the R = Tn/Tn−1-action on Mred. We define:

Definition 4.2.2. Let L′ = τ−1(0), L+ = κ′(L′) ⊂ S (see Equa-
tion (23)) and L− = (−1) · L+.

Each L± is an orbit of the R-action on S. Also at points of L±
the vector field Aw is horizontal (since µ ⊗ w = 0 on L′) and ρ′(Aw) is
real. The vector field W also satisfies those properties (see Definition
3.3.1), hence W is proportional to Aw along L±. So we see that L± are
trajectories of W (of course the minimal Lagrangian torus of M coming
from these trajectories as in Lemma 3.3.1 is the Tn-invariant minimal
Lagrangian torus L = µ−1(0)). We have the following:

Lemma 4.2.2. The differential df of f is non-vanishing on S −
(L−

⋃
L+).

Proof. We have seen in the proof of Lemma 4.2.1 that

dh = (−1)niAwϕ′.

On S′ = S
⋂

(π′)−1(Mred − L′) the vertical part of the vector field Aw

doesn’t vanish (see the Remark after the proof of Lemma 3.2.1). Hence
the form iAwϕ′ restricts as a non-vanishing (1, 0)-form on the horizontal
distribution H ′ along S′ (see Equation (21)). From this it is clear that
df |H′ �= 0 on S′.

On S
⋂

(π′)−1(L′) − (L−
⋃

L+) the function h is not real. Also h
is equivariant with respect to the S1-action. Let F be the vector field
generating the S1-action as before. Then the derivative of f = Reh is
non-zero in the direction of F . q.e.d.
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f attains a constant value f+ along L+ and a value f− = −f+ along
L− = (−1) · L+. Since S is compact and connected, it is clear from
Lemma 4.2.2 that f+ is the absolute maximum of f , attained only at
L+, and f− is the absolute minimum of f , attained only at L−. Also
for any s ∈ (f−, f+), the level set Σs = f−1(s) is smooth. We will also
need the following fact:

Proposition 4.2.1. f |Ki = 0 (see Proposition-Definition 4.2.1).

Proof. Proposition-Definition 4.2.1 tells that the circles Ki are orbits
for the S1-action on S, hence the tangent space to Ki lives in the vertical
distribution along S (see (21)). Also the R = Tn/Tn−1-action preserves
Ki, so the vector field Aw is tangent to Ki, so Aw is vertical along Ki.
But from this we deduce that h = ρ′(Aw) = 0 at Ki, and so f = 0 at
Ki. q.e.d.

4.3 Periodic trajectories and the main theorem

In the previous section we saw that the orbits of the vector field W on
S live on the level sets of the function f on S. Moreover all these level
sets except L± = f−1(f±) are smooth 2-dimensional submanifolds of S.
We make the following definition:

Definition 4.3.1. Let Φ = f−1(f−, f+).

Take any point m ∈ Φ and consider the level set Σs of f passing
through m. From Lemma 4.2.2 we know that Σs is smooth. Let Σ0

s

be the connected component of Σs containing m. The vector field W
is tangent to Σ0

s. We have a free R = Tn/Tn−1-action on Σ0
s, and this

action preserves the vector field W .

Proposition 4.3.1. The vector field Aw (see Definition 4.2.1) is
transversal to W at all points of Σ0

s.

Proof. Let m′ ∈ Σ0
s. If m′ ∈ S

⋂
(π′)−1(Mred − L′) (see Defini-

tion 4.2.2), then the vector field Aw is not horizontal at m′, so it can’t be
proportional to W . If m′ ∈ S

⋂
(π′)−1(L′)− (L−

⋃
L+) then h = ρ′(Aw)

is not real, while ρ′(W ) is real. So again Aw and W can’t be propor-
tional. q.e.d.

From Proposition 4.3.1 we get that the quotient of Σ0
s by the R-

action is a circle and W projects to a non-vanishing vector field on it.
From this we deduce that the W -trajectory on S starting at m will
intersect the R-orbit of m. Suppose it intersects this orbit for the first
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time at a point ξ(m)m, ξ(m) ∈ R. This gives rise to a well-defined
function

ξ : Φ → R = Tn/Tn−1.(25)

Clearly ξ is continuous, R-invariant and constant along the trajectories
of W . Also we have seen in Proposition 3.3.1 that the −1-action on S
sends W -trajectories to W -trajectories in the reverse direction. From
this we easily deduce that for any point m ∈ Φ:

ξ(−1 · m) = ξ(m)−1.(26)

Obviously the trajectory through m is periodic iff ξ(m) is a root of unity
in R. Let R′ be the set of roots of unity in R. Since ξ is continuous,
ξ−1(R′) will be everywhere dense in Φ unless ξ assumes a constant value
not in R′ on some open subset of Φ. The next lemma shows that it is
impossible:

Lemma 4.3.1. Suppose that ξ is constant on some open set U ⊂
Φ. Then ξ is equal to a constant g on the whole of Φ and g2 = 1.

Proof. Let S+ = f−1(0, f+), S− = f−1(f−, 0). Thus S− = −1 · S+.
Suppose that ξ is constant on some open set U ∈ Φ. Then ξ is constant
on some open ball U ′ either in S+ or in S−. We can assume w.l.o.g.
that U ′ ⊂ S+. We note that S+ is connected. In fact S+ is given by

S+ = (κ′(a)eiθ|a ∈ M0 , − π/2 < θ < π/2) − L+.

Here κ′ is given by Equation (23) and M0 is the smooth part of the
symplectic reduction Mred (see (22)). First we prove that ξ is a constant
g on S+. Let AH

w be the horizontal part of the vector field Aw (see
Definition 4.2.1). Since S+ ⊂ π−1(M0) we deduce that AH

w doesn’t
vanish on S+. We also note that on S+ the vector field AH

w cannot be
proportional to JW . Indeed suppose that AH

w = λJW for some λ ∈ R

at some point m ∈ S+. Then

h(m) = ρ′(Aw) = ρ′(AH
w ) = iλρ′(W ).

So h(m) is purely imaginary, hence f(m) = 0 - a contradiction. Since
both AH

w and W lie in H ′ (see Equation (21)), which is a complex 1-
dimensional distribution, we deduce that we can find a function b :
S+ → R such that on S+ the vector field W is pointwise proportional
to a vector field

W ′ = AH
w + bJAH

w .(27)
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Hence the trajectories of W ′ and W coincide. We also note that the
W ′-trajectories live on level sets of f which are compact submanifolds
of S+. Hence the W ′-flow is complete on S+. We will use W ′ instead
of W to prove that ξ is constant on S+.

Definition 4.3.2. For a point m ∈ S+ let t(m) be the time for
the W ′-flow to hit the R-orbit of m for the first time.

We have the following:

Lemma 4.3.2. For any point m ∈ S+ we have

ξ(m) = exp(t(m)w).

Proof. Let γ be the trajectory of W ′ through m and γ′ = π′(γ) be the
corresponding path in M0 (here π′ : S+ → M0 is the natural projection;
see (22)). We have a free R-action on M0 and the corresponding flow
vector field Bw for the w-flow on M0 (here w is the generator of the Lie
algebra of R). We obviously have π′∗(AH

w ) = Bw. Hence the tangent
field to γ′ is Bw + bJBw.

The R-action on M0 is Hamiltonian with the moment map τ =
µ ⊗ w (see (24)). Also the Bw-flow on M0 commutes with the complex
structure J on M0. Hence the vector fields Bw and JBw commute. Let
P1 = γ′(0) and P2 = γ′(t(m)). Then P2 = ξ(m)P1. We will prove that
P2 = exp(t(m)w)P1 and since the R-action on M0 is free this would
prove that exp(t(m)w) = ξ(m).

Let exp(xJBw) be the time x flow of JBw. Note that the JBw-flow
is not complete. In fact we have

JBw(τ) = ωred(Bw, JBw) = |Bw|2 > 0.

So τ increases on the JBw-trajectories. Let

c(r) =
∫

[0,r]
b(γ(t))dt for 0 ≤ r ≤ t(m).(28)

Consider a path

γ′′(r) = exp(c(r)(JBw)) exp(rw)(P1)

(note that we flow P1 with respect to rBw first). Then γ′′ is a path on
M0, γ′′(r) is defined for small values of r, γ′′(0) = P1 and the tangent
vector to γ′′ is Bw + b(γ(r))JBw. So γ′′ coincides with γ′ whenever it
is defined.
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Next we prove that γ′′(r) is defined for r ≤ t(m). Suppose on γ′

the function τ (see Equation (24)) ranges between the values s1 and s2.
Then t1 < s1 and s2 < t2 (see Proposition-Definition 4.2.1). Pick any r
for which γ′′(r) is defined and consider the path exp(tJBw) exp(rw)(P1)
for t ranging between 0 and c(r). The function τ is increasing along the
path, and on the endpoints its values are between s1 and s2. Hence this
path lives in the compact set A = τ−1[s1, s2] in M0. From this one can
easily deduce that γ′′(r) is well defined for all 0 ≤ r ≤ t(m) and coincides
with γ′(r). In particular P2 = exp(c(t(m))JBw) exp(t(m)w)(P1). Now
P2 = ξ(m)P1, hence

τ(P2) = τ(P1) = τ(exp(t(m)w)P1)

and τ increases on the trajectories of JBw. So we get that c(t(m)) = 0,
i.e., P2 = exp(t(m)w)P1. q.e.d.

Now we can prove that ξ is constant on S+. Since ξ is constant
on U ′ we get from Lemma 4.3.2 that t(m) (see Definition 4.3.2) is a
constant t on U ′. Let φt be the time t flow of W ′ on S+. Consider the
map χ = exp(−tw) · φt : S+ → S+. S+ is a connected real analytic
manifold and χ is a real analytic map. Also χ is the identity map on
U ′. So we deduce that χ is the identity map. So φt is the multiplication
by g = exp(tw) on S+. From this we easily deduce that ξ = g on S+.

So ξ assumes a constant value g on S+, hence by (26) it assumes a
constant value g−1 on S− = −1 · S+. Let ∆ = f−1(0). Then ∆ is the
common boundary of S+ and S− in Φ. Since ξ is continuous, we have
g = g−1, i.e., g2 = 1. q.e.d.

From this we get an immediate corollary

Corollary 4.3.1. The set ξ−1(R′) is everywhere dense in Φ. Here
R′ is the set of roots of unity in R.

We are now ready to state and prove our main result:

Theorem 4.3.1. Let M2n (n ≥ 2) be a K-E manifold with positive
scalar curvature with an effective structure preserving Tn-action. Then
precisely one regular orbit L of the Tn-action is a minimal Lagrangian
submanifold of M . Moreover there is an (n−1)-torus Tn−1 ⊂ Tn and a
sequence of non-flat Tn−1-invariant immersed minimal Lagrangian tori
Lk ⊂ M such that Lk locally converge to L (in particular the supremum
of sectional curvatures of Lk and the distance between L and Lk goes to
0 as k → ∞).
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Proof. Choose a torus Tn−1 which satisfies the conditions of Lem-
ma 4.1.2. By Corollary 4.3.1 we can choose a sequence of points mk ∈
ξ−1(R′) such that mk converge to a point m in L+(see Definition 4.2.2).
The W -trajectories γk through mk are periodic and live on level sets Σk

of f with Σk converging to L+ in the distance topology. From this we
easily see that γk locally converge to the trajectory L+. One deduces
that the immersed minimal Lagrangian tori Lk which γk define as in
Lemma 3.3.1 locally converge to the minimal, T -invariant orbit L.

Finally we prove that Lk are not flat. From Lemma 4.1.2 we get a
vector v in the Lie algebra of Tn−1 such that the flow vector field Xv of
v doesn’t have a constant length on Z. The vector field Xv along Lk is
a Killing vector field of Lk. To prove that Lk is not flat it is enough to
prove that |Xv|2 is non-constant on Lk.

The function |Xv|2 is Tn-invariant on Z. Thus it projects to an
R-invariant function on Mred, i.e., it can be viewed as a function of
τ = µ ⊗ w (see Equation (24)) on Mred. Also |Xv|2 is a real analytic
function on M0 = τ−1(t1, t2). Since |Xv|2 is non-constant, it is nowhere
a locally constant function of τ . We finally claim that the function τ is
non-constant on the projection π′(γk) of γk onto Mred. Indeed if τ were
constant on π′(γk) that means that π′(γk) is contained in the R-orbit
β on Mred. But the vector field W (the tangent vector filed to γk) is
horizontal and non-vanishing on S. Hence if π′(γk) is contained in the
R-orbit β on Mred that means that π′(γk) coincides with β. But that by
Lemma 3.3.1 means that the preimage ν−1(β) of β in M is a minimal
Lagrangian orbit of the Tn-action on M and this orbit is different from
L since γk are different from L±. But L = µ−1(0) is the unique minimal
Lagrangian Tn-orbit in M - a contradiction. Thus |Xv|2 is non-constant
on Lk and we are done. q.e.d.
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