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CONES EMBEDDED IN HYPERBOLIC MANIFOLDS

ANDREW PRZEWORSKI

Abstract
We show that the existence of a maximal embedded tube in a hyperbolic
n-manifold implies the existence of a certain conical region. One applica-
tion is to establish a lower bound on the volume of the region outside the
tube, thereby improving estimates on volume and estimates on lengths of
geodesics in small volume hyperbolic 3-manifolds. We also provide new
bounds on the injectivity radius and diameter of an n-manifold.

1. Introduction

Lately, there has been much interest in tubes which embed in hyper-
bolic 3-manifolds. Among the results addressing either the consequences
of or existence of such tubes are [3]–[8]. Many of these results establish
properties of the smallest volume hyperbolic orientable 3-manifold. The
orientability condition is included since one of the main results [5] re-
quires it to prove the existence of a tube of radius log 3

2 . Hence we shall
take the definition of a manifold to include orientability. Specifically,
Gabai, Meyerhoff, and Thurston [5] prove:

Theorem 1.1 ([5]). Every closed orientable hyperbolic 3-manifold
except Vol3 contains an embedded tube of radius at least 0.52959 . . .
about its shortest geodesic. If the shortest geodesic has length at most
1.0595 . . . , there is a tube of radius at least log 3

2 about it.

We prove that if there is a maximal embedded tube of radius r, then
there is another region W , defined later, which also embeds. This region
is basically the union of two cones, whose shapes are determined by r.
In addition, we prove that a certain portion of the region W lies outside
of the tube of radius r.
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In each of [6], [8], and [4], lower bounds on tube volume were used to
provide lower bounds on manifold volume. As we provide a lower bound
on the volume outside the tube, these earlier results may be augmented.
In particular, this author showed [8] that any orientable hyperbolic 3-
manifold has volume at least 0.276, which may now be improved to 0.28
and Gabai, Meyerhoff and Milley [4] showed that the smallest volume
orientable hyperbolic 3-manifold contains no geodesic of length less than
0.069, which we may now improve to 0.09.

The techniques we use are not specific to three dimensions. Thus,
we develop the result in arbitrary dimensions, even though most of our
applications are specifically 3-dimensional. We do provide a few simple
n-dimensional applications. Using the relative simplicity of the region
W , we are able to determine the radius of the largest ball which fits
inside W . This ball then embeds in the manifold. This allows us to
place a lower bound on the radius of the largest ball embedded in a
hyperbolic manifold.

Finally, we locate a point in W for which we can determine the
distance to the geodesic. This then allows us to place a lower bound on
the diameter of the manifold.

2. Establishing an Embedding

Let Mn be a hyperbolic n-manifold with fundamental group Γ. It
is known that if M is closed then the shortest geodesic in M does not
intersect itself and that there is thus an embedded tube about this
geodesic. Even if M is not closed, there is often an embedded tube
about some geodesic. Choosing some such geodesic, let r be the radius
of the maximal embedded tube. We now change our viewpoint to that
of the universal cover of M , H

n. The group Γ can be considered as
a subgroup of Isom+(Hn). The geodesic in M may be lifted to a line
in H

n and the maximal tube may be lifted to the set of points within
r of this line. The Γ action will mean that there are many choices
of how to perform this lift. Let T1 be some such lift of the maximal
embedded tube and let T2 be another such lift which intersects T1 in
a single point. We will denote the lines at the core of T1 and T2 as l1
and l2, respectively. As T1 and T2 intersect at a single point, l1 and l2
are at a distance of 2r from one another. Let q1 and q2 be the points
at which their common perpendicular intersects l1 and l2, respectively.
Let Bi be a ball of radius r about qi. We construct a set which we shall
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show packs H
3 under the action of Γ.

Definition 2.1. Let X1 be the union of all line segments having
one endpoint at q1 and the other endpoint in B2. Let X2 be the union
of all line segments having one endpoint at q2 and the other endpoint
in B1. Define the set W = X1 ∩ X2.

The set W will be two identical cones which have been attached
along their bases. To be specific, we are defining a cone in H

n to be
formed by an n − 1 dimensional ball and a line segment, called the
altitude, with one endpoint lying at the center of the ball such that
the line segment is perpendicular to the n − 1 dimensional hyperplane
containing the ball. The set of points in the cone is the union of all
line segments joining the other end of the altitude to the ball. This is a
higher dimensional version of a right circular cone.

We first prove a simple result based on this.

Lemma 2.2. If p ∈ W , then min
i∈{1,2}

dist(p, qi) < 2r.

Proof. The points which are farthest from both q1 and q2 will be the
points on the boundary of the base of the cones. Thus, it suffices to let
p be one of these points. Then the ray �q1p will intersect B2 tangentially.
Taking this ray, the segment q1q2, and the perpendicular dropped from
q2 to �q1p, we form a right triangle. The hypotenuse will be the segment
q1q2 so will have length 2r. The point p lies on one of the legs of the
triangle. Thus dist(p, q1) < 2r. q.e.d.

We wish to show that translates of W under the Γ action will pack
H

3. Most of the work lies in proving the following:

Proposition 2.3. Let B3 be a ball of radius r in H
n whose interior

is disjoint from B1 and B2. Then for any point p ∈ W , we have that
dist(p, B3) ≥ max

i∈{1,2}
dist(p, Bi). Equality holds only if p ∈ ∂W .

Proof. Let q3 be the center of B3. By Lemma 2.2, p �= q3 and, in
fact, there is a positive lower bound on the possible distance from p to
q3. Without loss of generality, we may assume that q3 is as close to p
as allowed. Certainly, if B3 intersects neither B1 nor B2, then it can be
moved closer to p. So we may assume that B3 is adjacent to at least
one of B1 and B2.

Suppose for the moment that B3 intersects B1, but not B2. Then,
unless q1, q3, and p are colinear, we may move B3 closer to p. So we
take this as an additional assumption. If q1 lies between p and q3, then
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clearly p is closer to q1 and q2 than to q3. Since p is within 2r of q1, q3

cannot lie between p and q1. This leaves only the possibility that p lies
between q1 and q3. However, as was shown in the proof of Lemma 2.2,
there is a point of B2 within 2r of q1 along the ray �q1p. This point
would be in the interior of B3, a contradiction. The case in which B3

intersects B2 but not B1 is dealt with similarly.
Hence, we may assume that B3 intersects both B1 and B2. Since

B1, B2, and W have a rotational symmetry about q1q2, there will be an
n − 2 sphere of possible locations for q3. Along this sphere, the closest
point to p will be one that lies in the plane Π containing q1, q2, and
p. We have now reduced the situation to a two dimensional problem,
illustrated by the following diagram.

B1∩Π

B2∩Π

B3∩ΠW∩Π

Figure 1.

It is obvious in this situation that dist(p, q3) ≥ max
i∈{1,2}

dist(p, qi). It

is also easy to see that equality holds only when p is equidistant from
q3 and either q1 or q2 and hence lies on ∂W . q.e.d.

We now prove a slightly stronger result.

Proposition 2.4. Let T3 be a tube of radius r in H
n whose in-

terior is disjoint from T1 and T2. Then for any p ∈ W , we have that
dist(p, T3) ≥ max

i∈{1,2}
dist(p, Ti). Equality holds only if p ∈ ∂W

Proof. Let l3 be the axis of T3 and let q3 be the point of l3 which
is closest to p. Taking B3 to be the ball of radius r about q3, we have
that Bi ⊂ Ti. The interior of B3 will then be disjoint from B1 and B2.
Since dist(p, Ti) = dist(p, li) − r ≤ dist(p, qi) − r, it would be sufficient
to prove that dist(p, l3) = dist(p, q3) ≥ max

i∈{1,2}
dist(p, qi). However, this

is the result of Proposition 2.3. q.e.d.
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We are now ready to produce a packing of H
3.

Theorem 2.5. The various translates of W by elements of Γ have
no intersections, except at boundary points.

Proof. A point p in the interior of W is closer to T1 and T2 than to
any other Γ translate of T1. If for some γ ∈ Γ, γ(p) ∈ intW then γ(p) is
closer to T1 and T2 than to any other Γ translate of T1. However, since
γ is an isometry, γ(p) is closer to γ(T1) and γ(T2) than to any other Γ
translate of T1. Hence, γ carries T1 and T2 to, in some order, T1 and
T2. This implies that T1 ∩T2, which is a single point, is fixed by γ. The
only element of Γ which has fixed points is the identity. q.e.d.

A simple consequence of this is:

Corollary 2.6. The interior of W projects injectively to M . The
portion of W lying outside T1 ∪ T2 projects to a set which does not
intersect the projection of T1.

Proof. That the interior of W projects injectively is obvious. To
prove the remaining statement, let p be a point lying in W \ (T1 ∪ T2).
If p were inside some Γ translate of T1, it would be closer to that tube
than to T1 and T2, which contradicts Proposition 2.4. q.e.d.

3. Hyperbolic Trigonometry and Integration

Many of our applications will require complicated 3-dimensional
computations. Rather than interrupt the flow of thought when we de-
velop these applications, we will get the computations out of the way
now, under the guise of computing the volumes of the 3-dimensional
version of W and a specific region within W .

As was mentioned earlier, W is the union of two identical cones.
Our first step will be to determine the exact shape of the cones. Let C
denote the cone.

Proposition 3.1. The altitude of C has length r. The vertex angle
α is sin−1 sinh r

sinh 2r and the slant height is sinh−1 2 sinh r√
3

.

Proof. It is obvious that the altitude of C is r. To determine the
vertex angle, we consider that the side of the cone (when extended) will
be tangent to a ball of radius r whose center is at a distance 2r from
the vertex of C. This provides a right triangle whose hypotenuse is 2r
and with one of the angles congruent to the vertex angle of C. The
leg opposite the vertex angle is a radius of the ball so is of length r.
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The Law of Sines then determines the vertex angle. To determine the
slant height, we consider a right triangle whose hypotenuse is the slant
height. One angle is the vertex angle and the adjacent side has length
r. Using the identity cos(angle) = tanh(adj) coth(hyp), we compute the
slant height to be tanh−1 tanh r

cos sin−1 sinh r
sinh 2r

= sinh−1 2 sinh r√
3

. q.e.d.

We note that the preceding result does not depend on dimension.
At this point we start to consider only the 3-dimensional case. We now
derive a formula for the volume of a cone.

Proposition 3.2. A right circular cone of altitude r and vertex
angle α has volume π cos α tanh−1 tanh r

cos α − πr.

Proof. We will represent the volume as a triple integral in spherical
coordinates (ρ, φ, θ) where ρ is the distance to the origin, φ is the angle
from some fixed line, and θ is an angle measured in a plane perpendicular
to the fixed line. The necessary volume element is sin φ sinh2 ρ dρ dφ dθ.

We place the cone so the vertex lies at the origin and the altitude
lies along the φ = 0 direction. In an identical computation to the one
performed in the preceding proof, we see that ρ varies between 0 and
tanh−1 tanh r

cos φ . So the volume VC(r) is

VC(r) =
∫ 2π

0

∫ α

0

∫ tanh−1 tanh r
cos φ

0
sin φ sinh2 ρ dρ dφ dθ

= π

∫ α

0

∫ tanh−1 tanh r
cos φ

0
sin φ(cosh 2ρ − 1) dρ dφ

= π

∫ α

0

sin φ cos φ tanh r

cos2 φ − tanh2 r
− sin φ tanh−1 tanh r

cos φ
dφ.

At this point, we perform the substitution u = cos φ and integrate
the second half by parts.

VC(r) = π

∫ 1

cos α

u tanh r du

u2 − tanh2 r
− π

∫ 1

cos α
tanh−1 tanh r

u
du

= π

∫ 1

cos α

u tanh r du

u2 − tanh2 r

− π

(
u tanh−1 tanh r

u

∣∣∣∣
1

cos α

+
∫ 1

cos α

u

1 − tanh2 r
u2

· tanh r

u2
du

)

= π cos α tanh−1 tanh r

cos α
− πr.

q.e.d.
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We may now compute the volume of W .

Proposition 3.3. The volume of W is

2VC(r) = π
√

4 − sech2 r sinh−1 2 sinh r√
3

− 2πr.

Proof. This is a simple consequence of plugging the relevant vertex
angle and altitude into our cone volume formula and then simplifying.

q.e.d.

One of our main interests will be determining the volume of the re-
gion of W which lies in neither T1 nor T2. As the actual value is difficult
to compute, we determine a lower bound. We do this by determining
an upper bound on the volume of W ∩T1. First, we give an intractable,
but exact, formula for the volume.

Proposition 3.4. The volume of W ∩ T1 is

V (W ∩ T1) =
∫ 2π

0

∫ α

0

∫ sinh−1 sinh r√
1−cos2 θ sin2 φ

0
sin φ sinh2 ρ dρ dφ dθ.

Proof. Again we work in spherical coordinates. The axis of T1 is
perpendicular to the altitude of the cones in W . Placing the cone as
before, we may take the axis of T1 to lie in the φ = π

2 plane in the di-
rection of θ = 0 (and thus also θ = π). The bounds on θ and φ are easy
to establish. Also, the lower bound on ρ is clearly 0. To determine the
upper bound, we will have to do a small amount of work. First we deter-
mine the angle β between the axis of T1 and the line segment joining the
origin to the point with spherical coordinates (ρ, φ, θ). Of course, ρ will
not affect this angle. As is readily seen from the Poincaré disk model, we
could just as well perform this computation in Euclidean space. As the
spherical coordinates (ρ, φ, θ) correspond to the Cartesian coordinates
(ρ cos θ sin φ, ρ sin θ sin φ, ρ cos φ), the angle between this vector and the
x-axis is given by cos β = cos θ sin φ. Returning to hyperbolic geometry,
we are now able to compute an upper bound on ρ. We need to know
how far one can travel along a line at an angle of β from the axis of T1,
before one is at a distance of r from this axis. A quick application of
the Law of Sines shows that sinh ρ ≤ sinh r csc β. q.e.d.

This expression is difficult to deal with so we make an approximation
to simplify matters.
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Proposition 3.5. The volume of W ∩ T1 is less than

VT (r) = π sinh r
(
csc tan−1 cos α

sinh r
− csc tan−1 csch r

)
− πr + π cos α sinh−1 sinh r

cos α
.

Proof. Since 1− cos2 θ sin2 φ ≥ 1− sin2 φ = cos2 φ, we may say that

V (W ∩ T1) ≤
∫ 2π

0

∫ α

0

∫ sinh−1 sinh r
cos φ

0
sin φ sinh2 ρ dρ dφ dθ

= π

∫ α

0

∫ sinh−1 sinh r
cos φ

0
sin φ(cosh 2ρ − 1) dρ dφ

= π

∫ α

0
sin φ


sinh r

cos φ

√
1 +

sinh2 r

cos2 φ
− sinh−1 sinh r

cos φ


 dφ.

At this point, we make the substitution u = cos φ and then integrate
the second half by parts.

V (W ∩ T1) ≤ π

∫ 1

cos α

sinh r

u

√
1 +

sinh2 r

u2
du − π

∫ 1

cos α
sinh−1 sinh r

u
du

= π

∫ 1

cos α

sinh r

u

√
1 +

sinh2 r

u2
du

− π


u sinh−1 sinh r

u

∣∣∣∣
1

cos α

+
∫ 1

cos α
u ·

sinh r
u2√

1 + sinh2 r
u2

du




= π

∫ 1

cos α

sinh3 r

u2
√

u2 + sinh2 r
du − πr + π cos α sinh−1 sinh r

cos α
.

Making the substitution u = sinh r tan t allows us to complete the
integration.

V (W ∩ T1) ≤ π

∫ tan−1 csch r

tan−1 cos α
sinh r

sinh r cos t

sin2 t
dt − πr + π cos α sinh−1 sinh r

cos α

= π sinh r
(
csc tan−1 cos α

sinh r
− csc tan−1 csch r

)
− πr

+ π cos α sinh−1 sinh r

cos α
.

q.e.d.
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This now allows us to compute a lower bound on the volume of the
region of a manifold lying outside a tube of radius r.

Theorem 3.6. Let M be an orientable hyperbolic 3-manifold
containing an embedded tube of radius r about one of its geodesics.
Then the region of M lying outside of this tube has volume at least
2(VC(r) − VT (r)).

Proof. In the case in which the embedded tube is of maximal radius,
we have already shown that W \ (T1 ∪T2) projects injectively to M and
does not intersect the tube. Thus, we need only consider the case in
which the tube is not of maximal radius. Expand the tube until it is of
maximal radius R. Then again we know that there is a region of volume
2(VC(R)− VT (R)) lying outside the maximal tube. All we need to note
are that this region is, of course, outside of the original tube and that
2(VC(r) − VT (r)) is an increasing function of r. q.e.d.

We perform one last calculation to determine the limiting behavior.

Proposition 3.7. lim
r→∞ 2(VC(r) − VT (r)) = π(log 4

3 − 1
4).

Proof. Using the definitions of the functions involved and the fact
that lim

x→∞(sinh−1 x − log(2x)) = 0, we have that

lim
r→∞ 2(VC(r) − VT (r))

= lim
r→∞

[
π
√

4 − sech2 r sinh−1 2 sinh r√
3

−2π sinh r

(√
sinh2 r + cos2 α

cos α
− cosh r

)
− 2π cos α sinh−1 sinh r

cos α

]

= lim
r→∞

[
π
√

4 − sech2 r

(
r + log

2√
3

)
− 2π cos α(r − log cos α)

−2π
sinh r

cos α

(
sinh2 r + cos2 α − cosh2 r cos2 α√

sinh2 r + cos2 α + cosh r cos α

)]
.

Earlier, we computed sinα. From this, it is easy to determine that
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cos α = 1
2

√
4 − sech2 r. Continuing our computation,

lim
r→∞ 2(VC(r) − VT (r))

= 2π log
2√
3
− 2π lim

r→∞
sinh2 r − sinh2 r cos2 α√
1 + cos2 α

sinh2 r
+ coth r cos α

= 2π log
2√
3
− 2π lim

r→∞
sinh2 r sin2 α

2

= 2π log
2√
3
− π

4
= π

(
log

4
3
− 1

4

)
.

q.e.d.

4. Applications

We start by looking for embedded balls in hyperbolic manifolds.

Proposition 4.1. If a hyperbolic manifold contains a tube of radius
r about a geodesic, then it also contains an embedded ball of radius
sinh−1

(
1
2 tanh r

)
.

Proof. Let r′ be the radius of the maximal tube about this geodesic.
The shortest distance from the center of W to the boundary of W will be
achieved by dropping a perpendicular from the center to the boundary.
This will form a right triangle with hypotenuse r′, one angle equal to
sin−1 sinh r′

sinh 2r′ and the opposite leg the desired ball radius. It is easy to see
that the radius of the ball is sinh−1 sinh2 r′

sinh 2r′ = sinh−1(1
2 tanh r′), which is

clearly increasing in r′ and hence is at least sinh−1(1
2 tanh r). q.e.d.

This result allows us to prove two corollaries, one 3-dimensional and
the other n-dimensional.

Corollary 4.2. Every closed orientable hyperbolic 3-manifold con-
tains a ball of radius at least sinh−1 1

4 = 0.24746 . . . .

Proof. If the manifold contains a tube of radius log 3
2 , then it must

contain a ball of radius at least sinh−1 1
4 . Thus, we need only note that

[5] produces a tube of radius log 3
2 except when the manifold is Vol3 or

when the shortest geodesic has length at least 1.0595 . . . . Vol3 is known
to contain a ball of radius 0.527. On the other hand, if the shortest
geodesic has length at least 1.0595 . . . , then every point has a ball of
radius 0.529 . . . about it. q.e.d.
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For the n-dimensional result, we first cite a theorem of Cao and
Waterman [2].

Theorem 4.3. Let f be a geodesic in a complete hyperbolic n-
manifold, with k =

⌊
n−1

2

⌋
and σ(p) =

∫ π
2

0 sinp x dx. If the length l

of f , is at most 2σ(k+1)
πk

(√
2−1
4

) k+1
2 , then there exists an embedded solid

tube around f whose radius r satisfies

sinh2 r =
1
4

(
πkl

2σ(k + 1)

)− 2
k+1

(
1 − 4

(
πkl

2σ(k + 1)

) 2
k+1

) 1
2

− 1
2
.

Further, it is easy to see that r is a decreasing function of l. This
gives:

Corollary 4.4. If Mn is a closed hyperbolic n-manifold, then either

the shortest geodesic has length at least 2σ(k+1)
πk

(√
2−1
4

) k+1
2 or there is an

embedded ball of radius 0.37. As a consequence, every closed hyperbolic

n-manifold contains a ball of radius σ(k+1)
πk

(√
2−1
4

) k+1
2 .

Proof. If the shortest geodesic has length l < 2σ(k+1)
πk

(√
2−1
4

) k+1
2

then there is a tube whose radius r satisfies sinh2 r = 1√
2−1

√
2 −√

2 −
1
2 = 1.3477 . . . . This leads to a ball of radius at least 0.37 . . . .

If the shortest geodesic has length at least 2σ(k+1)
πk

(√
2−1
4

) k+1
2 then

there must be a ball of radius σ(k+1)
πk

(√
2−1
4

) k+1
2 about every point in

M . Since this amount is smaller than 0.37 we get the desired lower
bound on ball radius. q.e.d.

We may state a corollary to this corollary:

Corollary 4.5. If Mn is a closed hyperbolic n-manifold then

Vol(M) ≥ Vn(1)


σ(k + 1)

πk

(√
2 − 1
4

) k+1
2




n

where Vn(1) is the volume of an n-dimensional Euclidean ball of radius 1.

Proof. We have proved that there is an embedded ball of radius

at least σ(k+1)
πk

(√
2−1
4

) k+1
2 . The volume of a hyperbolic ball of a given
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radius is greater than the volume of the corresponding Euclidean ball
of the same radius. Thus we may use the Euclidean volume formula as
a lower bound. q.e.d.

In addition to embedded balls, we can consider the diameter of a
manifold.

Proposition 4.6. If a hyperbolic manifold M contains an embedded
tube of radius r about one of its geodesics then

diam (M) ≥ sinh−1


2 sinh r√

3

√
1 − sinh2 r

sinh2 2r


 .

Proof. As we have shown, W embeds in M . We have also shown
that the points of W are closer to T1 or T2 than any other π1(M)
translate. Let us consider the points on the boundary of the bases of
the cones in W . Among these points, the ones which are closest to l1
will lie in the plane containing both l1 and the common perpendicular
to l1 and l2. Working within this plane, we have a point at a distance
of sinh−1 2 sinh r√

3
from q1 and such that the angle of declination from

l1 is π
2 − sin−1 sinh r

sinh 2r . Thus, we may use the Law of Sines to see that

the distance from this point to l1 is sinh−1

(
2 sinh r√

3

√
1 − sinh2 r

sinh2 2r

)
. The

point could not be any closer to l2 and thus l1 is closer to the point than
any other Γ translate. q.e.d.

From this point on, we restrict our attention to the 3-dimensional
case. We first provide a very small improvement of an earlier result of
this author [8].

Proposition 4.7. Every closed orientable hyperbolic 3-manifold has
volume at least 0.28.

Proof. The exceptional cases to the existence of a log 3
2 tube all have

volume at least 1.01. In [8], it is shown that a tube of radius at least
log 3

2 in an orientable hyperbolic 3-manifold has volume at least 0.27666.
Because of Theorem 3.6, we know that the region outside of the tube
has volume at least 0.00485. q.e.d.

We now improve a recent result of Gabai, Meyerhoff, and Milley [4].
First, we state the relevant theorems from their paper:

Theorem 4.8 ([4]). If a maximal tube in a complete orientable
hyperbolic 3-manifold has length l and radius r > 0.2014 and a value ρ
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is chosen at most 0.298 then l is at least as large as the smaller of
√

3 cosh(2r)
2π sinh(2r)

(
cosh−1

(
sinh2(2r) + cosh(2r + ρ)

cosh2(2r)

))2

and

1
cosh(2r) sinh(2r)

(
R2r,0

2

4
+
(

R2r,ρ − R2r,0

2

)2
)

where

Rt,ρ =
√

sinh(2r) cosh(2r) coth(2r + ρ)

· cosh−1

(
sinh(2r) sinh(2r + ρ) + cosh(t)

cosh(2r) cosh(2r + ρ)

)
.

For their purposes, the value ρ = 0.298 was optimal. They then
established various properties of these functions with ρ = 0.298. We
will choose ρ = 0.293. Rather than reproduce their efforts, we say
simply that with one exception, the exact same arguments would work
for this new value of ρ. The exception is that the second function is
decreasing so long as r ≥ 0.6 whereas in [4] it is shown that this function
is invertible whenever its value is less than 0.11014.

Theorem 4.9. The shortest geodesic in the smallest volume ori-
entable hyperbolic 3-manifold has length at least 0.09.

Proof. Suppose that there is a geodesic of length at most 0.09.
In [4], it is shown that if a geodesic has length less than 0.10438, then
there is a tube of radius at least 1.02 about it. Of course, this applies
to our geodesic.

By multiplying the length estimates in Theorem 4.8 by π sinh2 r
we obtain lower bounds on tube volume. Thus, we can say that with
ρ = 0.293, a tube of radius at least 1.332 has volume at least 0.87906.
By Theorem 3.6, the volume outside this same tube is at least 0.06368.
Thus the manifold has volume at least 0.94274 which is greater than
the volume of the Weeks manifold. Thus, 1.02 ≤ r ≤ 1.332.

Again using Theorem 4.8, we can say that l ≥ 0.09009, a contradic-
tion. q.e.d.

It is also possible to improve estimates regarding noncompact mani-
folds. We would like to thank Peter Shalen for suggesting the following
application.
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Proposition 4.10. If an orientable noncompact hyperbolic 3-ma-
nifold M has betti number at least 4 then Vol(M) ≥ π(log 4

3 + 3
4).

Proof. In [1], it is established that there is a sequence of mani-
folds Mn such that π1(Mn) converges geometrically to π1(M). Further,
Vol(M) > Vol(Mn) and the limit as n goes to infinity of ln, the length
of the shortest geodesic in Mn is 0. It is also shown that Mn contains an
embedded tube of volume at least V (ln) where V is a specific function
they develop. All that we need to know about V is that lim

l→0
V (l) = π.

As ln goes to 0, the radius of the maximal embedded tube goes to ∞.
This information is used to establish π as a lower bound on volume.

In Mn, by Theorem 3.6, we can establish a lower bound on the
volume outside of the maximal tube. As n → ∞, this lower bound will
approach lim

r→∞ 2(VC(r)− VT (r)) = π(log 4
3 − 1

4). Thus, we may say that

Vol(M) = lim
n→∞Vol(Mn) ≥ π + π(log 4

3 − 1
4) = π(log 4

3 + 3
4). q.e.d.
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