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ISOSPECTRAL METRICS ON FIVE-DIMENSIONAL
SPHERES

DOROTHEE SCHUETH

Abstract
We construct isospectral pairs of Riemannian metrics on S5 and on B6,
thus lowering by three the minimal dimension of spheres and balls on which
such metrics have been constructed previously (Sn≥8 and Bn≥9). We also
construct continuous families of isospectral Riemannian metrics on S7 and
on B8. In each of these examples, the metrics can be chosen equal to the
standard metric outside certain subsets of arbitrarily small volume.

Introduction

During the past two decades, research on isospectral manifolds —
that is, Riemannian manifolds sharing the same spectrum (including
multiplicities) of the Laplace operator acting on functions — has been
very active; see, for example, the survey article [5]. However, it was
only recently that Zoltan I. Szabó and Carolyn Gordon independently
discovered the first examples of isospectral metrics on spheres: Pairs of
such metrics on Sn≥10 [20, 21], and continuous families on Sn≥8 [6].

In spite of the wealth of other isospectral manifolds obtained before,
the construction of isospectral spheres had seemed beyond reach for a
long time. The reason was that both of the main methods of construc-
tion which were known and used until 2000 had excluded spheres:

• The so-called Sunada method [18] and its various generalizations
(see, e.g., [3]) produces isospectral quotients (M/Γ1 , g), (M/Γ2 , g)
of a common Riemannian covering manifold (M, g); in particu-
lar, these isospectral manifolds were always nonsimply connected.
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Many interesting examples of locally isometric isospectral mani-
folds of the form (M/Γ1 , g), (M/Γ2 , g) — some of Sunada type,
some using other special constructions — can be found, for exam-
ple, in [24], [14], [10], [3], [12, 13], [15]; also the famous examples
of isospectral plane domains [9] arise as orbifolds in the Sunada
type setting.

• The method of principal torus bundles (see [4], [11], [7], [19], [8],
[16, 17]) produces certain pairs of isospectral principal bundles for
which the structural group is a torus of dimension at least two;
the metrics are invariant under the torus action. Since no sphere
is a principal T k≥2-bundle, spheres cannot be obtained by using
this method either (although products of spheres could [16]; these
were the first examples of simply connected isospectral manifolds).
See [17] for a detailed treatment of the method of principal torus
bundles, a systematical approach for applying it, and many exam-
ples (among others, isospectral left invariant metrics on compact
Lie groups).

The key to Gordon’s construction of isospectral metrics on the
spheres Sn≥8 (and on the balls Bn≥9) was a new approach which still
involves T k≥2-actions, but does not require them to be free anymore.
On the other hand, Z.I. Szabó’s pairs of isospectral metrics on Sn≥10

(and on Bn≥11) do not arise by such a construction and seem to be of
a completely different type. A spectacular feature of his examples is
that they include pairs of isospectral metrics on S11 in which one of the
metrics is homogeneous while the other is not.

The present paper serves several purposes.
First, we reformulate Gordon’s new theorem [6, Theorem 1.2] in a

somewhat more elegant way (see Theorem 1.4 below), and in Theo-
rem 1.6 we establish a special version of it which turns to be a useful
tool for finding new applications. It also accounts for all applications of
Theorem 1.4 which are known so far.

Second, we derive a general sufficient nonisometry condition for the
type of Riemannian metrics occurring in Theorem 1.6; see Proposi-
tion 2.4 below. Although we will apply this criterion only to certain
new examples constructed in this paper, we wish to point out that it
could also be used to unify most of the various nonisometry proofs from
[11], [7], [8], [6] (however, some of the locally homogeneous manifolds
with boundary from [11] and [8] cannot be proven nonisometric us-
ing this approach because they violate a certain genericity condition;
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see (G) in Proposition 2.3). Similarly, it would be possible to apply our
method to the isospectral examples from [16, 17] where we had instead
performed explicit curvature computations in order to show that objects
like

∫
scal2,

∫ ‖R‖2, the critical values of the scalar curvature, or the
dimension of their loci are not spectrally determined.

Our third (and main) purpose is to use Theorem 1.6 for constructing
isospectral pairs of metrics on S5 (and on B6) and thus decreasing the
minimal dimensions of Gordon’s examples by three; see Example 3.3.
We also obtain continuous isospectral families of metrics on S7 (and
on B8); see Example 3.2. For the nonisometry proofs we use the general
criterion mentioned above.

Fourth, we show that in these new examples — in particular, on S5

and B6 (pairs), and on S7 and B8 (continuous families) — it is possible
to choose the isospectral metrics in such a way that they are equal to
the round (resp. flat) metric outside certain subsets of arbitrarily small
volume; see Theorem 5.3. This gives a nice contrast to the fact that in
dimensions up to six, the round spheres themselves are completely de-
termined by their spectra [22] (the corresponding problem in higher di-
mensions has not yet been solved), and to the fact that no round sphere
in any dimension admits a continuous isospectral deformation [23].

The paper is organized as follows:
In Section 1 we present our reformulation (Theorem 1.4) of Gor-

don’s theorem and the afore-mentioned specialization (Theorem 1.6).
Section 2 contains our general sufficient nonisometry criterion for the
metrics occurring in Theorem 1.6. In Section 3 we construct our new
examples: Continuous families of isospectral metrics on S7 and on B8

(Example 3.2), and pairs of such metrics on S5 and on B6 (Example 3.3).
Moreover, we give a survey of a number of related examples in 3.4; each
of them can be obtained using Theorem 1.6. Section 4 gives the non-
isometry proof for Examples 3.2 / 3.3. Finally, we show in Section 5
how to make the isospectral metrics round (resp. flat) on large subsets
(Theorem 5.3).

The author would like to thank Carolyn Gordon and Werner Ball-
mann for interesting discussions concerning these and related topics.

1. Isospectrality via effective torus actions

Definition 1.1. (i) The spectrum of a closed Riemannian manifold
is the spectrum of eigenvalues, counted with multiplicities, of the as-



90 Dorothee Schueth

sociated Laplace operator acting on functions. The Dirichlet spectrum
of a compact Riemannian manifold M with boundary is the spectrum
of eigenvalues corresponding to eigenfunctions which satisfy the Dirich-
let boundary condition f |∂M = 0. The Neumann spectrum of such a
manifold is defined analogously with respect to the Neumann boundary
condition Nf = 0, where N is the inward-pointing unit normal field on
the boundary.

(ii) Two closed Riemannian manifolds are called isospectral if they
have the same spectrum (including multiplicities). Two compact Rie-
mannian manifolds with boundary are called Dirichlet isospectral, resp.
Neumann isospectral, if they have the same Dirichlet spectrum, resp. the
same Neumann spectrum.

Remark 1.2. Let (M, g) be a compact Riemannian manifold with
or without boundary. Consider the Hilbert spaces HN := H1,2(M, g)
and HD := ◦→ H1,2(M, g) ⊆ HN . Note that HN , resp. HD, is the
completion of C∞(M), resp. {f ∈ C∞(M) | f |∂M = 0}, with respect to
the H1,2-norm associated to (M, g). For each f ∈ HN \{0} the Rayleigh
quotient is defined as

R(f) :=
∫

M
‖df‖2

gdvolg
/ ∫

M
|f |2dvolg =

(‖f‖2
H1,2(M,g)

/ ‖f‖2
L2(M,g)

)−1.

Let 0 ≤ λN
1 ≤ λN

2 ≤ . . . → ∞, resp. 0 ≤ λD
1 ≤ λD

2 ≤ . . . → ∞,
denote the Neumann spectrum, resp. the Dirichlet spectrum, of (M, g);
if ∂M = ∅ then both of these sequences coincide with the spectrum of
(M, g). Finally, denote by LN

k , resp. LD
k , the set of all k-dimensional

subspaces of HN , resp. HD. Then we have the following variational
characterization of eigenvalues (see, e.g., [2]):

λN
k = inf

U∈LN
k

sup
f∈U\{0}

R(f) and λD
k = inf

U∈LD
k

sup
f∈U\{0}

R(f).(1)

Notation 1.3. By a torus, we always mean a nontrivial, compact,
connected abelian Lie group. If a torus T acts smoothly and effectively
by isometries on a compact connected Riemannian manifold (M, g) then
we denote by M̂ the union of those orbits on which T acts freely. Note
that M̂ is an open dense submanifold of M . The action of T gives M̂
the structure of a principal T -bundle. By gT we denote the unique Rie-
mannian metric on the quotient manifold M̂/T such that the canonical
projection π : (M̂, g) → (M̂/T, gT ) is a Riemannian submersion.
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Theorem 1.4. Let T be a torus which acts effectively on two com-
pact connected Riemannian manifolds (M, g) and (M ′, g′) by isometries.
For each subtorus W ⊂ T of codimension one, suppose that there ex-
ists a T -equivariant diffeomorphism FW : M → M ′ which satisfies
F ∗

W dvolg′ = dvolg and induces an isometry FW between the quotient
manifolds (M̂/W, gW ) and (M̂ ′/W, g′W ). Then (M, g) and (M ′, g′) are
isospectral; if the manifolds have boundary then they are Dirichlet and
Neumann isospectral.

Remark. Theorem 1.4 above is a slight variation of Carolyn Gor-
don’s Theorem 1.2 in [6]. Instead of our condition F ∗

W dvolg′ = dvolg ,
Gordon assumes the condition that FW∗ maps the projected mean cur-
vature vector field HW of the submersion (M̂, g) → (M̂/W, gW ) to the
corresponding vector field H ′

W . While the two conditions actually turn
out to be equivalent in this context, our volume preserving condition is
not only easier to formulate but also more convenient to check in appli-
cations. More than that, it is inherent and automatically satisfied in the
specialization described below in 1.5 / 1.6 which covers all applications
of the above theorem which are known so far. Our different formula-
tion of the theorem has also led to a different proof (construction of
a certain isometry between the H1,2-spaces instead of intertwining the
Laplacians). An advantage of our proof is that it does not require a cer-
tain additional condition which Gordon assumes in the case of manifolds
with boundary (namely, that M̂ ∩ ∂M be dense in ∂M).

Proof of Theorem 1.4. Consider the Hilbert space H := H1,2(M, g)
in the case of manifolds without boundary or in case of Neumann bound-
ary conditions, resp. H := ◦→ H1,2(M, g) in the case of Dirichlet bound-
ary conditions. Let H′ be defined analogously with respect to (M ′, g′).
We claim that there is a Hilbert space isometry from H to H′ which
moreover preserves L2-norms; the theorem will thus follow from the
variational characterization of eigenvalues (1).

Consider the unitary representation of T on H defined by (zf)(x) =
f(zx) for all f ∈ H, z ∈ T , x ∈ M . Write T = z/L and let L∗ be the
dual lattice. Since T is abelian, H decomposes as the orthogonal sum⊕

µ∈L∗ Hµ with Hµ = {f ∈ H | zf = e2πiµ(Z)f for all z ∈ T}, where Z
denotes any representative for z in z. In particular, this implies the
coarser decomposition

H = H0 ⊕
⊕

W
(HW �H0),(2)
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where W runs though the set of all subtori of codimension 1 in T , and
HW is the sum of all Hµ such that µ ∈ L∗ and TeW ⊆ kerµ. In other
words, HW is just the space of W -invariant functions in H. Let H′

W

and H′
0 be the analogously defined subspaces of H′. Now let W be any

subtorus of codimension 1 in T and choose a diffeomorphism FW as
in the assumption. Since FW intertwines the T -actions, F ∗

W sends H′
W

to HW and H′
0 ⊂ H′

W to H0 ⊂ HW . We will now show that F ∗
W : H′

W →
HW is a Hilbert space isometry which also preserves L2-norms; in view
of the decomposition (2) this will prove our above claim. Preservation of
L2-norms is trivial by the assumption F ∗

W dvolg′ = dvolg . Moreover, this
assumption implies that it suffices to show that for each ψ ∈ C∞(M ′)
which is invariant under the W -action and for all y ∈ M ′ we have
‖dψ|y‖g′ = ‖dϕ|x‖g , where ϕ := F ∗

Wψ and x := F−1
W (y). We can assume

x ∈ M̂ ; let ϕ and ψ be the functions induced on M̂/W and M̂ ′/W . Then
ϕ = F

∗
Wψ ; since gW and g′W are the submersion metrics and FW

is an isometry we obtain indeed, at the appropriate points: ‖dϕ‖g =
‖dϕ‖gW = ‖dψ‖g′ W = ‖dψ‖g′ . q.e.d.

Notation and Remarks 1.5. In the following we fix a torus T
with Lie algebra z = TeT . Let L be the cocompact lattice in z such
that exp : z → T induces an isomorphism from z/L to T , and denote
by L∗ ⊂ z∗ the dual lattice. We also fix a compact connected Rieman-
nian manifold (M, g0), with or without boundary, and a smooth effective
action of T on (M, g0) by isometries.

(i) For Z ∈ z we denote by Z∗ the vector field x �→ d
dt |t=0

exp(tZ)x
on M . For each x ∈ M and each subspace w of z we let wx :=
{Z∗

x | Z ∈ w}.

(ii) We call a smooth z-valued 1-form on M admissible if it is T -
invariant and horizontal (i.e., vanishes on the vertical spaces zx).

(iii) For any admissible z-valued 1-form λ on M we denote by gλ the
Riemannian metric on M given by

gλ(X,Y ) = g0
(
X + λ(X)∗, Y + λ(Y )∗

)
.

In other words, gλ = (Φ−1
λ )∗g0 , where Φλ is the smooth endomor-

phism field on M given by X �→ X − λ(X)∗ for all X ∈ TM .
Note that Φλ is unipotent on each tangent space; in particular,
dvolgλ

= dvolg0 .
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(iv) Finally, note that gλ is again invariant under the action of T ,
that gλ restricts to the same metric as g0 on the vertical sub-
spaces zx , and that the submersion metric gT

λ on M̂/T is equal
to gT

0 .

Theorem 1.6. In the context of Notation 1.5, let λ, λ′ be two
admissible z-valued 1-forms on M . Assume:

(∗) For every µ ∈ L∗ there exists a T -equivariant Fµ ∈ Isom(M, g0)
which satisfies µ ◦ λ = F ∗

µ(µ ◦ λ′).
Then (M, gλ) and (M, gλ′) are isospectral; if M has boundary then the
two manifolds are Dirichlet and Neumann isospectral.

Proof. We show that (M, gλ) and (M, gλ′) satisfy the hypotheses
of Theorem 1.4. Let W be a subtorus of codimension 1 in T . Choose
µ ∈ L∗ such that w := TeW equals kerµ, and choose a corresponding Fµ

as in (∗). We claim that FW := Fµ satisfies the conditions required in
Theorem 1.4. First of all note that Fµ , being an isometry of g0 , trivially
satisfies F ∗

µdvolgλ′ = dvolgλ
because of dvolgλ

= dvolg0 = dvolgλ′ (see
1.5(iii)). Thus it remains to prove that Fµ induces an isometry from
(M̂/W, gW

λ ) to (M̂/W, gW
λ′ ).

Let V ∈ TxM be any vector which is gλ-orthogonal to wx ; then
V = Φλ(X) for some X which is g0-orthogonal to wx . By condi-
tion (∗) we know that λ(X) equals λ′(Fµ∗X) modulo w. Keeping in
mind that Fµ commutes with the T -action, we conclude that the vector
Fµ∗V = Fµ∗(ΦλX) equals Y := Φλ′(Fµ∗X) up to an error in wFµ(x) .
But Fµ∗X is g0-orthogonal to wFµ(x) ; thus Y is the projection of Fµ∗V
to the gλ′-orthogonal complement of wFµ(x) . Our assertion now follows
from ‖Y ‖gλ′ = ‖Fµ∗X‖g0 = ‖X‖g0 = ‖V ‖gλ

. q.e.d.

2. A sufficient condition for nonisometry

Throughout this section we let (M, g0), T , z be as in Notation 1.5,
and we define the principal T -bundle π : M̂ → M̂/T as in Notation 1.3.
By λ, λ′ we will always denote admissible z-valued 1-forms on M . In
Proposition 2.4 below we will establish a sufficient condition for (M, gλ),
(M, gλ′) to be nonisometric.

Notation and Remarks 2.1.

(i) We say that a diffeomorphism F : M → M is T -preserving if
conjugation by F preserves T ⊂ Diffeo(M). In that case, we de-
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note by ΨF the automorphism of z = TeT induced by conjugation
by F . Obviously, each T -preserving diffeomorphism F of M maps
T -orbits to T -orbits and satisfies F∗(Z∗) = ΨF (Z)∗ for all Z ∈ z,
where the vector fields Z∗ on M are defined as in 1.5(iii).

(ii) We denote by AutT
g0

(M) the group of all T -preserving diffeomor-
phisms F of M which, in addition, preserve the g0-norm of vectors
tangent to the T -orbits and induce an isometry of (M̂/T, gT

0 ). We
denote the corresponding group of induced isometries by Aut T

g0
(M)

⊂ Isom(M̂/T, gT
0 ).

(iii) We define D := {ΨF | F ∈ AutT
g0

(M)} ⊂ Aut(z). Note that D
is discrete because it is a subgroup of the discrete group {Ψ ∈
Aut(z) | Ψ(L) = L}, where L is the lattice ker (exp : z → T ).

(iv) Let ω0 denote the connection form on M̂ associated with g0 ;
i.e., for each x ∈ M̂ the horizontal space ker (ω0|TxM̂) is the g0-
orthogonal complement of zx in TxM̂ . Then the connection form
on M̂ associated with gλ is obviously given by ωλ := ω0 + λ.

(v) Let Ωλ denote the curvature form on M̂/T associated with the
connection form ωλ on M̂ . We have π∗Ωλ = dωλ because T is
abelian.

(vi) Since λ is T -invariant and horizontal it induces some z-valued 1-
form λ on M̂/T . We conclude from π∗Ωλ = dωλ = dω0 + dλ that
Ωλ = Ω0+dλ. In particular, Ωλ and Ω0 differ by an exact z-valued
2-form.

Lemma 2.2. Suppose that F : (M, gλ) → (M, gλ′) is a T -preserving
isometry.

(i) F preserves the g0-norm of vectors tangent to the T -orbits, and it
induces an isometry F of (M̂/T, gT

0 ). In particular, F ∈ AutT
g0

(M)
and ΨF ∈ D.

(ii) F ∗ωλ′ = ΨF ◦ ωλ ; in particular, F ∗dωλ′ = ΨF ◦ dωλ .

(iii) The isometry F of (M̂/T, gT
0 ) satisfies

F
∗Ωλ′ = ΨF ◦ Ωλ .(3)
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Proof. (i) This follows immediately from 1.5(iv).
(ii) We have ωλ′(Z∗) = ωλ(Z∗) = Z for all Z ∈ z, hence ωλ′(F∗(Z∗))

= ωλ′(ΨF (Z)∗) = ΨF (Z) = ΨF (ωλ(Z∗)). The equation thus holds
when applied to vectors tangent to the T -orbits. Since F is an isometry
and maps orbits to orbits, it must map gλ-horizontal vectors to gλ′-
horizontal vectors. Hence both sides of the asserted equation vanish
when applied to a gλ-horizontal vector.

(iii) This follows from (ii) and 2.1(v). q.e.d.

Proposition 2.3. Let λ be an admissible z-valued 1-form on M
such that the associated curvature form Ωλ on M̂/T satisfies the follow-
ing genericity condition:

No nontrivial 1-parameter group in Aut T
g0

(M) preserves Ωλ .(G)

Then T is a maximal torus in Isom(M, gλ).

Proof. Let Ft ∈ Isom(M, gλ) be a 1-parameter family of isometries
commuting with T . In particular, the maps Ft are T -preserving and thus
induce a 1-parameter family F t ∈ Isom(M̂/T, gT

0 ). The corresponding
ΨFt ∈ D satisfy ΨFt ≡ Id because D is discrete and ΨF0 = Id. Thus ac-
cording to (3), each F t preserves Ωλ . The assumed property (G) of Ωλ

now implies F t ≡ Id. We conclude that Ft restricts to a gauge trans-
formation of the principal T -bundle M̂ . On the other hand, F ∗

t ωλ ≡ ωλ

by 2.2(ii). But a gauge transformation which preserves the connection
form of a principal bundle must act as an element of the structural group
on each connected component of the bundle. Since an isometry of the
connected Riemannian manifold (M, gλ) is determined by its restriction
to any nonempty open subset, it follows that the family Ft is contained
in T . q.e.d.

Proposition 2.4. Let λ, λ′ be admissible 1-forms on M such that
Ωλ′ has property (G). Furthermore, assume that

Ωλ /∈ D ◦ Aut T
g0

(M)∗Ωλ′ .(N)

Then (M, gλ) and (M, gλ′) are not isometric.

Proof. Suppose that there were an isometry F : (M, gλ) → (M, gλ′).
By Proposition 2.3, T is a maximal torus in Isom(M, gλ′). Since all
maximal tori are conjugate, we can assume F — after possibly com-
bining it with an isometry of (M, gλ′) — to be T -preserving. But then
Lemma 2.2 implies F ∗Ωλ′ = ΨF ◦Ωλ with F ∈ Aut T

g0
(M) and ΨF ∈ D,

which contradicts our assumption (N). q.e.d.
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Remark 2.5. Note that equally valid (but weaker) versions of
Propositions 2.3 and 2.4 would be obtained by replacing Aut T

g0
(M) by

the possibly larger group Isom(M̂/T, gT
0 ).

3. Examples

3.1 Notation

(i) Throughout the new examples given in 3.2 and 3.3 below we con-
sider the two-dimensional torus T := R

2/L with L := 2πZ× 2πZ.
We denote the standard basis of its Lie algebra z ∼= R

2 by {Z1 , Z2}.
(ii) We let E be the group of the four linear isomorphisms of z which

preserve each of the sets {±Z1} and {±Z2}.
(iii) Let m ∈ N. We identify the real vector spaces C

m+1 = C
m ⊕ C

and R
2m+2 via the linear isomorphism which sends {e1 , ie1 , . . . ,

em+1 , iem+1} (in this order) to the standard basis of R
2m+2, where

{e1 , . . . , em+1} denotes the standard basis of C
m+1. We let the

torus T act on this space by

exp(aZ1 + bZ2) : (p, q) �→ (eiap, eibq)

for all a, b ∈ R, p ∈ C
m, q ∈ C. This action preserves the unit

sphere S2m+1 ⊂ R
2m+2 as well as the unit ball B2m+2; by re-

striction we thus obtain an action ρ of T on S2m+1, respectively
on B2m+2.

3.2 Example: Continuous isospectral families of metrics
on S2m+1≥7 and on B2m+2≥8

Notation 3.2.1. For each linear map j : z ∼= R
2 → su(m) we define

a z-valued 1-form λ = (λ1, λ2) on R
2m+2 ∼= C

m ⊕ C by letting

λk
(p,q)(X,U) = |p|2〈jZk

p,X〉 − 〈X, ip〉〈jZk
p, ip〉(4)

for k = 1, 2 and all (X,U) ∈ TpR
2m ⊕ TqR

2. Here 〈 . , . 〉 denotes the
standard euclidean inner product on R

2m, and the skew-hermitian maps
jZk

:= j(Zk) act on p ∈ R
2m via the above identification R

2m ∼= C
m.

By restriction we obtain a smooth z-valued 1-form λ on the unit
sphere S2m+1, respectively on the unit ball B2m+2.
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Remark 3.2.2. We observe that λ is admissible (see Notation 1.5(ii))
with respect to the action ρ of T defined above in 3.1(iii). In fact, in-
variance of λ under the action of T is immediate because multiplication
with the complex scalar factor eia commutes with jZk

∈ su(m) and pre-
serves the euclidean inner product. It remains to check that λ vanishes
on the spaces z(p,q) = span {(ip, 0), (0, iq)} ⊂ TpR

2m ⊕ TqR
2. Indeed we

have λk
(p,q)(ip, 0) = |p|2〈jZk

p, ip〉− 〈ip, ip〉〈jZk
p, ip〉 = 0 for k = 1, 2, and

λ(p,q)(0, iq) = 0 by definition.

Definition 3.2.3. Let g0 be the round standard metric on S2m+1,
respectively the standard metric on B2m+2, and let gλ be the metric
associated with λ and g0 as in Notation 1.5(iii).

Summarizing, for each linear map j : R
2 → su(m) we have an asso-

ciated Riemannian metric gλ on S2m+1, respectively on B2m+2, via the
corresponding 1-form λ as defined in (4).

Definition 3.2.4. Let j, j′ : z ∼= R
2 → su(m) be two linear maps.

(i) We call j and j′ isospectral, denoted j ∼ j′, if for each Z ∈ z there
exists AZ ∈ SU(m) such that j′Z = AZjZA

−1
Z .

(ii) Let Q : C
m → C

m denote complex conjugation. We call j and j′

equivalent, denoted j ∼= j′, if there exists A ∈ SU(m)∪ SU(m) ◦Q
and Ψ ∈ E (see Notation 3.1(ii)) such that j′Z = AjΨ(Z)A

−1 for all
Z ∈ z.

(iii) We say j is generic if no nonzero element of su(m) commutes with
both jZ1 and jZ2 .

Proposition 3.2.5. Let j, j′ : z ∼= R
2 → su(m) be two linear

maps, and let gλ , gλ′ be the associated pair of Riemannian metrics
on S2m+1, or on B2m+2, as above. If j ∼ j′ then the Riemannian
manifolds (S2m+1, gλ) and (S2m+1, gλ′) are isospectral, and (B2m+2, gλ)
and (B2m+2, gλ′) are Dirichlet and Neumann isospectral. If j and j′ are
not equivalent and if at least one of them is generic, then in both of
these pairs the two manifolds are not isometric.

Proof. We will prove the nonisometry statement in Section 4. To
prove isospectrality we use Theorem 1.6. Fix an arbitrary µ ∈ L∗. We
have to show that there exists an isometry Fµ of g0 which commutes
with the action of T and satisfies µ ◦ λ = F ∗

µ(µ ◦ λ′). Let Z ∈ z be the
vector corresponding to µ ∈ L∗ ⊂ z∗ under the canonical identification
of z with z∗ associated with the basis {Z1 , Z2}. Choose AZ ∈ SU(m) ⊂
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SO(2m) as in Definition 3.2.4(i), and let Fµ := (AZ , Id) ∈ SO(2m+ 2).
Then Fµ is an isometry of g0 and satisfies

(
F ∗

µ(µ ◦ λ′))
(p,q)

(X,U)

= (µ ◦ λ′)(AZp,q)(AZX,U)

= |AZp|2〈j′ZAZp,AZX〉 − 〈AZX, iAZp〉〈j′ZAZp, iAZp〉
= |p|2〈A−1

Z j′ZAZp,X〉 − 〈X, ip〉〈A−1
Z j′ZAZp, ip〉

= |p|2〈jZp,X〉 − 〈X, ip〉〈jZp, ip〉 = (µ ◦ λ)(p,q)(X,U),

as desired. q.e.d.

The following result shows that there are in fact many examples to
Proposition 3.2.5.

Proposition 3.2.6. Let m ≥ 3 and {Z1 , Z2} be the standard basis
of R

2.

(i) There exists a nonempty Zariski open subset U of the space J
of linear maps j : R

2 → su(m) such that for each j ∈ U there
is a continuous family j(t) in J , defined on some open interval
around t = 0, such that j(0) = j and:

(1) The maps j(t) are pairwise isospectral in the sense of 3.2.4(i).

(2) The function t �→‖jZ1(t)
2+jZ2(t)

2‖2 =tr
(
(jZ1(t)

2+jZ2(t)
2)2

)
is not constant in t in any interval around zero. In partic-
ular, the maps j(t) are not pairwise equivalent in the sense
of 3.2.4(ii).

(3) The maps j(t) are generic in the sense of 3.2.4(iii).

(ii) For m = 3, an explicit example of an isospectral family j(t) : R
2 →

su(3) with ‖jZ1(t)
2 + jZ2(t)

2‖2 �= const is given by

jZ1(t) :=
(−i 0 0

0 0 0
0 0 i

)
, jZ2(t) :=

(
0 cos t

√
2 sin t

− cos t 0 cos t
−√

2 sin t − cos t 0

)
.

The j(t) are pairwise isospectral since det
(
λId−(sjZ1(t)+ujZ2(t))

)
= λ3 + (s2 + 2u2)λ is independent of t. However, ‖jZ1(t)

2 +
jZ2(t)

2‖2 = 14 + 4 sin2t is nonconstant in t. The map j(t) is
generic in the sense of 3.2.4(iii) if and only if cos t �= 0.
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Proof. (i) The same statement, but without requirement (3), was
shown in [17, Proposition 3.6]. Since the section of two nonempty Zariski
open sets is again such a set, it just remains to show that the sub-
set O ⊂ J of those elements which are generic in the sense of 3.2.4(iii)
is nonempty and Zariski open. Note that the map j ∈ J given by

jZ1 :=




iα1
iα2

iα3

. . .
iαm


 , jZ2 :=




0 −1
1 0 −1

1
. . . . . .
. . . 0 −1

1 0




with pairwise different α1 , . . . αm ∈ R satisfying α1 + . . . + αm = 0
is an element of O; thus O is nonempty. To see that O is Zariski
open, note that it is equal to the set of those j ∈ J for which the
map Fj : su(m) � τ �→ ([jZ1 , τ ], [jZ2 , τ ]) ∈ su(m) ⊕ su(m) has maximal
rank rm := dim(su(m)). But the latter condition can be expressed as
the nonvanishing of a certain polynomial in the coefficients of j, namely,
the sum of the squared determinants of the (rm×rm)-minors of a matrix
representation of Fj .

(ii) This can be checked by straightforward calculation. q.e.d.

Corollary 3.2.7. For every m ≥ 3 there exist continuous families
of isospectral metrics on S2m+1 and continuous families of Dirichlet
and Neumann isospectral metrics on B2m+2. In particular, there exist
such families on S7, resp. on B8. An explicit example is given by the
metrics gλ(t) associated with the family j(t) from 3.2.6(ii).

Remark. Carolyn Gordon [6] has previously given continuous
families of isospectral metrics on each Sn≥8 and Bn≥9 using a related
construction (see 3.4(i)). Those were the first examples of continuous
isospectral families of metrics on balls and spheres.

3.3 Example: Isospectral pairs of metrics on S5 and on
B6

Notation 3.3.1. In the context of Notation 3.1 we consider now
the case m = 2.

(i) We fix a realization of the Hopf projection P : S3 → S2
1/2 ⊂ R

3

in coordinates, say

P : (α, β, γ, δ) �→
(

1
2
(α2 + β2 − γ2 − δ2), αγ + βδ, αδ − βγ

)
.
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We extend P to a smooth map from R
4 ∼= C

2 to R
3, defined by the

same formula (note that P will map S3
a to S2

a2/2 for each radius a ≥ 0).
(ii) Let Sym0(R3) denote the space of symmetric traceless real (3×3)-

matrices. For each linear map c : z ∼= R
2 → Sym0(R3) we define a

z-valued 1-form λ = (λ1, λ2) on R
6 ∼= C

2 ⊕ C by letting

λk
(p,q)(X,U) = 〈cZk

P (p) × P (p), P∗p(X)〉(5)

for k = 1, 2 and all (X,U) ∈ TpR
2m ⊕ TqR

2, where 〈 . , . 〉 denotes the
standard euclidean inner product on R

3, and × denotes the vector prod-
uct in R

3. By restriction we obtain a smooth z-valued 1-form λ on the
unit sphere S5, respectively on the unit ball B6.

Remark 3.3.2. We observe that λ is admissible with respect to
the action ρ of T on S5 ⊂ C

2 ⊕ C, resp. B6 ⊂ C
2 ⊕ C. Invariance of λ

under the action of T is immediate since P (eiap) = P (p) for all a ∈ R,
p ∈ C

2. By the same reason we have P∗p(ip) = 0, which implies that λ
vanishes on the spaces z(p,q) .

Definition 3.3.3. Let gλ be the metric associated with λ and
the standard metric g0 on S5, resp. B6. Thus for each linear map
c : R

2 → Sym0(R3) we have an associated Riemannian metric gλ on S5,
respectively on B6, via the corresponding 1-form λ as defined in (5).

Definition 3.3.4. Let j, j′ : z ∼= R
2 → Sym0(R3) be two linear

maps.

(i) We call c and c′ isospectral, denoted c ∼ c′, if for each Z ∈ z there
exists EZ ∈ SO(3) such that c′Z = EZcZE

−1
Z .

(ii) We call c and c′ equivalent, denoted c ∼= c′, if there exists E ∈ O(3)
and Ψ ∈ E (see Notation 3.1(ii)) such that c′Z = EcΨ(Z)E

−1 for
all Z ∈ z.

(iii) We say c is generic if no nonzero element of so(3) commutes with
both cZ1 and cZ2 .

Proposition 3.3.5. Let c, c′ : z ∼= R
2 → Sym0(R3) be two lin-

ear maps, and let gλ , gλ′ be the associated pair of Riemannian metrics
on S5, or on B6, as above. If c ∼ c′ then the Riemannian mani-
folds (S5, gλ) and (S5, gλ′) are isospectral, and (B6, gλ) and (B6, gλ′)
are Dirichlet and Neumann isospectral. If c and c′ are not equivalent
and if at least one of them is generic, then in both of these pairs the two
manifolds are not isometric.



isospectral metrics on five-dimensional spheres 101

Proof. Again, we postpone the proof of the nonisometry statement
to Section 4, and we use Theorem 1.6 to prove isospectrality. Fix µ ∈ L∗

and let Z be the dual vector in z as in the proof of 3.2.5. Choose
EZ ∈ SO(3) as in Definition 3.3.4(i), and choose AZ ∈ SU(2) ⊂ SO(4)
such that for the Hopf projection P : S3 → S2

1/2 from 3.3.1(i) we have
P ◦AZ = EZ ◦P . Let Fµ := (AZ , Id) ∈ SO(6). Then Fµ is an isometry
of g0 and satisfies(
F ∗

µ(µ ◦ λ′))
(p,q)

(X,U) = (µ ◦ λ′)(AZp,q)(AZX,U)

= 〈c′ZP (AZp) × P (AZp), P∗AZp(AZX)〉
= 〈c′ZEZP (p) × EZP (p), EZP∗p(X)〉
= 〈E−1

Z c′ZEZP (p) × P (p), P∗p(X)〉
= 〈cZP (p) × P (p), P∗p(X)〉 = (µ ◦ λ)(p,q)(X,U),

as desired. q.e.d.

Proposition 3.3.6. There exist pairs of linear maps c, c′ : R
2 →

Sym0(R3) such that c and c′ are isospectral in the sense of 3.3.4(i), not
equivalent in the sense of 3.3.4(ii), and both generic in the sense of
3.3.4(iii). An example of such a pair is given by

cZ1 = c′Z1
=

(−1 0 0
0 0 0
0 0 1

)
, cZ2 =

(
0 1 0
1 0 1
0 1 0

)
, c′Z2

=
(

0 0
√

2
0 0 0√
2 0 0

)
,

where {Z1 , Z2} is the standard basis of R
2.

Proof. One easily checks that for each fixed pair s, u ∈ R, the char-
acteristic polynomials of scZ1 +ucZ2 and sc′Z1

+uc′Z2
are equal (namely,

to λ3 + (s2 + 2u2)λ), which implies isospectrality. That c and c′ are
not equivalent can be seen from the fact that ‖c 2

Z1
+ c 2

Z2
‖2 = 14, while

‖c′ 2Z1
+ c′ 2Z2

‖2 = 18. The maps are generic in the sense of 3.3.4(iii) be-
cause not even the map cZ1 = c′Z1

alone commutes with any nonzero
element of so(3). q.e.d.

Corollary 3.3.7. There exist nontrivial pairs of isospectral met-
rics on S5, and there exist nontrivial pairs of Dirichlet and Neumann
isospectral metrics on B6.

Remark. Our above pairs of isospectral 5-spheres constitute the
lowest dimensional examples of isospectral spheres which have been con-
structed so far. The analogous statement holds for our isospectral 6-
dimensional balls.
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3.4 Survey of related examples

As a complement to our above new examples of isospectral spheres and
balls we now give a short survey of related examples. Among them,
(ii) and (v) are new; (i), (iii), and (iv) are already known, but were
constructed first in slightly different settings.

Although we will not present any proofs here, we note that in each of
the examples below the Riemannian manifolds can be described within
the setting of 1.5 and proven to be isospectral by Theorem 1.6. More-
over, for each of them there is a nonisometry proof using the general
results from Section 2 and following the lines of Section 4 below, where
we will prove nonisometry for the above Examples 3.2 / 3.3. Since the
formulas defining λ, λ′ in the examples below (except (v)) are less com-
plicated than those in 3.2 or 3.3, the corresponding computations are
simpler than those in Section 4. Also note that in some of the examples
the situation is simplified by the fact that M̂ = M (in (iii) and (v)),
or that Ω0 = 0 (in (i)–(iv)). For example, in (iii) below, the curva-
ture form Ωλ equals dλ on M/T = S2m−1, where dλk is of the form
(X,Y ) �→ 2〈jZk

X,Y 〉.
The notation we use is similar to the one we used above. In partic-

ular, T again denotes the torus R
2/(2πZ × 2πZ), and {Z1 , Z2} is the

standard basis of its Lie algebra z ∼= R
2. On all manifolds M which we

consider below there is a canonical standard metric which will in each
case play the role of g0 . When we call two manifolds with boundary
isospectral we always mean Dirichlet and Neumann isospectral.

(i) Continuous families of isospectral metrics on Sn≥8 and on Bn≥9

[6].
Let M = Sm+3 ⊂ R

m ⊕ C ⊕ C, resp. M = Bm+4 ⊂ R
m ⊕ C ⊕ C. Let

the action of T on M be induced by its canonical action on the C ⊕ C

component (generated by multiplication with i on each summand). For
each linear map j : R

2 → so(m) we define a z ∼= R
2-valued 1-form on

R
m ⊕ C ⊕ C ∼= R

m ⊕ R
4 (and hence on M) by letting

λk
(p,q)(X,U) = 〈jZk

p,X〉

for k = 1, 2 and all (X,U) ∈ TpR
m ⊕ TqR

4. The following conditions
on a pair j, j′ imply that the associated Riemannian manifolds (M, gλ),
(M, gλ′) are isospectral and not isometric:

(1) j and j′ are isospectral: For each Z ∈ z there exists AZ ∈ O(m)
such that j′Z = AZjZA

−1
Z .
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(2) j and j′ are nonequivalent: There is no A ∈ O(m) and no Ψ ∈
Ẽ such that j′Z = AjΨ(Z)A

−1 for all Z ∈ z; here Ẽ denotes
the set of the eight automorphisms of R

2 which preserve the set
{±Z1 ,±Z2}.

(3) At least one of j, j′ is generic; j is called generic if no nonzero
element of so(m) commutes with both jZ1 and jZ2 .

It is known [11] that for m ≥ 5 there are continuous families — even
multiparameter families — j(t) whose elements pairwise satisfy these
conditions. The associated manifolds (M, gλ(t)) are Carolyn Gordon’s
examples of isospectral deformations on spheres and balls.

(ii) Isospectral pairs of metrics on S6 and on B7.
This is just a slight modification of Example 3.3 which does not involve
the Hopf projection P anymore; in turn, an additional dimension is
needed for the construction. Let M = S6 ⊂ R

3 ⊕ C ⊕ C, resp. M =
B7 ⊂ R

3 ⊕ C ⊕ C. Let T act canonically on the C ⊕ C component as
in (i). For each linear map c : R

2 → Sym0(R3) we define a z ∼= R
2-valued

1-form on R
3 ⊕ C ⊕ C ∼= R

3 ⊕ R
4 (and hence on M) by letting

λk
(p,q)(X,U) = 〈cZk

p× p,X〉

for k = 1, 2 and all (X,U) ∈ TpR
3⊕TqR

4. The conditions on a pair c, c′

which cause (M, gλ) and (M, gλ′) to be isospectral and not isometric
are the same as in 3.3, except that in the nonequivalence condition the
group E has to be replaced by the larger group Ẽ as in (i).

The specific pair c, c′ given in 3.3.6 satisfies these conditions and
thus yields a pair of isospectral metrics gλ , gλ′ on S6 (resp. on B7).
Moreover, one can compute the loci N,N ′ of the maximal scalar curva-
ture in (S6, gλ) and (S6, gλ′). It turns out that N ′ contains a 4-sphere,
while N is a union of 2- and 3-spheres.

(iii) Continuous families of isospectral metrics on Sm−1≥4 × T 2 [7]
and on Bm≥5 ×T 2 [11]; pairs of isospectral metrics on S2 ×T 2 [17] and
on B3 × T 2.
For a, b, c > 0 with a2 + b2 + c2 ≤ 1 we define Ma,b,c := {(p, u, v) ∈
R

m⊕C⊕C | |p|2 = a2, |u|2 = b2, |v|2 = c2}. Then Ma,b,c is diffeomorphic
to Sm−1 × T 2 and is a submanifold of Bm+4 ⊂ R

m ⊕ C ⊕ C. The
restrictions of two metrics gλ , gλ′ from (i) to one of these submanifolds
are again isospectral and nonisometric under the same conditions as
in (i) on the underlying pair of maps j, j′. In particular, one obtains
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continuous isospectral families gλ(t) on Sm−1 ×T 2 for m ≥ 5. These are
just the examples constructed in [7].

Similarly, for m = 3 the metrics gλ , gλ′ from (ii) restrict to isospec-
tral nonisometric metrics on Ma,b,c which is now diffeomorphic to S2 ×
T 2; these pairs were first constructed in [17].

In both cases we can replace the condition |p|2 = a2 by |p|2 ≤ a2 in
the definition of Ma,b,c which then becomes diffeomorphic to Bm × T 2.
We obtain continuous families of isospectral metrics gλ(t) on Bm × T 2

for m ≥ 5 [11] and pairs of such metrics on B3 × T 2.

(iv) Isospectral pairs of metrics on S2 × S3 [1].
Instead of considering the submanifolds Ma,b,c ≈ S2 × T 2 of B7 ⊂ R

3 ⊕
C ⊕ C as in the middle part of (iii) above, we now consider Ma,b :=
{(p, q) ∈ R

3 ⊕ R
4 | |p|2 = a2, |q|2 = b2} with a, b > 0. Then Ma,b is

diffeomorphic to S2×S3, and again the metrics gλ , gλ′ from (ii) restrict
to isospectral nonisometric metrics on Ma,b .

(v) Continuous isospectral families on S2m−1≥5×S1 and on B2m≥6×
S1; pairs of isospectral metrics on S3 × S1 and on B4 × S1.
We return to the context of our Examples 3.2 / 3.3 above and consider
the submanifolds Ma,b := {(p, q) ∈ C

m⊕C | |p|2 = a2, |q|2 = b2} of B2m.
For a, b > 0 the manifold Ma,b is diffeomorphic to S2m−1 × S1. If
j, j′ : R

2 → su(m) satisfy the assumptions of Proposition 3.2.5 then the
associated pair of metrics gλ , gλ′ on B2m restricts to a pair of isospectral
nonisometric metrics on Ma,b as well. In particular, for m ≥ 3 we obtain
continuous families gλ(t) of such metrics as in 3.2.6 / 3.2.7.

Similarly, for m = 2 each pair c, c′ : R
2 → Sym0(R3) satisfying

the assumptions of Proposition 3.3.5 also yields a pair of isospectral
nonisometric metrics on the manifold S2m−1 × S1 = S3 × S1.

In both cases we can again replace the condition |p|2 = a2 by |p|2 ≤
a2 in the definition of Ma,b which then becomes diffeomorphic to B2m×
S1. We obtain continuous families of isospectral metrics gλ(t) on B2m ×
S1 for m ≥ 3, and pairs of such metrics on B4 × S1.

4. Nonisometry of the examples from 3.2 / 3.3

Our strategy for proving the nonisometry statements of Proposi-
tion 3.2.5 / 3.3.5 consists in showing that the nonequivalence condition
on j, j′ (resp. on c, c′) implies condition (N) of Proposition 2.4, while
the genericity condition on the pair of maps implies Property (G) for
the associated curvature forms. See Proposition 4.3 below for these as-
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sertions. The desired nonisometry statements then follow immediately
from Proposition 2.4.

Notation and Remarks 4.1. Throughout this section we denote
by (M, g0) either S2m+1 ⊂ R

2m ⊕ R
2 or B2m+2 ⊂ R

2m ⊕ R
2, endowed

with the standard metric. We consider the action ρ of T = R
2/(2πZ ×

2πZ) on M which was defined in 3.1(iii).

(i) For a, b ≥ 0 let Ma,b := {(p, q) ∈ R
2m ⊕ R

2 | |p|2 = a2, |q|2 = b2}.
Thus S2m+1, resp. B2m+2, is the disjoint union of the submani-
folds Ma,b with a2 + b2 = 1, resp. a2 + b2 ≤ 1. Note that in either
case, M̂ is the union of those Ma,b ⊂M with a, b > 0. Each Ma,b

is obviously T -invariant.

(ii) For Ma,b ⊂ M̂ the manifold (Ma,b/T, g
T
0 ) is isometric to (CPm−1,

a2gFS), where gFS denotes the Fubini-Study metric.

(iii) The first component of the z ∼= R
2-valued form which the curva-

ture form Ω0 induces on (Ma,b/T, g
T
0 ) = (CPm−1, a2gFS) is a scalar

multiple of the standard Kähler form on CPm−1, and the second
component is zero. In fact, for (X,Z), (Y,W ) ∈ T(p,q)Ma,b =
TpS

2m−1
a ⊕ TqS

1
b we have ω1

0(X,Z) = 〈X, ip〉/a2, ω2
0(X,Z) =

〈Z, iq〉/b2, hence dω1
0((X,Z), (Y,W )) = 2〈iX, Y 〉/a2 and dω2

0((X,
Z), (Y,W )) = 2〈iZ,W 〉/b2 = 0, where the last equation follows
from the fact that TqS

1
b is one-dimensional. The statement now

follows because Ω0 is induced by dω0 .

(iv) Any isometry of (CPm−1, a2gFS) = S2m−1
a /S1 is induced by some

C-linear or C-antilinear isometry A ∈ SU(m) ∪ SU(m) ◦ Q (see
3.2.4) of C

m.

Lemma 4.2. If F ∈ AutT
g0

(M) then F preserves each of the sub-
manifolds Ma,b of M̂ . Moreover, ΨF ∈ E (see Notation 3.1(ii)). In
particular, for the group D defined in 2.1(ii) we have D ⊂ E.

Proof. Note that the T -orbit through (p, q) ∈ Ma,b ⊂ M̂ , endowed
with the metric induced by g0 , is a rectangular torus with side lengths
2πa and 2πb. It follows that F preserves the sets Ma,b ∪Mb,a ⊂ M̂ .
We have to show that F cannot switch the components Ma,b and Mb,a

if a �= b. If it did then it would induce an isometry from (Ma,b/T, g
T
0 )

to (Mb,a/T, g
T
0 ). But by 4.1(ii) these manifolds have different volume.

Thus F preserves Ma,b . Now choose 0 < a < b such that Ma,b ⊂ M̂ , and
let (p, q) ∈Ma,b . Since F preserves Ma,b , both of the orbits T ·(p, q) and
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T · F (p, q) are rectangular tori on which the shortest closed loops have
length 2πa and are precisely the flow lines of Z∗

1 . This, together with
Z∗

1 ⊥ Z∗
2 and ‖Z∗

2 |(p,q)‖ = ‖Z∗
2 |F (p,q)‖ = b, implies that F∗(Z∗

1 ) ∈ {±Z∗
1}

and F∗(Z∗
2 ) ∈ {±Z∗

2}; hence ΨF ∈ E . Now D ⊂ E follows from the
definition of D. q.e.d.

In view of Proposition 2.4, the following result implies immediately
the nonisometry statements of Proposition 3.2.5 / 3.3.5 :

Proposition 4.3. Let λ, λ′ be of the type defined in (4) (resp.
in (5)), and let j, j′ : R

2 → su(m) (resp. c, c′ : R
2 → Sym0(R3)) be

the pair of linear maps with which λ, λ′ are associated.

(i) If j and j′ (resp. c and c′) are not equivalent in the sense of
3.2.4(ii) (resp. 3.3.4(ii)), then Ωλ and Ωλ′ satisfy condition (N)
of Proposition 2.4.

(ii) If j (resp. c) is generic in the sense of 3.2.4(iii) (resp. 3.3.4(iii)),
then Ωλ has Property (G).

Proof. We choose one of the submanifolds Ma,b =: L of M̂ and
denote by ωL

λ ,Ω
L
λ the forms induced by ωλ ,Ωλ on L ⊂ M̂ and L/T ⊂

M̂/T , respectively.
(i) Suppose that condition (N) were not satisfied. Let Ψ ∈ D ⊂ E

(recall 4.2) and F ∈ Aut T
g0

(M) such that Ωλ = Ψ ◦ F ∗Ωλ′ . Lemma 4.2
implies that F preserves L/T ; hence ΩL

λ = Ψ◦F ∗ΩL
λ′ . Recall from 2.1(vi)

that Ωλ = Ω0 + dλ, Ωλ′ = Ω0 + dλ′. Each closed 2-form on CPm−1 is
uniquely decomposable into an exact component and a multiple of the
Kähler form. Therefore, the description of ΩL

0 given in 4.1(iii) now
implies that

dλ
L = Ψ ◦ F ∗

dλ′L(6)

and hence

dλL = Ψ ◦A∗dλ′L(7)

for the map A ∈ SU(m) ∪ SU(m) ◦Q which induces the isometry F of
(L/T, gT

0 ) = (CPm−1, a2gFS) (recall 4.1(iv)). Here λL, λ′L and λ
L
, λ′L

denote the forms which λ, λ′ and λ, λ′ induce on L and L/T , respectively.
We are going to show that

j′Ψ(Z) = AjZA
−1(8)
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for all Z ∈ z in the case of forms of type (4), and

c′Φ(Z) = EcZE
−1(9)

for all Z ∈ z in the case of forms of type (5), where E := F |L/T ∈ O(3)
and Φ := det(E)Ψ ∈ {±Ψ} ⊂ E . This will contradict the assumed
nonequivalence of j and j′ (resp. of c and c′).

In the first case, we have for all (X,Z), (Y,W ) ∈ T(p,q)L = TpS
2m−1
a

×TqS
1
b and for k = 1, 2:

λk(X,Z) = a2〈jkp,X〉 − 〈jkp, ip〉〈X, ip〉, hence

dλk((X,Z), (Y,W )) = 2a2〈jkX,Y 〉 − 2〈jkX, ip〉〈Y, ip〉
+ 2〈jkY, ip〉〈X, ip〉 − 2〈jkp, ip〉〈iX, Y 〉

= 2a2〈jkXh, Y h〉 − 2〈jkp, ip〉〈iX, Y 〉,

where jk := jZk
and Xh denotes the g0-orthogonal projection of X

to (ip)⊥. Let εk ∈ {±1} be such that Ψ(Zk) = εkZk . Then one derives
from equation (7):

εk(a2〈j′k(AX)h, (AY )h〉 − 〈j′kAp, iAp〉〈iAX,AY 〉)
= a2〈jkXh, Y h〉 − 〈jkp, ip〉〈iX, Y 〉

for k = 1, 2 and all X,Y ∈ TpS
2m−1
a . Since (AX)h = AXh and

since A either commutes or anticommutes with i, we get, letting τk :=
εkA

−1j′kA− jk ∈ su(m):

a2〈τkXh, Y h〉 − 〈τkp, ip〉〈iX, Y 〉 = 0.

In particular, we obtain for all p ∈ S2m−1
a and all nonvanishing X ∈

span {p, ip}⊥, by letting Y := iX:

〈τkX, iX〉/|X|2 = 〈τkp, ip〉/|p|2.

The hermitian map iτk must therefore be a scalar multiple of the iden-
tity, and τk be a scalar multiple of iId. This implies τk = 0 because of
τk ∈ su(m); equation (8) now follows.

In the second case (namely, with λ, λ′ of type (5)) we have

λ
k(X) = a3〈ckx× x,X〉
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for k = 1, 2 and all X ∈ Tx(L/T ) = TxS
2
a/2 , where ck := cZk

. The
factor a3 is due to the fact that if π : S3

a → S2
a/2 denotes the Rieman-

nian submersion, then for the projection P as defined in 3.3.1 we have
|P (p)| = a|π(p)|. We obtain

dλ
k(X,Y )/a3

= 〈ckX × x+ ckx×X,Y 〉 − 〈ckY × x+ ckx× Y,X〉
= 〈ckX × x, Y 〉 + 2〈ckx×X,Y 〉 − 〈ckY × x,X〉
= 〈ckX × x, Y 〉 + 2〈ckx×X,Y 〉 + 〈Y × ckx,X〉 + 〈Y × x, ckX〉
= 3〈ckx×X,Y 〉.

Note that in the third equation we have used tr(ck) = 0. Equation (6)
now implies for F |S2

a/2
= E ∈ O(3):

εk〈c′kEx× EX,EY 〉 = 〈ckx×X,Y 〉

for k = 1, 2 and all X,Y ∈ TxS
2
a/2 , where εk is defined as above. Letting

τk := εk det(E)E−1c′kE − ck ∈ Sym0(R3) we obtain

〈τkx×X,Y 〉 = 0

for all X,Y ⊥ x, which implies τkx ⊥ x for all x ∈ S2
a/2 . Since τk is

symmetric, it must be zero; equation (9) now follows.
(ii) Suppose to the contrary that λ does not have Property (G); i.e.,

there is a 1-parameter family F t ∈ Aut T
g0

(M) such that F ∗
t Ωλ ≡ Ωλ .

Proceeding as in the proof of (i) (in the special situation Ψ = Id and
λ = λ′) we now obtain 1-parameter families At ∈ SU(m) (resp. Et ∈
SO(3)) preserving dλL (resp. dλL), and we derive that jZ ≡ AtjZA

−1
t

(resp. cZ ≡ EtcZE
−1
t ) for each Z ∈ z (cf. (8), (9)). But this contradicts

the genericity assumption made on j (resp. c). q.e.d.

5. Isospectral metrics on spheres and balls which are equal to
the standard metric on large subsets

The main idea of this section is to simultaneously multiply λ, λ′ by
some smooth scalar function f on the sphere (resp. the ball) which has
small support but is chosen such that both isospectrality and nonisom-
etry of the associated metrics gfλ and gfλ′ continue to hold.

The following observation is trivial.
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Remark 5.1. In the context of Theorem 1.6, let λ, λ′ be two admis-
sible z-valued 1-forms on M which satisfy (∗). Let f ∈ C∞(M) be any
function which is invariant under T and under each of the isometries Fµ

occurring in (∗). Then fλ and fλ′ are again admissible and satisfy (∗).
In particular, (M, gfλ) and (M, gfλ′) are isospectral.

Proposition 5.2. Let (M, g0) = S2m+1 ⊂ R
2m ⊕ R

2, resp. (M, g0)
= B2m+2 ⊂ R

2m ⊕ R
2. Choose any ϕ ∈ C∞([0, 1]2) which does not

vanish identically; in case M = S2m+1 we assume that ϕ does not vanish
identically on the set {(s, 1− s) | s ∈ [0, 1]}. Let f ∈ C∞(M) be defined
by f(p, q) := ϕ(|p|2, |q|2) for (p, q) ∈ M ⊂ R

2m ⊕ R
2. Then under the

assumptions of Proposition 3.2.5 (resp. 3.3.5) on the pair j, j′ (resp. c, c′)
which defines λ, λ′ as in (4) (resp. (5)), the manifolds (M, gfλ) and
(M, gfλ′) are isospectral and not isometric.

Proof. The function f is obviously invariant under the action of T =
R

2/L as defined in 3.1(iii). Moreover, f is invariant under those Fµ

occurring in the isospectrality proofs of Proposition 3.2.5 / 3.3.5: Recall
that the Fµ used there were of the form (AZ , Id) with AZ ∈ SO(2m).
The isospectrality statement thus follows from Remark 5.1 above.

For the nonisometry proof we must only slightly modify Proposi-
tion 4.3 and its proof. In both statements of that proposition we re-
place each occurrence of Ωλ by Ωfλ , and similarly Ωλ′ by Ωfλ′ . In the
proof, we now choose L := Ma,b ⊂ M̂ not arbitrarily, but such that
C := ϕ(a2, b2) �= 0. This is possible by the assumptions made on ϕ.
The forms induced by fλ, fλ′ on L are then equal to the ones induced
by Cλ and Cλ′, respectively. But replacing λL, λ′L by CλL, Cλ′L does
not afflict any of the subsequent arguments of the proof. Thus both
statements of Proposition 4.3, modified as described, remain true. q.e.d.

Theorem 5.3. Let ε > 0 be given, and let m ≥ 2. Then there
exist nonisometric pairs of isospectral metrics on S2m+1 whose volume
element is the standard one and which are equal to the round standard
metric outside a subset of volume smaller than ε. For m ≥ 3 there
are even continuous families of such metrics. The analogous statements
hold for B2m+2 (with metrics which are both Dirichlet and Neumann
isospectral ). The mentioned subset of small volume can be chosen as a
tubular neighborhood around any of the submanifolds S2m−1

a × S1
b with

0 ≤ a, b ≤ 1 and a2 + b2 = 1 (in the case of S2m+1), resp. a2 + b2 ≤ 1
(in the case of B2m+2).

Proof. We can choose the function ϕ ∈ C∞([0, 1]2) in Proposi-
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tion 5.2 such that its support is contained in a sufficiently small rectan-
gle around (a2, b2). Concerning the coincidence of the volume elements
of g0 and gfλ recall 1.5(iii). q.e.d.
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