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MINIMIZING AREA AMONG LAGRANGIAN
SURFACES: THE MAPPING PROBLEM

R. SCHOEN & J. WOLFSON

Abstract
This paper introduces a geometrically constrained variational problem for
the area functional. We consider the area restricted to the lagrangian sur-
faces of a Kähler surface, or, more generally, a symplectic 4-manifold with
suitable metric, and study its critical points and in particular its minimizers.
We apply this study to the problem of finding canonical representatives of
the lagrangian homology (that part of the homology generated by lagrangian
cycles). We show that the lagrangian homology of a Kähler surface (or of a
symplectic 4-manifold) is generated by minimizing lagrangian surfaces that
are branched immersions except at finitely many singular points. We pre-
cisely describe the structure of these singular points. In particular, these
singular points are represented by lagrangian cones with an associated local
Maslov index. Only those cones of Maslov index 1 or −1 may be area mini-
mizing. The mean curvature of the minimizers satisfies a first-order system
of partial differential equations of “Hodge-type”.

1. Introduction

This paper introduces a geometrically constrained variational prob-
lem for the area functional. We consider the area restricted to the
lagrangian surfaces of a Kähler surface, or, more generally, a symplec-
tic 4-manifold with suitable metric, and study its critical points and in
particular its minimizers. We apply this study to the problem of find-
ing canonical representatives of the lagrangian homology (that part of
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the homology generated by lagrangian cycles). We show that the la-
grangian homology of a Kähler surface (or of a symplectic 4-manifold)
is generated by minimizing lagrangian surfaces that are branched im-
mersions except at finitely many singular points (Theorem 8.1). We
precisely describe the structure of these singular points. In particular,
these singular points are represented by lagrangian cones with an asso-
ciated local Maslov index. Only those cones of Maslov index 1 or −1
may be area minimizing (Propositions 7.3 and 7.5). The mean curva-
ture of the minimizers satisfies a first-order system of partial differential
equations of “Hodge-type” that we describe precisely below.

We show that an integral homology class may be represented by a
lagrangian cycle (a cycle whose two-simplices are given by C1 lagrangian
maps) if and only the class is annihilated by the symplectic form ω
(Proposition 2.1). On the other hand it is known that a homology class
may be represented by an immersed lagrangian surface if and only if
it is annihilated both by the symplectic form and the first Chern form.
For a class which is annihilated by ω, we are able to construct an area
minimizing representative among lagrangian competitors and to show
that it has a finite number of singularities whose local Maslov classes
add to 1

2c1(α). In particular, nonflat singularities do arise in minimizing
lagrangian surfaces (the note added in proof in [SW] incorrectly states
the contrary). In case we have c1(α) = 0, it follows that there are an
even number of singular points whose total sum of Maslov indices is 0.
We do not know in general whether the minimizer is free of singularities
(other than branch points) in this case. We do show however that if a
minimizing S2 represents a class β ∈ π2(N), and if any integer (> 1)
multiple of this S2 also minimizes area in its homotopy class, then this
S2 is free of singularities (other than branch points) (Theorem 8.4).

A situation of great geometric interest in this area is the construction
of special lagrangian cycles in Calabi-Yau manifolds (see [SYZ] for the
connection with mirror symmetry). The variational method we employ
here provides an approach to this construction. In particular, if an
immersed lagrangian submanifold Σ of a Kähler-Einstein manifold is
stationary for volume, it is automatically minimal (special lagrangian
in the Calabi-Yau case) (Lemma 8.2). This may not be true if Σ is
singular. In particular, in our two dimensional setting, the surface will
be minimal provided there are no nonflat singular points. Note that in
the Kähler-Einstein case, it is true that if ω(α) = 0 then c1(α) = 0, and
hence the sum of the Maslov indices of the nonflat singular points is
zero. We show that the nonflat cones are not minimizing if one allows
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nonorientable comparison surfaces (Proposition 7.8). This suggests that
a lagrangian minimizer in a Z2 homology class will be minimal, and that
the Z2 homology of any Kähler-Einstein surface (it is easy to show that
every Z2 homology class may be represented by a lagrangian cycle) can
be represented by minimal lagrangian cycles. We will study the Z2

homology in a forthcoming paper.
The technical work in this paper involves constructing area minimiz-

ing lagrangian maps from a surface into a symplectic 4 manifold. We
follow the variational approach of first constructing such minimizers in
the Sobolev class W 1,2, and then discussing the regularity of the mini-
mizers. Comparison results of Gromov [G] and Allcock [Al] are used to
show the Hölder continuity of such maps (Theorem 2.8). In contrast to
the situation for the classical Plateau problem, the higher regularity is
a difficult issue. This is because in the classical case the maps are har-
monic, while in our case, the minimization of energy among lagrangian
maps does not seem to imply any useful regularity. To get such regu-
larity we derive a monotonicity formula (Proposition 3.2), and use it to
obtain a partial regularity theorem and the existence of tangent cones
(Theorem 4.10). The monotonicity formula is of a rather subtle nature.
The setting for this formula is that of contact stationary surfaces in the
Heisenberg group. A difficulty which we encounter here in proving the
regularity is the issue of controlling both the map and the surface, and
as such it involves a combination of classical and Geometric Measure
Theory ideas. We believe the methods developed here will be useful in
other problems involving the minimization of area among surfaces with
geometric constraints (e.g., embeddedness).

We now introduce the technical setting for this problem and de-
scribe the PDE which we will be studying. Let N be a symplectic
2n-manifold with symplectic form ω. We will equip (N,ω) with what is
sometimes called a compatible metric g and almost complex structure
J . That is, the triple (ω, g, J) is required to satisfy, for v, w ∈ TN :
ω(v, Jw) = g(v, w), ω(Jv, Jw) = ω(v, w) . An important example of
this structure is the case that (N, g, ω, J) is a Kähler manifold with
Kähler metric g, Kähler form ω and complex structure J . A vector
field X on N that preserves the symplectic form, i.e., that satisfies
LXω = 0 where L denotes the Lie derivative, is called a symplectic
vector field. The diffeomorphisms it generates are called symplectic dif-
feomorphisms. Since LXω = d(X ω), it follows that X is a symplec-
tic vector field if and only if X ω is closed. If X ω is exact , i.e.,
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X ω = dh, for a function h on N , X is called a hamiltonian vector field
for the hamiltonian h. The diffeomorphisms it generates are called
hamiltonian diffeomorphisms. Suppose that Σ is a real n-dimensional
manifold (compact or with boundary). We say that a smooth (C1) map
� : Σ → (N,ω) is lagrangian if �∗ω = 0. If � is an immersion then
using the compatible metric the lagrangian condition can be formulated
as follows: �(Σ) is lagrangian if at each point x ∈ �(Σ) and for each
tangent vector v ∈ Tx(�(Σ)) then 〈Jv,w〉 = 0 for all w ∈ Tx(�(Σ)) (i.e.,
JTx(�(Σ)) ⊥ Tx(�(Σ))). We remark that if Σ ⊂ R2n is given as a graph
over the standard real n-plane; i.e., Σ is given as y = f(x) where f is
a map from Rn to Rn, then Σ is lagrangian if and only if there is a
function u(x) defined locally such that f = ∇u. This is the simplest
way to construct lagrangian submanifolds of R2n.

Lagrangian submanifolds enjoy the following remarkable property.
Let Σ be an immersed lagrangian submanifold and suppose that (N,ω)
is a Kähler manifold. The mean curvature vectorH of Σ inN is a section
of the normal bundle on Σ. Define a 1-form on Σ by: σH = H ω. Then
a geometric computation (see the Appendix) gives: dσH = Ric|Σ where
Ric denotes the Ricci 2-form on N . In particular, suppose N is Kähler-
Einstein so that the metric satisfies: Ric = Rω where R is the scalar
curvature. Then since Σ is lagrangian dσH = 0 and therefore H is an
infinitesimal symplectic motion.

This observation suggests that it is natural to consider variational
problems for volume with a lagrangian constraint. Recall that an im-
mersed submanifold is called stationary if the volume is critical for arbi-
trary smooth compactly supported variations. It is well-known that
an immersed submanifold is stationary if and only if it is minimal,
i.e., H = 0. We will call an immersed lagrangian submanifold Σ la-
grangian stationary if the volume is critical for arbitrary smooth vari-
ations through lagrangian submanifolds. We will call Σ hamiltonian
stationary if the volume is critical for compactly supported hamilto-
nian variations. If X is a hamiltonian vector field then X ω = dh or,
equivalently X = J∇h. It follows that if Σ is an immersed lagrangian
submanifold that is hamiltonian stationary then

0 =
∫

Σ
〈H,X〉 =

∫
Σ
〈σH , dh〉 =

∫
Σ
〈δσH , h〉.

Since this holds for any smooth function h with compact support we
conclude that δσH = 0. Combining this with the computation of dσH ,
we see that if Σ is an immersed hamiltonian stationary lagrangian sub-
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manifold then

dσH = Ric|Σ ,(1.1)
δσH = 0.

Thus, if N is Kähler-Einstein then σH is a harmonic 1-form.
The equations (1.1) are third order in Σ. To understand the nature

of these equations, we consider the special case in which Σ ⊂ R2n is given
by the graph of the gradient of a function u(x). That is, Σ is given by
{(x, y = ∇u(x)) : x ∈ Rn} for a scalar function u(x). In this case, the
volume of Σ is given by

∫ √
det(gij) dx where gij = δij +

∑
k uikukj .

Doing a variation of the form u + tv with v of compact support one
derives the Euler Lagrange equation

n∑
k=1

∂

∂xk
(∆µ(uk)) = 0

where ∆µ is the Laplace operator with respect to the induced metric
µ. In particular we see that this is a quasilinear fourth order elliptic
equation whose linearization at u(x) = 0 is the biharmonic equation.
We remark that this set of hamiltonian stationary equations has been
studied from the point of view of integrable systems by Hélein and
Romon [HR].

2. Preliminaries

We will suppose, for the remainder of the paper, that N denotes a
symplectic 4-manifold with symplectic form ω, compatible metric g and
almost complex structure J .

An integral lagrangian cycle in N is an integral cycle with the 2-
simplices given by C1 lagrangian maps. We say a homology class α ∈
H2(N,Z) is a lagrangian homology class if it can be represented by an
integral lagrangian cycle.

Proposition 2.1. A homology class α ∈ H2(N,Z) is a lagrangian
homology class if and only if [ω](α) = 0.

Proof. Suppose that α ∈ H2(N,Z) satisfies [ω](α) = 0. Represent α
by an embedded surface Σ ⊂ N and let T denote a tubular neighborhood
of Σ in N . Since

∫
Σ ω = 0, ω is exact on T and there is a one-form η

such that on T , ω = dη. Note that η is well-defined up to addition of
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a closed one-form. Choose a triangulation of Σ that is ε-fine, in the
sense that every one-simplex has length less than ε. Let ∆ denote a
two-simplex of the triangulation. Then∫

∆
ω =

∫
∂∆

η,

and the second integral is independent of the choice of η. Let s denote
a one-simplex in ∂∆. Then ∣∣∣∣∫

s
η

∣∣∣∣ < Cε,

where the constant C depends only on η. Perturbing s in T keeping its
endpoints fixed we can construct a one-simplex s̃ in T with

∫
s̃ η = 0.

Doing this for each one-simplex in the triangulation we have a one-
complex in T with the same vertices as the original triangulation and
with the property that the integral of η around the perturbation of ∂∆
is zero, for any two-simplex ∆. It follows that the perturbation of ∂∆
spans a lagrangian two-simplex. The result follows. q.e.d.

Note that the requirement [ω](α) = 0 imposes a rationality condition
on [ω]. This requirement while weaker than [ω] ∈ H2(N,Q) nevertheless
implies that for “generic” symplectic structure ω there are no nontrivial
lagrangian classes.

Proposition 2.2. Let α ∈ H2(N,Z) be a lagrangian homology
class. Then α can be represented by a piecewise C1 lagrangian map
� : Σ → N which is an immersion except at finitely many points
{x1, . . . , xk} ⊂ Σ. At each point xj , j = 1, . . . , k there is a well-defined
local Maslov index mxj . The total Maslov index satisfies:

k∑
j=1

mxj =
1
2
c1(N)(α).

Proof. By Proposition 2.1 α can be represented by a lagrangian cy-
cle. The cycle can be chosen so that along the one-simplices the tangent
planes of adjacent two-simplices are transverse. We smooth this cycle
along the one-simplices outside neighborhoods of the vertices, as fol-
lows. Choose a one-simplex s. We can suppose that s lies in a Darboux
ball. After a hamiltonian diffeomorphism we can suppose that s is a
segment of a coordinate axis. Thus s is the boundary of two smooth
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lagrangian simplices L1 and L2. Subdividing s, if necessary, we can
find a lagrangian plane P containing s such that near s, L1 is a graph
over the half plane H1 and L2 is a graph over the half plane H2, where
P = H1 ∪ H2. In particular, for i = 1, 2, in a neighborhood of s, Li

is the graph of ∇fi, where fi is a smooth function on Hi. Let V be a
neighborhood of s in P . Let f be a smooth function on P that coincides
with f1 on H1 \ V and with f2 on H2 \ V . The required smoothing is
effected by gluing in the graph of ∇f . Note that if s must be subdi-
vided to find P then the smoothings can be constructed to agree at the
subdivision points.

Let xj be a singular point. Let Dr(xj) ⊂ Σ be a disc of radius r,
center xj . Choose r so that Dr(xj) contains no singular points except
xj , so that �(Dr(xj)) lies in a Darboux neighborhood U and so that
� is an immersion on ∂Dr(xj). Let Dj be an oriented immersed disc
in U with ∂Dj = �(∂Dr(xj)) such that the induced orientations agree.
The lagrangian immersion � determines a trivialization of TN along
Σ \ {x1, . . . , xk} and in particular along ∂Dr(xj). Trivialize TN on Dj

and compare the two trivializations on ∂Dj . The result is an element
of π1(U(2)) 	 Z. Choosing a generator of π1(U(2)) associates an even
integer, 2mxj , to the point xj . This integer is well-defined independent
of the choices of r and Dj , provided Dj ⊂ U and � is an immersion
along ∂Dr(xj). We will say that mxj is the local Maslov index of xj

If, at each singular point xj , we replace �(Dr(xj)) with Dj we con-
struct a surface Σ̃, no longer lagrangian, that still represents α. Join x1

to x2, x2 to x3, . . . , and xk−1 to xk by simple curves on Σ\{x1, . . . , xk}.
Cutting along these curves we can realize Σ̃ as the union of Σ\∪k

jDr(xj)
and ∪k

jDj glued along an S1. To compute c1(N)(Σ̃) we compare the
trivializations of TN on the boundaries of Σ \ ∪k

jDr(xj) and ∪k
jDj . By

the previous computation it follows that:

c1(N)(α) = c1(N)(Σ̃) = 2
k∑

j=1

mxj .

q.e.d.

The following proposition, due to Gromov and Lees [Le], gives nec-
essary and sufficient conditions for a smooth map to be homotopic to a
lagrangian immersion.

Proposition 2.3 (Gromov, Lees). A smooth map φ : Σ → N is
homotopic to a lagrangian immersion if and only if:
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(1) φ∗[ω] = 0,

(2) φ∗c1(N) = 0,

where [ω] is the cohomology class of ω and c1(N) is the first Chern class
of (N, J).

It follows that:

Corollary 2.4. An integral homology class α that satisfies [ω](α) =
0 and c1(N)(α) = 0 can be represented by an immersed lagrangian sur-
face.

Let Σ be a compact surface with Riemannian metric and with vol-
ume form dµ. Let Rn denote euclidean n-space. We denote the Hilbert
space of square integrable maps Σ → Rn by L2(Σ,Rn) and the Hilbert
space of maps Σ → Rn with square integrable first derivatives by
W 1,2(Σ,Rn). The energy of a map f ∈W 1,2(Σ,Rn) is:

E(f) =
1
2

∫
Σ
〈df, df〉dv.

By the Nash imbedding theorem we can suppose that N is isometrically
embedded in Rn, for some n. Define:

W 1,2(Σ, N) = {f ∈W 1,2(Σ,Rn) : f(x) ∈ N a.e. x ∈ Σ}.

Recall that closed bounded subsets of W 1,2(Σ, N) are weakly closed in
W 1,2(Σ, N).

We need the following lemma about W 1,2 maps.

Lemma 2.5. There exists ε0 > 0 depending only on N such that
if � ∈W 1,2(S2, N) satisfies E(�) ≤ ε0, then � is zero in homology in the
sense that

∫
S2 �

∗(γ) = 0 for any smooth closed 2-form γ on N .

Proof. We follow [ScU], and consider smoothing the map �. Think
of S2 as the standard unit sphere in R3. Let t ∈ S2, and consider a
euclidean ball of radius h ≤ 1/2 about t. Consider the averaged map

�(h)(t) = (|S2 ∩Bh(t)|)−1

∫
S2∩Bh(t)

� da.

The Poincaré inequality then implies∫
S2∩Bh(t)

|�− �(h)|2 da ≤ ch2

∫
S2∩Bh(t)

|∇�|2 da.
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It follows that the mean square distance from �(h)(t) to � is small in the
ball of radius h. In particular the averaged map �(h) has image which is
uniformly close to N independent of h. We may thus project this map
into N using the nearest point projection map Π which is smooth in a
neighborhood of N . We let �h = Π◦�(h), and we have that the family of
maps �h for 0 < h ≤ 1/2 is a family of smooth maps depending smoothly
on h, and from standard results we have that the limit as h → 0 exists
in the W 1,2 norm and is equal to �. Since we assumed that the energy of
� is small, it follows that the image of �1/2 lies in a small coordinate ball
in N , and hence we have that

∫
S2 �

∗
1/2γ = 0. Now from the homotopy

formula since γ is a closed form we have d�∗hγ
dh = d�∗h( ∂�

∂h γ). It follows
that

∫
S2 �

∗
hγ is constant, and therefore 0 for all h ∈ (0, 1/2]. But since

the maps �h converge strongly in W 1,2 to � as h tends to 0, we see that∫
S2 �

∗γ = 0 as claimed. q.e.d.

The notion of a lagrangian map can be extended to W 1,2(Σ, N) as
follows: We say a map � ∈W 1,2(Σ, N) is weakly lagrangian if:

�∗ω = 0

almost everywhere on Σ. Note that by Lebesgue point theory, we can
equivalently define a map � ∈W 1,2(Σ, N) to be weakly lagrangian if:∫

D
�∗ω = 0,

for every disc D ⊂ Σ.

Proposition 2.6. The set of weakly lagrangian maps in W 1,2(Σ, N)
satisfying a uniform energy bound is closed in the weak topology.

Proof. Let �i be a sequence in W 1,2(Σ, N) with E(�i) ≤ c which
converges weakly to � ∈W 1,2(Σ, N). We must show that � is lagrangian.
Note that any subsequence of �i also converges weakly to �, so we may
choose subsequences at will. We first consider the energy measures
1/2|∇�i|2dµ, and using the weak convergence theorem for measures we
may assume that these measures converge weakly as measures to a limit
measure ν; that is, we assume that for any open set Ω in Σ we have
1/2

∫
Ω |∇�i|2dµ →

∫
Ω dν. For any ε1 > 0, there is at most a finite set

S for which ν({Q}) ≥ ε1 for Q ∈ S. If � is not weakly lagrangian,
then we can find a Lebesgue point P ∈ Σ \ S such that �∗ω(P ) �= 0.
Thus it follows that for all r sufficiently small we have

∫
Dr(P ) �

∗ω �= 0.
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On the other hand, because P is not in S, we have EDr(P )(�i) ≤ 2ε1
for i sufficiently large. We fix such a radius r, and observe that we
may choose a radius ρ ∈ [r/2, r] and a subsequence again denoted �i
so that �i|∂Dρ

has energy bounded by 2r−1ε1. This implies that �i|∂Dρ

is continuous, rectifiable and has length bounded by a fixed constant
times ε1. It follows that a subsequence converges uniformly to �|∂Dρ

.
Since the length of �i(∂Dρ) is small we can suppose that the images of
∂Dρ all lie in a Darboux ball B ⊂ N . For each i, �i(∂Dρ) extends to a
(not necessarily lagrangian) map �̂i : Di → B with small energy . For
ε1 sufficiently small (depending only on N) we may apply Lemma 2.5
to show that the cycle �i(Dρ) ∪ �̂i(Di) (which can be represented as a
map with small energy from S2 to N) is trivial in homology. In B write
ω = dη, then we have

0 =
∫

Dρ

�∗iω +
∫

Di

�̂∗iω =
∫

Di

�̂∗iω =
∫

∂Dρ

�∗i η,

where the last equality follows by Stokes’ theorem (and �̂i = �i on
∂Dρ = ∂Di). Note that the condition that the energy of �i|∂Dρ is
bounded implies that there is a subsequence again denoted �i which
converges weakly in W 1,2(∂Dρ) to �. It follows that

∫
∂Dρ

ζ�∗i η converges
to

∫
∂Dρ

ζ�∗η for any L2(∂Dρ) function ζ. (To see this observe that �∗i η
is a linear combination of first derivatives of �i with coefficients which
are smooth functions of �i, and these coefficient functions converge in
L2 norm.) Choosing ζ = 1, we conclude

0 =
∫

∂Dρ

�∗η.

Repeating the above argument for �, we may find a small energy
map �̂ : D → B which agrees with � on ∂D = ∂Dρ. As above it follows
that

0 =
∫

Dρ

�∗ω +
∫

D
�̂∗ω =

∫
Dρ

�∗ω +
∫

∂Dρ

�∗η,

where the second equality follows by Stokes Theorem (and �̂ = � on
∂Dρ = ∂D). Therefore we have

∫
Dρ
�∗ω = 0. This contradiction shows

that � is weakly lagrangian. q.e.d.

A classical invariant of lagrangian maps that plays a role in our
considerations is the period. We specialize to the case N = R4 (with the
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euclidean metric g and the standard symplectic structure ω =
∑2

i dxi ∧
dyi) to describe this invariant. Let � : Σ → R4 be a C1 lagrangian
map and γ : S1 → Σ be a closed curve. Choose a 1-form η on R4

such that dη = ω. We define the period of γ to be: period(γ) =
∫
γ �

∗η.
This number is well-defined independent of the choice of primitive η and
depends only on the homology class of γ in H1(Σ,Z). If the periods of
all closed curves on Σ vanish we say that the lagrangian map is exact.
Equivalently, all periods vanish if and only if �∗η = dϕ for a function ϕ
on Σ. There is another description of exact lagrangian maps. Consider
R5 with coordinates (x, y, ϕ) and projection p : R5 → R4, (x, y, ϕ) �→
(x, y). Let α = dϕ−(

∑
i xidyi−yidxi) be the contact 1-form on R5. The

contact distribution is the distribution of hyperplanes defined by α = 0.
A C1 map of a surface λ : Σ → R5 is called legendrian if λ∗(α) = 0 or,
equivalently, if λ(Σ) is everywhere tangent to the contact distribution.
A lagrangian map Σ → R4 is exact if and only if it admits a legendrian
lift Σ → R5. It is easy to construct non-exact lagrangian maps into
R4. However every C1 lagrangian map � : Σ → N is locally exact in the
sense that Σ can be covered by discs {Dλ} so that the image of each
Dλ under � lies in some Darboux ball. The notion of local exactness
plays an essential role in our regularity theory. In fact, it is possible to
show that any weakly lagrangian map in W 1,2(Σ, N) is locally exact in
a suitable sense. However for our purposes this will not be necessary.

The following comparison result is due to Gromov ([G]) and Allcock
([Al]). We will use it to prove a Hölder continuity result and (in a later
section) a strong compactness theorem for minimizing lagrangian maps.

Proposition 2.7 (Gromov, Allcock). Given a W 1,2 map ϕ from
the unit circle C into R4 satisfying the period condition

∫
C ϕ

∗(xdy) = 0,
there exists a lagrangian map � in W 1,2(D,R4) with � = ϕ on C, and

A(�(D)) ≤ cL(�(C))2

for a fixed constant c.

We may now use the idea of Morrey ([M1]) to establish the Hölder
continuity of minimizing lagrangian maps from a disk. We will consider
minimizing lagrangian maps which are weakly conformal in the sense
that ‖�∗(∂/∂x)‖ = ‖�∗(∂/∂y)‖ and 〈�∗(∂/∂x), �∗(∂/∂y)〉 = 0 a.e.. Such
maps will be constructed later in this paper.
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Theorem 2.8. Let � ∈ W 1,2(D,N) be a weakly conformal, min-
imizing lagrangian map. There exists α ∈ (0, 1) and c depending only
on N such that (after redefinition on a set of measure 0), � is Hölder
continuous on D1/2 and satisfies the bound

d(�(P ), �(Q)) ≤ c(A(�(D)))1/2|P −Q|α

for P,Q ∈ D1/2.

Proof. Consider a point P ∈ D1/2 and a radius r < 1/2. We want to
show that EDr(P )(�) ≤ c(L(�(∂Dr(P )))2 for a fixed constant c depending
only on N . To see this, observe that if the right hand side is greater than
a fixed ε0 > 0, the inequality is trivial, so it suffices to assume that L =
L(�(∂Dr(P )) is small. Thus we may assume that the curve �(∂Dr(P ))
lies in a Darboux chart in which the metric is nearly euclidean. In
this case it follows from Proposition 2.7 that there exists a map �0 in
W 1,2(Dr(P ), N) with �0 = � on ∂Dr(P ) and A(�0) ≤ cL2. Since � is area
minimizing and weakly conformal we have EDr(P )(�) ≤ A(�0) ≤ cL2 as
required. Now by the Schwarz inequality we have L2 ≤ 2πr d

drEDr(P )(�),
and we have shown that EDr(P )(�) ≤ cr d

drEDr(P )(�). Integrating this
differential inequality we get the decay estimate EDr(P )(�) ≤ cr2αE(D)
for a fixed α ∈ (0, 1). By Morrey’s Lemma ([GT]) this implies the
desired Hölder estimate. q.e.d.

Corollary 2.9. If � ∈ W 1,2(Σ, N) is a weakly conformal, minimiz-
ing lagrangian map then it is locally exact.

3. The first variation of area

Let Σ be a compact Riemann surface, and � ∈ W 1,2(Σ,M) be
a weakly conformal, locally exact, lagrangian map. We will assume
throughout this section that there is a disk D in Σ such that �(D) is
contained in a fixed Darboux chart O in N . Note that by Theorem 2.8,
this will be true on sufficiently small disks if the map is minimizing. We
will also assume that � is stationary in the sense that the first variation
of area is zero for allowable deformations of � through lagrangian maps.
We first define the variations which we will consider. We suppose that
x, y are local Darboux coordinates in O, so that the symplectic form
is in the standard form ω = dx ∧ dy. There is an obvious class of
variations given in terms of compactly supported hamiltonian functions
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h(x, y), namely the flow of the vector field Xh = hx
∂
∂y − hy

∂
∂x . If Ft

denotes this flow, then �t = Ft ◦ � is an allowable variation. It will be
important to extend this class of variations to allow variations which
include dilations, and other collapsing deformations. In order to do this
we use the local exactness. This enables us to define a function ϕ on
�−1(O) which satisfies dϕ = �∗η where η = (xdy − ydx). We wish to
consider hamiltonians which depend on ϕ as well as x, y. In order to do
this, we may form the 5 dimensional space with coordinates x, y, ϕ. In
this space we have the contact 1-form α = dϕ− η, and we may consider
the contact transformations. These are generated by vector fields, again
denoted X = Xh, which depend on a hamiltonian h(x, y, ϕ). They are
given by

Xh = hx
∂

∂y
− hy

∂

∂x
− hϕ

(
x
∂

∂x
+ y

∂

∂y

)
+ (−2h+ (xhx + yhy))

∂

∂ϕ
.

One can check that the above vector field satisfies

LXh
α = −2hϕα,

and hence its flow preserves the contact distribution. To construct a
variation generated by such a vector field, we may take its flow Ft in
R5. This flow preserves the contact distribution defined by α. If we
denote by �̃ the local lift of � given by �̃ = (�, ϕ), then we may construct a
variation by setting �t = Π◦Ft◦ �̃ where Π(x, y, ϕ) = (x, y) is the natural
projection map. The first variation of the area for such a variation is
given by

d

dt
A(�t)|t=0 =

∫
Σ

divΣ(Xh) da = 0(3.1)

where we have divΣ(X) =
∑2

i=1〈∇eiX, ei〉 with e1, e2 being an orthonor-
mal basis for T�(Σ) at a point and ∇ being the lift under Π of the
Levi-Civita connection from R4 to R5. We have also lifted the metric
g by pullback under Π to a (degenerate) metric on R5. In order to use
(3.1) effectively, we will first need to do some calculations for the Eu-
clidean metric, and then we will use the fact that g can be made nearly
Euclidean near any given point by a suitable choice of coordinates.

We let ∇0 denote the Euclidean connection, and let div0(X) de-
note the corresponding operator with respect to the Euclidean metric
(denoted as the dot product) and connection; thus we have div0(X) =
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∑2
i=1 ∇0

ei
X · ei where e1, e2 is a Euclidean orthonormal basis. In par-

ticular, we see that div0(X) does not depend on the ∂
∂ϕ component of

X since the inner product does not involve ϕ. On the other hand, the
ej in general have a ∂

∂ϕ component, so the ϕ dependence of the first 4
components of X is significant. We define an important function s by
s = 1

2(x2 + y2). Since we are interested in the first variation, and it
only depends on the first 4 components of a contact vector field, we will
use the notation X ≈ Y to mean that X and Y have the same first 4
components. The contact vector fields associated with s, ϕ then satisfy

Xs ≈ x
∂

∂y
− y

∂

∂x
(3.2)

and

Xϕ ≈ −x ∂
∂x

− y
∂

∂y
≈ J0Xs(3.3)

where J0 is the standard complex structure in the x, y coordinates. It
turns out to be very useful to do a change of variables using the fact
that s is positive. We introduce t + iθ = log(s + iϕ) where we choose
θ ∈ [−π

2 ,
π
2 ]. In other words, we set s̃ =

√
s2 + ϕ2, t = log(s̃), and

θ = tan−1(ϕ/s). The function s̃ will play the role of the square of the
distance function. In particular, if we set r0 =

√
2(s2 + ϕ2)1/4 so that

s̃ = 1
2r

2
0, then the function r0 will play the role of the distance to the

origin. We define balls Bσ(0) to be the points p with r0(p) < σ. (We
note that the function r0 arises naturally in the function theory of the
sub-laplacian on the Heisenberg group; in fact, the fundamental solu-
tion of this operator with pole at 0 is a function of r0.) In order to
derive monotonicity identities, we consider functions η(t, θ) with com-
pact support, and use the vector field Xη in the first variation formula
(3.1). One can check the following calculations

div0(Xθ) = −2|∇T θ|2

div0(Xt) = −2
sin θ
s̃

− 2∇T θ · ∇T t.

Since Xη ≈ ηtXt + ηθXθ, we can compute

div0Xη(t,θ) = ηθt(|∇T θ|2 − |∇T t|2) − 2ηts̃
−1 sin θ − 2ηθ|∇T θ|2

+ (ηtt − ηθθ − 2ηt)∇T θ · ∇T t.
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Using the fact that |∇T t|2 + |∇T θ|2 = 2s̃−1 cos θ, we may rewrite this

div0Xη(t,θ) = (2ηθt − 2ηθ)|∇T θ|2 − 2ηθts̃
−1 cos θ − 2ηts̃

−1 sin θ

+ (ηtt − ηθθ − 2ηt)∇T θ · ∇T t.

We now assume that we have chosen Darboux coordinates centered
at a given point P such that the metric g agrees with the Euclidean
metric at P . Since the connection terms are bounded and the metrics
agree at P , we may express the first variation condition (3.1) as∫

Σ
div0Xda0 = R(X)(3.4)

where the remainder term satisfies

|R(X)| ≤ c

∫
Σ
(
√
s|∇X| + |X|)da.(3.5)

We will choose a function ζ(t) below with the properties that it is a
smooth nonincreasing function which is identically zero for t ≥ log(1/2)
and identically equal to 1− 2λet for t ≤ −c for positive constants c and
λ (chosen below). We then define ψ by ψ(t) = −1/2e−tζ ′(t), and we see
that ∫ ∞

−∞
etψ(t) dt = 1/2.(3.6)

We thus have ζ(t) = 1 − 2
∫ t
−∞ eτψ(τ) dτ . For a radius a > 0, we let

ψa(t) = ψ(t − 2 log(a)) and ζa(t) = ζ(t − 2 log(a)). We then let η(t, θ)
be the solution of the wave equation ηtt − ηθθ − 2ηt = 0 with initial
data η(t, 0) = 0, ∂η

∂θ (t, 0) = ζ(t). (Note that θ is the time variable in
the wave equation and t is the space variable.) We then set ηa(t, θ) =
η(t−2 log(a), θ). Since the range on θ is between −π/2 and π/2, we see
from domain of dependence considerations that

ηa(t, θ) = θ − 2λ
et

a2
sin θ

for t < log(a2) − c − π/2 and ηa(t, θ) = 0 for t > log(a2/2) + π/2. We
observe furthermore that the functions Fa(t, θ), Ga(t, θ) given by

G = ηθ − ηθt, Ga(t, θ) = G(t− 2 log(a), θ)
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and

F = −1/2(ηθts̃
−1 cos θ + ηts̃

−1 sin θ)
= −1/2e−t(ηθt cos θ + ηt sin θ),

Fa(t, θ) = F (t− 2 log(a), θ)

satisfy F = G = 0 for t > log(a2/2) + π/2 and F = λ, G = 1 for
t < log(a2)− c−π/2. We also note that the initial value of Fa, given by
Fa(t, 0) = ψa(t), is specified with the constraints above. Thus we have

div0Xηa = −2Ga|∇T θ|2 +
4
a2
Fa.

We now choose η = ηa − ηb where 0 < b < a, and consider the first
variation of area with vector field Xη. This gives by (3.4)

a−2

∫
Σ
Fada0 − b−2

∫
Σ
Fbda0 = 1

2

∫
Σ
(Ga −Gb)|∇T θ|2da0 + R(Xη).

(3.7)

We now describe the choice of ζ. Let c be a positive number such
that c+ log(1/2) > 2πeπ/2 and then set τ = 1

4(c+ log(1/2)). Note that
τ > π/2. Let α be a nonincreasing, nonnegative function constructed
as follows. Define a piecewise linear function β by:

β(t) =


1 t < −c
− 1

4τ (t− log(1/2)) −c ≤ t ≤ log(1/2)

0 t > log(1/2).

Choose t0 = −c + 2τ so that β(t0) = 1/2. Then define α to be β with
the corners at t = −c and t = log(1/2) smoothed and such that:

(i) 0 ≤ α ≤ 1.

(ii) α′ ≤ 0.

(iii) α′′(t) ≤ 0 for t < t0 + τ .

(iv) α′′(t) ≥ 0 for t > t0 − τ .

(v) α has the symmetry α(t) = 1 − α(2t0 − t).
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Finally, let ζ be the solution of the ODE ζ ′ − ζ = −α with ζ(t) = 0 for
t > log(1/2). Then it follows that ζ is a smooth nonincreasing function
which is identically zero for t > log(1/2) and equal to 1−λet for t < −c
and some positive number λ.

The following result summarizes the conditions we will need con-
cerning the functions F and G.

Proposition 3.1. With the choices above, the function F is non-
negative, and G satisfies 0 ≤ G ≤ 1 for −π/2 ≤ θ ≤ π/2. Furthermore,
there is a fixed number θ0 ∈ (0, 1) such that Ga−Gb ≥ 0 for 0 < b ≤ θ0a.

Proof. The transformation u = e−tη changes the initial value prob-
lem for η into the following initial value problem for u:

utt − uθθ − u = 0
u(t, 0) = 0
uθ(t, 0) = e−tζ(t).

Utilizing the Riemann function it is possible to explicitly solve this initial
value problem [CH]. Let J0(x) denote the Bessel function of the first
kind of order zero. Then the solution is u = e−tη where

η(t, θ) =
1
2

∫ θ

−θ
J0

(√
(θ − µ)(θ + µ)

)
e−µζ(µ+ t)dµ(3.8)

where J0(σ) is the solution of the ODE

J ′′
0 +

1
σ
J ′

0 + J0 = 0, J0(0) = 1.(3.9)

The basic properties of J0 which we shall need are that J0(σ) > 0,
J ′

0(σ) < 0, and J ′′
0 (σ) < 0 for 0 ≤ σ ≤ π/2. The fact that J ′′

0 and J ′
0 are

negative up to the first zero of J0 is shown in [CH, p. 495]. It follows that
J ′′

0 +J0 > 0 for 0 < σ < σ0 where σ0 is the first zero of J0. It remains to
show that σ0 ≥ π/2. To see this, we set vε(σ) = J0(σ)/ cos(ε+σ) for 0 ≤
σ < π/2− ε, and we compute J ′′

0 (σ) = v′′ε (σ) cos(ε+ σ)− 2v′ε(σ) sin(ε+
σ) − J0(σ). It follows that v′′ε (σ) cos(ε + σ) > 2v′ε(σ) sin(ε + σ) for
0 ≤ σ < min{σ0, π/2 − ε}. Thus the function vε can not achieve a
local maximum in (0,min{σ0, π/2 − ε}). On the other hand we have
v′ε(0) = sin(ε)/ cos2(ε) > 0 for ε > 0, so it follows that v′ε(σ) > 0 for σ
small. Therefore we see that vε is an increasing function for 0 ≤ σ <
min{σ0, π/2 − ε} for any ε > 0. In particular it follows that σ0 ≥ π/2
and setting v = limε→0 vε we have v(σ) ≥ cos(σ) on this interval.
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To verify the proposition, we first need only check that F is nonneg-
ative. We see from (3.8) that

ηt(t, θ) =
1
2

∫ θ

−θ
J0

(√
θ2 − µ2

)
e−µζ ′(µ+ t)dµ.

Differentiating in θ we have

ηtθ =
1
2

{
e−θζ ′(t+ θ) + eθζ ′(t− θ)

+
∫ θ

−θ

∂

∂θ
J0

(√
θ2 − µ2

)
e−µζ ′(µ+ t)dµ

}
.

Substituting ζ ′ = −2etψ, we then have the explicit formula for F

F (t, θ) =
1
2
(ψ(t+ θ) + ψ(t− θ)) cos(θ)

+
1
2

∫ θ

−θ

{
sin(θ)J0

(√
θ2 − µ2

)
+ cos(θ)

∂

∂θ
J0

(√
θ2 − µ2

)}
ψ(µ+ t)dµ.

Now we observe that the integrand above is nonnegative for 0 < θ <
π/2. To see this, note that it suffices to show that the function Q(θ) =
J0(

√
θ2 − µ2)/ cos(θ) is increasing in this range. Recall that we showed

above that the function v(σ) = J0(σ)/ cos(σ) is increasing for 0 < σ <
π/2, and note that we have

Q(θ) = v(
√
θ2 − µ2)

cos(
√
θ2 − µ2)

cos(θ)
,

and it is elementary to check that the ratio of cosine functions is in-
creasing in θ for 0 < θ < π/2 and |µ| ≤ θ. We have therefore shown
that F ≥ 0.

To analyze G we begin by showing that G(t, θ) ≥ 0. We first observe
that u = e−tG is a solution of the wave equation utt − uθθ − u = 0
with initial data given by u(t, 0) = u0(t) = e−t(ζ − ζ ′) = e−tα and
uθ(t, 0) = 0. We then have the explicit formula

u(t, θ) =
1
2

{
u0(t+ θ) + u0(t− θ)(3.10)

+
∫ θ

−θ

∂

∂θ
J0(

√
θ2 − µ2)u0(t+ µ) dµ

}
.
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We note that we have

cos(θ) = 1 +
1
2

∫ θ

−θ

∂

∂θ
J0(

√
θ2 − µ2) dµ

since both sides represent the solution of the Cauchy problem vtt−vθθ−
v = 0, v(t, 0) = 1, vθ(t, 0) = 0. Since u0 = e−tα and α′′ ≥ 0 for t ≥ t0−τ ,
we have u′′0 = e−t(α′′ − 2α′ + α) ≥ 0 for t ≥ t0 − τ . It follows that the
function u0 is a convex function for t ≥ t0 − τ . Suppose t ≥ t0 and
|θ| ≤ π/2. If �(t+µ) denotes the linear function with �(t+θ) = u0(t+θ)
and �(t− θ) = u0(t− θ), then we have u0(t+ µ) ≤ �(t+ µ) for |µ| ≤ |θ|.
(Recall that τ > π/2.) Hence, for t ≥ t0 and |θ| ≤ π/2, we have

G(t, θ) ≥ 1
2
et
{
u0(t+ θ) + u0(t− θ)

+
∫ θ

−θ

∂

∂θ
J0(

√
θ2 − µ2)�(t+ µ) dµ

}
.

Since ∂
∂θJ0(

√
θ2 − µ2) is an even function of µ whose integral is greater

than or equal to −2, it follows that the right hand side is nonnegative,
and so G(t, θ) ≥ 0 for t ≥ t0. We next consider the case t ≤ t0. From
(3.10), using that α is nonincreasing and ∂

∂θJ0(
√
θ2 − µ2) ≤ 0, we have:

G(t, θ) ≥ 1
2

{
e−θα(t+ θ) + eθα(t− θ)(3.11)

+ α(t− θ)
∫ θ

−θ

∂

∂θ
J0(

√
θ2 − µ2)e−µ dµ

}
,

Note that u(t, θ) = e−t is the unique solution of the Cauchy problem:
utt−uθθ−u = 0, with initial data given by u(t, 0) = e−t and uθ(t, 0) = 0.
From the explicit formula (3.10) for the solution with this initial data
we conclude:

1 =
1
2

{
e−θ + eθ +

∫ θ

−θ

∂

∂θ
J0(

√
θ2 − µ2)e−µ dµ

}
.

Using this in (3.11) we have:

G(t, θ) ≥ α(t− θ) +
1
2
e−θ(α(t+ θ) − α(t− θ)).

If t ≤ t0 and |θ| ≤ π/2 this implies:

G(t, θ) ≥ α(t+ π/2) − 1
2
eπ/2 π

c+ log(1/2)

≥ α(t+ π/2) − 1
4
> 0,
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since α(t + π/2) > α(t + τ) ≥ 1
4 . Hence we conclude that G(t, θ) ≥ 0

for all t and |θ| ≤ π/2.
To see that G ≤ 1, we observe that the function v = e−t(1 − G)

satisfies the same wave equation as u, and has initial conditions v(t, 0) =
v0(t) = e−t(1 − α(t)) = e−tα(2t0 − t) and vθ(t, 0) = 0. We can then
apply the previous argument to conclude that (1 −G(t, θ)) ≥ 0. q.e.d.

We have shown the (approximate) monotonicity of the quantity
a−2

∫
Σ Fa as a function of the radius a. Observe that because of the nor-

malization (3.6), we have lima→0(πa2)−1
∫
Σ Fa = 1 at a smooth point of

Σ.

Proposition 3.2. Let � : D → N be a weakly lagrangian, weakly
conformal, contact stationary map having image in a Darboux chart
(centered at �(0)). There exist positive constants c1, c2 depending only
on N and the area of � such that for any σ ∈ (0, 1) we have

c1 ≤ σ−2A(�(Σ) ∩Bσ(0)) ≤ c2.

Proof. We choose a = 1 in (3.7), and observe that by (3.5) we have

|R(Xη)| ≤ |R(Xη1)| + |R(Xηb
)| ≤ c+ cb−1A(�(Σ) ∩Bλb)

where λ > 1 is fixed. From (3.7), we then have for any b ∈ (0, θ0)

b−2A(λ−1b) ≤ c+ cb−1A(λb).

This implies that

sup
t∈(0,s)

t−2A(t) ≤ c+ cs sup
t∈(0,λ2s)

t−2A(t)

for any s ∈ (0, λ−1θ0). Fixing s such that cs < 1/2, we then get the
bound

sup
t∈(0,s)

t−2A(t) ≤ c+ sup
t∈(s,1)

t−2A(t) ≤ c

which is the desired upper bound. From the upper bound and (3.7) it
follows that for each P ∈ Σ and σ > 0 we have

sup
t∈(0,θ0σ)

(πt2)−1

∫
Σ
Ftda ≤ (πσ2)−1

∫
Σ
Fσda+ cσ.

It follows that the limit

Θ(P ) = lim
σ→0

(πσ2)−1

∫
Σ
Fσda
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exists and is upper semicontinuous. At any Lebesgue point P of the
derivative of � at which the derivative is nonzero, we have Θ(�(P )) ≥ 1.
Since such points have full measure with respect to the induced measure
da, we have Θ ≥ 1 at all points of the support of Σ. The lower bound
now follows. q.e.d.

The above result implies the following important continuity estimate
which is an improvement on Theorem 2.8. In the following results, the
notation �̃ is used to denote the legendrian lift of the exact lagrangian
map �. Note that A(�) = A(�̃), but that the balls we consider lie in R5,
and hence the monotonicity formula exists there also.

Proposition 3.3. Suppose that � is a weakly conformal, exact,
lagrangian stationary map from the unit disk D1 into N . Assume further
that there exists r0 > 0 and a constant c such that for r ≤ r0 we have
A(�̃(D1)∩Br(P )) ≤ cr2 for any P ∈ N . Then �̃ is Hölder continuous in
D1/2. Moreover, there is a constant ε0 depending only on N such that
if A(�(D1)) ≤ ε0, then there is a uniform bound on the Hölder modulus
of continuity of �̃ in D1/2.

Proof. It suffices to prove the last statement, since we may cover
D1/2 with small balls of small area and apply the last statement to a
rescaled version of �̃ to prove the Hölder continuity. To prove the last
statement, we may rescale the map in the image so that A(�̃(D1)) = 1,
and this rescaling only flattens the metric on the image. We now claim
that there is a constant θ < 1 such that A(�̃(D1/2)) ≤ θ. To prove
this, we need only show that there is a positive constant δ such that
A(�̃(D1 \ D1/2)) ≥ δ for then our conclusion follows with θ = 1 − δ.
Suppose to the contrary that A(�̃(D1 \ D1/2)) is small. We can then
find a radius σ ∈ [1/2, 1] such that the length L(�̃(∂Dσ)) is small, say
less than ε. Let P be a point of the curve �̃(∂Dσ), and choose Darboux
coordinates centered at P in which the metric is Euclidean at the origin.
Construct a smooth function ζ(r) such that ζ(r) = 0 for r ≤ ε, ζ(r) = 1
for r ≥ 2ε, and ε|ζ ′(r)|+ε2|ζ ′′(r)| ≤ c. We then consider the hamiltonian
h = −ϕ · ζ ◦ r0. The corresponding contact vector field satisfies X ≈
ζ ◦ r0(x ∂

∂x + y ∂
∂y )−ϕXζ◦r0 . Using this vector field in the first variation
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formula and using easy bounds we get:

A(�̃(Dσ)\B2ε) ≤ c

∫
Dσ∩�̃−1(B2ε\Bε)

(|Dϕ||Dζ ◦ r0|+|ϕ||divΣ(Xζ◦r0)|) dµ

≤ c

∫
Dσ∩�̃−1(B2ε\Bε)

(ε · ε−1 + ε2 · ε−2) dµ

≤ cA(�̃(Dσ) ∩B2ε) ≤ cε2.

This implies A(�̃(Dσ)) ≤ cε2 which is a contradiction if ε is small. This
verifies our claim that A(�̃(D1/2)) ≤ θ.

We complete the proof by observing that we can iterate this inequal-
ity to obtain A(�̃(D2−n)) ≤ θn which implies that A(�̃(Dr)) ≤ cr2α for
some α > 0. This same inequality then holds for disks with any center
point in D1/2, and by Morrey’s lemma (since A(�̃) is the Dirichlet in-
tegral of �) this implies that � has a uniform Hölder estimate on D1/2.
Since |Dϕ| ≤ c, and the Dirichlet integral is conformally invariant, we
see that

∫
Dr

|∇ϕ|2 dt ≤ cr2α, and ϕ is therefore also Hölder continuous.
q.e.d.

We will need the following global Hölder estimate under the condi-
tion that the restriction of � to ∂D1 has finite energy.

Proposition 3.4. Suppose that � is a weakly conformal, exact,
lagrangian stationary map from the unit disk D1 into N . Assume that
there exists r0 > 0 and a constant c such that for r ≤ r0 we have
A(�̃(D1) ∩ Br(P )) ≤ cr2 for any P ∈ N . Finally assume that the
trace of � as a map from the unit circle to N has energy bounded by a
constant c. Then �̃ is Hölder continuous on all of D1. Moreover, there
is a constant ε0 depending only on N such that if A(�(D1)) ≤ ε0, then
there is a uniform bound on the Hölder modulus of continuity of �̃ on
D1.

Proof. The proof is similar to the previous one. We show that∫
Dr(t)∩D1

(|∇�|2 + |∇ϕ|2) dt ≤ cr2α

for all t ∈ D1. If a disk Dr(t) intersects ∂D1 in a point t0, we may
instead consider the larger disk D2r(t0) and prove the bound there.
Thus it suffices to consider disks which are either completely contained
in D1, or centered on ∂D1. The first case is done above. To handle disks
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centered on ∂D1, we need to use the fact that � has a C0,1/2 estimate
on ∂D1 which follows from the bound on the boundary energy. With
the aid of this bound, the proof proceeds as above. q.e.d.

We close this section by analyzing the situation for which the mono-
tonicity inequality is an equality.

Proposition 3.5. Let � be a weakly conformal, exact, lagrangian
stationary map from Ω ⊂ R2 into R4 with euclidean metrics. Suppose
that �(0) = 0, that �−1(Ba) is compact and a−2

∫
Ω Fa ◦ � da is constant

for a ≤ a0. It follows that C = �̃(Ω) ∩ Ba0 is contained in {ϕ = 0},
and is a cone over 0 in the sense that for almost every t ∈ �−1(C), the
position vector (x, y) = �(t) ∈ C, is tangent to C. If the map � is a
smooth immersion in a neighborhood U of t ∈ �−1(C), then �(U) is a
portion of a cone.

Proof. From (3.7), we see that θ is a constant function if equality
holds in the monotonicity inequality. This means that ϕ = as for some
constant a. We want to show that a = 0, so we note that r20 = 2(1 +
a2)s, so we choose a hamiltonian function ζ ◦ s where ζ is a monotone
increasing, concave function with ζ(0) = 0 and ζ = 1 outside Ba0 .
Using the first variation formula and the fact that div(Xs) = 0, we find∫
ζ ′′(s)Ds ·Xs dµ = 0. If a �= 0, this implies that

∫
ζ ′′(s)Dϕ ·Xs dµ = 0.

On the other hand, Dϕ ·Xs = |Dϕ|2, so since ζ ′′ > 0 we see that ϕ is a
constant function. Since ϕ(0) = 0, we have shown that ϕ is identically
zero and hence a = 0 as claimed. The condition that Dϕ = 0 implies
that the position vector is tangent to the image of �, and this condition
easily implies that any regular piece of the image is a cone over 0. q.e.d.

4. Regularity for the two dimensional mapping problem

In this section we discuss the regularity properties of maps � from a
surface to a symplectic 4-manifold (N,ω) with almost complex structure
J and compatible Riemannian metric g. Since the theorem is local, we
assume that � is defined on the unit disk D in the plane with coordinates
(t1, t2). We use the notation Dr(p) to denote the disk of radius r cen-
tered at p ∈ R2 with Dr denoting the ball with center at the origin. We
make the following assumptions on the map where we use the notation
�i to denote the weak partial derivative �ti :
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i) The map � is a W 1,2 map from D to N which is weakly conformal
and weakly lagrangian in the sense that for almost every (t1, t2) ∈ D we
have ‖�1‖2 = ‖�2‖2, 〈�1, �2〉 = 0, and 〈J�1, �2〉 = 0.

ii) The map � is exact on D.

iii) The restriction of � to any subdisk is stationary as a contact map
in the sense that for any P ∈ D and r ∈ (0, 1 − |P |], and any smooth
contact vector field X which vanishes in a neighborhood of �(∂Dr(P ))
we have

d

dt
A(�t(Dr(P )))|t=0 = 0(4.1)

where �t = Ft ◦ � and Ft is the flow generated by X.

Note that the restriction of � to ∂Dr(P ) is a W 1,2 map for almost
every r ∈ (0, 1 − |P |], and hence this restriction is continuous, and the
length of the curve �(∂Dr) is finite. It is thus clear that condition (iii)
allows for many variations. Using (ii), (iii) and monotonicity it follows
(Theorem 2.8 and Proposition 3.3) that � is continuous. We can thus
suppose that for small r the image of � lies in a Darboux neighborhood
U . Let (x, y) be Darboux coordinates in U centered at a point with
coordinates (0, 0) such that g, J are standard at (0, 0). Let Ũ denote
the contact lifting of U . Then � lifts to a legendrian map (again denoted
�) from Dr → Ũ . With respect to the contact coordinates on Ũ we can
write � = (x, y, ϕ). On Dr we have:

dϕ =
∑

i

(xidyi − yidxi).

This expresses the exactness of � on Dr. We state the following regu-
larity result.

Theorem 4.1. There exists ε0 > 0 such that if there is a conformal
linear lagrangian map �0 with �0(0) = 0 and an r < 1/2 for which:

r−2

∫
Dr

|∇(�− �0)|2 dt+ r−4

∫
Dr

|�− �0|2dt < ε0,

r−2 sup
t∈Dr

|�0(t) − (t, 0)|2 < ε0,

‖g − δ‖C2(B1) < ε0

then � is a smooth embedding on Dr/2.
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The following result is necessary for controlling the parametrization
of maps constructed as rescaled limits of �.

Proposition 4.2. Assume that there is a constant c1 such that
A(�(D1)) ≤ c1, and inft∈D1/4

A(�(D1/8(t))) ≥ c−1
1 A(�(D1)). There is

a constant c depending only on c1 such that for all t ∈ D1/4 and all
r ≤ 1/4 we have

A(�(Dr(t))) ≥ c−1A(�(D2r(t))).

Proof. Fix a point t0 ∈ D1/4, and let A(r) = A(�(Dr(t0))) which
is a continuous, monotone increasing function. The derivative A′(r)
then exists for almost every r and is equal to

∫
∂Dr(t0) |∇�|2 ds. By

differentiation theory of monotone functions we have∫ 2σ

σ

A′(r)
A(r)

dr ≤ log
(
A(2σ)
A(σ)

)
.(4.2)

Now if we choose r ∈ (0, 1/4], we may find a unique nonnegative
integer k such that r = 2−kr0 with r0 ∈ (1/8, 1/4]. We let rj = 2−jr0 for
j = 0, 1, . . . , k so that r = rk. We will prove that A(rj) ≥ c−1A(2rj) for
a fixed constant c by induction on j. We begin with j = 0, and observe
that the inequality follows with c = c1 by hypothesis since 1/8 < r0
and 2r0 ≤ 1/2 so that D2r0(t) ⊂ D1. We now prove the inductive
step. Assume that A(rj−1) ≥ c−1A(2rj−1) for some j ≥ 1. Applying
the mean value theorem with σ = rj−1 in (4.2) and using the inductive
assumption, we find σ0 ∈ [1, 2] with rj−1A

′(σ0rj−1) ≤ log(c)A(σ0rj−1).
We now rescale the map � by setting �(τ) = (A(σ0rj−1))−1/2�(σ0rj−1τ+
t0). We then define A(r) by

A(r) = A(�(Dr)) =
A(σ0rj−1r)
A(σ0rj−1)

.

Our conditions then imply A(1) = 1 and A
′(1) ≤ log(c), and we need

to show that A(2−1σ−1
0 ) ≥ c−1A(σ−1

0 ). Because σ0 ∈ [1, 2], it suffices to
show that A(1/4) ≥ c−1. By the mean value inequality we may choose
σ1 ∈ [1/8, 1/4] such that A′(σ1) ≤ 8A(1/4). If we set δ = (A(1/4))1/2,
we may apply the Schwarz inequality to show that

L(�(∂Dσ1)) ≤ (2πσ1)1/2(A′(σ1))1/2 ≤ 2π1/2δ.

Let ρ(P ) for P ∈ N be the (modified) distance function from a point
P0 ∈ �(∂Dσ1) defining the balls Br(P0) (as in Section 3). We may also
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estimate ϕ by integration along �(∂Dσ1). (Note that ϕ(P0) = 0.) We
find that �(∂Dσ1) ⊂ Bδ1(P0) where δ1 = c1δ for a fixed constant c1.
Since A(1) = 1, we may use the monotonicity formula to show that
A(Bρ0(P0)) ≤ c2ρ

2
0, and thus there is a fixed constant ρ0 > 0 depending

only on c1 such that supD1
ρ◦ � ≥ 2ρ0. By the global Hölder estimate of

Proposition 3.4 the map log(c)−1/2� satisfies a uniform Hölder estimate,
and thus � satisfies the bound |�(t1) − �(t2)| ≤ log(c)1/2c3|t1 − t2|α for
fixed positive constants c3, α. Using this estimate, we may find a point
t1 ∈ D1 such that ρ(�(t)) ≥ ρ0 for all t ∈ D1 ∩ Dδ2(t1) where δ2 =
c4 log(c)−1/(2α). We then consider the following function ζ

ζ(P ) =
log(ρ(P )/δ1)
log(ρ0/δ1)

for δ1 ≤ ρ(P ) ≤ ρ0, and ζ(P ) = 0 for ρ(P ) < δ1, ζ(P ) = 1 for ρ(P ) > ρ0.
Using monotonicity and the coarea formula we can derive the bound∫
D1

|∇ζ ◦ �|2 dt ≤ c5/ log(1/δ1). On the other hand, if we let r, θ be
polar coordinates centered at t1, we may use the fact that ζ ◦ �(t) = 0
for t ∈ Dσ1 and ζ ◦ �(t) = 1 for t ∈ D1 ∩ Dδ2(t1) to conclude that∫
D1

|∇ζ ◦�|2 dt ≥ c6/ log(1/δ2). (This may be seen by using the Schwarz
inequality and the fact that ζ◦� changes from 0 to 1 along a fixed fraction
of the rays from t1 as follows:

1 ≤
(∫ 1

δ2

|∇ζ ◦ �| dr
)2

≤
(∫ 1

δ2

r−1 dr

)(∫ 1

δ2

|∇ζ ◦ �|2r dr
)
.

The bound then follows by integrating along rays.) Combining these
inequalities we conclude that A(1/4) ≥ c7(log(c))−β for constants c7, β
depending only on c1. We then observe that if c is chosen larger than a
fixed constant, we have c7(log(c))−β ≥ c−1. This completes the proof.

q.e.d.

The next result deals with surfaces which lie near a plane, and shows
that such surfaces can be well approximated by smooth conformal maps
to the plane. We use the notation Â(�(Σ)∩Br(P )) to denote the mono-
tone quantity

∫
Σ Fr da from Section 3.

Proposition 4.3. Assume that � = (x(t), y(t), ϕ(t)) : D2 →
R5 with �(0) = 0 is a stationary legendrian map with A(�(D2)) = 1,
A(�(D1)) ≥ c−1

1 , and
∫
D2

|∇y|2 dt ≤ ε. Assume further that Â(�(D2) ∩
Br(P )) ≤ (1 + ε)πr2 for any P ∈ R5. Given any δ > 0, there is a
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constant ε2 > 0 depending only on δ, c1 such that if ε ≤ ε2, then there
is a 1-1 holomorphic or anti-holomorphic map x0 : D1 → R2 such that∫
D1

(|∇(�− x0)|2 + |�− x0|2) dt ≤ δ.

Proof. To prove this result by contradiction, it suffices to show that
if �(j) is a sequence of maps satisfying the hypotheses with εj → 0, then
a subsequence of �(j) converges strongly in W 1,2(D1) to an injective con-
formal map to the x-plane. By the uniform continuity estimate, we may
choose a subsequence, again denoted �(j) which converges uniformly to
a continuous W 1,2 map x0 on D3/2. We first show that x0 is 1-1 in D1.
If this were not true, then we can find a point ξ and points t1, t2 ∈ D1

with t1 �= t2 and x0(t1) = x0(t2) = ξ. We can show that there is a δ > 0
such that for j sufficiently large (�(j))−1(Bδ(ξ)) has distinct connected
components U1, U2 containing t1, t2 respectively. This follows by the
same type of capacity argument using the function ζ as in the previous
proof, the point being that each connected component of (�(j))−1(Bδ(ξ))
must have arbitrarily small diameter if δ is chosen sufficiently small.
Since �(j)(ti) → ξ, it follows from monotonicity that each component
Ui, i = 1, 2 has area at least πδ2 − o(j). For j sufficiently large, this
contradicts the assumption that Â(�(D2)∩Bδ(ξ)) ≤ (1+εj)πδ2. There-
fore we have shown that x0 is 1-1 on D1. It follows that Ω = x0(D1) is
an open set bounded by the Jordan curve x0(∂D1).

We now show that �(j) converges strongly to x0 inW 1,2(D1). We first
show that A(�(j)(D1)) → A(x0(D1)) = A(Ω). To see this, first note that
if Br(ξ) is any open ball centered at a point ξ ∈ Ω with ∂Ω∩Br(ξ) = φ,
then we have A(�(j)(D1)∩Br(ξ)) → A(Ω∩Br(ξ)) = πr2. By the Vitali
covering lemma, we can cover almost all of Ω with a disjoint collection of
such balls. If O denotes the union of this collection of balls, we then have
A(�(j)(D1)∩O) → A(Ω∩O) = A(Ω). Since Ω \O may be covered by a
finite number of balls Brk

(ξk) with
∑
r2k arbitrarily small, it follows that

�(j)(D1) \O will be contained in this finite union for j sufficiently large,
and therefore its area will be arbitrarily small. Thus we have shown
that A(�(j)(D1)) → A(x0(D1)) as required. By lowersemicontinuity of
the energy we have the energy of x0 on D1 less than or equal to the
liminf of the energies of the �(j). Since the �(j) are weakly conformal
their energies agree with thier areas. Thus we have the energy of x0 on
D1 is less than or equal to its area. This implies that the two are equal
and that x0 is weakly conformal. It also implies that there is no energy
loss in the convergence of �(j) to x0, and therefore this convergence is
strong in W 1,2(D1). q.e.d.
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We have the following important consequence of these propositions.

Proposition 4.4. Assume that A(�(D2)) ≤ c1, and that �0 is a
linear holomorphic map to a lagrangian plane. Assume further that∫

D2

{|∇(�− �0)|2 + |�− �0|2} dt ≤ δ.

Given any ε > 0, there is a δ > 0 depending only on ε and c1, and a
fixed constant c such that if the above inequality holds, then∫

D1

|∇(�− �0)|2 dt ≤ c

∫
D2

|�− �0|2 dt+ ε

∫
D2

|∇(�− �0)|2 dt.

Proof. We may assume by change of coordinates and dilation that in
Darboux coordinates (x, y) the map �0(t) = (t, 0), and we write �(t) =
(x(t), y(t)). We begin by estimating the Dirichlet integral of y(t). We
observe that the hamiltonian x · y − ϕ yields the vector field y ∂

∂y . We
let ζ(x) be a cutoff function with ζ(x) = 1 for |x| ≤ 3/2, and ζ(x) = 0
for |x| ≥ 7/4. We then take the hamiltonian h = ζ(x)(x · y − ϕ). In
proving the desired inequality, we may assume that

∫
D2

|� − �0|2 dt is
small, for otherwise the inequality is trivial. Thus it follows that � is
uniformly close to �0 interior to D2. Thus the hamiltonian h ◦ � has
compact support in D2. The vector field determined by h is ζ(x)y ∂

∂y +
(x · y − ϕ)ζx ∂

∂y . Applying the first variation formula we get∫
D2

〈∇y,∇(ζ(x(t))y(t) + (x(t) · y(t) − ϕ)ζx(x(t)))〉 dt = 0

where ∇ refers to derivatives with respect to t. This equation easily
implies∫

D2

ζ(x(t))|∇y|2 dt ≤ c

∫
D2

(|ζx| + |ζxx|)(|y| + |ϕ|)|∇y||∇x| dt

where we have used the fact that ∇(x · y − ϕ) = 2y∇x. Replacing ζ
with ζ4, this implies∫

D2

ζ(x(t))4|∇y|2 dt ≤ c

∫
D2

ζ2(ζ|ζx|+ζ|ζxx|+|ζx|2)(|y|+|ϕ|)|∇y||∇x| dt.

We may then use the arithmetic-geometric mean inequality and a simple
choice of ζ (with 0 ≤ ζ ≤ 1) to obtain∫

D5/4

|∇y|2 dt ≤ c

∫
D15/8

(|�− �0|2 + ϕ2)|∇�|2 dt.
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Since |∇�|2 ≤ 2|∇�0|2 + 2|∇(�− �0)|2, and |∇�0|2 = 1, we have

∫
D5/4

|∇y|2 dt ≤ c

∫
D15/8

(|�− �0|2 + ϕ2) dt+ ε

∫
D2

|∇(�− �0)|2 dt

(4.3)

where we have used the fact that |�− �0|2 +ϕ2 is pointwise small (which
follows from Proposition 3.3).

To complete our proof, we now consider the conformality relation
for the map �. If we introduce complex coordinates τ = t1 +

√
−1t2,

ξ = x1 +
√
−1x2, η = y1 +

√
−1y2 then we may write this relation

ξτξτ + ητητ = 0. In particular we have∫
D9/8

|ξτ ||ξτ | dt ≤
∫

D9/8

|∇y|2 dt.(4.4)

We now define a measurable subset B ⊂ D9/8, the ‘bad set’ to be the
set of points for which |ξτ | ≤ |ξτ |. Observe that∫

D9/8\B
|ξτ |2 dt ≤

∫
D9/8

|∇y|2 dt.(4.5)

We now estimate the area of �(B). We claim that if t ∈ B, there is
a closed disk Dt ⊂ D5/4 centered at t such that A(Dt) ≤ c

∫
Dt |∇y|2 dt.

This follows from Proposition 4.3, since for any disk, the reverse in-
equality implies that � is close to a holomorphic or anti-holomorphic
map. Since for small disks centered at t, the map � cannot be close to a
holomorphic map, while for the disk of radius 1/8, the map is close to
the holomorphic map �0, there must be a disk in which our inequality
holds. We consider the collection B of such closed disks, and apply the
Besicovitch covering lemma to obtain disjoint subcollections B1, · · · ,Bq

whose union covers B. Summing the inequalities over each Bk, and then
summing over k we obtain∫

B
|∇�|2 dt ≤ cq

∫
D5/4

|∇y|2 dt.(4.6)

Combining the inequalities (4.5) and (4.6) we get∫
D9/8

|ξτ |2 dt ≤ c

∫
D5/4

|∇y|2 dt.(4.7)
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The standard L2 estimate for the Cauchy-Riemann operator then im-
plies ∫

D1

|∇(x− t)|2 dt ≤ c

∫
D9/8

|ξτ |2 dt+ c

∫
D2

|x− t|2 dt.

Combining this inequality with (4.3) and (4.7), we obtain

∫
D1

|∇(�− �0)|2 dt ≤ c

∫
D2

(|�− �0|2 + ϕ2) dt+ ε

∫
D2

|∇(�− �0)|2 dt.

(4.8)

To complete the proof we estimate the L2 norm of ϕ as follows.
Since we are free to subtract a constant from ϕ, we may assume that∫

D2

(ϕ− y · t) dt = 0,

and apply the Poincaré inequality to obtain∫
D2

(ϕ− y · t)2 dt ≤ c

∫
D2

|∇(ϕ− y · t)|2 dt.

Since dϕ = xdy−ydx, we see that d(ϕ−y·t) = yd(x−t)−(x−t)dy−2ydt,
and this implies∫

D2

(ϕ− y · t)2 dt ≤ c

[∫
D2

y2 dt+
∫

D2

|�− �0|2|∇(�− �0)|2 dt
]
,

and therefore∫
D2

ϕ2 dt ≤ c

[∫
D2

y2 dt+
∫

D2

|�− �0|2|∇(�− �0)|2 dt
]
.

Combining this inequality with (4.8) then gives the result (using that
the pointwise norm of �− �0 is as small as we wish). q.e.d.

We now begin the proof of Theorem 4.1. For a map �, a linear con-
formal map �0, and a radius r, define the following excess-type quantity

E(�, �0, r) = max
{
r−2

∫
Dr

|∇(�− �0)|2 dt, r sup
Dr

|∂g| ◦ �
}

where ∂g refers to ambient derivatives of g. We will prove the desired
result by showing that E decays like a power of r provided that we
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change �0 appropriately as a function of r. We will exploit our freedom
to rescale the problem and change coordinates. We may do a unitary
change of coordinates so that the lagrangian plane which is the image
of �0 becomes the x plane. We then write our map as �(t) = (x(t), y(t)).
We may also rescale the map so that we may assume that r = 1. We
will prove the theorem by establishing the following decay result for E.
Observe that the hypotheses of the theorem imply

E(�, �0, r) < ε1(4.9)

for the original map.

Proposition 4.5. There exists ε1 > 0 and a number θ ∈ (0, 1/2)
such that if (4.9) holds for ε1, then there is a linear conformal map �1
with image a lagrangian plane such that

E(�, �1, θ) ≤
1
2
E(�, �0, 1).(4.10)

Proof. The proof is by a blow-up argument. We will take θ to be a
small constant to be determined. Assume for the sake of contradiction
that the conclusion of the theorem fails. We consider sequences �(j), g(j)

with g(j) converging in C1 norm to the euclidean metric δ, and

lim
j→∞

E(�(j), (t, 0), 1) = 0.

We may write our maps �(j) = (x(j), y(j)). We then consider the se-
quence of vector valued maps u(j) = ε

−1/2
j (x(j) − t) − αj and v(j) =

ε
−1/2
j y(j) − βj where εj = E(�(j), (t, 0), 1). Therefore we have∫

D1

(|∇u(j)|2 + |∇v(j)|2) dt ≤ 1,

and assume that αj , βj are chosen so that
∫
u(j) =

∫
v(j) = 0. The se-

quences u(j), v(j) are bounded in W 1,2, so we may choose a subsequence
of u(j), v(j) which converges in L2 and weakly in W 1,2 on the unit disk
to limit maps u, v. We now show that u is holomorphic and v = ∇w for
a biharmonic function w.

We first consider u. We may use the conformality relation for the
map �(j) in the following way. Observe that for the Euclidean metric δ
we may write conformality in the complex form ∂x

∂t
∂x
∂t + ∂y

∂t
∂y
∂t = 0 where
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we are using complex notation x = x1 + ix2, y = y1 + iy2, t = t1 + it2.
The conformality relation for �(j) using the metric g(j) is then:

∂x(j)

∂t

∂x(j)

∂t
+
∂y(j)

∂t

∂y(j)

∂t
= 0.

On the other hand we have:∣∣∣∣∣
∫

D1

∂(x(j) − t)
∂t

∂(x(j) − t)
∂t

+
∂y(j)

∂t

∂y(j)

∂t

∣∣∣∣∣ ≤ cεj .

Since x = t is holomorphic, we have

∂x(j)

∂t

∂x(j)

∂t
=
∂(x(j) − t)

∂t
+
∂(x(j) − t)

∂t

∂(x(j) − t)
∂t

.

We may combine these to obtain∫
D1

∣∣∣∣∣∂(x(j) − t)
∂t

∣∣∣∣∣ dt ≤ cεj .

Thus we may divide by √
εj to obtain∫
D1

∣∣∣∣∣∂u(j)

∂t

∣∣∣∣∣ dt ≤ c
√
εj .

It follows that the weak limit u is a (weakly) holomorphic function, as
claimed.

To analyze the limit of v(j), we consider hamiltonians on N of the
form h(x), so that

Xh =
∑

hxi

∂

∂yi
.

We use the first variation formula together with the fact that the metric
is close to the euclidean metric to obtain∣∣∣∣∫

D1

∇y(j) · ∇X(j) dt

∣∣∣∣ ≤ cεj(4.11)

where X(j) = Xh ◦ x(j) (and ∇ represents the t derivative). By the
Schwarz inequality, and the fact that h is a smooth function of x we
have ∣∣∣∣∫

D1

∇y(j) ·DDh∇(x(j) − t)dt
∣∣∣∣ ≤ cεj ,(4.12)
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where D represents derivatives with respect to x. By the chain rule
∇X(j) = DDh · ∇x(j), so we may combine with the previous inequality
to obtain ∣∣∣∣∫

D1

∇y(j) ·DDh dt
∣∣∣∣ ≤ cεj .(4.13)

We define the function h(t) on D1 by substituting (t1, t2) for (x1, x2),
and observe that the functions DDh then converge to ∇∇h in L2 norm.
We may then divide by √

εj , and conclude that the weak limit v satisfies∫
D1

∇v · ∇∇h dt = 0(4.14)

for any C2 function h with compact support on D1. On the other
hand, the map (x(j)(t), v(j)(t)) is weakly lagrangian for each j. Since
this sequence is bounded and converges weakly in W 1,2, it follows that
the limit map (t, v(t)) is also weakly lagrangian. This condition implies
that there is a function w ∈W 2,2(D1) such that v = ∇w. The equation
above then shows that w is a biharmonic function.

We may now complete the proof of the proposition by using standard
estimates for holomorphic and biharmonic functions. In particular we
have for r < 1,

sup
Dr

|∇su|2 ≤ c

∫
D1

|∇u|2 dt(4.15)

for s ≥ 0. Let u0 denote the first order part of the Taylor expansion of
u at t = 0. Then using the second order Taylor series expansion of u
and the fact that u is bounded in L2 we have

sup
Dr

|u− u0|2 ≤ cr4
∫

D1

|∇u|2 dt.(4.16)

Similarly, let v0 denote the first order part of the Taylor expansion of v
at 0. Then

sup
Dr

|v − v0|2 ≤ cr4
∫

D1

|∇v|2 dt.(4.17)

It follows that∫
D
θ

[(u− u0)2 + (v − v0)2] dt ≤ cθ
6
∫

D1

(|∇u|2 + |∇v|2) dt ≤ cθ
6
,
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and hence for j sufficiently large∫
D
θ

[(u(j) − u0)2 + (v(j) − v0)2] dt ≤ cθ
6
.

Multiplying through by ε2j = E(�(j), �(j)0 , 1) we get∫
D
θ

(�(j) − �̂
(j)
1 )2 dt ≤ cθ

6
E(�(j), �(j)0 , 1)

where �̂(j)1 = �
(j)
0 +εj(u0+αj , v0+βj). We observe that we can modify �̂(j)1

by a term of order 0(ε2j ) to make it a conformal map into a lagrangian
plane. First note that v0+βj is the gradient of a quadratic function of t,
so we can replace v0 +βj by the gradient of the same quadratic function
of the variable x(j)

0 +εj(u0 +αj). The resulting perturbation of �̂(j)1 is of
order ε2j , and makes the image a lagrangian plane. Since x(j)

0 +εj(u0+αj)

is a holomorphic map, it follows that the Hopf differential of �̂(j)1 is of
order ε2j . A perturbation of order ε2j will then produce a linear conformal

map, which is then the desired map �(j)1 . We then have∫
D
θ

(�(j) − �
(j)
1 )2 dt ≤ cθ

4(θ2 + ε2j )E(�(j), �(j)0 , 1)(4.18)

and

∫
D
θ

|∇(�(j) − �
(j)
1 )|2 ≤

∫
D
θ

|∇(�(j) − �
(j)
0 )|2 +

∫
D
θ

|∇(�(j)0 − �
(j)
1 )|2 ≤ cε2j .

(4.19)

We may now apply (4.18), (4.19) and Proposition 4.4 to assert that
for j sufficiently large∫

Dθ

|∇(�(j) − �
(j)
1 )|2 ≤ cθ3E(�(j), �(j)0 , 1)

where θ = 1
2θ. On the other hand we clearly have

θ sup
Dθ

|∂g| ◦ �(j) ≤ θE(�(j), �(j)0 , 1).
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Thus, for j sufficiently large, the inequality (4.10) holds in any sequence
chosen as above. It follows that for ε1 sufficiently small the inequality
(4.10) holds for a fixed θ. This completes the proof of the proposition.

q.e.d.

Now to complete the proof of the theorem, one iterates the inequality
(4.10) with varying center point to show that for any r small and t ∈
D1/2, there is a conformal map �t,r with image a lagrangian plane such
that

r−2

∫
Dr(t)

|∇(�− �t,r)|2 dt ≤ cr2α

for a positive exponent α. This implies that � is C1,α in D1/2. The
smoothness now follows from the following result.

Proposition 4.6. Assume that � is a C1,α lagrangian stationary
map defined on D = D1 with |∇�|(t) �= 0 for all t ∈ D. It follows that �
is a smooth immersion on D.

Proof. It clearly suffices to show that � is smooth in a neighborhood
of t = 0. To do this we assume by choice of Darboux coordinates (x, y)
that �(t) = (x(t), y(t)) with x(0) = y(0) = 0 and dy(0) = 0, dx(0) = I.
We may then describe a neighborhood of the origin as a C1,α graph
y = y(x) with yi = ∂u

∂xi for i = 1, 2 for a C2,α function u(x). The
stationary condition applied to the hamiltonian vector field X = ηx

∂
∂y

implies ∫ 〈
∇
∑

i

yi ∂

∂yi
,∇

∑
j

ηj
∂

∂yj

〉
dt = 0

for any smooth η(x) with compact support. We may do a change of
variable to rewrite the equation in the form∫ ∑

i,j,k,l

aijkl(x, ux, uxx)uxixkηxjxl dx = 0

where aijkl(x, p, q) is a smooth function of its arguments, and aijkl(0, 0, 0)
= δikδjl. Since u is C2,α this is a linear elliptic equation (in divergence
form) with C0,α coefficients. In order to get a gain in regularity, we can
form the difference quotient u(h)(x) = h−1(u(x+ he)− u(x)) where e is
any (euclidean) unit vector and h �= 0. We then see that u(h) satisfies
the equation ∫ ∑

(aijkl(x, ux, uxx)uxixk)(h)ηxkxl dx = 0.
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By a standard manipulation using the Fundamental Theorem of Calcu-
lus we have

(aijkl(x, ux, uxx)uxixk)(h)

= aijkl(x+ he, ux(x+ he), uxx(x+ he))u(h)

xixk

+ (aijkl(x, ux, uxx))(h)uxixk

= ãijkl(x)u(h)

xixk + b̃jlku
(h)

xk + c̃jl

where ã, b̃, c̃ are C0,α and ãijkl(0) = δikδjl. We may then apply the
divergence form Schauder theory (see [Si2]) for a recent treatment) to
get a uniform C2,α estimate on u(h). This implies that u is a C3,α

function in a neighborhood of 0. This argument can be repeated to
show that u is smooth. q.e.d.

We now consider the global regularity of minimizing lagrangian
maps. We expect the results to hold for stationary maps, but the proof
is somewhat more complicated, so for the remainder of this section we
assume that our maps are minimizing. The following strong compact-
ness theorem will be important for our methods.

Proposition 4.7. Assume that �j : D → N is a weakly conformal,
minimizing lagrangian map for each j = 1, 2, . . . with A(�j(D) ≤ c for
a constant c. There is a subsequence of {�j} which converges strongly
in W 1,2

loc (D) to a minimizing lagrangian map �.

The proof of this result will require the following comparison result.

Lemma 4.8. Suppose that �0, �1 : S1 → R5 are continuous
horizontal maps with lengths Li = L(�i(S1)) for i = 1, 2, and with
supS1 d(�0, �1) ≤ ε � L0 + L1. There exists a legendrian map � : S1 ×
[0, 1] :→ R5 with �(θ, 0) = �0(θ), �(θ, 1) = �1(θ), and A(�(S1 × [0, 1]) ≤
c(L0 + L1)ε for a constant c.

Proof. Choose an integer N so that (L0+L1)/N ∈ [ε, 2ε), and divide
S1 into N intervals Ip = [θp−1, θp), p = 1, . . . , N such that L(�0(Ip)) +
L(�1(Ip)) = (L0 + L1)/N . For each p, join the points �0(θp), �1(θp) by
a horizontal curve �p(t), t ∈ [0, 1] of length bounded by ε. By the
isoperimetric inequality Proposition 2.7 we may span the closed curve
Γp = �0(Ip)∪�p∪�1(Ip)∪�p−1 with a legendrian disk with area bounded
by cε2 since the length of this curve is bounded by 4ε. We parametrize
this disk on Ip × [0, 1] so that it agrees with the specified boundary
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parametrization. This defines the map � on S1× [0, 1] with area at most
N · cε2 ≤ c(L0 + L1)ε. q.e.d.

We now give the proof of Proposition 4.7.

Proof. We may choose a subsequence also denoted {�j} which con-
verges to a limit � uniformly on compact subsets of D, and such that
for almost all r ∈ (0, 1), the sequence L(�j(∂Dr)) is bounded. We let
r0 < 1, and we show that �j converges strongly to � in W 1,2(Dr0),
and that � is minimizing in Dr0 . We may choose r ∈ (r0, 1) so that
L(�j(∂Dr)) ≤ c. Given any ε > 0, we may choose j sufficiently large so
that sup∂Dr

d(�j , �) < ε. We may then use Lemma 4.8 to construct a
map �̂ which agrees with �(2t) in Dr/2, and agrees with �j on ∂Dr such
that A(�̂(Dr)) ≤ A(�(Dr)) + cε. Since �j is conformal and the area is
bounded by the energy, it follows that lim supEDr(�j) ≤ EDr(�), and
hence �j converges strongly to � in W 1,2(Dr).

To show that � is minimizing in Dr0 , let �̃ be any W 1,2 map which
agrees with � outsideDr0 . Construct a map �̃j which agrees with �̃ inside
Dr0 , and agrees with �j on ∂Dr so that A(�̃j(Dr)) ≤ A(�̃(Dr)) + o(j).
Since �j is area minimizing, it follows that A(�j(Dr)) ≤ A(�̃j(Dr)).
Thus, letting j → ∞, we have A(�(Dr)) ≤ A(�̃(Dr)) as required. q.e.d.

We now use this result to construct parametrized tangent cones
which are again area minimizing. Given any point P ∈ Σ, we may
choose conformal coordinates t centered at P , and for any sequence
εj → 0 we consider the map �j(t) = δ−1

j �(εjt) where δj → 0 is cho-
sen so that A(�j(D2)) = 1. There is a constant c1 (depending on �)
such that A(�(D1)) ≤ c1 and inft∈D1/4

A(�(D1/8(t))) ≥ c−1
1 A(�(D1)),

so by Proposition 4.2 , we have A(�j(D1)) ≥ c−1. Furthermore, we
have A(�0(D2a)) ≤ cA(�0(Da)) for a ≥ 1, and hence it follows that
A(�0(Dr)) ≤ crp for some p > 0 and r ≥ 2. Applying Proposition 4.7
we see that a subsequence of �j converges strongly in W 1,2

loc (R2) to a non-
constant minimizing, weakly conformal, lagrangian map �0 : R2 → R4.
We have the following properties of �0.

Lemma 4.9. The map �0 is a proper map from R2 into R4, �−1
0 (0) =

0, and �0(R2) is a cone in R4.

Proof. We assume that �0(0) = 0, and we show that �−1
0 (0) is a

discrete set of points. To see this we recall the construction of the log-
arithmic function ζδ(P ) in the proof of Proposition 4.2 which vanishes
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for ρ(P ) ≤ δ, and is equal to 1 for ρ(P ) ≥ 1. The function ζδ ◦ �0 then
vanishes in a neighborhood of �−1

0 (0), and the Dirichlet integral (in any
disk centered at 0) of ζδ ◦ �0 tends to zero as δ → 0. Since �0 is not con-
stant, it follows that the closed set �−1

0 (0) has zero logarithmic capacity,
and hence is a totally disconnected zero dimensional set. To show that
it is a discrete set, choose any radius r, and assume by perturbing r
slightly if necessary that d(�0(∂Dr), 0) = δ > 0. Now if σ < δ, we see
from monotonicity that there are a bounded number of components of
�−1
0 (Bσ) whose image under �0 contains 0. Since this number can only

increase as σ decreases, it must remain constant for σ ≤ σ0 for some
σ0 > 0. Each of these components must then contain exactly one point
of �−1

0 (0), and it is a discrete set.
In order to show that �−1

0 (0) = {0}, we go back to the original map �,
and we note that again by monotonicity (upper and lower area bounds),
for any σ > 0 there is a fixed bound on the number of components of
�−1(Bσ) whose image under � intersects Bσ/2. For a given σ, denote

these components by C
(σ)
1 , . . . , C

(σ)
k where C(σ)

1 is the connected com-
ponent containing 0. Observe that for ρ < σ, any component C(ρ)

j is

contained in one of the components C(σ)
l . Thus the number of compo-

nents increases as σ decreases, so there is a σ0 > 0 such that the number
of components is constant for σ ≤ σ0. Thus there is a neighborhood Ω
of 0 ∈ R2 such that for any σ ≤ σ0, there is precisely one component of
�−1(Bσ) ∩ Ω whose image under � intersects Bσ/2. We may now show
that �−1

0 (0) = {0}, for if there were another t0 ∈ R2 with �0(t0) = 0,
there would be σ > 0 such that �−1

0 (Bσ) has at least two connected
components whose image contains 0. Thus for j sufficiently large there
would be at least two connected components of �−1

j (Bσ) whose image
intersects Bσ/2. This contradicts the above condition on � at radius δjσ,
since δjσ is arbitrarily small when j is large. Thus we have shown that
�−1
0 (0) = {0}.

We now observe that the area A(�0(R2)) is infinite. To see this,
observe that if it were finite, we could choose an arbitrarily large radius
R with the length of the curve �0(∂DR) as small as we choose. The
isoperimetric inequality together with the minimizing property of �0
would then show that �0 is a constant map.

We can now show that the map �0 is proper. In fact we claim that
there is a constant ε0 > 0 such that d(0, �(∂DR)) ≥ ε0

√
A(�0(DR)). To

prove this, we argue by contradiction, and suppose there is a sequence Ri

with d(0, �(∂DRi)) ≤ 1
i

√
A(�0(DRi)). We renormalize the map setting
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�(i)(t) = (
√
A(�(DRi)))

−1�0(Rit) so that we now have A(�(i)(D1)) = 1
and d(0, �(i)(∂D1)) ≤ 1

i . We then choose a subsequence, again denoted
�(i), converging strongly in W 1,2

loc (R2) to a minimizing map �̃. As above
the map �̃ is nonconstant and satisfies �̃−1(0) = 0. This contradicts
the fact that d(0, �̃(∂D1)) = lim d(0, �(i)(∂D1)) = 0, and completes the
proof of properness.

The fact that �0(R2) is a cone follows from Proposition 3.5. q.e.d.

We now state the main global regularity theorem for minimizing
lagrangian maps.

Theorem 4.10. Let � : D2 → N be an area minimizing, weakly
conformal lagrangian map. There is a finite subset S of D1 such that
� is a smooth immersion on D1 \ S. A point t ∈ S is either a branch
point of �, or a singularity at which � has a nonflat tangent cone. The
map � is smooth across the branch points, and is Lipschitz at the nonflat
singularities.

Proof. We first consider the set of points Ω ⊂ Σ at which every
(parametrized) tangent cone is flat; i.e., has image a lagrangian plane.
We show that Ω is an open set and that there is a discrete set of points
B ⊂ Ω such that � is a smooth immersion on Ω\B. Finally we show that
� is a smooth map on all of Ω whose differential vanishes at the points
of B. First consider any point P ∈ Ω, and choose coordinates t centered
at P . Let �0 be any tangent cone at P , and observe that since �0(R2) is
a lagrangian plane and �0 is an energy minimizing lagrangian map, �0
is a smooth harmonic map to its image plane. Since �0 is also weakly
conformal, it follows that �0 is either holomorphic or anti-holomorphic.
By changing orientation on the image if necessary, we assume that �0 is
holomorphic. Since �0 is proper and �−1

0 (0) = {0}, we see that we must
have �0(τ) = aτn, where τ = t1 + it2, a is a nonzero complex number
and n is a positive integer. If, for any tangent cone n = 1, it follows from
Theorem 4.1 that � is a smooth immersion in a neighborhood of P . In
any case, we claim that there is a diskDr about 0 such that � is a smooth
immersion in Dr \ {0}. To verify this, we show that for any sequence
t(j) → 0 (t(j) �= 0), the map � is a smooth immersion in a neighborhood
of t(j) for j sufficiently large. If we had a sequence that violated this
condition, we could extract a subsequence again denoted t(j) such that
� is not a smooth immersion in any neighborhood of t(j) for all j. We
set εj = |t(j)|, and extract a subsequence so that the corresponding
rescaled sequence �j(t) = (δj)−1�(εjt) converges to a tangent cone. Now
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for the �j , there is a point t(j)/εj on the unit circle, near which, �j is
not a smooth immersion. Since the tangent map is a smooth immersion
on the unit circle, this contradicts Theorem 4.1, and shows that � is a
smooth immersion in a deleted neighborhood of any P ∈ Ω. This shows
that Ω is open and B is discrete.

Now consider a point P ∈ B, and choose coordinates t centered at
P as above. We wish to show that � is a smooth map in a neighborhood
of P . We first show that ∇� decays near 0. Precisely, we claim that
supDr

|∇�| ≤ crα for any α ∈ (0, 1). To see this, we show that for r small
enough we have sup∂Dr/2

|∇�| ≤ θ sup∂Dr
|∇�| for any θ > 1/2. The

proof of this is by contradiction, supposing that there is a sequence ri →
0 for which the opposite inequality holds, and forming the corresponding
rescaling and tangent map construction. The corresponding tangent
map is �0 = aτn where n ≥ 2 (since P ∈ B) and |a| is determined by
the condition that A(�0(D1)) = 1. By direct computation, for this map
it is true that

sup
∂D1/2

|∇�0| = (1/2)n−1 sup
∂D1

|∇�0|.

On the other hand, since �0 is the limit of the rescaled sequence,

sup
∂D1/2

|∇�0| ≥ θ sup
∂D1

|∇�0|,

and this gives a contradiction for θ > 1/2. Thus it follows that
sup∂Dr/2

|∇�| ≤ θ sup∂Dr
|∇�|, and by a simple iteration we get

supDr
|∇�| ≤ crα for any α ∈ (0, 1) as required. It follows that the

map � is C1,α in a neighborhood of P for any α ∈ (0, 1).
To get the higher regularity of � near P ∈ B, we need to control the

mean curvature near P . We claim that

lim
r→0

∫
Dr\Dr/2

|H|2 dµ = 0(4.20)

where dµ = λdt is the area form with λ = 1
2 |∇�|2. In fact, this statement

follows from a simple blow-up argument using the facts that:

i)
∫
|H|2 dµ is scale invariant.

ii) All tangent maps satisfy H = 0.

iii) The convergence to tangent maps is in the C2 topology away from
the origin.
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We now consider the first order elliptic system satisfied by the mean
curvature (see the Appendix). We let σ be the 1-form associated with
the mean curvature vector, so that σ(v) = g(�∗(v), JH) for a tangent
vector v on R2 whereH = λ−1∆� and ∆� denoted the Laplacian (tension
field) of �. The form σ is then smooth away from t = 0, and satisfies
the first order elliptic system

dσ = d ∗ �∗τ + �∗(Ric), δσ = 0.(4.21)

Set
γ = σ − ∗(�∗τ).

Then (4.21) becomes

dγ = �∗(Ric), δγ = ∗(�∗(dτ)).(4.22)

In order to gain regularity, we must show that this system is satisfied
distributionally across t = 0. Note that

∫
|σ|2 dt =

∫
|H|2 dµ since the

L2 norm of 1-forms is conformally invariant. Now we choose a cutoff
function ζr(t) satisfying ζr(t) = 0 for |t| ≤ r/2, ζr(t) = 1 for t ≥ r,
|∇ζr| ≤ 2/r, and let φ(t) be any smooth function with compact support
in D1. We then have, from (4.22), the equations∫

δ(ζrφdt) · γ dt =
∫
ζrφ�

∗(Ric)∫
d(ζrφ) · γ dt =

∫
ζrφ�

∗(dτ).

The first equation implies∣∣∣∣∫ ζr{δ(φdt) · γ dt− φ�∗(Ric)}
∣∣∣∣ ≤ 2(sup |φ|)r−1

∫
Dr\Dr/2

|σ| dt

+ 2(sup |φ|)r−1

∫
Dr\Dr/2

|�∗τ |δt.

By the Schwarz inequality, the first term on the right hand side is
bounded by a constant times

∫
Dr\Dr/2

|σ|2 dt which converges to zero by
(4.20). The second term clearly converges to zero. It follows from this
and the dominated convergence theorem that the first equation of (4.22)
is satisfied distributionally. A similar argument applies to establish the
weak form of the second equation. Since the right hand side of (4.22)
is C0,α, it follows from elliptic regularity theory that γ is C1,α and that
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therefore σ is C0,α. We now observe that the mean curvature may be
written in terms of the components of σ =

∑2
j=1 σj(t)dtj :

H = λ−1∆� = λ−1
2∑

j=1

σj(t)J
(
�∗
(
∂

∂tj

))
,

which implies

∆� =
2∑

j=1

σj(t)J
(
�∗
(
∂

∂tj

))
.

As an equation for �, we see that since σj is C0,α, we may conclude that
� is C2,α, and then we may feed this information back into (4.22) to get
γ in C2,α, and then we may continue inductively to get � smooth in a
neighborhood of P .

To complete the proof we must show that Σ \ Ω is a discrete set of
points. For this purpose, we consider a point P in this set, and observe
that there must be tangent map �0 at P whose image is not a plane.
Observe that if we take t0 ∈ R2 \ {0} in the domain of �0, and we
take a tangent map �1 at t0, then the image of �1 is the product of a
one dimensional cone in R2 with a line. The one dimensional cone is a
geodesic in R2, and hence is a line. Therefore the image of �1 is a plane.
By our previous discussion it follows that �0 is a smooth immersion
except for a discrete set of points in R2 \ {0}. From this it follows that
�0(R2) \ {0} is a smooth surface since it is a cone, and the intersection
with ∂Bσ is an immersed curve for typical values of σ. It follows that
�0(R2) is the cone over any such immersed curve. Thus C = �0(R2)
is a geometric cone, and is conformally equivalent to R2 via some map
ξ : C → R2. It follows as above that ξ ◦ �0(τ) = aτn. In particular, �0
is a smooth immersion on all of R2 \ {0}. We may then prove as above
that � is a smooth immersion on Dr \ {0} for some r > 0. It follows
that Σ \Ω is a discrete set as claimed. To prove that � is Lipschitz in a
neighborhood of P ∈ Σ\Ω, we need to use the fact that for any tangent
map �0 at P we have |∇�0|(t)| ≤ c|t|α for some α > 0 (and then we may
argue as above). This is a consequence of the structure of the tangent
cones discussed in Section 7. In particular, it follows from the fact that
the length of the intersection of any such cone with the unit sphere has
length strictly greater than 2π. q.e.d.
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5. Existence

Let α be a homotopy class of maps [Σ, N ] (or a homology class in
H2(N,Z)). We say a W 1,2 map f : Σ → N represents α if given any
sequence of smooth maps {fi} that strongly approximates f in W 1,2,
for i sufficiently large each smooth map fi represents α. The fact that
the fi lie in the same homotopy class for i sufficiently large follows from
the smoothing results of [ScU]. We begin with three lemmas on the
homology classes and free homotopy classes of N .

Lemma 5.1. There is a constant C0 > 0, depending only on N ,
such that if f : S2 → N is a W 1,2 map with E(f) < C0 then [f ] is null
in π2(N).

Proof. Suppose not. Then for any c > 0 there is a W 1,2 map f :
S2 → N with E(f) < c representing a nonzero element of π2(N). By
harmonic map theory [SU1] it follows that there is a harmonic map
h : S2 → N with E(h) < c representing a nonzero element of π2(N).
For c sufficiently small the image of such a harmonic map lies in a
coordinate neighborhood and the map is therefore trivial. q.e.d.

Lemma 5.2. Let C be a positive constant. There are at most
finitely many free homotopy classes in π2(N) that can be represented by
W 1,2 maps f : S2 → N with E(f) < C.

Proof. Suppose not. Then there are infinitely many classes αλ ∈
π2(N), λ ∈ Λ each represented by a W 1,2 map fλ : S2 → N with
E(fλ) < C. Minimizing energy in each homotopy class we can represent
each αλ by a finite family {fλi

: i = 1, . . . , nλ} of harmonic maps S2 →
N with [fλi

] �= 0 and
∑nλ

i E(fλi
) < C. Since E(fλi

) ≥ C0, there must
be infinitely many different free homotopy classes in the set {[fλi

] :
λ ∈ Λ, i = 1, . . . , nλ}. Hence we can assume that the classes αλ are
each represented by a harmonic map fλ : S2 → N with E(fλ) < C.
Choosing a subsequence we can suppose that the {fλ} converge up to
bubbling. In particular, the images of the {fλ} converge in Hausdorff
distance to the image of a set of harmonic maps of S2 and connecting
curves. Thus there is a λ0 such that for λ > λ0 the {fλ} represent the
same free homotopy class. The contradiction proves the lemma. q.e.d.

Lemma 5.3. Let C be a positive constant. There are at most
finitely many homology classes in H2(N ; Z) that can be represented by
cycles Γ with A(Γ) < C.



44 r. schoen & j. wolfson

Proof. Recall that a cycle Γ determines a closed integral current TΓ

by:

TΓ(σ) =
∫

Γ
σ,

for σ a smooth 2-form of compact support in N . If A(Γ) < C then
TΓ satisfies the mass bound M(TΓ) < C. The integral homology class
determined by TΓ is [Γ]. The lemma now follows from the compactness
theorem of Federer-Fleming and is explicitly stated in [FF, 9.6]. q.e.d.

In this paper, it will be important to use the area functional rather
than the energy for the purpose of proving strong convergence and reg-
ularity results. This is because we don’t know if such results hold for
the energy functional on the space of lagrangian maps. The following
proposition will allow us to pass back and forth between these function-
als. Let Σ be a smooth closed oriented surface, and α a homotopy class
of W 1,2 lagrangian maps from Σ to N . Let A(α) denote the infimum of
area taken over the maps in this class; i.e.,

A(α) = inf{A(�) : � ∈W 1,2
L (Σ, N) ∩ α}.

On the other hand, if we fix a metric h on Σ with curvature 1, 0, or −1,
then we may consider the infimum E(α, h) given by

E(α, h) = inf{E(�, h) : � ∈W 1,2
L (Σ, N) ∩ α}.

Of course, we have A(α) ≤ E(α, h) for any metric h. We will refer
to the metrics h above as admissible metrics, and we note that each
conformal structure on Σ has an admissible metric which is unique for
genus(Σ) > 1, unique up to scale for genus(Σ) = 1, and unique up to
conformal transformation if genus(Σ) = 0. The following proposition
is fairly standard, but we need a slightly more general version than is
common in classical minimal surface theory, so we record it here.

Proposition 5.4. Given any � ∈W 1,2
L (Σ, N) and any ε > 0, there

exists an admissible metric h and a homeomorphism f of Σ homotopic
to the identity so that E(� ◦ f, h) ≤ A(�) + ε. In particular, A(α) =
infh{E(α, h)} where the infimum is taken over all admissible metrics on
Σ.

Proof. We consider the pullback metric τ =
∑
τijdx

idxj where

τij = 〈�∗(∂/∂xi), �∗(∂/∂xj)〉.
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The tensor τ defines an L1 degenerate Riemannian metric on Σ. In
order to uniformize this metric, we need to make it bounded and positive
definite. We let h1 be any smooth Riemannian metric on Σ, δ > 0, and
set τδ = τ + δh1. Now, if we choose Λ sufficiently large, and we consider
the set

EΛ = {P ∈ Σ : Trh1(τ)(P ) > Λ},

then we will have E(�, EΛ, h1) + A(EΛ, h1) < ε/4. We then define
τ̂ to be τδ on Σ \ EΛ, and equal to h1 on EΛ. The metric τ̂ may
then be uniformized by the measurable Riemann Mapping Theorem of
Morrey ([M2]). Thus we may find a homeomorphism f homotopic to
the identity, and an admissible metric h such that f∗(τ̂) is conformal to
h. Thus it follows that

A(Σ, f∗(τ̂)) = A(Σ, τ̂) = 1/2
∫

Σ
Trh(f∗(τ̂)) dµh.

Now we have A(Σ, τ̂) ≤ A(Σ, τ) + cδ + A(EΛ, h1) < A(�) + cδ + ε/4.
The energy of �◦f with respect to h taken over f−1(EΛ) is equal to the
energy of � with respect to h1 taken over EΛ (which is less than ε/4)
since f is a conformal map from (f−1(EΛ), h) to (EΛ, h1). On the other
hand

E(�◦f,Σ\EΛ, h) = 1/2
∫

Σ\EΛ

Trh(f∗(τ)) dµh ≤ 1/2
∫

Σ
Trh(f∗(τ̂)) dµh.

Combining these results we see that E(� ◦ f, h) ≤ A(�) + cδ+ ε/2 which
gives the desired conclusion for δ small enough. q.e.d.

Minimizing in a homotopy class

Let Σ be a compact surface and let α ∈ [Σ, N ] be a lagrangian homo-
topy class. Let h be an admissible metric on Σ for which E(α, h) = A(α).
Note that if Σ = S2, then any constant curvature one metric has this
property. Denote the induced volume form by dζ. Let {�i} be an energy
minimizing sequence of W 1,2 lagrangian maps Σ → N representing α.
Choosing a subsequence we can suppose that {�i} converges weakly in
W 1,2(Σ, N), strongly in L2(Σ, N) and pointwise almost everywhere to a
weakly lagrangian map � ∈W 1,2(Σ, N). Of course the convergence may
not be strongly in W 1,2. To keep track of the energy loss we describe
the convergence in measure theoretic language. Consider the energy
measures, ζi = e(�i)dζ = 1

2 |∇�i|2dζ, on Σ. Using the weak convergence
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theorem for measures and choosing a subsequence we can suppose that
these measures converge weakly to a limit measure η. Denote the energy
measure associated to the limit map � by, η� = e(�)dζ. Set

η = η� + ηZ .

ηZ is a measure, with support Z, that records the failure of strong
convergence. We will call ηZ the defect measure. We will show in the
next propositions that if �i is an area minimizing sequence, then the
defect measure is a finite sum of point masses.

Proposition 5.5. Assume that h is an admissible metric on Σ
for which E(α, h) = A(α), and suppose that {�i} is a sequence of weakly
lagrangian maps in W 1,2(Σ, N) that minimize energy in a lagrangian
homotopy class α. Let � be the weak limit. There is an ε0 > 0, depending
only on N , such that if Dr ⊂ Σ is a disc of radius r and EDr(�i) <
ε0 then a subsequence (still denoted {�i}) converges strongly to � in
W 1,2(D r

2
, N).

Proof. Let η be the limit energy measure. For any ε > 0 there is
at most a finite set S of points, such that if Q ∈ S then η({Q}) ≥ ε.
For P /∈ S there is an r0 > 0 such that if r < r0 and i is sufficiently
large then EDr(P )(�i) ≤ 2ε. Fix such a radius r and suppose that for
any subsequence the convergence on D r

2
(P ) results in energy loss. In

particular there is a δ > 0 such that

ED r
2
(�) + δ < lim inf

i
ED r

2
(�i).

We can choose ρ ∈ [r/2, r] and a subsequence of {�i} ( that we continue
to denote {�i}) such that �i|∂Dρ

has energy bounded by 2ε
r . It follows

that �i|∂Dρ
is continuous, rectifible and has length bounded by a uniform

constant times ε. Thus a subsequence converges uniformly to �|∂Dρ
.

Using the collar construction of Lemma 4.8, for each sufficiently large
i, we can construct a map �̃i ∈ W 1,2(Σ, N) that agrees with � on D r

2
,

agrees with �i outside Dr and with area

A(�̃i) +
δ

2
< E(�i).

The maps �̃i and �i differ by a W 1,2 map si : S2 → N with A(si) < cε,
where c is a uniform constant. By Proposition 5.4, this map can be
reparametrized to have energy less than 2cε. Choose ε < C0/(2c),
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where C0 is the constant in Lemma 5.1 . Then si has energy less than
C0 and hence is trivial in homotopy. Thus {�̃i} is a sequence in the
same lagrangian homotopy class as {�i} but with strictly smaller area,
contradicting the area minimizing property of {�i}. q.e.d.

The following corollary is an immediate consequence.

Corollary 5.6. Assume that h is an admissible metric on Σ for
which E(α, h) = A(α), and suppose that {�i} is a sequence of weakly
lagrangian maps in W 1,2(Σ, N) that minimize energy in a lagrangian
homotopy class α. Suppose � be the weak limit and that the energy
measures ζi = e(�i)dζ converge weakly as measures to η. Then

η = η� + ηZ .

Z, the support of ηZ , consists of a finite number of points {x1, . . . , xk} ⊂
Σ and

ηZ =
k∑

j=1

mxjδxj ,

where the masses mxj ≥ ε0. The constant ε0 is given in Proposition 5.5.

Proposition 5.7. Each point x ∈ Z can be used to construct
a finite set of lagrangian stationary, weakly lagrangian maps �xλ

∈
W 1,2(S2, N). Each map, �xλ

, is minimizing in some free lagrangian
homotopy class. The construction allows no energy loss:

lim inf
i

E(�i) = E(�) +
∑
xλ

E(�xλ
).

Proof. Let x ∈ Z. There is a sequence of radii ri → 0 such that

lim inf
i

EDri (x)(�i) ≥ ε0,

since otherwise, the convergence in a neighborhood of x is strong. By
the Courant-Lebesgue Lemma we can suppose that L(�i(∂Dri)) < εi
where the εi → 0. Set Cri = ∂Dri(x). We can suppose that the
curves {�i(Cri)} all lie in Darboux coordinate neighborhoods Ui. The
lagrangian isoperimetric inequality, Proposition 2.7 then implies that
there are lagrangian maps mi : D → Ui of the unit disc D with
∂mi(D) = �i(Cri) and with

A(mi(D)) ≤ C (L(�i(Cri)))
2 .
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The constant C is universal. Rescale the maps �i|Dri
so that they are

defined on the unit disc. By stereographic projection we consider the
rescaled �i defined on the southern hemisphere of S2 and the mi defined
on the northern hemisphere. Denote these maps (�x)i : S2 → N . Note
that E((�x)i) ≥ ε0 and so each (�x)i is nontrivial. Choosing a sub-
sequence we can suppose that each (�x)i represents a fixed lagrangian
homotopy class αx. Then, since the original sequence is minimizing and
A(mi(D)) → 0,the sequence {(�x)i} must be minimizing. To each map
(�x)i we can associate an energy measure (ζx)i = e((�x)i)dζ. We next
balance each map (�x)i as follows: Consider the domain S2 = {�x ∈
R3 : |�x| = 1}. Reparametrize each (�x)i so that the center of mass of
the measure (ζx)i on S2 is the origin of R3. We call such a map and
its associated energy measure balanced. We will denote the balanced
sequence {(�x)i}.

Choosing a subsequence we can suppose that the balanced sequence
{(�x)i} converges weakly in W 1,2(S2, N), strongly in L2(S2, N) and
pointwise almost everywhere to a limit weakly lagrangian map �x ∈
W 1,2(S2, N). The measures (ζx)i converge to a balanced measure ζx. If
the convergence to �x is strong the lemma is proved. If not, we consider
the points where strong convergence fails and iterate the argument. If
at each step the map �x is nontrivial then, since the total energy is
bounded, the process must terminate. If �x is trivial then the balanced
condition implies that there are at least two points in the support of the
defect measure of ζx each with mass ≥ ε0 and thus again the process
must terminate after finitely many steps. Note that since A(mi(D)) → 0
there is no energy loss. Clearly � and each map �xλ

minimizes energy in
some free lagrangian homotopy class. q.e.d.

Using the standard nomenclature we will call the maps �xλ
: S2 →

N , bubbles, and the limit process bubbling.

Let Σ denote a Riemann surface and f ∈ W 1,2(Σ, N). Then f
determines a current Tf as follows: Let τ be a smooth 2-form on N
with compact support. Define

Tf (τ) =
∫

Σ
f∗(τ).

We claim that Tf is an integral current and as such it represents a
class [f ] ∈ H2(N ; Z). To verify this, first note that if a sequence {fi} in
W 1,2(Σ, N) converges strongly to f then the currents Tfi

converge to Tf
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in the weak (current) topology. Since W 1,2(Σ, N) is dense in C∞(Σ, N)
in the strong W 1,2-topology there is a sequence {fi} of smooth maps
Σ → N that converge strongly in W 1,2 to f . The currents {Tfi

} are
integral currents that satisfy a mass bound. By the compactness theo-
rem [F] they converge in the flat norm topology to an integral current
T . It then follows from [Si1, 31.2] that T = Tf . Thus, Tf is an integral
current. Suppose that {fi} is a sequence of maps with ‖fi‖W 1,2 < E
that converges strongly to f ∈ W 1,2(Σ, N) and that [fi] = α for all
i. Then, as above, the integral currents Tfi

converge in the flat norm
topology to an integral current Tf . By a result of Federer-Fleming [FF]
the current Tf also represents α in H2(N ; Z). In other words, for maps
from surfaces, strong W 1,2 convergence preserves homology.

Suppose that Σ = S2. Let {�i} be an area minimizing sequence of
lagrangian maps S2 → N representing a free homotopy class and let �
be the weak limit. Note that � is stationary under compactly supported
variations of the domain, since such variations preserve the lagrangian
condition. It follows by a standard argument (see, for example, [S]) that
the Hopf differential is holomorphic and hence, since the domain is S2,
that the Hopf differential vanishes. In particular, � is weakly conformal.

Theorem 5.8. Let α ∈ π2(N) be a lagrangian homotopy class. Let
{�i} be an area minimizing sequence of W 1,2 lagrangian maps S2 → N
each representing α. Then a subsequence of {�i} converges without en-
ergy loss to a finite collection {�λ}λ∈Λ of lagrangian stationary, weakly
conformal, weakly lagrangian maps in W 1,2(S2, N). Each map �λ min-
imizes area among W 1,2 lagrangian maps in some free homotopy class
and ∑

λ

[�λ] = α,

where [�λ] denotes the homology class determined by the map �λ.

Proof. The first two statements follow from the proof of Propo-
sition 5.7. To prove the third statement we first consider the case
where the limit consists of a single map � ∈ W 1,2(S2, N). In par-
ticular, a subsequence of {�i} converges strongly in W 1,2(S2, N) to �.
Thus, as discussed above, the homology class is preserved in the limit.
Next consider the case where the limit consists of more than one map
�λ ∈W 1,2(S2, N). By construction, each map �λ is the weak W 1,2 limit
of a minimizing sequence (�λ)i of lagrangian maps S2 → N . Since there
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is no energy loss, each sequence must converge strongly. Note that, for
each i, the homology class

∑
λ[(�λ)i] is equal to the class α. Thus,∑

λ

[�λ] =
∑

λ

[(�λ)i] = α.

q.e.d.

Non-collapsible surfaces

Let Σ be a Riemann surface with conformal structure µ and let
φ : Σ → N be a smooth lagrangian map. We will say that a map
� : Σ → N has the same action on π1 as φ if for p ∈ Σ there is a path ρ
from �(p) to φ(p) such that

�∗ = ρ∗ ◦ φ∗ ◦ ρ−1
∗ ,

where φ∗ : π1(Σ, p) → π1(N,φ(p)) and �∗ : π1(Σ, p) → π1(N, �(p)) are
the induced maps on π1. We recall that in [SY] it is shown that the
induced map on π1 is well-defined for any map in W 1,2(Σ, N) and that
the induced map on π1 is preserved in the weak limit. We define

Lφ = {� ∈W 1,2(Σ, N) : � is weakly lagrangian and
� has the same action on π1 as φ}.

Set
Eµ = inf{E(�, µ) : � ∈ Lφ}.

Proposition 5.9. There exists an � ∈ Lφ such that E(�) = Eµ.

Proof. Let {�i} ∈ Lφ be an energy minimizing sequence. Choosing a
subsequence we can suppose that {�i} converges weakly in W 1,2(Σ, N),
strongly in L2(Σ, N) and pointwise almost everywhere to a weakly la-
grangian map � ∈ W 1,2(Σ, N) with the same induced action on π1 as
φ. Since the class Lφ is weakly closed, we have � ∈ Lφ, and hence
limE(�i) ≤ E(�) = Eµ. It follows that there is no energy loss, and
hence �i converges strongly to � in W 1,2. q.e.d.

Suppose that φ : Σ → N is a piecewise C1 lagrangian map. Let
γ : S1 → Σ be an oriented simple closed curve on Σ. Suppose that
φ∗([γ]) = 1, where φ∗ is the induced map on π1. The following discussion
applies to any such curve γ but is only interesting when [γ] is nontrivial



minimizing area among lagrangian surfaces 51

in π1(Σ). Also, we could carry through the following discussion for any
closed curve on Σ with similar results. We confine ourselves to simple
closed curves because they are suited to our applications. We define the
period of γ as follows. Let D be an oriented immersed disc in N with
∂D = φ(γ). Set:

periodD(φ, γ) =
∫

D
ω.

This is well-defined independent of the choice of oriented representative
γ ∈ [γ]. If D′ is another oriented immersed disc in N with ∂D′ = φ(γ)
the pair D,D′ determine an element α of π2(N). Then periodD(γ) −
periodD′(γ) = ω(α). The period of γ is thus well-defined only modulo
the values of ω on π2(N). If the values of ω on π2(N) are rationally
related then we can define:

period(φ, γ) = inf
{D: ∂D=φ(γ)}

∣∣∣∣∫
D
ω

∣∣∣∣ .
However, if the values of ω on π2(N) are not rationally related then this
definition yields period(φ, γ) = 0. Accordingly, in the general case, we
choose a constant C > 0 and consider:

perC(φ, γ) = inf
{D:∂D=φ(γ),A(D)<C}

∣∣∣∣∫
D
ω

∣∣∣∣ .
If there are no discs D ⊂ N with ∂D = φ(γ) and A(D) < C then we
set perC(φ, γ) = ∞. Because we restrict the area of the spanning disc
to be less than C the integral of ω over a spanning disc is well-defined
modulo the values of ω on classes in π2(N) that can be represented by
two-spheres with energy less than 2C. By Lemma 5.2 there are at most
finitely many such classes. Hence the infimum is taken over finitely many
classes. In particular, if perC(φ, γ) = 0 then there is an immersed disc
D with ∂D = φ(γ) and

∫
D ω = 0. Unfortunately perC(φ, γ) depends on

the representative γ ∈ [γ]. Define:

periodC(φ, [γ]) = inf
γ∈[γ]

perC(φ, γ).

Consider the energy functional E(S2, N) on piecewise C1 maps S2 → N .
We will require that 2C be a regular value of E(S2, N). The next lemma
describes the behavior of periodC under hamiltonian variations.

Lemma 5.10. Let Σ be a compact surface. Let [γ] be a non-
trivial homotopy class that can be represented by a simple closed curve.
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Suppose that φ : Σ → N is a piecewise C1 lagrangian map such that
φ∗([γ]) = 1. Let ht, 0 ≤ t ≤ 1 be a 1-parameter family of hamiltonian
diffeomorphisms with h0 = Id. Then there is an ε > 0 such that if t < ε
then:

periodC(ht ◦ φ, [γ]) = periodC(φ, [γ]).

Proof. Choose a simple closed curve γ0 on Σ that represents [γ]. Set

S(φ, γ0, C) = {|
∫

D
ω| : A(D) < C, ∂D = φ(γ0)}.

For any C this set of nonnegative real numbers is finite. For any simple
closed curve γ on Σ that represents [γ] we have:

S(φ, γ, C) ⊂ S(φ, γ0, C +A(φ(Σ))).

It follows that ∪γ∈[γ]S(φ, γ, C) is a finite set of values and each value is
achieved by a simple closed curve in [γ]. Denote a set of such curves by
{γλ : λ ∈ Λ} and a set of spanning discs by {Dλ : λ ∈ Λ}, where Λ labels
the elements of ∪γ∈[γ]S(φ, γ, C). Note that under hamiltonian isotopy
the period of a curve does not change. Thus the set ∪γ∈[γ]S(φ, γ, C) can
change under ht only because of a change in the area of the spanning
discs. Clearly for sufficiently small t and each λ ∈ Λ, A(ht(Dλ)) < C.
It follows that for sufficiently small t,

∪γ∈[γ]S(φ, γ, C) ⊂ ∪γ∈[γ]S(ht ◦ φ, γ, C).

By the choice of C there is a δ > 0 such that the classes in π2(N)
that can be represented by piecewise C1 maps with energy less than
2(C + δ) are the same as the classes that can be represented piecewise
C1 maps with energy less than 2(C − δ). It follows that for each closed
curve γ on Σ that represents [γ] we have:

S(φ, γ, C) = S(φ, γ, C + δ).

Thus for sufficiently small t,

∪γ∈[γ]S(ht ◦ φ, γ, C) ⊂ ∪γ∈[γ]S(φ, γ, C).

The result follows. q.e.d.

Remark. The lemma remains true for any 1-parameter family of
diffeomorphisms that preserves the lagrangian condition and preserves
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the periods of curves on the lagrangian surface. In particular, the lemma
is true for 1-parameter families with variational vector field X of the
type used in the proof of the monotonicity formula. Such vector fields
have support in a disc on Σ and have lifts that are contact vector fields.
Thus they satisfy: d(X ω)|Σ = 0 and therefore X ω is a closed 1-
form on Σ with support in a disc. It follows that

∫
γ X ω = 0 for any

closed curve γ. This implies that the period of γ is preserved. On the
other hand the lemma is not true for arbitrary 1-parameter families of
symplectic diffeomorphisms since these do not preserve the periods of
curves.

Corollary 5.11. If periodC(φ, [γ]) = 0 then there is a simple closed
curve γ ∈ [γ] and an immersed disc D with ∂D = φ(γ) and

∫
D ω = 0.

Proof. From the proof of the lemma we have that ∪γ∈[γ]S(φ, γ, C) is
a finite set of values and each value is achieved by a simple closed curve
in [γ]. The corollary follows. q.e.d.

The periodC invariant is defined for weakly lagrangian maps in
W 1,2(Σ, N). Let � : Σ → N be such a map and suppose �∗([γ]) = 1.
Let C0

r (S1, N) denote the curves S1 → N that are continuous and rec-
tifiable. Define:

periodC(�, [γ]) = inf
{γ∈[γ]: �◦γ∈C0

r (S1,N)}
perC(�, γ).

This invariant is preserved under weak convergence. In particular,
let {�i} be a sequence of weakly lagrangian maps in W 1,2(Σ, N) with
�i∗([γ]) = 1 for all i and E(�i) < E for some constant E. Suppose that
periodC(�i, [γ]) = p for each i. Let � be the weak limit in W 1,2(Σ, N) of
a subsequence of {�i} (that we will continue to denote {�i}). Let γ0 ∈ [γ]
be a simple closed curve such that �(γ0) is continuous and rectifiable.
Let T be a tubular neighborhood of γ0 in Σ with Γ : S1 × [−1, 1] → T
a smooth immersion. For s ∈ [−1, 1], let γs : S1 → Σ be the curve
γs(t) = Γ(t, s). For almost every s, the curve �(γs) is continuous and
rectifiable. Given any ε > 0, if s is sufficiently small, the curves �(γ0)
and �(γs) bound an annulus of area less than ε. Moreover, for almost
every s, {�i(γs)} is continuous, rectifiable and has uniformly bounded
length. Thus, there is a subsequence of {�i} (that we will continue
to denote {�i}) that converges uniformly to �(γs). In particular, for i
sufficiently large, �i(γs) is uniformly close to �(γs). Therefore, for i suf-
ficiently large, the curves �i(γs) and �(γ0) bound an annulus of area less
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than 2ε. It follows that:

periodC(�, [γ]) ≤ p.

The proof of the opposite inequality is similar.

Remarks.

(i) Lemma 5.10 applies to weakly lagrangian maps in W 1,2(Σ, N). The
proof is essentially the same.

(ii) Suppose that {�i} is a minimizing sequence of maps in W 1,2(Σ, N)
all with the same periodC invariants and with weak limit �. Then it fol-
lows that � also has these periodC invariants. The replacement argument
of Proposition 5.5 can be made to preserve the periodC invariants and
therefore constructs an admissible comparison map among maps with
fixed periods. It follows that a subsequence of {�i} converges strongly
to � on Σ \ S, where S is a finite set of points. The details are left to
the reader.

Let Σ be a closed surface of genus greater than one. Fix δ > 0.
Suppose that φ : Σ → N is a C1 lagrangian map such that either
φ∗ : π1(Σ, p) → π1(N,φ(p)) contains no nontrivial element represented
by a simple closed curve in its kernel or if such an element [γ] does exist
then periodC(φ, [γ]) ≥ δ > 0. We require that C satisfy 2A(φ) < C and
that 2C is a regular value of the energy functional E(S2, N) on piecewise
C1 maps S2 → N . We call such a lagrangian map non-collapsible. The
notion is a generalization of incompressibility as formulated in [SU2].

In analogy to the above definitions we define:

L̃φ = {� ∈W 1,2(Σ, N) : � is weakly lagrangian,
� has the same action on π1 as φ and
the periodC invariants of � and φ are equal}.

Set
Ẽµ = inf{E(�, µ) : � ∈ L̃φ}.

Proposition 5.12. There exists an � ∈ L̃φ such that E(�, µ) = Ẽµ.

Proof. Same as above. q.e.d.

Suppose that genus(Σ) = g ≥ 2. Denote the Teichmüller space
of Σ by T (Σ). T (Σ) can be described as the equivalence classes of
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pairs (Σ1, f1) where f1 : Σ → Σ1 is a homeomorphism and two pairs
(Σ1, f1) and (Σ2, f2) are equivalent if f2◦f−1

1 is homotopic to a conformal
map. We can mark Σ by choosing a set of simple closed curves on Σ
whose homotopy classes generate π1(Σ). A marked surface represents
an element of Teichmüller space under the equivalence relation that two
marked surfaces are equivalent if there is a homeomorphism respecting
the markings and homotopic to a conformal map. Let R(Σ) denote the
Riemann moduli space of conformal structures on Σ. Then R(Σ) =
T (Σ)/Mod(Σ) where Mod(Σ), the Teichmüller modular group of Σ, is
the mapping class group modulo its subgroup of ineffective elements.
The following is a result of Abikoff [A], (quoted in [SU2]).

Theorem 5.13. There exists a compactification R(Σ) of R(Σ) such
that the boundary points R(Σ) \ R(Σ) correspond precisely to the Rie-
mann surfaces with nodes that can be obtained from Σ by collapsing a
set of admissible closed curves on Σ.

Let Σ0 denote a fixed Riemann surface of genus g ≥ 2 and let Σ0 be
the base surface of T (Σ0). We define an energy function on Teichmüller
space as follows: Given a lagrangian map φ : Σ0 → N consider a point
µ = (Σ, f) ∈ T (Σ0). Define:

Ẽµ = inf{E(�, µ) : � ◦ f ∈ L̃φ}.

The conformal invariance of E insures that Ẽµ is well-defined indepen-
dent of the representative of µ. This defines a map:

Ẽ : T (Σ0) → R

µ �→ Ẽµ.

This function is lower semi-continuous.

Proposition 5.14. Ẽµ is attained at each µ ∈ T (Σ0) by some
weakly lagrangian W 1,2(Σ, N) map �µ which has the same induced map
on π1(Σ) and the same periodC invariants as φ.

Theorem 5.15. Let �i : Σµi → N be a sequence of maps in W 1,2

for the conformal structure µi on Σ such that E(�i, µi) < B. Suppose
that π(Σµi) → Σ∞ where π : T (Σ0) → R(Σ0) is the quotient map and
Σ∞ ∈ R(Σ0) \R(Σ0). Then for i sufficiently large, (�i)∗([γ]) = 1 for at
least one [γ] ∈ π1(Σ) represented by a simple closed curve. Moreover,

lim inf
i

periodB(�i, [γ]) = 0.
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Proof. The argument is based on the proof of a similar result in
[SU2]. The sequence Σµi gives a deformation of Σ0 onto a Riemann
surface Σ∞ with nodes wm, m = 1, . . . , r, where each node corresponds
to the pinching of a homotopically nontrivial simple closed curve γm.
There is a sequence {Dm

j } of closed annular neighborhoods of γm such
that Dm

j converges to the node wm of Σ∞ and, for each fixed j, the
change in conformal structure on Σ0 as Σµi → Σ∞ is restricted to
the interior of ∪r

m=1D
m
j . Let Σj = Σ0 \ ∪mD

m
j . Then, for fixed j,

{�i|Σj
} is a sequence of W 1,2 maps with bounded µj energy. Choosing

a subsequence of the sequence {�i}, that we continue to denote {�i}, we
can suppose that {�i|Σ1

} converges weakly in W 1,2, strongly in L2 and
pointwise almost everywhere to a W 1,2 map �(1) : Σ1 → N . Choosing
successive subsequences for, j = 2, 3, . . . , we construct a sequence of
W 1,2 maps �(j) : Σj → N , with the property that �(k) extends �(j) from
Σj to Σk for each k > j. Let j → ∞. We get a W 1,2 map � : Σ′∞ → N ,
where Σ′∞ is the punctured Riemann surface Σ0 \ {w1, . . . , wr} and
�(j) → � strongly in W 1,2

loc . Since E(Σj , µj) < B it follows that E(�) < B.
Trivially we can extend � to a W 1,2 map Σ̃∞ → N where Σ̃∞ = Σ′∞ ∪
{(x1, y1), . . . , (xr, yr)} is the closed Riemann surface obtained by adding
the pair of points (xm, ym) at the two punctures of Σ′∞ corresponding
to each node wm ∈ Σ∞.

Fix m. Let γ be a curve homotopic to γm and contained in Dm
j for

some large j. Then γ ⊂ Σ∞ is homotopically trivial. Let T be a tubular
neighborhood of γ in Σ∞ \ {wm} with Γ : S1 × [−1, 1] → T a smooth
immersion. For s ∈ [−1, 1], let γs : S1 → Σ be the curve γs(t) = Γ(t, s).
For almost every s, �(γs) is continuous, rectifiable and homotopically
trivial. Also, for almost every s, there is a subsequence of {�i}, that we
continue to denote {�i}, such that the curves {�i(γs)} converge uniformly
to �(γs). Therefore, for sufficiently large i and almost every s, �i(γs) is
homotopically trivial.

We next show that lim infi periodB(�i, [γ]) = 0. Choose any ε > 0.
Then γ ⊂ Σ∞ can be chosen so that �(γ) is continuous and rectifiable
and so that a subsequence of the curves {�i(γ)} converges uniformly to
�(γ). �(γ) bounds the image of a disc D under the weakly lagrangian
map �. Clearly, E(�|D) < B. Using smooth approximation, we can
find a smoothly immersed disc D′ spanning �(γ) with

∫
D′ ω < ε and

A(D′) < B. It follows that for i sufficiently large, there is a smoothly
immersed disc D′

i spanning �i(γ) with
∫
D′

i
ω < 2ε and A(D′

i) < B. The
result follows. q.e.d.
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Lemma 5.16. If µ ∈ T (Σ) is a critical point for the function Ẽ,
then the weakly lagrangian map �µ is weakly conformal.

Proof. A variation of the domain shows that the Hopf differential
is holomorphic and hence smooth. The result then follows from an
argument in [SU1]. q.e.d.

Theorem 5.17. Suppose Σ is a surface of genus g ≥ 2 and φ :
Σ → N is a lagrangian map that is non-collapsible. Then there is a
conformal structure on Σ and a weakly conformal, weakly lagrangian
map � ∈ L̃φ that minimizes area among all maps in L̃φ.

Proof. Let ν be the conformal structure on Σ for the metric induced
by φ. Then E(φ, ν) = A(φ) < C. In particular, Ẽν < C. To prove
the theorem it suffices to show, by Proposition 5.4, that a minimum of
Ẽ is attained in the interior of T (Σ). Let µi ∈ T (Σ) be a minimiz-
ing sequence for Ẽ. We can suppose that Ẽµi < C. Then there is a
subsequence, still denoted µi, and a sequence of elements τi ∈ Mod(Σ)
such that ξi = τi(µi) either converges to an element in the interior of
T (Σ) or the marked surface Σξi

representing ξi converges to a surface
with nodes [A]. Let �i be a minimizing map in L̃φ·τ−1

i
for the conformal

structure ξi. Clearly E(�i, ξi) = Ẽµi < C. Therefore since a nontrivial
simple closed curve in Σ either maps to a nontrivial curve in N or, if
not, to a curve with periodC bounded below, by Theorem 5.15 we have
limi→∞ ξi = ξ ∈ T (Σ). Choosing a subsequence, we can suppose that
{�i} converges weakly in W 1,2 to � and lim infi→∞ Ẽµi = E(�, ξ). It
follows from Lemma 5.16 that � is weakly conformal. q.e.d.

We next consider the case where genus (Σ) = 1. Let T 2 be a closed
surface of genus one. We include the period condition in the following
definition however it will not be necessary in our applications. Fix
δ > 0. Suppose that φ : T 2 → N is a piecewise C1 lagrangian map
such that if [γ] is a generator of π1(T 2, p) that lies in the kernel of
φ∗ : π1(T 2, p) → π1(N,φ(p)) then periodC(φ, [γ]) ≥ δ > 0. We require
, in addition, that C satisfy 2A(φ) < C and that 2C is a regular value
of the energy functional E(S2, N) on piecewise C1 maps S2 → N . We
call such a lagrangian map non-collapsible. Note that every generator
of π1(T 2, p) can be represented by a simple closed curve.
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In analogy to the above definitions we define:

L̃φ = {� ∈W 1,2(T 2, N) : � is weakly lagrangian,
� has the same action on π1 as φ and
the periodC invariants of � and φ are equal}.

The proof of the following theorem is also a variation of the work of
[SU2] and is left to the reader.

Theorem 5.18 Suppose T 2 is a torus and φ : T 2 → N is a non-
collapsible lagrangian map. Then there is a conformal structure on T 2

and a weakly conformal, weakly lagrangian map � ∈ L̃φ that minimizes
area among all maps in L̃φ.

Theorem 5.19. Let Σ be a surface of genus g ≥ 1 and φ : Σ → N be
a lagrangian map that is non-collapsible. Let α be a lagrangian homology
class. Suppose that there are maps f ∈ L̃φ such that [f ] = α. Then there
is a conformal structure on Σ and weakly conformal, weakly lagrangian
maps � : Σ → N and si : S2 → N , i = 1, . . . , ν, such that:

(1) Each map si minimizes area among lagrangian maps in some free
homotopy class.

(2) The map � is non-collapsible and minimizes area among all maps
in L̃φ.

(3) [�] +
∑ν

i [si] = α.

Proof. The result follows by applying the argument in the proofs of
Propositions 5.5 and 5.7 to an area minimizing sequence of maps in L̃φ

that represent α. q.e.d.

Minimizing in a homology class

Theorem 5.20. Suppose that α is a lagrangian class in H2(N ; Z).
Then α can be represented by a finite number of piecewise C1 lagrangian
maps of surfaces into N each of which is non-collapsible.

Proof. Without loss of generality, we assume that α cannot be writ-
ten as a sum of two nontrivial classes each of which is lagrangian. We
represent α by a piecewise C1 lagrangian map � : Σ → N . We can
suppose that � is an immersion except in the neighborhood of finitely
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many points and, by perturbation, we can suppose that, � has, at worst,
double points. We take the surface Σ to have minimal genus among such
surfaces representing α. Since α is a lagrangian class,∫

Σ
�∗ω = 0.(5.1)

If γ is a simple closed curve on Σ that does not separate and for which
�(γ) is trivial in π1(N) then �(γ) can be contracted without changing
the homology class of �(Σ) and preserving (5.1). Thus we can assume
that all such curves are nontrivial. If for every simple closed curve γ on
Σ which separates we have that �∗([γ]) �= 1 then the theorem is proved.
So suppose that γ be a simple closed curve on Σ which separates and for
which �∗([γ]) is trivial in π1(N,x). We can also suppose �(γ) is imbed-
ded. �(γ) bounds an immersed disc D in N . If this disc is lagrangian
then �(Σ) can be cut along �(γ) into two lagrangian surfaces, contra-
dicting the indecomposibility of α. If

∫
D ω = 0 then D is homotopic

rel ∂D = �(γ) to an immersed lagrangian disc. Thus we can suppose
that for any such γ there are no immersed discs D in N spanning �(γ)
such that

∫
D ω = 0. In particular, periodC(�, [γ]) �= 0, where we choose

C > 0 to satisfy 2A(�(Σ)) < C and such that 2C is a regular value of
the energy functional on piesewise C1 maps S2 → N .

There can be many homotopy classes in π1(Σ, p) that are repre-
sented by simple closed separating curves. Let [γ1] and [γ2] be two such
classes and let γ1 and γ2 be simple closed curves that are representa-
tives. Recalling the notation introduced in Lemma 5.10 , for i = 1, 2,
let

S(�, [γi], C) = ∪γ∈[γi]S(�, γ, C).

Let Di be a disc in N with A(Di) < C and ∂Di = �(γi). Since γ1 and γ2

are both separating curves they bound a region U ⊂ Σ. In N construct
the cycle

ΣD1,D2 = D1 ∪�(γ1) �(U) ∪�(γ2) D2.

Since � is lagrangian,

ω([ΣD1,D2 ]) =
∫

D1

ω −
∫

D2

ω.

Making different choices of spanning discs D1 and D2 we construct
different cycles and get different numbers after pairing with [ω]. How-
ever note that A(ΣD1,D2) < 2C + A(�(Σ)). Using Lemma 5.3 there
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are at most finitely many homology classes in H2(N,Z) that can be
represented by cycles with area less than 2C + A(�(Σ)). Pairing these
homology classes with [ω] we get finitely many scalars T = {t1, . . . , tλ}.
It follows that each element of S(�, γ1, C) differs from one of S(�, γ2, C)
by addition or subtraction by some element of T . This is true for each
representative γ1 of [γ1] and γ2 of [γ2] and therefore it is true for the
elements of the sets S(�, [γ1], C) and S(�, [γ2], C). Fix a homotopy class
[γ0] ∈ π1(Σ, p) that can be represented by a simple closed separating
curve. Let [γ] ∈ π1(Σ, p) be any other such class. Then the elements
of S(�, [γ], C) can be obtained from the elements of S(�, [γ0], C) by ad-
dition or subtraction by an element of T . Hence the union of the sets
S(�, [γ], C), over all classes [γ] ∈ π1(Σ, p) that can be represented by
simple closed separating curves, has finitely many elements. Denote
the infimum by δ. If δ = 0 then �(Σ) can be cut into two lagrangian
surfaces, contradicting the indecomposibility of α. This proves the the-
orem. q.e.d.

Let α be a lagrangian homology class. By the previous result we
can represent α by a sum of non-collapsible lagrangian surfaces and
lagrangian 2-spheres. Applying the minimization arguments of this sec-
tion to each map in this decomposition we have:

Theorem 5.21. Let α ∈ H2(N ; Z) be a lagrangian homology
class. Then there exist Riemann surfaces Σ1, . . . ,Σµ and hamiltonian
stationary, weakly conformal, weakly lagrangian maps �j : Σj → N ,
j = 1, . . . , µ,and si : S2 → N , i = 1, . . . , ν such that:

(1) Each map si minimizes area among lagrangian maps in a free
homotopy class.

(2) Each map �j minimizes area among lagrangian maps Σj → N
with fixed induced action on π1 and fixed periods.

(3) The maps �j : Σj → N are non-collapsible.

(4)
∑µ

j [�j ] +
∑ν

i [si] = α, where [�j ], [si] ∈ H2(N ; Z).

6. Second variation formula

In this section we derive the second variation formula for immersed
lagrangian submanifolds that are hamiltonian stationary. However, to
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begin we digress to state and prove the general second variation formula
for smoothly immersed submanifolds possibly with boundary. We do not
assume that the variation vector field is normal or that the immersed
submanifold is stationary.

Let M be a Riemannian manifold of dimension m with metric g.
Let � : Σ →M be a smooth immersion, where Σ is a compact manifold
of dimension n with boundary (possibly empty). A smooth mapping

L : (−ε, ε) × Σ →M

satisfying:

(i) Each map �t = L(t,−) : Σ →M is a smooth immersion;

(ii) �0 = �;

will be called a smooth variation of �. Let ∂
∂t denote the vector field

along the (−ε, ε) factor; and denote X = L∗( ∂
∂t)|t=0. X is a vector field

along �(Σ) called the variation vector field.
Let p ∈ Σ. With respect to the metric induced on Σ by �, choose an

orthonormal frame {e1 · · · en} to satisfy:

∇Σ
ei
ej(p) = 0 for all i, j,

where ∇Σ denotes the Levi-Civita connection on Σ for the metric in-
duced by �. For each t ∈ (−ε, ε), the vector fields {�t∗e1, . . . , �t∗en} give
a framing along �t(Σ). Note that the metric on Σ induced by �t can be
written

gij(t) = 〈�t∗ei, �t∗ej〉, 1 ≤ i, j ≤ n.

For brevity of notation we will write

ei(t) = �t∗ei, 1 ≤ i ≤ n.

Let dvt denote the volume form of the metric induced by �t. Set

V (t) =
∫

Σ
dvt.

Let B denote the second fundamental form on �(Σ). B is a symmetric
bilinear form on TΣ with values in the normal bundle. R will denote
the curvature tensor of g on M and H the mean curvature vector.
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Theorem 6.1 (Second Variation Formula). Let � : Σ → M be
a smoothly immersed submanifold, possibly with boundary. Let L :
(−ε, ε) × Σ → M be a smooth variation of � with variation vector field
X. Then

d2V

dt2

∣∣∣∣
t=0

=
∫

Σ

[∑
i

|(∇eiX)⊥|2 +
∑

i

〈Rei,Xei, X〉 − 〈∇XX,H〉

−
∑
i,j

〈∇ejX, ei〉〈∇eiX, ej〉 +
∑
i,j

〈∇eiX, ei〉〈∇ejX, ej〉

 dv0
−
∫

∂Σ
〈∇XX, ν〉dv∂Σ

where {e1, . . . , en} is an orthonormal frame on �0(Σ) and ν is the inward
pointing conormal vector field along �0(∂Σ).

Proof. The well-known computation of the first variation formula
shows that:

d

dt
dvt =

∑
i,j

gij(t)〈∇eiX, ej〉dvt,

where gij(t) is the inverse matrix of the metric gij(t) = 〈ei(t), ej(t)〉. It
follows that

d2V

dt2

∣∣∣∣
t=0

=
d

dt

∫
Σ

∑
i,j

gij(t)〈∇eiX, ej〉dvt

∣∣∣∣∣∣
t=0

=
∫

Σ

d

dt

∑
i,j

gij(t)〈∇eiX, ej〉

∣∣∣∣∣∣
t=0

dv0

+
∑

i

〈∇eiX, ei〉
d

dt
dvt |t=0 .

Since gij(0) = δij ,

d

dt
dvt

∣∣∣∣
t=0

=
∑

i

〈∇eiX, ei〉dv0.

Using [X, ei] = 0, i = 1, . . . , n we have

dgij

dt
(0) = −dgij

dt
(0) = −X〈ei, ej〉 = −〈∇eiX, ej〉 − 〈ei,∇ejX〉.
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Thus,

d2V

dt2

∣∣∣∣
t=0

=
∫

Σ

∑
ij

(−〈∇eiX, ej〉 − 〈ei,∇ejX〉)〈∇eiX, ej〉

+
∑

i

〈∇X∇eiX, ei〉 +
∑

i

〈∇eiX,∇Xei〉

+
∑
i,j

〈∇eiX, ei〉〈∇ejX, ej〉

 dv0.
Note that

〈∇X∇eiX, ei〉 = 〈RX,eiX, ei〉 + 〈∇ei∇XX, ei〉.

Thus at a point p ∈M where ∇eiej(p) = 0 we have∑
i

〈∇ei∇XX, ei〉 =
∑

i

ei〈∇XX, ei〉 −
∑

i

〈∇XX,∇eiei〉

=
∑

i

ei〈∇XX, ei〉 − 〈∇XX,H〉,

where H is the mean curvature. It follows that

d2V

dt2

∣∣∣∣
t=0

=
∫

Σ

[
−
∑

i

|(∇eiX)	|2 +
∑

i

|∇eiX|2 +
∑

i

〈RX,eiX, ei〉

− 〈∇XX,H〉 −
∑
i,j

〈ei,∇ejX〉〈ej∇eiX〉

+
∑
i,j

〈∇eiX, ei〉〈∇ejX, ej〉 +
∑

i

ei〈∇XX, ei〉

 dv0.
The result now follows by applying the divergence theorem to give:∫

Σ

∑
i

ei〈∇XX, ei〉dv0 = −
∫

∂Σ
〈∇XX, ν〉dv0,

where ν is the inward pointing conormal. q.e.d.

We now return to the lagrangian case. LetM be a Kähler manifold of
complex dimension n with Kähler form ω, Kähler metric g and complex
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structure J . Let � : Σ → M be a lagrangian immersion, where Σ is a
compact manifold with boundary (possibly empty). A smooth mapping

L : (−ε, ε) × Σ →M

satisfying:

(i) Each map �t = L(t,−) : Σ →M is a lagrangian immersion;

(ii) �0 = �;

will be called a smooth lagrangian variation of �. The variation vector
field X = L∗( ∂

∂t)|t=0 will be called a lagrangian variation. Analogous
terms will be used in the hamiltonian case.

Lemma 6.2. Suppose Σ is a hamiltonian stationary submanifold. If
X denotes the variational vector field along Σ of a hamiltonian variation
then ∫

Σ
(〈H,∇XX〉 − 〈X,∇JHJX〉) dvol = 0

where H denotes the mean curvature vector field along Σ and ∇ is the
Levi-Civita connection of g on M .

Proof. Since X is hamiltonian there is a smooth function h such that
JX = ∇h. Define a 1-form σ on Σ by:

σ(V ) = 〈J(∇XX), V 〉 − 〈X,∇V JX〉,

for V ∈ T (Σ). Then

σ(V ) = 〈J(∇XX), V 〉 − 〈X,∇V JX〉

= X〈JX, V 〉 − 〈JX,∇XV 〉 + 〈JX,∇VX〉

= X〈JX, V 〉 + 〈JX, [V,X]〉.

= X〈∇h, V 〉 + 〈∇h, [V,X]〉.

= X(V (h)) + [V,X](h).

= V (X(h)).

It follows that σ = d(X(h))|Σ , in particular, σ is an exact 1-form. Using
σ in the first variational formula we get:∫

Σ
(〈H,∇XX〉 − 〈X,∇JHJX〉)dvol = 0.

This proves the lemma. q.e.d.
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Using a slightly different argument the following result can be proved.
However since we won’t require it we leave the proof to the reader.

Lemma 6.3. Suppose Σ is a lagrangian stationary submanifold. If
X denotes the variational vector field along Σ of a lagrangian variation
then ∫

Σ
(〈H,∇XX〉 − 〈X,∇JHJX〉) dvol = 0

where H denotes the mean curvature vector field along Σ and ∇ is the
Levi-Civita connection of g on M .

The next theorem is due to Y. G. Oh [O] who derived it, and applied
it to prove the stability of certain hamiltonian stationary submanifolds.
We include the proof here for the convenience of the reader.

Theorem 6.4 (Y.G. Oh). Let � : Σ → M be a hamiltonian sta-
tionary submanifold. Let L : (−ε, ε)×Σ →M be a smooth hamiltonian
variation of � with variation vector field X, that leaves the boundary
fixed. Denote by X⊥ the normal part of X. Then

d2V

dt2

∣∣∣∣
t=0

=
∫

Σ

[∑
i

|∇Σ
ei
JX⊥|2 +

∑
i

〈Rei,X⊥ei, X
⊥〉 + 〈X⊥, H〉2

−
∑
i,j

〈X⊥, Bei,ej 〉2 − 〈X⊥, BJH,JX⊥〉

 dv0
=
∫

Σ

[
|δσ|2 − Ric(X⊥, X⊥) + 〈X⊥, H〉2

− 2〈X⊥, BJH,JX⊥〉
]
dv0

where σ = X⊥ ω is a closed 1-form, δ is the adjoint of d on Σ and Ric
is the Ricci curvature on N .

Proof. The first equality follows from the lemma. To see the second
equality we note that since Σ is lagrangian, for vector fields X,Y, Z on
Σ, the second fundamental form satisfies the symmetry:

〈BX,Y , JZ〉 = 〈BX,Z , JY 〉.
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Using this and the Gauss equation we have:∑
i

〈Rei,JX⊥ei, JX
⊥〉 =

∑
i

〈Rei,JX⊥ei, JX
⊥〉 − 〈X⊥, BJH,JX⊥〉(6.1)

+
∑
i,j

〈X⊥, Bei,ej 〉2,

where R denotes the curvature tensor on Σ. The Weitzenböck formula
relating the Hodge and covariant laplacians on 1-forms on Σ gives:

∆hσ = −∇2JX⊥ + Ric(JX⊥, JX⊥),(6.2)

where ∆h is the Hodge laplacian and Ric denotes the Ricci curvature
on Σ. Combining (6.1), (6.2) and integrating by parts gives the result.

q.e.d.

7. Two dimensional stationary lagrangian cones

In this section we give a complete description of the stationary la-
grangian cones in R4. We apply the second variation formula to study
their stability properties and conclude with a discussion of their mini-
mization properties.

To begin consider the unit sphere in R2n, endowed with its induced
CR structure as well as its induced metric. To describe this CR struc-
ture, let �p denote the position vector at a point p ∈ S2n−1. Then T = J�p
is a tangent vector field, and the orthogonal complement Πp = T⊥ in
the sphere is a J-invariant 2n − 2 dimensional subspace. This is the
contact (CR) distribution in the sphere. If we consider a cone C(Γ)
over an n−1 dimensional submanifold Γ of the unit sphere, then we see
that C(Γ) is lagrangian if and only if Γ is legendrian in the sphere. This
is true because the tangent plane to the cone at points of Γ is spanned
by the tangent space to Γ together with the position vector, and the
legendrian condition guarantees that the position vector is taken by J
to a vector orthogonal to the cone. In particular, we see that a two
dimensional cone is lagrangian if and only if Γ is a legendrian curve.

We now consider a curve γ in S3. We introduce complex coordinates
z1, z2 and we write γ(s) = (γ1(s), γ2(s)) where γj are l periodic complex
valued functions and s is an arclength parameter with l = length(γ).
The condition that the cone over γ be lagrangian is that the 2×2 matrix
with columns γ and γ̇ is a unitary matrix. We have

eiβ = γ1γ̇2 − γ2γ̇1



minimizing area among lagrangian surfaces 67

where β is the lagrangian angle. In order that the cone be hamiltonian
stationary, β must be a harmonic function. On the other hand β is
homogeneous of degree 0 on the cone. It follows that β is a linear
function of s which we can take to be 2as for a real constant a. These
conditions imply that

γ̇1 = −ei2asγ2, γ̇2 = ei2asγ1.(7.1)

If we differentiate the first equation and substitute in from the second
we get

γ̈1 = i2aγ̇1 − γ1.

Thus we have

γ1(s) = c1e
i(a+

√
a2+1)s + c2e

i(a−√
a2+1)s

for complex constants c1, c2. It follows that

γ2(s) = i(a+
√
a2 + 1)c1ei(a−

√
a2+1)s + i(a−

√
a2 + 1)c2ei(a+

√
a2+1)s.

Since γ is to be a curve on the unit sphere, we must have the condition

|γ1|2 + |γ2|2 = |c1|2(1+ (a+
√
a2 + 1)2)+ |c2|2(1+ (a−

√
a2 + 1)2) = 1.

In order that γ be a closed curve, it must be true that a+
√
a2 + 1 and

a −
√
a2 + 1 are rationally related. One can check that this condition

is equivalent to saying that there are relatively prime positive integers
p, q such that a +

√
a2 + 1 =

√
p/q and a −

√
a2 + 1 = −

√
q/p. We

then have that the length of the curve satisfies l = 2π
√
pq, and if we

set θ = s/
√
pq, then we have γ(θ) is a 2π periodic parametrization.

Furthermore we have β = (
√
p/q −

√
q/p)s = (p − q)θ. Thus we find

that β has a period around γ which is equal to 2π(p − q). Applying a
unitary transformation we can take c1 to be real and c2 = 0, so we see
that γ is unitarily equivalent to the curve

γ(s) =
1√
p+ q

(
√
qe

i
√

p
q
s
, i
√
pe

−i
√

q
p
s
)
,(7.2)

where 0 ≤ s ≤ 2π
√
pq. We note that these curves are not great circles

except in the special case in which p = q = 1. In general they lie on
Clifford tori in S3. When both p > 1 and q > 1 the curves are knotted.
If either p = 1 or q = 1 they are unknotted. Thus we have shown:
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Theorem 7.1. The lagrangian cones Cγ in R4 that are hamiltonian
stationary are the cones over the curves γ of (7.2). They are parame-
terized by a pair of relatively prime positive integers (p, q).

The second variation formula takes a particularly simple form when
applied to variations of the cone, Cγ , over γ whose variation vector field
X is hamiltonian, i.e., when X = J∇f for f ∈ C∞

c (Cγ).

Proposition 7.2. Suppose that the cone Cγ over γ is lagrangian
and hamiltonian stationary. Let X be a compactly supported hamilto-
nian variation, X = J∇f, f ∈ C∞

c (Cγ) that leaves the cone vertex
fixed. Then the second variation formula with variation vector field X
is:

d2V

dt2

∣∣∣∣
t=0

=
∫

Cγ

[
(∆f)2 − r−4 (q − p)2

pq
(fs)2

]
rdrds(7.3)

where ∆ is the Laplacian on Cγ.

Proof. Let r denote the radial coordinate on Cγ . With respect to
the coordinates r and s the induced metric on Cγ has the form

dσ2 = dr2 +
1
r2
ds2.

Set
e1 = γ, e2 = γ̇.

Then {e1, e2} is an orthonormal frame on Cγ . With respect to this frame
an easy computation shows that the second fundamental form satisfies

Be1,e1 = Be1,e2 = 0, Be2,e2 =
1
r
(γ̈ + γ).(7.4)

In particular, H = 1
r (γ̈ + γ). From (7.4) it follows immediately that

〈H,X〉2 −
∑
i,j

〈X,Bei,ej 〉2 = 0.

To compute 〈X,∇JHJX〉, we note that, from the explicit form of γ
(7.2), we have:

JH =
1
r

q − p
√
pq
γ̇ =

1
r

q − p
√
pq
e2.

Clearly,

JX = −∇f = −fre1 −
1
r
fse2.
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Thus,

〈X,∇JHJX〉 = 〈X,BJH,JX〉

=
〈
X,− 1

r2
(q − p)
√
pq

fsBe2,e2

〉

= − 1
r2

(q − p)
√
pq

fs〈JX, JH〉

=
1
r4

(q − p)2

pq
(fs)2.

The result follows. q.e.d.

Remark 7.1. The coordinate functions are easily seen to be Jacobi
fields.

We next apply Proposition 7.2 to study the stability properties of
the lagrangian cones for various pairs p, q.

Proposition 7.3. The stationary lagrangian cones with |p−q| > 1
are strictly unstable. This is true for lagrangian variations fixing a
neighborhood of the cone vertex.

Proof. Choose a positive integer � satisfying

�(−|p− q| + �) < pq < �(|p− q| + �).(7.5)

Set
f(r, s) = ζ(r) cos

�s
√
pq

0 ≤ s ≤ 2π
√
pq

where ζ(r) ∈ C∞
c (R+) will be specified later. Then we have,

∆f = ∆ζ cos
�s
√
pq

− r−2ζ
�2

pq
cos

�s
√
pq

=
(
ζ ′′ +

ζ ′

r
− ζ

�2

pq
r−2

)
cos

�s
√
pq
.

Using f in the second variation formula (7.3) we have:

d2V

dt2

∣∣∣∣
t=0

=
∫ [(

ζ ′′ +
ζ ′

r
− ζ

�2

pq
r−2

)2

cos2
�s
√
pq

(7.6)

− r−4 (p− q)2

pq
ζ2 �

2

pq
sin2 �s

√
pq

]
rdrds.
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Set

g(r, s) = ζ(r) sin
�s
√
pq

0 ≤ s ≤ 2π
√
pq

where ζ(r) is as above. Using g in the second variation formula (7.3)
we have:

d2V

dt2

∣∣∣∣
t=0

=
∫ [(

ζ ′′ +
ζ ′

r
− ζ

�2

pq
r−2

)2

sin2 �s
√
pq

(7.7)

− r−4 (p− q)2

pq
ζ2 �

2

pq
cos2

�s
√
pq

]
rdrds.

We wish to show that for suitable choice of ζ one of (7.6), (7.7) is
negative. To do this add the integrals to give:

2π
√
pq

∫ [(
ζ ′′ +

ζ ′

r
− ζ

�2

pq
r−2

)2

− r−4 (p− q)2

(pq)2
�2ζ2

]
rdr.(7.8)

Next choose ε, 0 < ε < 1 and define ζ:

ζ(r) =


δ(r) 0 ≤ r ≤ ε

r ε ≤ r ≤ 1

η(r) r ≥ 1

where η satisfies:

(i) η has support on [1, 2];

(ii) η(1) = 1, η′(1) = 1, η′′(1) = 0;

(iii) 0 ≤ η ≤ c, |η′| ≤ c, |η′′| ≤ c for some constant c > 0;

and where δ satisfies:

(i) δ has support on [ ε
2 , ε];

(ii) δ(ε) = ε, δ′(ε) = 1, δ′′(ε) = 0;

(iii) 0 ≤ δ ≤ ε, |δ′| ≤ 4, |δ′′| ≤ 4
ε .
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Thus (7.8) becomes three integrals:

2π
√
pq

∫ ε

ε
2

[(
δ′′ +

δ′

r
− δ

�2

pq
r−2

)2

− r−4 (q − p)2

(pq)2
�2δ2

]
rdr

+ 2π
√
pq

∫ 1

ε

[
(pq − �2)2 − �2(p− q)2

] 1
(pq)2

dr

r

+ 2π
√
pq

∫ 2

1

[(
η′′ +

η′

r
− η

�2

pq
r−2

)2

− r−4 (q − p)2

(pq)2
�2η2

]
rdr.

The absolute value of the first integral is bounded by

C

∫ ε

ε
2

dr

ε
=
C

2

where C depends on �, p, q but is independent of ε. The third integral
is clearly bounded. The second integral equals

−2π(pq)−
3
2
[
(pq − �2)2 − �2(p− q)2

]
ln ε.

By our choice of � this expression is negative and so, for ε sufficiently
small, the sum of all three integrals is negative. We conclude that one
(or both) of (7.6), (7.7) is negative. q.e.d.

Suppose now that |p − q| = 1. Without loss of generality we can
suppose that q = p+ 1.

Proposition 7.4. The stationary lagrangian cones with |p−q| = 1
are strictly stable for lagrangian variations fixing the cone vertex.

Proof. Without loss of generality we can assume that the lagrangian
variation is a normal hamiltonian variation, i.e., has the form X = J∇f
for some f ∈ C∞

c (Cγ \ {0}) satisfying f(0) = fr(0) = 0. We first argue
that the second variation is positive for variations of the formX = J∇f�

or X = J∇g� where,

f�(r, s) = ζ(r) cos
�s
√
pq
, 0 ≤ s ≤ 2π

√
pq,

or
g�(r, s) = ζ(r) sin

�s
√
pq
, 0 ≤ s ≤ 2π

√
pq.
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for any positive integer �. ζ(r) is assumed to have compact support and
to satisfy:

ζ(0) = ζ ′(0) = 0

(so that X(0) = 0). The computation in the proof of Proposition 7.3
shows that the second variation for both f� and g� reduces to a positive
multiple of:∫ ∞

0

[(
ζ ′′ +

ζ ′

r
− ζ

�2

pq
r−2

)2

− r−4 1
(pq)2

�2ζ2

]
rdr.(7.9)

Make the substitutions,

r = et, ζ(r) = etρ(t).

The boundary conditions on ρ are:

ρ(t) → 0, ρ′(t) → 0, as t→ ±∞.

Using the same argument as in the proof of Proposition 7.4 the integral
(7.9) becomes:∫ ∞

−∞

[
(ρ′′)2+ (2 +

2p
p+ 1

)(ρ′)2+
1

(p(p+ 1))2
[(p(p+ 1) − �2)2− �2]ρ2

]
dt.

Since,
[(p(p+ 1) − �2)2 − �2] ≥ 0,

for any � ∈ Z+, this integral is positive for any ρ.
If f ∈ C∞

c (Cγ \ {0}) satisfies f(0) = fr(0) = 0 then f has a Fourier
series expansion:

f(r, s) =
∞∑

�=0

(
ζ�(r) cos

�s
√
pq

+ η�(r) sin
�s
√
pq

)
,

with

ζ�(0) = ζ ′�(0) = η�(0) = η′�(0) = 0, ζ, η ∈ C∞
c ((0,∞)).

It follows using the L2 perpendicularity of sine and cosine and the above
computation that

dV (J∇f, J∇f) > 0.

The result follows. q.e.d.



minimizing area among lagrangian surfaces 73

The situation for multiply covered cones is markedly different.

Proposition 7.5. The multiply covered stationary lagrangian
cones for any p, q are strictly unstable. This is true for lagrangian vari-
ations fixing a neighborhood of the cone vertex.

Proof. The k times covered (p, q) cones are parameterized by:

1√
p+ q

(
r
√
qe

i
√

p
q
s
, ir

√
pe

−i
√

q
p
s
)
,(7.10)

where 0 ≤ s ≤ 2kπ
√
pq, 0 ≤ r < ∞ and k > 1 is an integer. Without

loss of generality we can suppose q > p. Put:

� = p+
1
k
.(7.11)

Set:

f(r, s) = ζ(r) cos
�s
√
pq

0 ≤ s ≤ 2kπ
√
pq

and

g(r, s) = ζ(r) sin
�s
√
pq

0 ≤ s ≤ 2kπ
√
pq

where ζ(r) ∈ C∞
c (R+) is as given in the proof of Proposition 7.3. Then

both f and g are compactly supported hamiltonians on the k covered
(p, q) cone. Using the argument in the proof of Proposition 7.3 it suffices
to show

(pq − �2)2 − �2(p− q)2 < 0(7.12)

to conclude that the second variation with respect to f or g (or both)
is negative. Using � = p+ 1

k and q > p this follows easily. q.e.d.

We now show that none of the cones are minimizing if we allow
comparisons which are lagrangian and nonorientable. A convenient way
to do this is to use the following generalization of Allcock’s theorem [Al]
due to Weiyang Qiu [Q]. The idea here is that Allcock’s method can
be extended to give a lagrangian homotopy (with controlled area) of
any curve Γ to a twice covered circle in a complex plane with the same
enclosed symplectic area as that of Γ. This then represents a lagrangian
Möbius band.
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Lemma 7.6 (Qiu). Let Γ be any rectifiable curve in R4. There ex-
ists a lagrangian Möbius band Σ with boundary Γ and such that A(Σ) ≤
cL(Γ)2 for a fixed constant c.

The same argument as in the proof of Lemma 4.8 now shows the
following:

Lemma 7.7. Suppose that �0, �1 : S1 → R4 are continuous maps
with lengths Li = L(�i(S1)) for i = 1, 2, and with supS1 d(�0, �1) ≤ ε <
L0 + L1. There exists a (nonorientable) surface Σ with two boundary
components C0, C1 and a lagrangian map � : Σ → R4 with � = �i on Ci

for i = 1, 2, and A(�(Σ)) ≤ c(L0 + L1)ε.

With this preparation we may now prove the following:

Proposition 7.8. For any (p, q) with (p, q) �= (1, 1), the cone
C does not minimize area among nonorientable lagrangian comparison
surfaces. In fact, there exists a nonorientable lagrangian surface Σ with
∂Σ = C ∩ ∂B1, and A(Σ) < A(C ∩B1).

Proof. Because of the homogeneity of the cone, it clearly suffices
to work in a ball of any radius. We let Λ > 1 be a large number to
be determined, and observe that the mean curvature vector H of C is
homogeneous of degree −1 and is therefore bounded on C ∩ (BΛ \B1).
We may then do a normal variation of C by an amount ε0H for a
fixed ε0 > 0 to produce a lagrangian perturbation C1 of C ∩ (BΛ \ B1)
with A(C1) ≤ A(C ∩ (BΛ \B1)) − c log(Λ) (since the integral of H2 on
C ∩ (BΛ \B1) is of order log(Λ)). Now we write ∂C1 = Γ1∪Γ2 where Γ1

is a curve of bounded distance to C ∩∂B1, and Γ2 is of distance at most
cΛ−1 to C ∩ ∂BΛ. Applying Lemma 7.7 , we may find nonorientable
lagrangian “strips” Σ1,Σ2 of bounded area and with ∂Σ1 = Γ1 ∪ (C ∩
∂B1), ∂Σ2 = Γ2 ∪ (C ∩ ∂BΛ). Thus we may form the nonorientable
surface Σ which is equal to a union of Σ1, C1, Σ2, and C ∩B1. We then
have ∂Σ = C ∩∂BΛ, and A(Σ) ≤ c+A(C1) ≤ A(C ∩BΛ)+ c− c log(Λ).
If Λ is chosen sufficiently large this gives us a comparison surface which
is smaller than the cone. q.e.d.

We next consider the minimizing properties (among orientable com-
parisons) of the non-multiply covered (p, p+ 1) cones. Set,

γ(s) =
1√

2p+ 1

(√
p+ 1e

i
√

p
p+1

s
, i
√
pe

−i
√

p+1
p

s
)
,

where 0 ≤ s ≤ 2π
√
p(p+ 1).
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Theorem 7.9. For at least one integer p ≥ 1, the hamiltonian
stationary lagrangian (p, p + 1) cone minimizes area among disk type
lagrangian comparison surfaces with boundary γ(s).

Proof. Let α ∈ H2(N,Z) be a lagrangian homology class with
c1(N)(α) �= 0. The existence theorem allows us to represent α by a
finite set of weakly lagrangian maps that are area minimizers. For at
least one such map � : Σ → N we have c1(N)(�(Σ)) �= 0. The regularity
theorem implies that � is a branched immersion except at finitely many
cone-type isolated singularities. By Propostion 2.2 twice the sum of
the local Maslov indices at these singularities equals c1(N)(�(Σ)) and is
therefore not zero. Hence there must be a nontrivial area minimizing
cone. q.e.d.

Example. Perhaps the simplest example of a Kähler surface (N,ω)
and a homology class α ∈ H2(N,Z) satisfying [ω](α) = 0 and c1(N)(α)
�= 0 is given as follows: Let N be P2 with one point blown up. Let L
be the class of a line in P2 and E be the class of the exceptional curve.
There is a Kähler form ω on N satisfying [ω](L) = [ω](E) so that L−E
is a lagrangian class. The canonical class is K = 3L− E and therefore
c1(N)(L− E) = 2. There are, of course, many such examples.

In fact it is possible to show that the (p, p+ 1) cones occur in situa-
tions where c1(N) = 0. To discuss these examples we digress to describe
some results due to Hitchin [H] on Einstein four-manifolds. We are in-
debted to C. LeBrun for referring us to the relevent literature. Hitchin
proves the following result: Let N be a compact four-dimensional Ein-
stein manifold with signature σ and Euler characteristic χ. Then

|σ| ≤ 2
3
χ.

If equality occurs then ±N is either flat or its universal cover is a K3
surface. If the universal cover of N is a K3 surface then N is a K3
surface, an Enriques surface or the quotient of an Enriques surface by a
free antiholomorphic involution. In a note added in proof, Hitchin shows
that there is a K3 surface X, given as a complete intersection in CP 5,
that admits a free holomorphic involution τ+ and a free antiholomorphic
involution τ− that commute and such that τ+τ− is free. Also both
involutions are isometries of the metric h induced on X by the Fubini-
Study metric.
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Denote the Kähler form of h by ωh. Since τ+ is a holomorphic isom-
etry, τ∗+ωh = ωh and therefore ωh descends to a Kähler form on the
quotient four manifold Y+ = X/τ+. It follows easily that Y+ is an En-
riques surface. By Yau’s theorem [Y] there exists a unique Ricci-flat
Kähler metric g+ on Y+ with Kähler form ωg+ in the same cohomology
class as ωh. This metric lifts to a Ricci-flat Kähler metric on X that
we denote by g. Note that τ+ is a holomorphic isometry of g. Next
consider the antiholomorphic involution τ−. Let σ denote a nonzero
holomorphic (2, 0)-form on X. With respect to g, σ is a parallel sec-
tion of the canonical bundle. Then τ∗−σ is a holomorphic (2, 0)-form
for the conjugate complex structure and so is a parallel section of the
anticanonical bundle. Thus τ∗−σ = ±σ. It follows that either Re σ or
Im σ is invariant under τ−. Suppose that Re σ is invariant under τ−.
(The case that Im σ is invariant under τ− is entirely similar.) By scal-
ing we can assume that Re σ has unit length. Then Re σ determines
a complex structure Jσ that lies on the same hyperKähler line as the
original complex structure and Re σ is the Kähler form for the met-
ric g and Jσ. Since both Re σ and Jσ are invariant under τ− so is g.
Therefore both τ+ and τ− are isometries of the Calabi-Yau metric g. It
follows that there is a Ricci-flat Kähler metric on the Enriques surface
Y+ for which τ− is an antiholomorphic isometry and a Ricci-flat metric
on Z = Y+/τ−. Note that π1(Z) = Z2 × Z2 and b+2 (Z) = 0. Thus Z
cannot be Kähler or symplectic. The Kähler form ωg+ on Y+ is taken
to −ωg+ by τ− and so does not descend to Z. However the density |ω|,
where ω = ωg+ , is well-defined on Z and we can define the notion of a
lagrangian in Z. We say a map � : Σ → Z is lagrangian if �∗(|ω|) = 0.
Note that the lift of a lagrangian to Y+ is lagrangian in the usual sense.
Most of the existence and regularity results of this paper easily extend
to this generalized notion of lagrangian.

Note that τ+ : X → X is the covering involution for the covering
map π+ : X → Y+. The canonical bundle KX on X is trivial. Let
ξ denote a parallel section of KX of unit length. Then τ∗+(ξ) is also
a parallel section of unit length. Since τ+ is a holomorphic involution
τ∗+(ξ) = ±ξ. However if τ∗+(ξ) = ξ then ξ descends to a parallel section
ofKY the canonical bundle on Y . ThusKY is trivial. This contradiction
implies that τ∗+(ξ) = −ξ.

Let f : T 2 → Z be an incompressible immersion. The immersion f
is double covered by an immersion f̃ : T 2 → Y+. Clearly∫

T 2

f̃∗ω = 0.



minimizing area among lagrangian surfaces 77

It follows that in a tubular neighborhood of f̃(T 2) we have ω = dη, for
a one-form η. Note that τ∗−η = −η, so η does not descend to Z, though
the density |η| is well-defined in a neighborhood of f(T 2). Suppose
that f(T 2) has a fine triangulation such that a neighborhood of f(T 2)
is covered by open Darboux balls with the properties that each closed
2-simplex on f(T 2) lies in at least one ball of the cover and such that
if a 1-simplex intersects a ball in the cover then it lies entirely in the
ball. As in the proof of Proposition 2.1 we can perturb each 1-simplex,
λ, keeping its endpoints fixed, so that on the perturbed 1-simplex, λ′,
we have

∫
±λ′ η = 0. Then the integral of ±η around the boundary

of each perturbed 2-simplex is zero and the 2-simplex can be replaced
by a lagrangian simplex. The resulting piecewise C1 lagrangian map
�0 : T 2 → Z is a perturbation of f and so is incompressible.

We next minimize area among lagrangian maps � : T 2 → Z with the
same induced map on π1 as that of �0. By the existence and regularity
theory developed in the previous sections a minimizer �Z exists. The
map �Z : T 2 → Z is a Lipschitz lagrangian map that is smooth except
(perhaps) at finitely many points. These points are (p, p+ 1) cone-type
singularities described precisely above. The induced map �Z∗ on π1 is
the same as that of �0. We suppose, by way of contradiction, that �Z is
smooth everywhere. Then �Z is double covered by a smooth lagrangian
map �Y : T 2 → Y+ which is equivariant with respect to an involution on
T 2 and the antiholomorphic involution τ−. Clearly �Y minimizes area
among such lagrangian maps. In particular, since Y+ is Kähler-Einstein
and �Y is smooth the mean curvature H is an admissible variation.
Using H in the first variation formula it follows that �Y is a minimal
(H = 0) branched immersion. Since one generator of π1(T 2) is mapped
to a nontrivial element of π1(Y+) = Z2, �Y is double covered by a
minimal lagrangian map �X : T 2 → X. Denote the image of �X by Σ
and note that τ+(Σ) = Σ. Since Σ is minimal lagrangian it is calibrated
by a parallel unit section ξ of KX . Thus,∫

Σ
Re(ξ) =

∫
Σ

dvol.

But τ∗+(ξ) = −ξ and therefore∫
Σ

Re(ξ) = −
∫

Σ
dvol.

We conclude that
∫
Σ dvol = 0 and therefore the map �X is a map

to a point. Thus the map �Z is also a map to a point. But this is
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impossible since it is incompressible. This contradiction implies that �Z
cannot be regular everywhere and hence that there are singular points
on �Z . Taking coverings this implies that in the K3 surface X there is
a lagrangian stationary torus that contains singular points.

8. Main results

We can combine the existence Theorem 5.21 , the regularity The-
orem 4.10 and the instability of the hamiltonian stationary lagrangian
(p, q) cones for |p− q| > 1 to prove:

Theorem 8.1. Let (N,ω, J) be a compact symplectic 4-manifold
with compatible metric g. Then the lagrangian homology is generated
by classes that can be represented by lagrangian Lipschitz maps � that
are branched immersions except at finite number of singular points. The
local Maslov index of each singular point is either 1 or −1. Twice the
sum of the local Maslov indices equals the first Chern class of N paired
with the homology class of the surface. The maps � are minimizers of
area constrained to lagrangian cycles. The mean curvature H of each
surface satisfies a first order elliptic system of “Hodge-type”.

Lemma 8.2. A branched lagrangian immersion in a Kähler-Ein-
stein surface is stationary if and only if it is lagrangian stationary.

Proof. Since the ambient manifold is Kähler-Einstein σH = H ω is
closed. To prove the lemma, we need only show that the mean curva-
ture generates a smooth deformation through lagrangian submanifolds.
We first consider the immersion case and then extend the argument to
include branch points. Let � : Σ → N be a lagrangian immersion. We
can extend � to be an immersion L from a neighborhood O of the zero
section in the normal bundle of Σ where we identify the zero section with
Σ. The map L is then a local diffeomorphism, and we can pull back both
g and J to O using L. It suffices to construct a lagrangian variation of
the zero section whose initial derivative is H. To accomplish this, let
Π : O → Σ denote the natural projection map, and let σ = −Π∗(σH).
There is a unique vector field V such that ω(H,X) = g(V,X), and since
σ is closed, V is locally a hamiltonian vector field. Also V = H on Σ.
We let Ft denote the flow defined by V near Σ. The transformations Ft

are then symplectic, and L(Ft(Σ)) gives a lagrangian variation. If we
assume that � is lagrangian stationary, then the first variation of area is
zero for this variation. The first variation of area is given by minus the
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L2 inner product of the mean curvature vector field with the variation
vector field. Therefore, it is strictly negative unless H = 0. Thus � is
stationary. This proves the lemma for immersions.

Let p1, . . . , pk ∈ Σ be the branch points of �. Choose r > 0 such that
the discs , Dr(pi), of radius r centered at pi are disjoint. OnDr(pi) there
is a smooth function, βi, with βi(pi) = 0 such that σH = dβi. Choose
local coordinates {x1, x2} on Dr(pi) centered at pi. For ε < r, define a
function (hi)ε on Dr(pi) by

(hi)ε(x) =


0, |x| < ε2

log
|x|
ε2

log 1
ε

, ε2 ≤ |x| ≤ ε

1, |x| > ε.

Then a simple computation yields limε→0

∫
|∇(hi)ε|2dµ = 0. Define

σε = d((hi)εβi) on Dr(pi) and σε = σH otherwise. The closed 1-form
σε vanishes near the branch points. Set Vε ω = σε. Since � is an
immersion on Σ \ ∪iDε2/2(pi) and Vε vanishes on ∪iDε2(pi), for each
ε > 0 the above construction gives a lagrangian variation of � that fixes
� near the branch points. Suppose that � is lagrangian stationary. Then
the first variation of area is zero for each such variation. Thus we have
for each ε > 0,

0 = −
∫

〈Vε, H〉dµ(8.1)

= −
∫

Σ\∪k
i=1Dε(pi)

|H|2dµ−
k∑
i

∫
Dε(pi)

〈Vε, H〉dµ.

For each i:∣∣∣∣∣
∫

Dε(pi)
〈Vε, H〉dµ

∣∣∣∣∣ ≤
∫

Dε(pi)
(hi)ε|∇βi|2dµ

+
∫

Dε(pi)
|βi||〈∇(hi)ε,∇βi〉|dµ

≤
∫

Dε(pi)
(hi)ε|∇βi|2dµ

+

(∫
Dε(pi)

|∇(hi)ε|2dµ
) 1

2
(∫

Dε(pi)
β2

i |∇βi|2dµ
) 1

2

.
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Thus
∫
Dε(pi)

〈Vε, H〉dµ → 0 as ε → 0. It follows from (8.1) that 0 =∫
Σ |H|2dµ and therefore that � is stationary. q.e.d.

Proposition 8.3. Let (N,ω, J) be a compact Kähler-Einstein sur-
face. Suppose the maps � in Theorem 8.1 are all branched immersions.
Then the lagrangian homology is generated by classes that can be rep-
resented by branched lagrangian immersions that are classical minimal
surfaces.

Proof. Let � : Σ → N be a minimizer. Since the ambient manifold
is Kähler-Einstein the 1-form σH on Σ is harmonic. Thus if Σ = S2,
σH = 0 and therefore H = 0. If genus(Σ) ≥ 1 then Σ is non-collapsible.
If γ is a separating simple closed curve then [γ] is zero in homology and
therefore [σH ]([γ]) = 0. In the construction of � the period condition
is only used for classes that are represented by separating curves on
Σ. It follows that variation by the mean curvature preserves the non-
collapsibility condition and therefore H is an admissible variation. The
Proposition then follows from the lemma. q.e.d.

Recall that a homotopy class α ∈ π2(N) is called lagrangian if there
is a weakly lagrangian map � ∈ W 1,2(S2, N) that represents α. Apply-
ing the existence and regularity results we can represent a lagrangian
homotopy class α by a sum of Lipschitz lagrangian maps �λ : S2 → N
satisfying the same properties as the maps in Theorem 8.1.

Suppose that α ∈ π2(N) is a lagrangian homotopy class. We define
the lagrangian area of α:

Larea(α) = inf{area(�) : � ∈W 1,2
L (S2, N) and � represents α}.

If m is an integer greater than 1, we say a lagrangian homotopy class α
is m-stable if:

Larea(mα) = m Larea(α).

Theorem 8.4. Suppose that α ∈ π2(N) is a lagrangian homotopy
class that can be represented by a lagrangian minimizer � : S2 → N .
If α is m-stable then � is a branched immersion (there are no singular
points).

Proof. Suppose not. Then � contains at least two singular points,
one with Maslov index +1, one with Maslov index −1. Consider an
m-covering of S2, φ : S2 → S2, branched at the two singular points.
The map �◦φ is lagrangian, represents mα and has A(�◦φ) = mA(�) =
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m Larea(α). It is therefore an area minimizer. But �◦φ has two singular
points with multiply covered tangent cones and is therefore unstable by
Proposition 7.5. q.e.d.

Corollary 8.5. Under the assumptions of the theorem if, in addi-
tion, N is a Kähler-Einstein surface then the minimizer � is a branched
minimal lagrangian immersion.

Appendix A. The geometric equations

Suppose that N is a 2n-manifold with symplectic form ω, almost
complex structure J and compatible metric g.

Proposition A.1. Let � : Σ → N be a lagrangian immersion.
Denote by H the mean curvature vector field of Σ in V and by Ric, the
Ricci 2-form of g. Then

d(H ω) = d ∗ τ + �∗Ric.

Here τ is a one form on Σ determined by the torsion of a connection
on N . The connection is uniquely determined by g and ω.

Proof. Exactly as in the Kähler case, the almost complex structure
J determines an orthogonal splitting of the complexified tangent space,
TN ⊗ C, into +i and −i eigenspaces denoted, T (1,0)N and T (0,1)N ,
respectively. Let

{e1, e2, f1, f2}(A.1)

be an oriented orthonormal frame adapted to Σ in the sense that:

(i) {e1, e2} is an oriented frame of the lagrangian plane TΣ.

(ii) {f1, f2} is an oriented frame of the lagrangian plane TΣ⊥.

(iii) Jej = fj j = 1, 2.

The vectors {uj = ej − ifj} form a unitary frame of T (1,0)N and the
vectors {uj = ej + ifj} form a unitary frame of T (0,1)N . Thus we have:

g(uj , uk) = 0, g(uj , uk) = 2δjk.(A.2)
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Let {θ1, θ2, η1, η2} be the orthonormal coframe dual to the orthonormal
frame (A.1). From (i) it follows that

{θ1, θ2} is an orthonormal coframe on L for the induced metric.
(A.3)

From (ii) it follows that

η1 = η2 = 0 on Σ.(A.4)

From (iii) it follows that

Jηj = θj , j = 1, 2.(A.5)

The 1-forms

ωj = θj + iηj , j = 1, 2,(A.6)

form a unitary coframe adapted to Σ. They are dual to the unitary
frame {u1, u2}.

Let ∇ denote a metric compatible connection for g. Then

∇uj =
∑

k

ωjk ⊗ uk +
∑

k

τjk ⊗ uk, j = 1, 2.(A.7)

From (A.2) it follows that

ωjk + ωkj = 0, τjk + τkj = 0.(A.8)

Thus the unitary coframe (A.6) satisfies the structure equations:

dωj =
∑

k

ωjk ∧ ωk +
∑

k

τjk ∧ ωk.(A.9)

In particular (ωjk) is the connection one-form and (τjk) is the torsion
form with respect to the coframe {ω1, ω2}. Note that the only nonzero
component of the torsion is, τ12 = −τ21. The symplectic form,

ω =
i

2

∑
j

ωj ∧ ωj .

satisfies dω = 0. This is equivalent to the condition:

τ12 is a form of type (0, 1).(A.10)
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We remark that the condition (A.10) implies that the connection defined
by (A.7) is unique. Thus the symplectic form and the metric, together,
determine a unique connection with torsion τ12.

The connection form (ωjk) can be written

ωjk = θjk + iηjk(A.11)

where θjk = −θkj and ηjk = ηkj . The torsion form (τjk) can be written

τjk = σjk + iρjk(A.12)

where σjk = −σkj and ρjk = −ρkj . The structure equations (A.9)
become:

dθj =
∑

k

(θjk + σjk) ∧ θk −
∑

k

(ηjk − ρjk) ∧ ηk,(A.13)

dηj =
∑

k

(ηjk + ρjk) ∧ θk +
∑

k

(θjk − σjk) ∧ ηk.(A.14)

Since ηj = 0, j = 1, 2, along Σ these equations imply that on Σ:∑
k

(ηjk + ρjk) ∧ θk = 0.(A.15)

Thus,

ηjk + ρjk =
∑

l

hjklθl(A.16)

where hjkl = hjlk. The {hjkl} are the components of the second funda-
mental form of Σ in N . The mean curvature vector is:

H =
∑
k,j

hjkkfj .(A.17)

Then,
J(H) = −

∑
k,j

hjkkej .

Dualizing we have

J(H)# = −
∑

hjkkθj .(A.18)
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Let ∗ denote the Hodge star operator on Λ1(Σ). This operator depends
only on the conformal structure on Σ. From (A.16) we have

J(H)# = 2 ∗ ρ12 −
∑

k

ηkk.(A.19)

where ρ12 = Im τ12. By (A.11), iηkk = ωkk and thus we have

H� ω = ∗τ + i
∑

k

ωkk,(A.20)

where we have set τ = 2ρ12. Taking the exterior derivative the result
follows. q.e.d.
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