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MEAN CURVATURE FLOW OF SURFACES
IN EINSTEIN FOUR-MANIFOLDS

MU-TAO WANG

Abstract

Let ¥ be a compact oriented surface immersed in a four dimensional Kahler-
Einstein manifold (M,w). We consider the evolution of ¥ in the direction
of its mean curvature vector. It is proved that being symplectic is preserved
along the flow and the flow does not develop type I singularity. When M has
two parallel Kihler forms w’ and w’ that determine different orientations
and Y is symplectic with respect to both w’ and w”, we prove the mean
curvature flow of X exists smoothly for all time. In the positive curvature
case, the flow indeed converges at infinity.

1. Introduction

Let (M, g) be a Riemannian manifold and let a be a calibrating k-
form on M i.e., da = 0 and comass(a) = 1. In this article, we shall
assume additionally « is parallel. This in particular implies M is of
special holonomy.

A k-dimensional submanifold is said to be calibrated by « if the
restriction of « gives the volume form of the submanifold. A simple ap-
plication of Stokes’ theorem shows a calibrated submanifold minimizes
the volume functional in its homology class. To produce a calibrated
submanifold, it is thus natural to consider the gradient flow of the vol-
ume functional. By the first variation formula of volume, this is equiva-
lent to evolving a submanifold X in the direction of its mean curvature
vector. To make it precise, the mean curvature flow is the solution of
the following system of parabolic equations.

dF
E(m, t) = H(x,t)
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where F' : ¥ x [0,T) — M is a one parameter family of immersions
Fi(:) = F(-,t) of ¥ into M. H(x,t) is the mean curvature vector of
F(Y) at Fy(z). We say F is the mean curvature flow of the immersed
submanifold Fy(X). For a fixed ¢, the submanifold F;(X) is denoted by
Y. If we assume M = R”, then in terms of coordinate z!,--- ,z* on %,

the mean curvature flow is the following system of parabolic equations
F=FAat o 2F ), A=1,....n

ot £ B 92idgi’
1,5,B

o . . A gpA
where g% is the inverse matrix to g;; = 9P OF” and PBf‘ = 5§

Oxt Oz

kt %1; : aal; f is the projection to the normal part.
The mean curvature flow of hypersurfaces has been studied exten-
sively in the last decade. In this case, the mean curvature H is essen-
tially a scalar function and the positivity of H is preserved along the
flow. Very little is known in higher codimension except for the curve

flows.

This article considers the next simplest higher codimension mean
curvature flow, namely a surface flow in a four dimensional manifold.
We impose a positivity condition on the initial submanifold. An oriented
submanifold ¥ is said to be almost calibrated by « if *a > 0 where * is
the Hodge star operator on .

The following question arises naturally. Can an almost calibrated
submanifold be deformed to a calibrated one along the mean curvature
flow? We study this question in the case when M is a four-dimensional
Einstein manifold and ¥ is almost calibrated by a parallel calibrating
form. When M is a Kahler-Einstein surface and the calibrating form is
the Kéahler form, an almost calibrated surface is a symplectic curve with
the induced symplectic structure. A calibrated submanifold in this case
is a holomorphic curve.

We use blow up analysis to characterize the singularities of mean
curvature flow of symplectic surfaces. It turns out they are all so-called
type II singularities.

Theorem A. Let M be a four-dimensional Kdahler-Finstein mamni-
fold, then a symplectic surface remains symplectic along the mean cur-
vature flow and the flow does not develop any type 1 singularities.
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When M is locally a product and the initial surface is almost cali-
brated by two calibrating forms, we prove the following long time exis-
tence theorem.

Theorem B. Let M be an oriented four-dimensional Finstein man-
ifold with two parallel calibrating forms w',w"” such that W' is self-dual
and W" is anti-self-dual. If ¥ is a compact oriented surface immersed
in M such that ', xw"” > 0 on X, then the mean curvature flow of X
exists smoothly for all time.

We remark that the assumption implies M is locally a product of two
surfaces. As for convergence at infinity, we prove the following theorem
in the nonnegative curvature case.

Theorem C. Under the same assumption as in Theorem B. When
M has nonnegative curvature, there exists a constant 1 > € > 0 such that
if X is a compact oriented surface immersed in M with *w', xw" > 1—¢€
on X, the mean curvature flow of ¥ converges smoothly to a totally
geodesic surface at infinity.

This is proved by an uniform estimate of the norm of the second
fundamental form.
When M = S? x S2, the combination of Theorem B and C yields:

Theorem D. Let M = (S%,w) x (S%,ws). If ¥ is a compact
oriented surface embedded in M such that xwi > | *wa|. Then the mean
curvature flow of X exists for all time and converges smoothly to an
S* x {p}.

This theorem in particular applies to the graph of maps between
two Riemann surfaces. Namely, let f : (X1,w1) — (Z2,w2) be a map
between Riemann surfaces of the same constant curvature and w; is the
volume form of Y;. We consider the product M = X7 x X5 and let
W' = w1 +ws and W’ = wy — ws. If the Jacobian of f is less than one,
then we have xw’ > 0 and *w” > 0 on the graph of f. Therefore this
formulation gives a natural way to deform the map f to a constant map.

Corollary D. Any smooth map between two-spheres with Jacobian
less than one deforms to a constant map through the mean curvature
flow of the graph.

The article is organized as follows. In Section 2, the parabolic equa-
tion satisfied by a general parallel form along the mean curvature flow is
derived. Section 3 discusses general calibrating two-forms in a four di-
mensional space. Section 4 computes the equation satisfied by a Kéahler
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form along the mean curvature flow. Section 5 studies the singularities
of mean curvature flow of symplectic surfaces and proves Theorem A.
Section 6 concerns long time existence and Theorem B is proved there.
Convergence at infinity is discussed in Section 7. Theorem C is proved
at the end of this section. Section 8 discusses applications in the positive
curvature case and proves Theorem D.

This project began in the fall of 1998 in an attempt to answer Pro-
fessor S.-T. Yau’s question, “How can a symplectic submanifold be de-
formed to a holomorphic one.” Theorem A, in particular the result “sym-
plectic remains symplectic” and the exclusion of type I singularity, was
obtained in the summer of 1999. It has been presented in the geome-
try seminars at Stanford, U. C. Berkeley, U. C. Santa Cruz and U of
Minnesota between February 2000 and May 2000. I would like to thank
Professor R. Schoen and Professor S.-T. Yau for their constant encour-
agement and invaluable advice. I also have benefitted greatly from the
many discussions I had with Professor G. Huisken, Professor L. Simon
and Professor B. White.

2. Evolution equations of parallel forms

Let F : ¥? — M* be an isometric immersion of an orientable surface
into a four-dimensional Riemannian manifold. We fixed an orientation
on Y. The restriction of the tangent bundle of M to X splits as the
direct sum of the tangent bundle of > and the normal bundle:

TM|s =TY & NY.

The Levi-Civita connection on M induces a connection on T%. We
denote the connection on M by V and the induced connection on 7%
by V. Therefore,

VxY = (VxY)T

for any tangent vector fields X,Y. Here (-)” denotes the projection
from TM onto TS and (-)V shall denote the projection onto N.

The second fundamental form A : T3 x T — N is defined by
A(X,Y) = (VxY)N. We also define B : TS x NY — TY by B(X,N) =
(VxN)T. The relation between A and B is

Note that we have identified X € T3 with Fi.(X) € TM.
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Fix a point p € . Let {x'} be a normal coordinate system for ¥
at p and {y?} a normal coordinate system for M at F(p). We denote

gkt = (Ok, 0;). The mean curvature vector along ¥ is the trace of A, i.e.,
H = gklA(ﬁk,Bl).

Let @ be a parallel two form on M and w = F*w be the pull-back
of w on ¥. We first compute the rough Laplacian of w on X:

Aw = gklvak Va,w.
Lemma 2.1.

(Aw)(X,Y) =w(VxH)V,Y) = w((VyH)Y, X)
-9 w(( (ak7 )81)N7 )
(

kl N
(21) +gklw(( ak? ) ) ) )
+g W( (aka (8l> )) Y)

+ 29" w(A (O, X )7A(317 Y))

where K(X,Y)Z = —ﬁxﬁyZ+§y§XZ—V[X,Y]Z is the curvature op-
erator of M. Notice that (K(X,Y)X,Y) > 0 if M has positive sectional
curvature.

Proof. Since both sides are tensors, we calculate at the point p using
a normal coordinate system. Therefore gi; = 0x; and all connection
terms vanish. Now

(Aw)(0;,05) = Ok [0k (w(0i, 05)) — w(V, 04, 05) — w(0s, Vi, 05)]-
The term in the bracket is

O (w(8;,05))—w(Va,0i,05) —w(;, Vo, 05) B
(Vak W)(0;,0;) +w Va,ﬁ,,a ) +@(0:, Vs, 05)
—w(Vp,05,05) —w(0;, Vp,05)
W(A(O, 0:),05) +w(0;, A(k, 0;))

where we have used the fact that @ is parallel and Vakai — Vo, 0i

Therefore

(2.2) Aw (0, 0j) = Ok[w(A(Ok, 0i), 0;) + (s, A(k, 9;))]-

305
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Use Leibnitz rule and the parallelity of w again.

ak(w(A(ak, 81), 8])
= w(ﬁa,ﬂA(&g, 0i), aj) + wW(A(0, 62-),ﬁ9k8j)
— S(Vo, Ak, 00)T + (Vo ADh, )™, 8,)
+ wW(A(0, 0;), Va,ﬁj + A(Ok, 8]))
= W(B(Ok, A(Ok, 0i)), 0;) + w(A(Ok, 0i), A(Ok, 9;))
+&((Vo, A0k, )N, 0))

where we have used Vj,9; = 0 at the point p in normal coordinates.

(Vo A0k, 0:)N,0))
=w((Vo, Vo, 00", 0;) — w((VakVa )",
= 0((— K (Ok, 03) O, +V o,V 0) ", 0;) — &
= —w((K (0, 0)0k)", 05) + 0((Vo, H)™ +
~((K (Or, 8;)0)N,0;) + G((Va, H)N, 0,
W(B(0s,Va,0k)), 0;).

The last term vanishes in normal coordinates.
Thus we have proved

—w((K (816782)8 ) 6 ) ((Va H) 3 i)-
2) a

9;)
j
(B(9k, Vo,0k), 0;)
(ﬁa v3k8k>N7 aj)
)

Plug this equation back into Equation (2.
and the lemma is proved. q.e.d.

d anti-symmetrize i, j

Let’s represent the fixed orientation on ¥ by a two-form du. Let
F :3x[0,T) — M be the mean curvature flow of 3. The immersion F}
induces a pull-back metric g on X. The volume form of g; is denoted

by du; = v/det g¢ dp.

Now we consider the evolution equation of w, = F;*(w). This is a
family of time-dependent two forms on the fixed surface . Let the

one-form «; be defined by a;(X) = w(Hy, X).

Lemma 2.2. Along the mean curvature flow

%wt = dOét

For any vector field X,Y € T,

iwt(X Y)=o(VxH)N,Y)+a(X, (VyH)V)

dt
+wW(B(X,H),Y)+w(X,B(Y,H)).
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Proof.

d
By definition V. H = (Vy,H)" + B(9;, H). On the other hand,

d _ _ _ _
twt(é)i,@j) =w(VH0;,0;) +w(0;, Vu0O;) = w(Vp,H,0;) + w(0;, VajH).

dow(0;,0;) = 0i(w(H, 0;)) — 0;(@(H, ;) = w(Vo,H,0;) —w(Vo,H, 0).
q.e.d.

The volume form du; determines a Hodge operator ;. Therefore
*wwy becomes a time-dependent function on X.

Proposition 2.1. Let @ be a parallel two-form on M. F; : ¥ — M
be the t slice of a mean curvature flow and wy = F;*(w) be the pull-back
form on 3. Then ny = xwwy satisfies the following parabolic equation:

= (Avme) + |A] e
— 20(A(e, e1), Aleg, e2)) + @((K (ex, e1)ex) ™ €2)
— (K (ex, e2)er)™, er)

a
dtm

where |A| is the norm of the second fundamental form,
|A]? = g7 g™ (A(;, 01), A, 1))

and {e1,ea} any orthonormal basis with respect to g;.

Proof. Combining the previous two lemmas, we get

L(X,Y) = (dw)(X,Y) +B(B(X, H),Y)
+@(X,B(Y, H)) + ¢"w((K (9, X)), Y)

— ¢"w((K (8, Y)O)N, X)

— g"@(B(0k, A(D), X)), Y)

+ g"&(B(0k, A(01,Y)), X)

— 29M@(A(Or, X), A(0),Y)).

(2.3)

Now #pw; = % where {01,002} is a fixed coordinate system on
¥ and det g; is the determinant of (g¢)ij = ((F})«0s, (F)«0;).

It is easy to compute

d
—/det g; = —|H|*\/det g;

dt
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where |H| is the norm of the mean curvature vector.
Thus

4 =L 8
dt "t /det g dt

Now we use Equation (2.3) with X = 9y and Y = 0.
The first term is ﬁ(Atwt)(ﬁl, 0) = *¢Apwy = Ay *; wy because

wt(ﬁl, 82) + ’H|2 X Wt.

the Hodge *; operator is parallel.

For other terms we can take any orthonormal basis {e;, ez} with
respect to the metric g; to calculate.

It is not hard to see

E(B(el,H),eg)—w(B(627H),€1)
= *twt(<B(61,H),€1> + <B(627H)?62>)
= —x wi((Aler,er), H) + (A(eg, ea), H))
= — *¢ wt|H|2.

Likewise,

E(B(ekvA(eka 61))7 62) - D(B(ek’A(ek? 62))7 61)
= xwi ((B(eg, Alex, e1)),e1) + (Blek, Alex, e2)), €2))
= — x wi((Alex, e1), Alex, e1)) + (Alex, e2), Alex, €2)))-

q.e.d.

3. Calibrating two-forms in four-dimensional spaces

Let V « R* be an inner product space and a € A?V* a two form.
We shall use the inner product to identify V' and V* and this induces
inner product on all AFV*. First let’s recall the definition of comass of
a?

comass(a) = Ig?xv)a(m)
zeG(2,

where G(2,V) is the Grassmanian of all two-planes in V. G(2,V) can
be described by

G(2,V)={r € A°V,z Az =0and|z|* = 1}.

Now we fix an orientation v € A*V* and normalize so that |v| = 1.
Given any orthonormal basis {ej,e9,e3,e4} for V such that
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v(ey, ez, e3,eq4) = 1, the following two-forms give an orthonormal ba-
sis for A2V*.

alzﬁ(e’{/\eEjLeg/\ez) ﬁlzﬁ(e’{/\%—eg/\ez)
O[QZ%(@T/\@-};—(EE/\GZ’;) ﬂgz%(e’f/\eg—i-eg/\ez)
ag:%(e*{/\ej+e§/\e§) ﬁgz%(e*{/\ej—e;/\ezﬁ)).

These forms serve as coordinate functions on G(2,V’), under the
identification

T — (ai(7), Bi()).

An element z in G(2,V) satisfies ,(o;(2))* = 3, (Bi(z))* = 3. There-
fore G(2,V) ( )x52< )

Now for any given o € A2V*. We identify a with an element K in
End(V) by a(X,Y) = (K(X),Y). Since /—1K is Hermitian sym-
metric and purely imaginary, it has real eigenvalues £A;,+Xo. We
can require a A @ = AjAov. Ai1Ag is actually the Pfaffian of o and
det K = (A A2)%. A form is self-dual (anti-self-dual ) if A\j Ay = 1(—1).

Lemma 3.1.
comass(a) = max{|\], ||}

Proof. ~ We can find an orthonormal basis {ej,es,es,e4} with
v(er,ez,e3,eq4) = 1 such that & = el A el + Aael Aej. In terms
of the self-dual and anti-self-dual bases associated with {ey, ea,e3,e4}.

o= 7()\1 + /\2)041 + 7()\1 )\g)ﬁl.

Therefore

1

éw —M)Bi(x)
< (M1 + ]+ X1 = g
=1m X{Al, )\2}

a(z) = —=(A1 + A2)ar(z) +

\V)

We notice that if |A\1| # |A2|, a unique plane is calibrated by o. How-
ever if |A\1| = |Az2|, then a two-dimensional family of planes in G(2,V)
are calibrated by .  q.e.d.
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Lemma 3.2. A self-dual or anti-self-dual calibrating form o can be
written as a(-,-) = (K(),-) with K € O(4,V), the orthogonal group.

Proof. If « is calibrating and self-dual or anti-self-dual, then
max{A;, A2} = 1 and A\ A2 = £1, therefore \;y = £1 and it is not
hard to see that K is an isometry.

On the other hand, if « is induced by an isometry J, then det J =
41, therefore AyAo = +1 and « is self-dual or anti-self-dual. q.e.d.

Proposition 3.1. Let (x,p) be an oriented two-plane in V. Let
a be a self-dual calibrating form and 3 be a anti-self-dual calibrating
form. Then there exists an orthonormal basis {e1, ez, e3,e4} for V with
{e1,e2} a basis for x such that p(ei,e2) > 0 , v(er, e, es,eq) > 0,
alea,ep), A, B=1---4is of the form

0 m G 0
-m 0 0 -G

3.1
(3:1) -G 0 0 m
0 ¢ —-m O

where m1 = aler, e2), (¢ +n? =1, and B(ea,ep) is of the form.

0 m & 0
-2 0 0 G
3.2
(32) G 0 0 -—mn
0 -G m O

where 2 = [(e1, e2) and 77% + €22 =1

Proof. Let K, L be the elements in End(V') corresponding to o and
B. If n1 # +1, we take any orthonormal basis {ey, ea} with p(eq, e2) > 0.
Notice that (Ke;)? = nies. Let

1

e3 = ————(Ke1 —me2)
1—n?

€4 = 72(K€2 + mei).
1—ni

Therefore ay p is of the required form. If 7 = =£1, then any
{e1, €2, e3,e4} compatible with x and v works.

It is not hard to check that K and L as elements in End (V') commute
and KL is a self-adjoint operator. Therefore we can rotate {ej,es} to
get a new basis so that (K Lej, ea) = 0.
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This implies

-1
(Ley,eq) = 72<L61,K62 +mep)
v1-—ni
1
= 2<KL€1,62> =0
1—mny

Likewise (Leg,e3) = 0. That (Lej,e3) = —(Lea, eq) follows from the
fact that § is anti-self-dual.  q.e.d.

Finally, we make a remark about o+ . In the above basis a+ ( is
of the form

0 m+n2 G+ 0
—1m — N2 0 0 —(1+ G2
3.3
(3:3) —(1— (2 0 0 N — 12

0 G—C —m+mn 0

If the eigenvalues of /—1(a+f) are £A; and g, then it is not hard
to compute that ATA3 = ((n1+n2)(m —n2) — (1 +¢2)(—C1+¢2))? = 0 and
A2+ 23 = (m+m)?+ (G + )%+ (m —n2)? + (¢ — (2)? = 4. Therefore
%(a + [3) is a calibrating form and calibrates a unique two-plane.

4. Surfaces in Kahler manifolds

In this section, we assume @ is a parallel self-dual calibrating two
form and W(X,Y) = (J(X),Y). J is then a parallel almost complex
structure. M is therefore a Kéhler manifold with Kéahler form .

We shall compute the equation of 77, = *.wy along the mean curvature
flow.

The following Lemma is well-known.

Lemma 4.1. Let K(-,-) be the curvature operator of M and Ric(-, -)
be the Ricci tensor of M. In terms of any orthonormal basis
{e1, ea,e3,e4}, the Ricci form is

1
Ric(JX,Y) = 5K(X,Y.ea,J(ea)).

Proof. This is seen by the following calculation:

K(JX,ea,Y,ea)
=K(JX,ea, J(Y),J(ea))
=-K(JX,JY,J(ea),ea) — K(JX,J(ea),ea,J(Y))
= K(X,Y,ea,J(ea)) — K(JX,J(ea),Y, J(ea)).

311
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Now K(JX,ea,Y,eq) = K(JX,J(ea),Y,J(ea)) since {J(ea)} is also
an orthonormal basis. q.e.d.

Let F' : ¥ — M be an isometric immersion. X is equipped with
a fixed orientation du. By Proposition 3.1, for any point p € X it is

possible to choose an orthonormal basis {ei, ez, e3,es4} for T,M such
that du(ei,e2) > 0 and

52(613 €2, €3, 64) = w(ely 62)6(637 64) - w(ely 63)6(627 64)
+w(ey,eq)w(ea,e3) >0

and such that wa p = W(ea,ep), A, B =1---41is of the form.

0 U 1—n?

—n 0 0 /12
4.1
(4.1) —y/1—n? 0 0 n

0 1—n2 —n 0

where 7 = w(ey, e2) = *w.
We first use this basis to calculate the curvature term in Proposition
(2.1).

Proposition 4.1. Let Ric(-,-) be the Ricci tensor of M. @ a parallel
Kahler form. Then n = xuwy satisfies the following equation:

(4.2)

7= An+ 1 [(hgik — haok)? + (haok + hair)?] + (1 — n®) Ric(Jey, e2)

where {e1, ez, €3, e4} is any orthonormal basis for T,M such that {e1,e2}
forms an orthonormal basis for T, du(e1, e2) > 0 and W?(ey1, e, €3, e4)
> 0. A(ej, ej) = haijes + haijes is the second fundamental form.

Remark 4.1. Notice that the term (h3ix — haor)? + (haor + hair)?
depends only on the orientation of {ej, es, e3, e4} but not on the partic-
ular orthonormal basis we choose.

Proof. First we show

(4.3)

T((K (e, e1)er) Y, e2) — D((K (ex, e2)en)™, e1) = (1 — ) Ric(Jey, ez).
By definition,

O((K (ex, e1)er)Y e2) — D((K (e, ea)er) , e1)
= —((Je2)V, K (e, er)er) + (Jer)™, K ek, e2)ex).
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Therefore when n = £1, Equation (4.3) is obvious. Therefore we may
assume 7 # +1 and apply the basis in Equation (4.1) and get

V1= 12(K(ex, e, e, e3) + K (eg, €1, €x, €4))
=/ 1—n%(K(e1,e2,e1,e3) + K(e2, e1,€2,€4)).

By the previous lemma,

1
RiC(JX, Y) = iJABK(Xa Y, eA,eB)
- U(K(X7 Ya 61762) + K(Xa Y7 63764))
+V1-n*K(X,Y,e1,e3) — K(X,Y, e2,€4)).

Since J is parallel and isometry, the curvature tensor is J invariant,
therefore we have

K(Xa Ya €1, 62) = K(X7 Yv J(el)v ‘](62))
Use (4.1) again, this is the same as

(1 - ) (K(X,Y,e1,e9) + K(X,Y,e3,¢e4))
=T 1_772(K(X’}/a€1a€3)_K(X7K62364))-

Therefore

1
Ric(JX,Y) = 72(K(X, Y,ei,e3) — K(X,Y,e2,¢e4)).

L—=n
Equation (4.3) now follows by substituting X = e;,Y = es.

We use the basis in Equation (4.1) to calculate the rest terms in
Proposition 2.1.

n|A]> — 20(A(er, e1), Aley, e2))
= n(|A|? — 2h31xhaok + 2ha1khson)-

Equation (4.2) follows by completing squares.  q.e.d.

Remark 4.2. When M is a Kahler manifold with K&hler form w
and almost complex structure J. The second fundamental form of a
holomorphic submanifold has the symmetry hgix = hao, ha1x = —h3ok-
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5. Asymptotics of singularities

In this section, we study the asymptotic behavior of singularities
of the mean curvature flow. In particular, we show that no type I
singularity will occur in the mean curvature flow of symplectic surface
in a four-dimensional Kéhler-Einstein manifold. Techniques involved are
blow-up analysis and monotonicity formula of backward heat kernel.

The following lemma says singularity forms only when the second
fundamental form blows up.

Lemma 5.1. Given any mean curvature flow F : ¥ x [0,t9) — M,
Suppose SUPyc(o 4,) SUPgex: |A|(,t) is bounded where |A|(x, t) is the norm
of the second fundamental form for Fy(X) at Fy(x). Then F can be
extended to X x [0,tg) for some ty > tg.

Proof. It can be shown that all higher covariant derivatives of the
second fundamental form are uniformly bounded. For the detail see [2]
for the hypersurface case. q.e.d.

Since the study of singularities is local, it is more convenient to adopt
an unparametrized definition of mean curvature flow introduced in [12].
Let M be an m-dimensional Riemannian manifold of bounded geometry.
An immersed smooth submanifold § C M x R is a smooth flow if the
function 7 : M x R — R, 7(y,t) = t has no critical points in S. &; =
SNM x {t} is called the t-slice of S. At each point (y,t) € S, the normal
velocity v(y, t) is the unique vector that satisfies v is normal to S; and
v—}—% is tangent to S. H(y, t) is the mean curvature vector of S; at (y, t).
We allow M and S; to have boundary. In fact, all unparametrized flow
considered in this article is of the form Uy¢(g 4,y (Ft(X)NB) x{t}, where F'
is a parameterized mean curvature flow of a compact manifold ¥ without
boundary and B is an neighborhood of y in a complete Riemannian
manifold. Therefore 0S; C OM.

Definition 5.1. A smooth flow S is called a (unparametrized) mean
curvature flow if

v(y,t) = H(y,1)

at each point (y,t) € S.

Let (yo,to) be an interior point in M x R. When M is the Euclidean
space, in [3] Huisken introduces the backward heat kernel to study the
asymptotic behavior near singular points. Recall the (n-dimensional)
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backward heat kernel py, 1, at (vo,%0):

1 —ly — y0|2>
5.1 )= ———Fexp| ————— | .
( ) Pyo,to(y ) (47T(t() . t))§ p ( 4(t0 o t)

The monotonicity formula of Huisken asserts for ¢ < tg

d
dt/pyo,tod:u‘t S 0.

For general Riemannian manifold M, following [11], we isometrically

embed M into RY. The mean curvature flow of ¥ in M now reads.
d

—F=H=H+E
dt +

where F is the coordinate function in RY, H is the mean curvature
vector of ¥ in M, H is the mean curvature vector of ¥ in R, and

E = ZZ(ei, €i).

Here A denotes the second fundamental form of M in RY and {e;}
is an orthonormal basis for T'3;.

In the general case [ py,+,dp is no longer decreasing, however the
following is still true:

Proposition 5.1. Let S C M x R be a mean curvature flow such
that 0S; C OM. We fiz an isometric embedding M — RYN and let py, 1,
be the (n-dimensional) backward heat kernel at (yo,to). Then the limit

lim Pyo to dlu't

t—to
exists, where duy; is the Radon measure associated with Sy C M.
Proof. See Proposition 11 in [11].  q.e.d.

The limit is called the Gaussian density of S at (yo, %) in [12]. The
Gaussian density can be used to detect singularities of mean curvature
flow. The following theorem of White in [12] is a parabolic analogue of
Allard’s regularity theorem.

Theorem 5.1. There is an € > 0 such that whenever

lim / Pyo,todits < 1+ €,
t—to

it can concluded that (yo,to) is a reqular point of S.
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A regular point is a point where the second fundamental form is
locally bounded in Hoélder norm.

To study singularity, we consider the parabolic blow-up near a pos-
sible singular point. Let F : ¥ x [0,t9) —» M — RY be a parameterized
mean curvature flow. Let B be a ball about yg of radius r in RY.
Take S = Uyejo,ry) (F2(3) N B) x {t}, then S is an unparametrized mean
curvature flow in B.

For any A > 1, the parabolic dilation Dy at (yo,to) is defined by

Dy : RY x [0,t9) — RN x [=A%t,0)

(5.2) (y,1) = My — yo), A2(t — to)).

For any s, —\*tp < s < 0, the two slices S2 and StOJFA% can be
identified and dp} = A"dpu;.

It is not hard to check that if we denote F}(x) = A(Fy(z) — yo) for
s = A2(t —tg), then

po.0(F2 (2),5) = poo(MFi(x) — o), A*(t — to)) = )\17/7310,1&0 (Fi(2),1).

/ Pyo,to At = / po.odp

is invariant under the parabolic dilation.

The singularity of S near (yo,to) is reflected in the asymptotic be-
havior of §* as A — 0.

Take any sequence \; — 00, it can be proved as in [4] and [11] that
a subsequence of S* converges to a Brakke flow S C RY x (—o0,0).
S is called a tangent flow of S at (yo, to).

Now we state and prove the main proposition in this section.

Therefore

Proposition 5.2. If F: ¥ x [0,t9) — M — R is a mean curva-
ture flow of an orientable surface in a (real) four dimensional Kdihler
manifold M. Assume the second fundamental form of M — RN is
bounded. Let w(-,-) = (J(-),-) be a Kdhler form on M. If there exist
0,C > 0 such that ny = *w; > § on Fy(X) for t € [0,t9) and such that
|A]? < to—qt, then F' can be extended to X x [0,%g) for some to > to.

Proof.  For yy € M, we shall consider the blow up of the mean
curvature flow at (yo,tp). Let B be a ball of radius r about yp in RN
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and v be a cut-off function supported in B so that ¢ =1 in the ball of
radius 5 about yp. We assume

VY[ +[VVY| < C

where V is the covariant derivative on RY. Recall the equation for 7 is

d .
7= An+n [(hgik — haok)? + (haok + haig)?] + (1 — n?) Ric(Jeq, e2).
The backward heat kernel py,:, satisfies the following parabolic
equation along the mean curvature flow. Notice that V and A are
the covariant derivative and the Laplace operator on 3J; respectively.

d |FL)? FL.H FL.E
53) Lo = —Ap, . —
(5:3) Z5Pwoto Pyosto ™ Pyosto (4(150 02 Tt —t  20t0 — 1)

where F is the component of F € TRY in TRY /T%;. This equation
for mean curvature flow in a Euclidean space is essentially derived by
Huisken [3] and in a general ambient manifold by White [11]. It is
derived in the next paragraph for completeness. Recall that
d Fx,t)=H=H+E

_— €T = =
a7
where H € TM/TY is the mean curvature vector of 3; in M and
H € TRV /TY is the mean curvature vector of ¥ in RV,

We may assume yq is the origin and then

1 —!F(x,t)P)

pyo,to(F(x’t)’t) = (47 (to — t))g xp < 4(to — t)

Abbreviate py, +, (F(x,t),t) by p, it is not hard to see

n 7|F(a:,t)|27 F-H }

d
(5.4) =" [2@0 O At -2 2(t 1)

We shall compute Y,(Ve,Vp) - e; in two different ways, where V
denotes the covariant derivative in RV and {e;} is an orthonormal basis
for T'X.

S (Ve Vp)ei =D Ve (Vp+ (Vo) FTE) ey = Ap —Vp- H.

i
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Vp = _Q(Tp*t)F7 thus

o 1 _
Z(veivf)) e = Ap+ mF -H

()

On the other hand,
s < = P
e; cep = e\ — o7 F ) e

1 —
= (Vo F e F e
oD (vp +pzi:vl e>

_ 1 _ p TS n
N 2<to—t>< Ir R ”)

1 n
=# (4<to — T 5 t)) |

Compare these two equalities, we get

1 — 1

55 o= |~gu P

FTE2 _ n '
| 2(tg — t)

Now add Equations (5.4) and (5.5), we get

d . p P
a’ A= 12! 2t =)
P 12 P 1 77 1
- P - P (Pt H+FtH
pTerr L i Trmrs + )

FTE2 _|F)?) - F-H+F-H)

where F+ = (F )TRN/ 7% Recall that H = H + F and we get Equation
(5.3).

The minus sign in front of the Laplacian in Equation (5.3) indicates
the fact that p satisfies the backward heat equation. The following
inequality is particularly useful when deal with backward heat kernels:

(5.6) 9(—=Ap) + (Ag)p = —div(Vpg) + div(pVyg).

The volume form du; of ¥; satisfies the equation

d o
prUTE —|H|*dpy = —H - (H + E)du.



MEAN CURVATURE FLOW 319

Therefore,

d d
pn /1/)(1 — 1) Pyo,to At = / [dt¢(1 - n)] Pyosto Ahtt

d
+/¢(1 —n) |:dtpyo,to:| dpu
- / W1 = 0)pyoso H - (H + E)dps.

Plug the Equation (5.3) for %pyo,tm use the identity (5.6) with g =
(1 —n), and complete square we get

/¢ Pyo,to dpt
- [14 w(l—n))—A(w(l—n))] Dyt it

/wl— Pyo,to[‘ 0—75 J“Q

+ <H+ Q(t()l_t)Fl) - E] dpg.

(5.7)

Now

d

WA =m) = A(Y(1 —n))

—¢<—dn+An> + (V- H)(1 —n) + 2V - Vi — Agp(1 =)

where we use %1& =V H.

Integration by parts gives

/ 2V - Vi — AP(1 — 0)]pyo todite

= /[VI/) : V?] Pyo,to + V¢ : vaoﬂfo (1 - n)]dﬂt'
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Therefore, we have

d
R

Unpyostol(hs1k — hazk)® + (haok + hatk)?] dpu
1 E |2
/1/} pyo,to

H+———rt+ 2
s,
1/1 pyo,to ot

2(to — 1) 2
/ V"(ﬂ )( H)Pyo to T Vw V77 Pyo.to
+ V- pro,to ( - n)]dﬂt-

Since |E| and [ py, +,d are both bounded,

d
% /d}(l - n)pyoﬂfo dyg
<C- /wnpyo,to[(hglk — haor)* + (haok + hair)?) dpe

+ [0 )@ = 0ot + T6- 010
+ VY- Vgt (1= n)ldps.

The last term is also bounded by the following computation:

/v¢ “Vpyoto (L =n)dpy <C IV byo.to | dpie-
B\B%T(yo)
2
Since Vpy, to = —Pyo.to VJ(F y(’)| and

IV IE —yo*| < |VIF = yol?ll < 2IF — wol,

we have

/ Ve - Vpgoa (1= 1) dps

1 _ 1,2
<C 7 €Xp
B\By_ (y0) (to —t)2+! (4(t0 — 1)

)d#t-

The last expression approaches zero as t — t.
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Therefore
d
% ¢(1 - n)pyo,to dpiy
<C- /Tbnpyo,to[(hgm — haok)? + (haok, + hawe)?] dp

+ /(v¢ : H)(l - n)pyo,tod,ut + / VQP : VT] pyo,todut'

The term [ Vi) - V) py, +o die can be written in the following

/(\F\/ pyo,to V?] \f\/pyo,to d:UJt

Vi |?
< 462 | ,¢| Pyo,to dut te /|V77| wpyo,t()d,ut

where we use |[V|? < |[V|2

In a normal coordinate system, we compute V7, again use the basis

in Equation (4.1).

01, 0

=0k(w(01,02))
(5.8) =w(A(Ok, 01),02) + w(1, A(Ok, 0=))

:halkwo& + hoz2kwloc

=v/'1 —n?(ha1x + haax).

Therefore |Vn|? < (1 —n?)(hg1x + h3or)? and thus

/V¢ -Vn Pyo,to g
1 VYP
~ 4¢2 WP

Likewise since |H|? < 2[(hgix — haoi)? + (hsar + haix)?], we have

[ @0 0= sy

v 2
S 12 /‘ v Pyosto dpit + 2€7 /(1 —1)?[(hai, — hazk)”
+ (haix + h32k) 1900y 10 Apte-

Pyosto it + € /(1 — 1) (haik + haok)*Vpyo 1o dite-

321
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Since v is of compact support, by Lemma 6.6 in [5], W il < 2max |[VV|
is bounded.
Since 1 > 9, we can choose € small enough so that

/1/} pyo,to d,u/t
< C- Ca/wpyo tol(hs1k — huzk)® + (haok + hate)?] dpu

where Cj is a constant that depends on 4.

From this we see that limy_;, [ (1 — ) pye.todpu exists.

For A > 1, let’s study the flow S* € RY x [~)2t,0). Let p(>)‘707(y, s)
be the backward heat kernel at (0,0) and ¥ (F(z)) = ¥(Fy(x)). Recall
that ¢ = o + 35. Thus

— / ML= 0N po o diy
)\2 dt/dj pyo,to d#t
c C
< Vi = /W)yo,to (haik — haok)? + (haog + hair)?] dps.

We notice that 7 is a scaling invariant quantity therefore n* = 7. It is
not hard to check that

1
2 /wpymto[(hi’»lk — haok)? + (haak, + hawk)?] dp
= /wkpé,o[(hgm — hjo)” + (B3, + hang)?] disd

This is because py, ¢, du: is invariant under the parabolic scaling
and the norm of second fundamental form scales like the inverse of the
distance.

Therefore

d
- /wk(l —™M)pdo dpsa
C
< sV 05/1?/\03,0[(@1/% — hior)? + (haor + h31)*] dpsd-

Compare with Equation (5.9) and we see this reflects the correct
scaling for the parabolic blow-up.
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Take any 7 > 0 and integrate from —1 — 7 to —1.

“1
Cs / , /d”pé,o |:(hf)5\1k: — ho)? 4 (R3gy, + h;}lk)Q] dpds
(5.10) -

C
< /@Z)A(l — )Y dply — /W(l —)phodpt i + R
Notice that
/ Y= 0P odis = / (L= 1)pyo o ity + 2

This equality means the quantity [ (1 — 1)py,dpe is invariant
under parabolic scaling. This fact is extremely important in applying
the Monotonicity formula. Recall the natural Monotonicity formula for
the volume

dpy = / |H|*dpy.

But [ dpd = \? [ dp is not scaling invariant. This deteriorates the
usefulness of the formula in the blow-up analysis.

Now the right hand side in Equation (5.10) tends to zero as A — oc.
For any sequence \; — oo, we can choose s; — —1 such that

/1/’A P00 [(hgik — higgy,)” + (hsy + i) } dp3; — 0

as ¢ — 00.
It is not hard to compute that

AP(S2) = 52147 (Suig ) = (5 (o= 14P(S.).

The assumption implies each ¥} has uniformly bounded second
fundamental form. By the same method used in [3], any higher covariant
derivatives of the second fundamental form of S is bounded. Therefore
the convergence S} — S is smooth.

We may assume each S; is connected by taking connected compo-
nents. Therefore we have (hziy, — haor)? + (hsor + ha1k)? = 0 for S.
This implies Vi = 0 and H = 0. Applying the same argument to the
monotonicity formula for [ ¢py,,du gives H + %F L =0 for 8. To

323
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sum up, we get F- = 0 and Vn = 0 for 829 . The first condition implies
S8 is a plane with multiplicity one. On the other hand,

li / d li ! s dp

11m . = 111N —— €X — ¢

ti—to pyo,to Hts i—00 471’(—81') P 4(—81‘) /Jlsi
—s;

1 P
= / MGXP(4 4
to—t; "

The last Gaussian integral for a plane can be calculated directly and
is equal to 1. By White’s theorem, (yo,to) is a regular point.  q.e.d.

where \; =

We recall the following definition of type I singularities for the mean
curvature flow.

Definition 5.2. A singularity at tg is called type I if there exists a
C such that |A|? < to—c_t

Recall a Kahler manifold M is called Kahler-Einstein if Ric = cg for
some constant c. In this case, the scalar curvature s of M is a constant
S

and ¢ = 7. A immersion F': ¥ — M is symplectic if > 0.

Theorem A. Let M be a four-dimensional Kdhler-Einstein mani-
fold, then a symplectic surface remains symplectic along the mean cur-
vature flow and the flow does not develop any type 1 singularities.

Proof. Since Ric(J-,-) = w(+,+) by Proposition 4.1, the equation of
1N = *w now becomes

(5.11) An+ 1 [(hgik — haok)? + (hazk + haig)® +c(1 —n?)] .

d —
' =
The first assertion follows from maximum principle for parabolic
equations. Actually, when ¢ > 0, i.e., the nonnegative scalar curvature
case, the function miny, 7; is a non-decreasing function of t. In any case,
by comparison theorem for parabolic equations, 1 has a positive lower
bound at any finite time and Proposition 5.2 is applicable.  q.e.d.

Remark 5.1. The same argument can be used to prove there is no
type I singularity for the mean curvature flow of an almost calibrated
Lagrangian submanifolds in a Calabi-Yau manifold M. Here the almost
calibrated condition is *€2 > 0 where 2 is the real part of the canonical
form on M. In fact, %) satisfies

d
@*Q:A*Q+|H|2*Q.
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A smooth blow-up limit satisfies H + %FL =0and H = 0 and is
thus a linear subspace.

6. Long time existence and convergence
In this section, we study the problem of long time existence. The
main result is the following.

Proposition 6.1. Let M be an oriented four-dimensional compact
manifold. Let o' and w" be two parallel calibrating form such that W'
is self-dual and " is anti-self-dual. Let (Xo,du) — M be an compact
surface with orientation du. Let F : ¥ x [0,tg) — M be the mean
curvature flow of Yo such that there exist a § > 0 with xw' > § and
sw” > 8 on Fy(X) for 0 <t <tg. Then F can be extended smoothly to
Y x [0,20) for some ty > to.

Proof. The assumption implies (w')? and (w”)? determine differ-
ent orientations on M. Choose an orthonormal basis {ej, es, €3, ¢4} for
TM with {e1,es} a basis for TS such that (w')?(eq, ez, e3,e4) > 0 and
du(er,ez) > 0.

Both w’ and w” are parallel calibrating forms and Proposition 4.1 is
applicable. Therefore,

d
@77/ = Ay’ +1'[(hawk — hazk)® + (hsok + har)?]

+ (1= (0)*) Ric(Ji(e1), ea).
On the other hand, by switching e3 and ey,
d
%77” = An" + 0" [(hari — hsor)? + (hazk + hsix)]

+ (1= (n")?) Ric(Jz(e1), e2).
Adding these two equations and denote 7’ + 1" by u, we get
d
ot AP + 207" = ") haakhark — 2(0" — 0" haikhaok
+ (1= (7)?) Ric(Ji(e1), ea) + (1 = (n")?) Ric(Jz(e1), e2).

Write p = 2(min{n’,n"}) + |0’ — n”'|, then p > 2§ + |’ — n”'|. After
completing square, u satisfies the following inequality:

%u > Ap+25|A - C
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where —C' is the lower bound of the Ricci curvature of M, Ric > —Cly.

As before, we can isometrically embed M into RYN. To detect a
possible singularity at a point (yo, to), where yo € M — RY and t5 < oo,
take a ball B of radius r about yy € RY and 1/ a cut-off function as in
the proof of Proposition 5.2. A similar argument yields the following
inequality:

d
at /1/)(2 - :u)pyo,to dpy < C — C&/d)pyo,to|A|2 dyut

where Cy is a constant depend on §.

Therefore limy_t, [ ¥pyo.t,(2 — p)dps exists. Let S* be a blow-up
sequence at (yo,to) that converges to S®. As in the previous section we
can show for a fixed 7 > 0,

-1
[ [ helapaas < cu)
—1-7

where C'(j) — 0 as Aj — oo.
Choose 7; — 0 such that c)

Tj

— 0 and sj € [-1 — 75, —1] so that
Y z, o C

[ anlaranty < €9,

j

We investigate this inequality more carefully. Notice that ¥V is
supported in By ,(0) C RY and 9% =1 in Bx,;»(0). Also
5

Aj2
Ai A 1 —|F5; |
PoolFs)) = 4 (—s;) P ( 4(—;3') '

If we consider for any R > 0, the ball of radius R, Br(0) ¢ RV,
when j is large enough, we may assume % > Rand -1 < s; <

then

_1
29

2
XN | ARdEY > A exp (=22 / APdy
[ aalarany = o exp (= o AP0

This implies for any compact set K C RV,

/A, |A[2du;‘j — 0 asj — oo.
ES]?OK
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Now we claim this together with the fact that u has a positive lower
: . . A
bound imply 11mj_>oofpy07t0d,uto+%- =limj_.o [ po,odps; < 1. We may
i

assume the origin in RY is a limit point of E?j , otherwise the limit is
Z€ro.

We notice that ' +w” is a parallel two form with A\; = 2 and Ay =0
from the last paragraph in §3. Therefore the holonomy group of M
splits into SO(2) x SO(2) and M is locally a Riemannian product. For
simplicity, we shall assume M is a product X1 x Yo such that %(w’—i—w” )
is the volume form of ¥;. In fact, we can choose local coordinates
(z',y') on ¥y and (22,y?) on s so that w' = da' A dy' + do? A dy?,
W =dx' A dy' — dx? A dy? and p = 2(dx' A dyt).

Let w1 : 31 X X9 +— X1 be the projection. % is in fact the Jacobian
of the projection m; when restricted to ¥; and the restriction 7|y, is
a covering map. Now take any neighborhood Q of m(yg) € ¥ and
consider 7,1 (Q) N'%;. Take any component and denote it by S;. S is
an unparametrized flow. Each S; can be written as the graph of a map
ug : Q2 +— Yo with uniformly bounded |du;| since p; has a uniform lower

bound. Since yg is a limit point of X tos i by choosing 2 small enough,
A2
J
we may assume the graph of u; = u tot 2 lies in B.
22
J

Now we consider the parabolic blow up of the graph of u; in RN by

Aj. This is the graph of the map u; from A\;€Q to A;3s. It corresponds
to a part of Z?j . By the assumption that the origin is a limit point of
E?j and |du;| is uniformly bounded, we may assume 4; — U in C* on
compact sets. U is an entire graph defined on R2.

On the other hand,

|Al; < [Vdi;| < (/1 + |da;[?)| Al
where |A[; is the norm of the second fundamental form of Sg\j and |Vdu,|

is the norm of the covariant derivatives of du;. Now we identify 2 with
an open set in R2. Therefore for any B, C R2, u; satisfies

|Du;| < C, / |D*,|? — 0
BP

where Du; and D2ﬁj are the usual derivatives with respect to coordinate
. 2 ou; 2
variables on R?. Denote v; = 72, then |vj| < C and pr |Dv;|* — 0.
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Vol
cj — c. By Poincare inequality,

[ 1o =i <x [ 1D 0.

ou; . . ~ ~ .
Therefore 87’]6 — ¢ in L?. Since we may assume Uj — U In

C* N W22, this implies S?j — 8§29 as Radon measures and S is the

Let ¢; = % f vj;, then we can choose a convergent subsequence
P

loc?
graph of a linear function. Therefore

. A
lim / po,0djts; = / po,0dp™y = 1.
Jj—o0

By White’s theorem again, we have regularity at the point (yo, to).
q.e.d.

Now we prove Theorem B.

Theorem B. Let M be an oriented four-dimensional Finstein man-
ifold with two parallel calibrating forms &', w"” such that W' is self-dual
and w" is anti-self-dual. If ¥ is a compact oriented surface immersed
in M such that %', *w"” > 0 on X. Then the mean curvature flow of ¥
exists smoothly for all time.

Proof. *w' and *w” have positive lower bound for any finite time by
Equation (5.11), therefore the assumption in Proposition 6.1 is satisfied.
q.e.d.

7. Convergence at infinity

In this section we study the convergence of the mean curvature flow
at infinity. The key point is to show uniform boundedness of |A|? in
space and time. We first compute the evolution of the second funda-
mental form. Let ¥ — M™ be an isometric immersion. We choose an
orthonormal basis {e;} for T3 and {e,} for N3. Recall the convention
for indexes are A,B,C---=1---n, i,j,k--- for tangent indexes, and
a, (3,7 -+ for normal indexes. Now denote the coefficient of the second
fundamental form by haij = (A(0;, 05), €q). The covariant derivative of
A is defined as

(vazA)(aia aj) = (vazA(ai’ aj))N - A((vazai)T? a]) - A(alv (valaj)T)'



MEAN CURVATURE FLOW 329

We denote

haije = (Vo A) (i, 05), €a)
haiji = (Vo,Va,A) (i, 05), €q)-

Let Ahyi; = gklhaij,kl be the Laplacian of hy;;.

Proposition 7.1. For a mean curvature flow F : ¥ x[0,t9) — M of
any dimension, the second fundamental form hai; satisfies the following
equation.

%hmj =Ahqaij + (VakK)aijk + (ﬁaj K) akik
= 2Kyijkhaik + 2Kagjkhgir + 2Kagikhgjk
— Kikikhatj — Kikjkhaii + Kakprhsij
(7.1) = haim(hymjhy = haymihyjk)
- hamk(h“/mj hvik - hwmkhvij )
— hgik(hgiihaik — hgikhals)

— hajrhgichs + hﬁ,’j<€/@,ﬁ]{€a>
where K agcp 1s the curvature tensor and NV is the covariant derivative
of M.

In particular, |A|? satisfies the following equation along the mean
curvature flow.

DA =A1AP 20V AP + 20(To, K)osse + (Vo K)okis i
— 4AKjijphaikhaij + 8Kagjkhgikhaij
— 4K kikharjhaij + 2K akgrhgijhaig
+2 3 O haikhymk — hamihyi)”

ay,.,m  k

+2 Z (Z hozijhamk)Q'

,L'7j7m7k &

(7.2)

Proof. We first derive Equation (7.2) from Equation (7.1).
Since |A]? = gikgﬂhmjhakl, calculate using a normal coordinate sys-
tem near a point p we have

d d . d
—|AP =2 —¢% ) hoiihari + 2 | —haii ) Paii-
P <dtg> iltakj + (dt ]> J
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Recall %gik = 2hghg;, and plug in Equation (7.1) to get

%’A\Q =4hghgirhaijhakj

+ 2haij[Ahaij + (Vo K)aijk + (Vo, K) akik

— 2Kyijkhair + 2K agjkhgic + 2K agikhgjk

— Kigithatj — Kikjkhaii + Kakprhgij

- hocim(hwmj hy — hvmkh’m‘k)

- hoamk(h'ymjhyik: - hwmkh'yij)

— hgik(hgiihaik — hgikhals)

— hajkhgikhg + hgij{es, Viea)].
The first term on the right hand side 4hghg;rhaijhar; cancels with two
later terms. They are so-called “metric” terms and vanish if we choose
a orthonormal frame in our computation.

The last term on the right hand side 2hq;hsi;(es, Vueq) is zero by

Symmetry.
Now use Ah2

[e%%]

=2|VA]? + 2haijAhagj. Therefore we get

d _ _

£|A’2 =AJA]? = 2|VAP + 2hij[(Vo, K)aiji + (Vo K) akik
— 2Kijkhaik + 2K agjchgic + 2Kagikhgjk
— Kikithatj — Kigjrhoti + Kargrhgij
+ hm’mhvmkhw‘k - hamk(h'ymjhvik
— hymihyi) — hgie(hgijhaie — haikhaij)]-

The fourth order terms can be calculated as the following:
hozijhocimh’ymkh'yjk - haijhamk(hvmjh’yik - h'ymkhvij)

— haijhgik(hgijhak — hgikhaij)

= 2haijhcximh'ymkh'ykj - 2haijhamkh'ymjh’yik + haijhamkh'ymkh'yij-

The first two terms can be completed to square:

2haijhaimbymichyk; — 2haijhamihymg ik
= 2hqijhaikhymiymg — 2haijhamiNyms Py
= Qhaijh’ymj(haikh’ymk — hamkh'yik)
(7.3) = haijhymi(haikPymk — hamiRyik)
+ hamjhyij(hamkhyik — haikhymi)

2
= Z (Zhaikhymk_hamkh’yik> :
k

a7777'7m
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Now we calculate Equation (7.1). First the Laplacian of hq; is the
following.

Ahgij =ha,ij — (Vo, K)aijk — (Vo K) akik
+ 2Kikhair — 2Kagjrhgin — 2Kagikhgjr — Kaijghs
+ Kigikhatj + Kigjehati — Kargrhgij
+ haim(hvmj hy — hvmkhw’k)
+ hamk(hvmj h'yik - hvmkhw’j )
+ hgir(hgijhaik — hgikhaij)

=N=N
where hq ij = <V6jV8iH, €a)-
In the codimension one case, this equation reduces to

Ahij =Hij — (Vo K)nijk — (Vi K) Nrik
+ 2Kk — Knijn1 H
+ Kigihij + Kigjrhy — Kngnehij
+ himhmi H — B2, hij.
This recovers Equation (1.20) in [6].
Equation (7.4) is computed using the Codazzi equation and the com-
mutation formula.

hakji = hakij + Kakij
haijkt = haijik — haimBmjik — hami Bmik — hgij Rgaik

where R,,;ii is the curvature of 'Y and R,y is the curvature of NX.
We start the computation with hq ;; = hakk,ij-

hakk,ij = (hakik + Kakik)j
= hakikj + Kakik,j
= haik jk — Naim Bmkjrk — hamk Bmijk
— hgik Rgajr + Kakik,j
= (haijk + Kaijk)k — PaimRmkjk — hamkRmijk
— hgik Rgajk + Kakik,j-

By the Gauss and Ricci equation, we have

Rokjk = Kmkjk + Rymjbykk — Dymi ks
Rmijk = Kmijk + hvmjh'yik - h'ymkh'yij
Rgojk = Kgajr + hgijhaik — hgikhaij-
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Therefore

Ahaij =hai; — Kaijiek — Kakik,j + PaimEmijk
+ hakamijk + h,@ikKﬁajk
+ haiTn(h’ymj hy — hvmkh’yjk)
+ hamk(h'ymjh'yik - h’ymkh'yij)
+ hgir(hgiihar — hgihals)-
The covariant derivative term can be calculated as follows:
Kaijiy =(Vo, K)aijk — Kiijkhaik + Kagjkhgik
+ Koigrhgix + Kaijghprk
Kokik,g =(Vo, K)akik — Kikikhatj + Kapikhokj
+ Kokgrhgij + Kakighg;-

Note that K;ji is considered as a section of the bundle N @ TX ®
T ®TY in taking covariant derivatives . We collect all the embient cur-
vature term and use the first Bianchi identity Kuigr + Kakig = —Kagki
to get Equation (7.4).

Next we calculate the equation for hg;; = <ﬁaj 0i, €q).

d . _ _
P (VuV,0i,ea) + (Va,0i, Viea)
= <ﬁajﬁHa¢, €a> — <K(H, @)81-, €a> + <§aja¢,§[{€a>.

By breaking Vaﬁazﬂ into normal and tangent parts, we get

<§ajﬁaiH7 ea) = <vaj [(v&H)T + (W&H)N] ’ea>
= (Vy, Vo, H,ea) = (Vo,H)", Vo eq).

Therefore,

d — — — —
—haij = ha.ij = hKgjia = (Vo H)", Vo,ea) + (Vo,0i Virea)

where hq 5 = <ﬁé\;§gH, €a)-
The term <(%iH)T,%jea> is equal to hghgirhajk. Also since we

choose a normal coordinate in our computation, (V5,0,)T = 0 and
<Vaiaj, VH6a> = hﬂij <€5’ vH€a>-
d

(7.5) ahm’j = ha,ij — hghgithajk — haKgjia + hpijes, Viea).
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Combine Equation (7.4) and (7.5), we get the parabolic equation for
haij.  q.e.d.

The following proposition provides a uniform bound of the second
fundamental form when *w’ and *w” are both close to one.

Proposition 7.2. Let M be a compact four-dimensional manifold
with bounded geometry. Let ' and w" be two parallel calibrating forms
such that W' A W' and W’ N\ W" determine opposite orientation for M.
Let 3 be an oriented immersed surface in M. There exists a constant
1 > € > 0 such that if ¥’ > 1 — € and *w" > 1 — € on F;(X) for

€ [0,T7], then the norm of the second fundamental form of Fy(X) is
uniformly bounded in [0,T].

Proof. The fourth order term in Equation (7.2) can be calculated
explicitly in the four-dimensional case:

(7.6)

2
Z (Z haikhvmk - hamkhwik:)
k

a7’y7l7m

2 2
= Z (Z h3ikhamk — hSmk'h4zk) + Z (Z haixh3mi — h4mkh3m>
i,m 7,m k
2
Z (Z h3zkh4mk - h3mkh4zk>

1,m

2

2
<Z hsikhasr — h32kh41k> + (Z hairhsar — h42k:h31k)
i
2
(Z hs1ihagi — h32kh41k>

1 1 2
[ (ha1k + haoi)? + = (haog — hair)? — 2|A\2]

2
2
[(ha1k + hazk)? + (hsor — hair)® — |A]] "

By the Schwarz inequality,

> (thjhamk>2§ > (Zhw> (thk> <AL

i,Jmk \ i,jmk \ «
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Therefore
d
(7.7) %‘AF < A|A|2 —2|VA|2+4]A|4+K1\A|2+K2
where K7 and Ky are constants that depend on the curvature tensor
and covariant derivatives of the curvature tensor of M.

Again we consider p=1n"+1n". Sincey’ > 1 —eand n’ > 1 —¢, we
have 1 > 2 —2¢ and |n' —71"| < e < 555 p.

d
M >Ap+ plAP 4+ 2(0" — 1" haorhar — 2(7' — n/,)h31kh42k: —Cu

2Au+u(1A\2—22 >—Cu
>Ap | 2= 36]A\2 — (JA] — 2|hzahare] — 2lhsirhaon))
e LN 2 _ 9% 32kt41k 31k/M42k
—Cu.
The term (| A|? —2|hzorhair| —2|h31xhaok|) is a complete square and thus
nonnegative.
Therefore

d
= AptaleulAP -

where ¢1(e) = 375, notice that ¢i(e) — 1 as € — 0.

Let p > 1 be an integer to be determined, we calculate the equation
for pP.

d

p_ p—1
dt b

d
= ppuP T (Apt ea(e)pl AP = C).

Use the identity AuP = p(p — 1)puP~2|Vu|? + puP~1 Ap, the differential

inequality for p? becomes

= AP = p(p = Dt 2|Vl + pe(pP | A — Cpul

Now we estimate the term |V /2.
We calculate as in Equation (5.8):

V' [? <2(1— (1) )(h41k+h§2k)
V"2 < 2(1 = (1")?) (315, + hiag)-
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Since’ >1—¢,1— ()2 <1—(1—¢)? < 2e¢. Therefore

8e
IVul? < 2(IV0' |2 4+ V" [?) < 8¢|A]* < Su? A2,

(2 — 2¢)
Denote (278%)2 = ca(€).
Thus

d
10 = AP £ plea(e) = (p = Dea()u|A]* = Cp”

Plug in f = |A|? and g = uP in the identity
L5 =a (D) 2% (1)
dt \ g g g g

1 d d
= (= ar) o= (Gom0) 1]
Therefore

2 2 2 P
d (A|> < A<|A|> LoV <|A\> Ve
dt \ wp pP pP pP
1
+ - {[F2AVAR + 44" + KA + Kol
~ [pler(e) = (p = Dea()u?| AP = Cop?] A2}
The last term is less than

A Bl 1
[4—p(ci(e) — (p— 1)02(6))]F + (K1 + Cp)F + KQE'
Recall that ¢1(e) — 1 and ca(€) — 0 as € — 0.
Choose p large enough and then e small enough so that

(2 —2¢)"[4 —pler(e) = (p = Dea(€))] < =C4

for some C7 > 0.
Then

4 4
4= bl = (= Deale)] S = (4= pler () = (= Deale)le? 5,
4!

S _01M2p
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|A]?

Denote f = R

then f satisfies

d
afg Af+V -Vf—Cif?+ Cof + Cs.

Now we apply the maximum principle for parabolic equations and

conclude the % is uniformly bounded, thus |A|? is also bounded.
q.e.d.

Now we prove Theorem C.

Theorem C. Under the same assumption as in Theorem B. When
M has nonnegative curvature, there exists a constant € > 0 such that if
Y is a compact oriented surface immersed in M with *w', xw"” > 1—¢€ on
Y, the mean curvature flow of ¥ converges smoothly to a totally geodesic
surface at infinity.

Proof. In these cases, *w’ and *w” are both non-decreasing. Propo-
sition 7.2 is applicable and | A|? is uniformly bounded in space and time.
Integrating Equation (7.7) and we see

d
7.8 — [ |APdu < C.
(7.9 i L VAP <
Recall in this case %/L > Ap + c1(e)p|A]? and 7 has a positive lower
bound, thus

(7.9) / |ARdpdt < oo.
o Jx
Equation (7.8) and (7.9) together implies

|A|2d,ut — 0.
2
By the small € regularity theorem in [4], supy, |A|* — 0 uniformly
as t — o0.
Since the mean curvature flow is a gradient flow and the metrics are
analytic, by the theorem of Simon [7], we get convergence at infinity.
q.e.d.

8. Applications

In the following we apply the previous theorem to the case when
M is a product S? x S%2. Denote their Kihler forms by w; and wo
respectively.
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Let ' = wy + wo and w” = wy — we, then (w')? = 2w A wy and
(w")? = —2w; A wo determine opposite orientations on M. Both w’
and w” are parallel calibrating form and they define integrable almost
complex structures with opposite orientations.

Theorem D. Let M = (S%,w;) x (S%,ws). If ¥ is a compact
oriented surface embedded in M such that w1 > | * wa| and the strict
inequality holds at at least one point. Then the mean curvature flow of
Y exists for all time and converges smoothly to a S* x {p}.

Proof. We notice the statement is a little bit different from the one
given in the introduction. The difference is resolved by the considering
the maximum principle for 7 = xw’ and 1" = *w”. It is not hard to see
the assumption implies *w; > | * wa| holds everywhere at a later time.
By the equation of 1’ and 7",

@77/ = A1 + 1 [(ha1k — hazk)? + (hsor + hawe)?] +1'(1 = (1)?)

o’ = At s~ b + (s + Pine ] /(1 = ("))
we see that as ¢ — oo, they both approach 1. By Theorem A, we have
existence for all time. Also the assumption on Proposition 7.2 is satisfied
and the second fundamental form is uniformly bounded in space and
time. Since the mean curvature flow is a gradient flow and the metrics
are analytic, we can apply Simon’s theorem [7] to conclude convergence
at infinity. The limiting submanifold has *w; = 1 identically and thus
is of the form S? x p.  q.e.d.

Corollary D now follows from this since the condition *w; > | * ws]
on the graph of a map f is equivalent to the Jacobian of f being less
than one.

We conclude this section by the following two remarks:

Remark 8.1. When M is locally a product of two Riemann sur-
faces of nonpositive curvature, the method in [8] can be used to prove
uniform convergence of the flow. The limit is totally geodesic and the
corresponding map converges to one ranged in a lower dimensional sub-
manifold. Notice that the convergence in Theorem C is a stronger
smooth convergence under the closeness assumption. Such results are
generalized to arbitrary dimension and codimension in [9].

Remark 8.2. The case when *w; > 0 and *ws = 0 corresponds to X
is Lagrangian surface with respect to the symplectic form wo. If 3 is the
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graph of a map f, then f is indeed an area preserving diffeomorphism.
This case and the application to the structure of the diffeomorphism
groups of compact Riemann surfaces are discussed in [8].
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