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COARSE OBSTRUCTIONS TO POSITIVE SCALAR
CURVATURE IN NONCOMPACT ARITHMETIC

MANIFOLDS

STANLEY S. CHANG

Abstract
Block and Weinberger show that an arithmetic manifold can be endowed
with a positive scalar curvature metric if and only if its Q-rank exceeds 2.
We show in this article that these metrics are never in the same coarse class
as the natural metric inherited from the base Lie group. Furthering the
coarse C∗-algebraic methods of Roe, we find a nonzero Dirac obstruction
in the K-theory of a particular operator algebra which encodes information
about the quasi-isometry type of the manifold as well as its local geometry.

I. Introduction

In the course of showing that no manifold of non-positive sectional
curvature can be endowed with a metric of positive scalar curvature,
Gromov and Lawson [8] consider restrictions on the coarse equivalence
type of complete noncompact manifolds of such positively curved met-
rics. In particular, they showed that such metrics cannot exist in man-
ifolds for which there exists a degree one proper Lipschitz map from
the universal cover to Rn, a property now understood to be essentially
a coarse condition. Block and Weinberger [2] investigate the situation
in which no coarse conditions are imposed upon the complete metric,
focusing on quotients Γ\G/K of symmetric spaces associated to a lat-
tice Γ in an irreducible semisimple Lie group G. They show that the
space M = Γ\G/K can be given a complete metric of uniformly positive
scalar curvature κ ≥ ε > 0 if and only if Γ is an arithmetic group of
Q-rank exceeding 2.
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The theorem of Gromov and Lawson [8] mentioned above estab-
lishes this theorem in the case of rankQΓ = 0. In the higher rank cases,
for which the resulting quotient space is noncompact, the metrics con-
structed by Block and Weinberger are however wildly different “in the
large” when compared to the natural one on M inherited from the base
Lie group G. In fact, their examples are all coarse quasi-isometric to
rays. Their theory evokes a natural question: Can the metric be chosen
so that it is simultaneously uniformly positively curved and coarsely
equivalent to the natural metric induced by G?

One of the important developments in analyzing positive scalar cur-
vature in the context of noncompact manifolds, especially when re-
stricted to the coarse quasi-isometry type, is introduced by Roe [16],
[15], who considers a higher index, analogous to the Novikov higher sig-
nature, that lives naturally in the K-theory of the C∗-algebra C∗(M) of
operators on M with finite propagation speed. He describes a map from
theK-theory groupK∗(C∗(M)) to theK-homologyK∗(νM) of the Hig-
son corona space which admits a dual transgression map H∗(νM) →
HX∗(M). If the Dirac operator on M is invertible, then the image of its
index in K∗(νM) vanishes, leading to vanishing theorems for the index
paired with coarse classes from the transgression of νM . Roe’s construc-
tion is used to show that a metric on a noncompact manifold cannot be
uniformly positively curved if the Higson corona of the manifold con-
tains an essential (n − 1)-sphere. Such spaces are called ultraspherical
manifolds.

The usual Roe algebra, however, is unsuited to provide informa-
tion about the existence of positive scalar curvature metrics that exist
on arithmetic manifolds, in particular because the corona is too ane-
mic. For example, the space at infinity of a product of punctured two-
dimensional tori is a simplex and therefore contractible. As a coarse ob-
ject, the K-theory of the Roe algebra associated to this multi-product
space can be identified with K∗(C∗(Rn

≥0)). Yet Higson, Roe and Yu
[11] have shown that the Euclidean cone cP on a single simplex P must
satisfy K∗(C∗(cP )) = 0. Since the Euclidean hyperoctant Rn

≥0 is simply
the cone on an (n− 1)-simplex, we find that K∗(C∗(Rn

≥0)) is the trivial
group and hence no obstructions are detectable. Even by considering
the fundamental group of the manifold by tensoring the Roe algebra
with C∗π1(M) we find this detection process unfruitful, since the K-
theory group K∗(C∗(M) ⊗ C∗π1(M)) vanishes as well. What seems to
be critical is how different elements of the fundamental group at infinity
can be localized to different parts of the space at infinity.
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In this article, we shall provide coarse obstructions in the these
noncompact manifolds: a finite product of hyperbolic manifolds, the
double quotient space SLn(Z)\SLn(R)/SOn(R) of unit volume tori,
and more generally the double quotient space Γ\G/K, where G is an
irreducible semisimple Lie group, K its maximal compact subgroup and
Γ an arithmetic subgroup of G. Note that the first two do not cor-
respond to irreducible quotients, but an analysis of these spaces gives
us the proper insight to attack the more general cases. A further re-
search project will analyze this problem without the irreducibility as-
sumption. The key feature in these particular manifolds M is that
they contain hypersurfaces V that are coarsely equivalent to a product
E × U of Euclidean space E with some iterated circle bundle U (i.e., a
torus, Heisenberg group, or more generally a group of unipotent matri-
ces). Moreover such a hypersurface decomposes the manifold M into a
coarsely excisive pair (A,B) for which A ∪ B = M and A ∩ B = V . A
generalized form of the Mayer-Vietoris sequence constructed by Higson,
Roe and Yu [11] provides the following:

· · · → K∗(C∗
G(A))⊕K∗(C∗

G(B)) → K∗(C∗
G(M)) → K∗−1(C∗

G(V )) → · · · .

The boundary map ∂ : K∗(C∗
G(M)) −→ K∗−1(C∗

G(E × U)) sends
IndM (D), the index of the spinor Dirac bundle on the universal cover
lifted from that on M , to IndE×U (D). To see that these indices are
indeed nonzero, we note that there is a boundary map

K∗−1(C∗
G(E × U)) → K∗−dimE(C∗

G(R × U)),

which sends index to index. We show that the index of the Dirac oper-
ator in the latter group, however, is nonzero by noting that the Strong
Novikov conjecture is true for nilpotent groups and hence provides an
appropriate nonzero obstruction.

I would like to thank Alex Eskin, Benson Farb, Nigel Higson, Thomas
Nevins, Mel Rothenberg, John Roe, Stephan Stolz, Guoliang Yu and
Dave Witte for very useful conversations. In particular, I would like to
acknowlege the role of my advisor Shmuel Weinberger in pointing out
the strength of certain tools in the realization of these theorems.

II. The generalized Roe algebra

The coarse category is defined to contain metric spaces as its objects
and maps f : (X, dX) → (Y, dY ) between metric spaces as its morphisms
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satisfying the following expansion and properness conditions: (a) for
each R > 0 there is a corresponding S > 0 such that, if dX(x1, x2) ≤ R
in X, then dY (f(x1), f(x2)) ≤ S, (b) the inverse image f−1(B) under
f of each bounded set B ⊆ Y is also bounded in X. Such a function
will be designated a coarse map, and two coarse maps f, g : X → Y
are said to be coarsely equivalent if their mutual distance of separation
dY (f(x), g(x)) is uniformly bounded in x. Naturally two metric spaces
are coarsely equivalent if there exist maps from one to the other whose
compositions are coarsely equivalent to the appropriate identity maps.
Two metrics g1 and g2 on the same space M are said to be coarsely
equivalent if (M, g1) and (M, g2) are coarsely equivalent metric spaces.

Following Roe [15], we recall that a Hilbert space H is an M -module
for a manifold M if there is a representation of C0(M) on H, that is,
a C∗-homomorphism C0(M) → B(H). We will say that an operator
T : H → H is locally compact if, for all ϕ ∈ C0(M), the operators
Tϕ and ϕT are compact on H. We define the support of ϕ in an M -
module H to be the smallest closed set K ⊆M such that, if f ∈ C0(M)
and fϕ 
= 0, then f |K is not identically zero. Consider the M̃ -module
H = L2(M̃), where M̃ is the universal cover of M endowed with the
appropriate metric lifted from the base space. Let π : M̃ → M be the
usual projection map and for any ϕ,ψ ∈ C0(M̃) consider the collection
Γ(ϕ,ψ) of paths γ : [0, 1] → M̃ in M̃ originating in Supp (ϕ) and ending
in Supp (ψ). Denote by L[ γ ], for γ ∈ Γ(ϕ,ψ), the maximum distance
of any two points on the projection of the curve γ in M by π, i.e.,
L[ γ ] = supx,y∈[0,1] d(π ◦ γ(x), π ◦ γ(y)).

Definition. Let M be a manifold with universal cover M̃ . We say
that an operator T on L2(M̃) has generalized finite propagation if there
is a constant R > 0 such that ϕTψ is identically zero in B(H) whenever
ϕ,ψ ∈ C0(M̃) satisfies

inf
γ∈Γ(ϕ,ψ)

L[ γ ] > R.

The infimum of all such R will be the generalized propagation speed of
the operator T . If G = π1(M) is the fundamental group ofM , we denote
by D∗

G(M) the norm closure of the C∗-algebra of all locally compact,
G-equivariant, generalized finite propagation operators on H.

Let M be a manifold and M̃ its universal cover. Let T : H → H
be an operator on H = L2(M̃). Consider the subset Q ⊆ M̃ × M̃ of
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pairs (m,m′) for which there exist functions ϕ,ψ ∈ C0(M̃) such that
ϕ(m) 
= 0, ψ(m′) 
= 0 and ϕTψ does not identically vanish. We will say
that the support of T is the complement in M̃ × M̃ of Q. For such two
points m,m′ ∈ M̃ , let γmm′ : [ 0, 1 ] → M̃ be the path of least length
joining m and m′ in M̃ . We consider the projection of this path into M
by π and take the greatest distance between two points on this projected
path. Then it is easy to see that an operator T has generalized finite
propagation, as previously defined, if

sup
m,m′

sup
x,y∈[0,1]

d(π ◦ γmm′(x), π ◦ γmm′(y)) <∞.

Definition. Consider the norm closure I of the ideal in D∗
G(M)

generated by operators T whose matrix representation, parametrized
by M̃ × M̃ , satisfies the condition that (π × π)(SuppT ) is bounded
in M ×M . Then the generalized Roe algebra, denoted by C∗

G(M), is
obtained as the quotient D∗

G(M)/I. Two operators in D∗
G(M) belong

to the same class in C∗
G(M) if their nonzero entries differ on at most a

bounded set when viewed from the perspective of the base space.

Examples.
(1) Let T : L2(R) → L2(R) be operator on L2-functions on the real

line given by (Tg)(x) = g(x+ 1) for all g ∈ L2(R) and x ∈ R. Then for
any ϕ,ψ ∈ C0(R), (ϕTψ)g(x) = ϕ(x+1)g(x+1)ψ(x). If ϕ is supported
at m = 1 and ψ is supported at m′ = 0, then (ϕTψ)g is nonzero for
any g supported at x = 1. Hence (0, 1) ∈ SuppT . It is easy to see that
(m,m′) ∈ SuppT if and only if m′ −m = 1. The propagation speed of
T is 1. If we write T as a matrix parametrized by R×R, all the nonzero
entries will lie at distance one from the diagonal.

(2) Let M be the cylinder S1 × R with its universal cover M̃ =
R2. An operator in the algebra D∗

G(M) will be some T : H → H
on L2(R2), which is of finite propagation speed (in the usual sense) in
the direction projecting down to the noncompact direction in M , but
has no such condition in the orthogonal direction corresponding to the
compact direction of M . In this direction, however, the operator is
controlled by the condition that it be Z-equivariant. It is apparent that
the operator, when restricted to individual fibers, has finite propagation
speed, although there is no requirement that the speed be uniformly
bounded across all fibers.

(3) Let M =
◦

RPn, n ≥ 3, the once-punctured real projective space,
expressible as the quotient (Sn−1 × R)/Z2. Certainly M is coarsely
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equivalent to the ray [ 0,∞) and is covered by the space M̃ = Sn−1×R,
where the points (s, r) and (−s,−r) are identified by the projection map
to M . Let T : L2(M̃) → L2(M̃) be given by the reflection (Tf)(s, r) =
f(s,−r). Consider ϕi, ψi ∈ C0(M̃) compactly supported on Sn−1 ×
[−i − 1,−i ] and Sn−1 × [ i, i + 1 ], respectively. Notice that ϕTψ will
never be identically zero, and yet the length Li[ γ ] associated to ϕi and
ψi will always be at least i. Hence the operator T is not of generalized
finite propagation speed and therefore not an element of the generalized
Roe algebra C∗

G(M).

The notion of a generalized elliptic operator is available in [15], [16]
and [17], but we include its definition here for completeness.

Definition. Let M be a space and let H be an M -module. If D
is an unbounded self-adjoint operator on H, then we say that D is a
generalized elliptic operator on H if

(a) there is a constant c > 0 such that, for all t ∈ R, the unitary oper-
ator eitA has bounded propagation on H and and its propagation
bound is less than c|t|, and

(b) there is n > 0 such that (1 +D2)−n is locally traceable.

Lemma 1. Let D a generalized elliptic operator in L2(M). Suppose
that D̃ is the lifted operator on M̃ . If Φ : R → R is compactly supported,
then Φ(D̃) lies in the generalized Roe algebra C∗

G(M).

Proof. (cf. [15], [5]) Suppose that Φ has compactly supported
Fourier transform and denote by Φ̂ the Fourier transform of Φ. We may
write

Φ(D̃) =
1
2π

∫ ∞

−∞
Φ̂(t) eitD̃ dt.

It is known that eitD̃ has finite propagation speed, and since Φ̂ is com-
pactly supported, the integral is defined and has a generalized propa-
gation bound. Moreover, by construction D̃ is π1(M)-equivariant. So
Φ(D̃) is π1(M)-equivariant as well. Therefore if Φ̂ is compactly sup-
ported, then Φ(D̃) lies in D∗

G(M) and passes to an element of the quo-
tient C∗

G(M). However, functions with compactly supported Fourier
transform form a dense set in C0(R) and the functional calculus map
f → f(D̃) is continuous, so the result holds for all Φ ∈ C0(R). q.e.d.
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Let χ : R → R be a chopping function on R, i.e., an odd continuous
function with the property that χ(x) → ±1 as x → ±∞. In addition,
denote by B∗

G(M) the multiplier algebra of C∗
G(M), that is, the collec-

tion of all operators S such that ST and TS belong to C∗
G(M) for all

T ∈ C∗
G(M). Then B∗

G(M) contains C∗
G(M) as an ideal. If D is a gener-

alized elliptic operator on M and D̃ its lift to M̃ , then χ(D̃) belongs to
B∗
G(M). In addition, since χ2−1 ∈ C0(R), we have χ(D̃)2−1 ∈ C∗

G(M).
Moreover, since the Z2-grading renders the decompositions

χ(D̃) =

(
0 χ(D̃)−

χ(D̃)+ 0

)
, ε =

(
1 0
0 −1

)
,

it follows that ε χ(D̃) + χ(D̃) ε = 0. By the discussion in [15], it
follows that F = χ(D̃) is a Fredholm operator and admits an index
IndF ∈ K0(C∗

G(M)). In addition, any two chopping functions χ1

and χ2 differ by an element of C0(R). By the lemma above, we have
χ1(D̃)−χ2(D̃) ∈ C∗

G(M), so they define the same elements of K-theory.
The common value for IndF is denoted Ind (D) and called the general-
ized coarse index of D. We write C∗

G(M) and Ind (D) instead of C∗
G(M̃)

and Ind (D̃) to indicate that the construction is initiated by a gener-
alized Dirac operator on the base space. The following statements are
standard results of index theory; one may consult [15] and [16] for the
essentially identical proof in the nonequivariant case.

Proposition 1. Let D be a generalized elliptic operator in L2(M).
If 0 does not belong to the spectrum of D̃, then the generalized coarse
index IndD vanishes in K0(C∗

G(M)).

Proposition 2. Let D̃ the lift of a generalized elliptic operator in
L2(M̃). In the ungraded case, if there is a gap in the spectrum of D̃,
then the index IndD vanishes in K1(C∗

G(M)).

Corollary. Let (M,d) be a complete spin manifold with metric d.
Let D be a generalized elliptic operator in L2(M). If M possesses a
metric d′ of uniformly positive scalar curvature in the same coarse class
as d, then the generalized coarse index of D vanishes.

We now embark on the task of computing the K-theory of this al-
gebra and of coarse indices. Let (M,d) be a proper metric space. For
any subset U ⊂M and R > 0, we denote by Pen(U,R) the open neigh-
borhood of U consisting of points x ∈M for which d(x, U) < R. Let A
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and B be closed subspaces of M with M = A ∪ B. We then say that
the decomposition (A,B) is a coarsely excisive pair if for each R > 0
there is an S > 0 such that

Pen(A,R) ∩ Pen(B,R) ⊆ Pen(A ∩B,S).

We wish to analyze this decomposition in the following context.
Given general C∗-algebras A, B and M for which M = A + B,

we have the Mayer-Vietoris sequence

· · · → Kj+1(M ) → Kj(A∩B ) → Kj(A )⊕Kj(B ) → Kj(M ) → · · · .

The standard proof for the existence of such a sequence is developed
from the isomorphism K∗(T ) ∼= K∗−1(M), where T is the suspension
of M. A short discussion of this construction is given in [11]. We are
in particular interested in exploiting the boundary map ∂ : Kj(M ) →
Kj−1(A∩B ) to transfer information about the index of the Dirac oper-
ator on a complete noncompact manifold M to information about that
on some hypersurface V . For our purposes, we let M be the generalized
Roe algebra C∗

G(M) on M , while A and B represent analogous operator
algebras on closed subsets A and B, where (A,B) form a coarsely exci-
sive decomposition of M . To construct the boundary map in question,
we require a few technical lemmas and notion of equivariant operators
with generalized finite propagation on a subset of M . The proof of
the first lemma follows the same argument as that in [11] and is stated
without proof.

Definition. Let A be a closed subspace of a proper metric space
M . Denote by D∗

G(A,M) the C∗-algebra of all operators T in D∗
G(M)

such that SuppT ⊆ Pen(π−1(A), R)×Pen(π−1(A), R), for some R > 0.
Let C∗

G(A,M) be the quotient D∗
G(A,M)/I.

Lemma 2. Let (A,B) be a decomposition of M . Then:

1. C∗
G(A,M) + C∗

G(B,M) = C∗
G(M).

2. C∗
G(A,M)∩C∗

G(B,M) = C∗
G(A∩B,M) if in addition we assume

that (A,B) is coarsely excisive.

Lemma 3. If the inclusion V ⊂ M induces an injection π1(V ) →
π1(M) on the level of fundamental groups, there is an isomorphism
K∗(C∗

G(V )) ∼= K∗(C∗
G(V,M)).
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Proof. Let π : M̃ → M be the projection map. Consider the
C∗-algebra C∗(Pen(π−1(V ), n), π1(M)) given by the quotient by I of
the C∗-algebra of locally compact, π1(M)-equivariant operators on the
n-neighborhood penumbra Pen(π−1(V ), n). Then

C∗
G(V,M) = lim−→ C∗(Pen(π−1(V ), n), π1(M)).

The inclusion map i : π−1(V ) ↪→ Pen(π−1(V ), n) is a coarse equivalence.
By the construction of the generalized Roe algebra its operators are
defined up to their bounded parts, and so the map i induces a series of
isomorphisms

K∗(C∗(π−1(V ), π1(M))) ∼= K∗(C∗(Pen(π−1(V ), n), π1(M))
∼= K∗( limC∗(Pen(π−1(V ), n), π1(M))
∼= K∗(C∗

G(V,M)).

Since π1(V ) ↪→ π1(M) is an injection, the inverse image π−1(V ) ⊆ M̃
is a disjoint union of isomorphic copies of Ṽ , parametrized by the coset
space π1(M)/π1(V ). There is then a one-to-one correspondence between
π1(M)-equivariant operators on π−1(V ) and π1(V )-equivariant opera-
tors on Ṽ . Hence C∗(π−1(V ), π1(M)) ∼= C∗

G(V ). We haveK∗(C∗
G(V )) ∼=

K∗(C∗
G(V,M)), as desired. q.e.d.

Let (A,B) be a coarsely excisive decomposition of M such that V =
A ∩B satisfies π1(V ) ↪→ π1(M). The boundary operator

∂ : Kj(C∗
G(A,M) + C∗

G(B,M)) −→ Kj−1(C∗
G(A,M) ∩ C∗

G(B,M))

arising from the coarse Mayer-Vietoris sequence is by the previous lem-
mas truly a well-defined map

∂ : K∗(C∗
G(M)) → K∗−1(C∗

G(V )).

Theorem (Boundary of Dirac is Dirac). Consider a coarsely
excisive decomposition (A,B) of M and let V = A ∩B. If

∂ : K∗(C∗
G(M)) → K∗−1(C∗

G(V ))

is the boundary map from the Mayer-Vietoris sequence derived above,
then we have ∂ ( IndM (D)) = IndV (D).

Remark. Here IndM (D) and IndV (D) represent the generalized
coarse indices of the spinor Dirac operators on M and V , respectively.
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We will continue to use a subscript if the space to which the index is
related is ambiguous. The “boundary of Dirac is Dirac” principle is
essentially equivalent to Bott periodicity in topological K-theory. In all
cases considered here, there are commutative diagrams relating topo-
logical boundary to the boundary operator arising in the K-theory of
C∗-algebras, and, on the topological side, a consideration of symbols
suffices. The subject of boundaries is treated in Chapter 9 of Higson
and Roe’s monograph [10]. See also [17], [9], [16] and [24].

Aside from the stability of the Dirac operator under the boundary
map, we shall also use the nonvanishing of the Dirac index in a number
of important cases. These so-called Strong Novikov results of Rosenberg
[20] study the real Kasparov map β : RKOn(Bπ) → KOn(C∗

rπ) defined
in [14]. Here RKO∗(Bπ) is the usual K-homology of the classifying
space of a group π. See [19] for the general definition of RKO∗(X) for
a countable CW-complex X with finite skeleta Xn.

Theorem A. (2.8 in [20]). Let π be a countable solvable group
having a composition series for which the composition factors are abelian
and torsion-free. Then β : RKOi(Bπ) → KOi(C∗

rπ) is an isomorphism
for all i.

Theorem B. (2.10 in [20]). Let π ∼= π1(N) where N is a com-
plete (not necessarily compact) Riemannian manifold with all sectional
curvatures ≤ 0. Then β : RKOi(Bπ) → KOi(C∗

rπ) is split injective for
all i.

Theorem 1. The n-fold product M of punctured two-dimensional
tori does not have a metric of uniformly positive scalar curvature in
the same coarse equivalence class as the positive hyperoctant with its
standard Euclidean metric.

Proof. Consider the projection map p : M → Rn
≥0 from the product

M =
◦
T ×· · ·×

◦
T to the positive hyperoctant, where each component pi

is the quasi-isometric projection of the punctured torus onto the posi-
tive reals numbers. Take a hypersurface S ⊂ Rn

≥0 sufficiently far from
the origin so that the inverse image of every point on S is an n-torus,
and so the space V is coarsely equivalent to the (2n − 1)-dimensional
noncompact manifold Rn−1 × Tn. The complement of the hypersurface
V consists of two noncompact components. Define A to be the clo-
sure of the component containing the inverse image p−1(0) of the origin
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in Rn
≥0. Take B the closure of M\A◦. Then the pair (A,B) forms a

coarsely excisive decomposition of the space M whose intersection is
A ∩B = V .

Consider the generalized coarse index IndM (D) ∈ K∗(C∗
G(M)) of

the lifted classical Dirac operator on the pullback spinor bundle of the
universal cover M̃ . Note that π1(M) is the n-fold product F2 × · · ·×F2

of free groups, and that π1(V ) ∼= π1(Rn−1×Tn) ∼= Zn. Hence there is an
injection π1(V ) ↪→ π1(M) and the K-theoretic Mayer-Vietoris sequence
applies. The boundary map ∂ of this sequence satisfies ∂ ( IndM (D)) =
IndV (D) ∈ K∗(C∗

G(V )). However, V is coarsely equivalent to the hy-
persurface Rn−1 × Tn, so the index IndV (D) can be taken to live in
K∗−1(C∗

G(Rn−1 × Tn)). Note that n will be taken to be at least 2.
There is yet another boundary map

K∗−1(C∗
G(Rn−1 × Tn)) → K∗−n+1(C∗

G(R × Tn))

induced by projection. This boundary map (or composition of n − 2
boundary maps) preserves index.

�

�

S

Figure 1: The hypersurface S in Rn
≥0.

Recall that D∗
G(M) is the norm closure of the C∗-algebra of all lo-

cally compact, π1(M)-equivariant, generalized finite propagation speed
operators on L2(M̃), and I ⊆ D∗

G(M) is the closure of the ideal of such
operators T that satisfies the condition that (π×π)(SuppT ) is bounded
in M ×M . The short exact sequence 0 −→ I −→ D∗

G(R × Tn) −→
C∗
G(R×Tn) −→ 0 gives rise to the six-term exact sequence in K-theory:
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K0(I) �� K0(D∗
G(R × Tn))

p �� K0(C∗
G(R × Tn))

��
K1(C∗

G(R × Tn))

��

K1(D∗
G(R × Tn))p

�� K1(I)��

Notice that the map K∗(I) → K∗(D∗
G(R×Tn)) induced by the inclusion

is the zero map by an Eilenberg swindle argument. Hence both maps
p : K∗(D∗

G(R × Tn)) → K∗(C∗
G(R × Tn)) are injections.

If n is even, the generalized coarse index IndR×Tn(D) of the Dirac
operatorD resides inK1(D∗

G(R×Tn)). Certainly the image of this index
under the boundary map K1(D∗

G(R×Tn)) → K0(D∗
G(Tn)) is the index

IndTn(D) of D on the n-torus (see remark before this theorem). The
index α(Tn, f) ∈ K∗(C∗(Zn)), where f : Tn → BZn is the classifying
map, is constructed by Rosenberg and is nonvanishing as a consequence
of Theorem A. This index corresponds to our generalized coarse index
Ind Tn(D) under the isomorphism K∗(C∗(Zn)) ∼= K∗(D∗

G(Tn)). Hence
the coarse index of the Dirac operator in K1(D∗

G(R × Tn)) is nonzero,
and its projection onto the group K1(C∗

G(R × Tn)) is nonzero as well
by the injectivity of p. This argument gives us the necessary index
obstruction.

If n is odd, we apply the same argument as above with respect to
the map K0(D∗

G(R × Tn)) → K0(C∗
G(R × Tn)). q.e.d.

The extension of this method to multifold products of hyperbolic
manifolds involves the Margulis lemma, which states that in such a space
there exists a small positive constant µ = µn such that the subgroup
Γµ(V, v) ⊆ π1(V, v) generated by loops of length less than or equal
to µ based at v ∈ V is almost nilpotent; i.e., it contains a nilpotent
subgroup of finite index. It can be shown that there exist such cusps,
or submanifolds C ⊂ V with compact convex boundary containing v,
such that C is diffeomorphic to the product ∂C × R+, where ∂C is
diffeomorphic to an (n − 1)-dimensional nilmanifold with fundamental
group containing Γµ(V, v). Here a nilmanifold signifies a quotient N/Γ
of a nilpotent Lie group by a cocompact lattice Γ. The nilmanifolds
that arise in this context as boundaries of pseudospheres will have a
naturally flat structure.

Theorem 2. An n-fold product of hyperbolic manifolds has no uni-
formly positive scalar curvature metric coarsely equivalent to the usual
Euclidean metric on the positive Euclidean hyperoctant.
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Proof. Without loss of generality, it suffices to consider the case
in which the noncompact hyperbolic spaces have only one cusp. Let m
be the dimension of this product manifold. As in the multifold product
of tori, there is a positive b ∈ R such that on each hyperbolic space Hi

the inverse image of each point x ≥ b under the projection Hi → R≥0

is by Margulis’ lemma a flat compact connected Riemannian manifold
of finite dimension. Consider the inverse image V under the induced
product map p : H1 × · · · × Hm → Rm

≥0 of the same hypersurface as
described in the previous theorem. By Bieberbach’s theorem, every flat
compact connected Riemannian manifold admits a normal Riemannian
covering by a flat torus of the same dimension. Hence V is covered by
some product of Euclidean space and a higher-dimensional torus. Any
metric of positive scalar curvature on V would certainly lift to such a
metric in this covering space. Using the same induction argument as
before, we show that such a metric is obstructed by the presence of a
nonzero Dirac class. q.e.d.

III. Noncompact quotients of symmetric spaces: a special
case

We wish to apply the above techniques to the irreducible double
quotient SLn(Z)\SLn(R)/SOn(R). This space is not locally symmetric
because SLn(Z) does not act freely on SLn(R)/SOn(R), so the quotient
is not a Riemannian manifold. Let X∗ be any finite-sheeted branched
cover of the double quotient SLn(Z)\SLn(R)/SOn(R), i.e., a manifold
corresponding to a subgroup of finite index in SLn(Z).

The Iwasawa decomposition gives a unique way of expressing the
group SLn(R) as a product SLn(R) = NAK, where N is the subgroup
of standard unipotent matrices (upper triangular matrices with all diag-
onal entries equal to 1), A the subgroup of SLn(R) consisting of diagonal
matrices with positive entries, and K the orthogonal subgroup SOn(R).
The quotient X ≡ SLn(Z)\SLn(R)/SOn(R) can then be trivially seen
to have n(n−1)

2 compact directions arising from N , an additional n − 1
noncompact directions from A, and an (n−2)-dimensional simplex as its
boundary. In short, the bordified space X is coarsely an (n−1)-simplex.

Theorem 3. Let n ≥ 3 and let SLn(Z)∗ be a torsion-free subgroup
of SLn(Z) of finite index. Then the manifold

X∗ = SLn(Z)∗\SLn(R)/SOn(R)
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lacks a uniformly positive scalar curvature metric that is coarsely equiv-
alent to the natural one inherited from SLn(R).

Proof. To build the appropriate hypersurface in X∗, consider
first the orbifold X, which by the above discussion can be expressed
as Γ\NAK/K, where Γ = SLn(Z) and K = SOn(R). Consider the
Weyl chamber corresponding to the subset A+ ⊂ A of positive diagonal
matrices with decreasing entries, i.e.,

A+ =




ea1 0 . . . 0
0 ea2 . . . 0
...

...
. . .

...
0 0 . . . ean

 : a1 > a2 > . . . > an−1 > an

 .

Here an = −(a1 + a2 + · · · + an−1). The coordinates a1, a2, . . . , an−1

parametrize the n− 1 noncompact directions of X.
The closure of this Weyl chamber corresponding to a1 > · · · > an is a

simplex with one boundary face at infinity. One can construct a closed,
convex subset A+

H ⊂ A+ with the following properties (see Figure 1):
the set A+

H is bounded away from the boundary faces ai = ai+1 and
the quotient F = Γ\NA+

HK/K of the resulting Siegel set NA+
HK has

a boundary W ≡ ∂F which is coarsely equivalent to an iterated circle
bundle over (n− 2)-dimensional Euclidean space. More precisely, there
is a coarse equivalence W → Rn−2 such that the fiber over each point
is a compact arithmetic quotient of the group of unipotent matrices.
(Notice that in general arithmetic subgroups are not unipotent, but we
create this hypersurface W for the explicit purpose of exploiting the
unipotent parts of X.) The reader may wish to consider the n = 3 case
and construct the subset A+

H ⊂ A+ given by

A+
H =

{
k(1, b,−1 − b) : 0 ≤ b ≤ 1

2
, k ≥ L

}
,

where L is sufficiently large. We require the fact that an appropriate
subset of this form enjoys the property that all of its translates by Γ
remain uniformly bounded away from the Weyl hyperplanes. This claim
will be proven in a more general context in the following section.

Since X∗ is a finite-sheeted branch cover of X, there is a natural
projection map p : X∗ → X. The set p−1(W ) ⊂ X∗ will be a disjoint
union of copies of W . Let W ∗ be just one connected component. This
noncompact space W ∗ partitions the space X∗ into a coarsely excisive
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pair whose closures Y and Z satisfy the equalities Y ∪ Z = M∗ and
Y ∩ Z = W ∗. If IndX∗(D) denotes the generalized coarse index of
the classical spinor Dirac operator on X̃∗, then the Mayer-Vietoris map
∂ : K∗(C∗

G(X∗)) → K∗−1(C∗
G(W ∗)) defined in the previous chapter

satisfies ∂ ( IndX∗(D)) = IndW ∗(D) = IndRn−2×Um(D), where Um is
the compact fiber of the iterated circle bundle of dimension m = n(n−1)

2 .
Applying the same argument as before, we need only to show that the
index of the Dirac operator in K∗(D∗

G(Um)) is nonzero. However, the
compact space Um is a quotient of a nilpotent group by a cocompact
lattice (i.e., a nilmanifold), for which the Strong Novikov Conjecture
(Theorem A) is true. As with the theorem for punctured tori, there is a
nonvanishing Rosenberg index α(Um) ∈ K∗(C∗

r (π)), where π = π1(Um),
which maps to a nonvanishing coarse index in K∗(D∗

G(Um)), as desired.

Remark: One can avoid the detailed construction of W by accepting
the coarse simplicial picture of SLn(Z)\SLn(R)/SOn(R). To define an
appropriate hypersurface that stays a bounded distance from the sim-
plicial faces, except for the face at infinity, one can merely take the open
cone on an (n − 3)-dimensional sphere in the interior of the boundary
face, and close this cone under the action of N/(N ∩ Γ).

IV. The general noncompact arithmetic case

Let G be an affine algebraic group defined over Q. We say that
G is semisimple if its radical (i.e., its greatest connected normal solv-
able subgroup) is trivial. For such a G, we denote its real locus G(R)
by G, which is a semisimple Lie group with finitely many connected
components. It is well known that the spherical Tits building ∆Q(G)
associated with G over Q is a connected infinite simplicial complex if
rank Q(G) > 1. The simplices of ∆Q(G) correspond bijectively to the
proper rational parabolic subgroups of G. If Γ ⊂ G(Q) is an arith-
metic subgroup of G(Q), then there are only finitely many Γ-conjugacy
classes of rational parabolic subgroups, so the quotient Γ\∆Q(G) is a
finite simplicial complex, called the Tits complex of Γ\G/K and denoted
∆(Γ\G/K). Here K is a maximal compact subgroup of G. See [13] for
details.

Such a real semisimple Lie group G has a decomposition PK where
P is a parabolic subgroup of G and K is maximal compact. This
parabolic P satisfies the relation P = CG(A)N , where A ⊂ P is a con-
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nected maximal split torus with centralizer CG(A) and N is the unipo-
tent radical of P . The Langlands decomposition of a parabolic P gives
P = NAM , where MA = CG(A), the quotient M/Z(M) is semisimple
and Z(M) is compact. Of course this decomposition depends on P and
the point x0 ∈ G fixed by K.

Recall that a subgroup Γ of G is an arithmetic lattice if there exist

1. a closed subgroup G′ of some SL�(R) such that G′ is defined over
Q,

2. compact normal subgroups K ≤ G and K ′ ≤ G′, and

3. an isomorphism φ : G/K → G′/K ′,

such that φ(Γ) is commensurable with G′
Z. Here Γ and G′

Z are the
images of Γ and G′

Z in G/K and G′/K ′, respectively.
The effect of an arithmetic lattice Γ on the components of the

Langlands decomposition is as follows. Let P = NAM be a minimal
parabolic Q-subgroup, and let T be a maximal Q-split torus of G. Then
M satisfies the equality CG(T ) = TM . Since T is maximal, the sub-
groupM contains no Q-split tori. By definition, we have rank QMQ = 0.
Hence, the arithmetic subgroups of M are cocompact in M . Since the
intersection of GZ with M is an arithmetic subgroup of M , every quo-
tient of M by an arithmetic subgroup of G yields a compact quotient.
A similar argument holds for the subgroup N of G.

To understand the coarse type of Γ\G/K, we appeal to Ji and
MacPherson [13] in their proof of a conjecture of Siegel. In particular,
let P0 = G,P1, . . . ,Pn be representatives of the Γ conjugacy classes of
the rational parabolic subgroups of G. For each i, let Pi = NPiMPiAPi

be the Langlands decomposition of Pi. Then there exists bounded
ωi ⊂ NPiMPi and Siegel sets ωi ×APi,t ⊂ NPiMPi ×APi such that:

1. each Siegel set ωi ×APi,t is mapped injectively into Γ\G/K;

2. the image of ωi in (Γ ∩ Pi)\NPiMPi is compact;

3. if we identify ωi × APi,t with its image in Γ\G/K, then Γ\G/K
can be decomposed in the following disjoint union:

Γ\G/K =
n∐
i=0

ωi ×APi,t.
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Here the subset APi,t ≡ {a ∈ APi : αi(log a) > t, i = 1, . . . , r} is a shift
of the positive chamber A+

Pi
≡ {a ∈ APi : αi(log a) > 0, i = 1, . . . , r},

where the αi are the associated set of simple roots and t is sufficiently
large. Using this so-called precise reduction theory and identifying APi,t

with a cone in the Lie algebra ai, one can endow it with the simplicial
metric dS defined by the Killing form through the exponential map.
Then (APi,t, dS) is a metric cone over the open simplex A+

Pi
(∞) in the

Tits building ∆Q(G) associated with Pi, when A+
Pi

(∞) is endowed with
a suitable simplicial metric. We can glue these metric cones (APi,t, dS)
to form a local distance function lS on

∐n
i=0APi,t. If dind is the dis-

tance function on the subspace
∐n
i=0APi,t induced by Γ\G/K, then it is

not hard to show that the tangent cone T∞(
∐n
i=0APi,t, dind) at infinity

exists and is equal to (
∐n
i=0APi,t, lS). The tangent cone T∞(Γ\G/K)

therefore exists and is equal to a metric cone over the Tits complex
∆(Γ\G/K) [13]. The resulting fact that the Gromov-Hausdorff dis-
tance between Γ\G/K and (

∐n
i=0APi,t, lS) is finite allows us to build

a map π : Γ\G/K → (
∐n
i=0APi,t, lS) whose properties are captured in

the following description.

Picture from Reduction Theory. Let M = Γ\G/K. There is
a compact polyhedron Q and a Lipschitz map π : M → cQ, where cQ
is the open cone on Q so that:

(1) every point inverse deform retracts to an arithmetic manifold;

(2) π respects the radial direction;

(3) all point inverses have uniformly bounded size.

Again, the polyhedron Q is the geometric realization of the cate-
gory of proper Q-parabolic subgroups of G, modulo the action of Γ.
The inverse image π−1(∗) of the barycenter of a simplex is the arith-
metic symmetric space associated to that parabolic. Concretely, for
SLn(Z) ⊂ SLn(R), the space Q is an n− 2 simplex, the parabolics cor-
respond to flags, and the associated arithmetic groups have a unipotent
normal subgroup with quotient equal to a product of SLmi(Z), where
the mi are sizes of the blocks occurring in the flag. As one goes to
infinity, the unipotent directions shrink in diameter and are respon-
sible for the finite volume property of the lattice quotient, while the
other parabolic directions remain of bounded size. Alternatively, for
any choice of basepoint in the homogeneous space, there are constants
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C and D that satisfy the following condition: if x is a given point and
Qx is the largest parabolic subgroup associated with a simplex whose
cone contains x within its C-neighborhood, then the orbit of x under
Qx has diameter less than D. Note the empty simplex means that there
is a compact core which is stabilized by the whole group. In addition
to the proof in [13], this picture can be ascertained from [4], [21]; the
fact that Γ\G/K has finite Gromov-Hausdorff distance from cQ is first
asserted in [7].

As a guide the reader should consider the picture suggested by a
product of hyperbolic manifolds. In the compact case, each hyperbolic
manifold contributes to cQ a point. In the case of cusps, it contributes
the open cone on a finite set of points. Thus Q is a join of some num-
ber of finite sets. Using this model, we find that the inverse image of
any point in the interior of any simplex is exactly a product of closed
hyperbolic manifolds, cores of hyperbolic manifolds, and flat manifolds.

To build an appropriate hypersurface in Γ\G/K, we require a key
estimate of Eskin [6] about the “coarse isotropy” of our space (see also
[3], [13] and in particular [1]). Some details are provided as follows.
Let P = NAM be a minimal parabolic Q-subgroup of G and write
G = NAMK. Consider the chamber decomposition of a, the Lie algebra
of A. The corresponding Weyl group W acts on these chambers via the
hyperplanes. If G =

∐
w∈W BwB is the Bruhat decomposition of G, let

γ ∈ BwB for some w ∈W . If g = nak, we write γg = n′a′k′. Denote by∑+ the set of positive roots of a∗ and
∑− the set of negative roots. Let

R =
∑− ∩w

∑+ be the set of roots that are positive but are negated
under the action of w. For some positive reals constants cα, the following
equation holds:

a′ = wa−
∑
α∈R

cαα(a) + o(1),(∗)

where a and a′ are viewed as elements of the Lie algebra a. The im-
plications of this equation are as follows. Consider an element a in the
positive Weyl chamber C(a). Then the intersection Γ(a) ∩ C(a) of the
orbit Γ(a) of a under Γ and the Weyl chamber C(a) containing a has a
bounded diameter, uniformly in a. In other words, if γ(a) stays in the
same positive Weyl chamber, then w is the identity and R is empty.
Hence a′ = a + o(1), implying that a′ can be found at a uniformly
bounded distance from a itself. In this event, the action of γ corre-
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sponds to a translation of a to (possibly) the compact fiber direction of
Γ\G/K. With this machinery, we are able to prove the following.

Theorem 4. Let G be a semisimple irreducible Lie group, K its
maximal compact subgroup and Γ an arithmetic lattice with rankQΓ ≥ 2.
If Γ∗ is any torsion-free subgroup of Γ of finite index, then the manifold
X∗ = Γ∗\G/K lacks a uniformly positive scalar curvature metric that
is coarsely equivalent to the natural one inherited from G.

Proof. Let G = PK, where P = NMA is a minimal parabolic
Q-subgroup of G. The precise reduction theory provides a compact
polyhedron Q and a Lipschitz map π : X∗ → cQ from X∗ to an open
cone cQ on Q. Consider one maximal simplex in Q corresponding to
some Weyl chamber C+, and construct a hypersurface in C+ as in Fig-
ure 1 (this hypersurface is coarsely a cone on a sphere S, where S lies
in the interior of the simplicial face at infinity). This subset H can
be oriented so that the distance from H to any hyperplane α = 0 will
exceed the quantity supa∈C+ diam (Γ∗(a) ∩ C+), which is finite by (∗).
Let W = π−1(H) be the corresponding hypersurface in X∗; this W in-
duces a coarsely excisive decomposition (Y,Z) of X∗. The fundamental
group π1(W ) = NM ∩Γ∗ injects into π1(X∗) = Γ∗, so the hypothesis of
Lemma 3 is satisfied. In the most general case, the space W is coarsely
equivalent to a bundle over Euclidean space whose fiber consists of two
components: a nilmanifold N∗ and (possibly) a compact homogeneous
manifold M∗. If M∗ is trivial, the argument follows exactly as in The-
orem 3. In the presence of a nontrivial compact homogeneous manifold
M∗, we may pass to the coarse index of the Dirac operator on R ×M∗

and use the usual Rosenberg obstruction on M∗ as in Theorem 1 to
obtain our desired result. The claim that the Dirac index is nonvanish-
ing for compact, locally symmetric manifolds results from Rosenberg’s
Theorem B. q.e.d.
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