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MANIN PAIRS AND MOMENT MAPS

ANTON ALEKSEEV & YVETTE KOSMANN-SCHWARZBACH

Abstract
A Lie group G in a group pair (D, G), integrating the Lie algebra g in
a Manin pair (d, g), has a quasi-Poisson structure. We define the quasi-
Poisson actions of such Lie groups G, and show that they generalize the
Poisson actions of Poisson Lie groups. We define and study the moment
maps for those quasi-Poisson actions which are hamiltonian. These moment
maps take values in the homogeneous space D/G. We prove an analogue of
the hamiltonian reduction theorem for quasi-Poisson group actions, and we
study the symplectic leaves of the orbit spaces of hamiltonian quasi-Poisson
spaces.

1. Introduction

The purpose of this article is to provide a framework for Lie-group
valued moment map theories. In the usual theory (see, e.g., [10]), the
moment map corresponding to an action of a Lie group G on a symplec-
tic manifold (M, ω) takes values in the dual space g∗ of the Lie algebra
g. In the case of G = S1, an abelian Lie-group valued moment map
taking values in S1 instead of u(1)∗ = R was introduced in [18] by Mc-
Duff. The first nonabelian Lie-group valued moment map theory to be
proposed was that of Lu and Weinstein [16], [17]. In their approach,
G is a Poisson Lie group, M has a symplectic form ω (or, more gen-
erally, a Poisson bivector) which is not G-invariant, and the moment
map takes values in the Poisson Lie group dual to G. When G is a
compact semi-simple Lie group, the target space is the symmetric space
GC/G which is equipped with the structure of a Lie group. Recently,
another nonabelian moment map theory where the moment map takes
values in the same compact simple Lie group G as the one which acts
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on the manifold has been developed [3]. In this theory, the 2-form ω is
G-invariant but not closed.

These various formulations of the moment map theories share many
features. For instance, they all have a well defined notion of a hamilto-
nian reduction [16], [3], convexity properties [8], [1], [19] and localization
formulas [9], [24], [4]. We think that these common features justify a
search for a unified formulation.

Our proposal of a general moment map theory is based on the no-
tions of a Manin pair and of a Manin quasi-triple, and our main techni-
cal tool is the theory of quasi-Poisson Lie groups developed in [11] and
[12]. We introduce the notion of a quasi-Poisson space as a space with
a G-action and a bivector P such that the Schouten bracket [P, P ] is
expressed as a certain trilinear combination of the vector fields gener-
ating the G-action. These spaces are the natural objects upon which
quasi-Poisson Lie groups act. We define and study the moment maps
for the actions on a quasi-Poisson space of a Lie group G whose Lie
algebra, g, belongs to a Manin pair (d, g). Our formulation is close in
spirit to that of Lu and Weinstein, which is based on the notions of a
Manin triple and a Poisson Lie group. While Manin triples and Pois-
son Lie groups had been introduced as the classical limits of quantum
groups [6], which are Hopf algebra deformations of the enveloping alge-
bras of Lie algebras, the generalized objects that we consider here are
the classical limits of deformations which are only quasi-Hopf algebras
[7]. The present generalization to Manin quasi-triples and quasi-Poisson
Lie groups is necessary in order to provide a conceptual explanation for
the theory of group valued moment maps introduced and developed in
[3] and [4].

Section 2 includes some basic information on Manin pairs and Manin
quasi-triples. In Section 3 we introduce group pairs which integrate
Manin pairs. (Group pairs with a symmetric structure were also studied
in [15].) The definition of quasi-Poisson actions is presented in Section 4.
If (D, G) is a group pair, then the dressing action of G on D/G is quasi-
Poisson. We show that a given action remains quasi-Poisson when both
the quasi-Poisson Lie group and the quasi-Poisson space on which it
acts are modified by a twist. Thus the notion of a quasi-Poisson action
is related to that of a Manin pair, rather than to a particular Manin
quasi-triple. We prove that if (M, P ) is a quasi-Poisson space with a
bivector P acted upon by a quasi-Poisson Lie group, the bivector P
induces a genuine Poisson bracket on the space of G-invariant smooth
functions on M . The definition of generalized moment maps is given
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in Section 5. In our setting, the moment maps are always assumed to
be equivariant, a property which the usual moment maps may or may
not have. We then prove that moment maps are bivector maps. This
generalizes the theorem stating that the moment map is equivariant
if and only if it is a Poisson map. The dressing action of G on D/G
has the identity of D/G as a moment map. We call hamiltonian those
quasi-Poisson spaces that admit a moment map. We show that there
is a well-defined integrable distribution on a hamiltonian quasi-Poisson
space which, under an additional assumption, gives rise to a generalized
foliation by nondegenerate hamiltonian quasi-Poisson spaces that con-
tain the G-orbits. We also prove that, in a hamiltonian quasi-Poisson
space with a nondegenerate bivector P , the symplectic leaves in the or-
bit space are connected components of the projection of the level sets
of the moment map. This is a generalization of the usual symplectic
reduction theorem.

The fundamental example of a Manin pair is that of a Lie algebra
g with an invariant scalar product, embedded diagonally in the double
g ⊕ g, equipped with the corresponding hyperbolic metric (see Exam-
ple 2.1.5). For the corresponding group pair (G × G, G), the target of
the moment map (G × G)/G can be identified with G itself. It can be
shown that any hamiltonian G-space with group-valued moment map
in the sense of [3] and [4] is also a hamiltonian quasi-Poisson space as-
sociated to this group pair, in the sense of Definition 5.1.1. This can
be easily shown (see Section 5.2) in the case of abelian Lie groups, and
will be proved in the general case in a subsequent paper [2].

Acknowledgements. We would like to thank E. Meinrenken, J.
Stasheff and A. Weinstein for their remarks and comments.

2. Manin pairs and r-matrices

In this section we introduce the notions of a Manin pair and of a
classical r-matrix which provide the main building blocks of the gen-
eralized moment map theory. All vector spaces are over R or C and,
for simplicity, we assume that they are finite-dimensional. We use the
Einstein summation convention.

2.1 Manin pairs and Manin quasi-triples

We consider a finite-dimensional vector space V with a nondegenerate
symmetric bilinear form ( | ). An isotropic subspace W ⊂ V is called
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maximal if it is not strictly contained in another isotropic subspace of
V . Using Witt’s theorem and its corollaries [14] it is easy to prove that,
if V is a real vector space of signature (n, n) or a complex vector space
of dimension 2n, the dimension of any maximal isotropic subspace, W ,
of V is equal to n, and that an isotropic subspace is maximal if and
only if it is equal to its own orthogonal. One can also show that any
maximal isotropic subspace W ⊂ V has isotropic complements, and that
they are maximal. A choice of such a maximal isotropic complement,
W ′ ⊂ V, V = W ⊕ W ′, determines an isomorphism between the space
W ∗ dual to W and the space W ′.

If, in addition, we assume that the spaces V and W possess a Lie-
algebra structure, we arrive at the definition of a Manin pair.

Definition 2.1.1. A Manin pair is a pair, (d, g), where d is a Lie
algebra of even dimension 2n, with an invariant, nondegenerate sym-
metric bilinear form, of signature (n, n) in the real case, and g is both
a maximal isotropic subspace and a Lie subalgebra of d.

Definition 2.1.2. A Manin quasi-triple (d, g, h) is a Manin pair
(d, g) with an isotropic complement h of g in d.

Thus, in a Manin quasi-triple, d = g ⊕ h, g is a maximal isotropic
Lie subalgebra and h is a maximal isotropic linear subspace of d. We
shall denote by f :

∧2 g → g the Lie-algebra structure of g which is the
restriction of that of d. We shall denote by j : g∗ → h the isomorphism
of vector spaces defined by the decomposition d = g⊕ h, which satisfies

(j(ξ)|x) = 〈ξ, x〉

for each ξ ∈ g∗, and x ∈ g, and we shall denote the projections from d

to g and h by pg and ph respectively. On g, we introduce the cobracket,
F : g → ∧2 g. It is the transpose of the map from

∧2 g∗ to g∗, which
we denote by the same letter, defined by

F (ξ, η) = j−1ph[j(ξ), j(η)]

for ξ, η ∈ g∗ . We also introduce an element ϕ ∈ ∧3 g which is defined
by the map from

∧2 g∗ to g, denoted again by the same letter,

ϕ(ξ, η) = pg[j(ξ), j(η)].

The Lie algebra g, with cobracket F and element ϕ ∈ ∧3 g, is called
a Lie quasi-bialgebra [7]. (The element ϕ is the classical limit of the
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co-associator of a quasi-Hopf algebra.) Conversely, from a Lie quasi-
bialgebra (g, F, ϕ), we obtain a Manin quasi-triple (d, g, g∗), where d =
g⊕ g∗ with its canonical scalar product induced by the pairing between
g and g∗,

((x, ξ)|(y, η)) = 〈x, η〉 + 〈y, ξ〉 ,

the Lie bracket on d being defined as follows [7],

[x, y] = f(x, y), [x, ξ] = ad∗
x ξ − ad∗

ξ x,

[ξ, η] = F (ξ, η) + ϕ(ξ, η),
(2.1.3)

where x, y ∈ g and ξ, η ∈ g∗. Sometimes we refer to the bialgebra data
F and ϕ corresponding to the complement h ⊂ d as Fh and ϕh.

Example 2.1.4. For any Lie algebra g, the choice F = 0 and ϕ = 0
defines the Manin pair (d, g), where d = g ⊕ g∗ with the Lie bracket

[x, y] = f(x, y), [x, ξ] = ad∗
x ξ, [ξ, η] = 0.

We call this Manin pair the standard Manin pair associated to g. In
the standard Manin pair, g possesses a canonical complement, h = g∗,
defining a Manin triple (d, g, g∗).

Example 2.1.5. If a Lie algebra g possesses an invariant, nonde-
generate symmetric bilinear form K, one can construct another Manin
pair with d = g ⊕ g, the direct sum of two copies of the Lie algebra g.
(See [20].) The scalar product on d is defined as the difference of the
bilinear forms on the two copies of g,

((x1, x2)|(y1, y2)) = K(x1, y1) − K(x2, y2),(2.1.6)

and g is embedded into d by the diagonal embedding ∆ : x �→ (x, x). A
possible choice of an isotropic complement to g is given by g− = 1

2∆−(g),
where ∆− : x �→ (x,−x) is the anti-diagonal embedding. In general, the
isotropic subspace g− ⊂ d is not a Lie subalgebra, and (d, g, g−) is only
a Manin quasi-triple. The map F vanishes because [g−, g−] ⊂ g. If
we identify elements in g with elements in g− by 1

2∆−, and then with
elements in g∗ by the isomorphism j−1 of this Manin quasi-triple, the
element ϕ ∈ ∧3 g can be identified with the trilinear form on g,

(x, y, z) �→ 1
4
K(z, [x, y]),
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which is actually anti-symmetric and ad(g)-invariant. Let (ei), i =
1, . . . , n, be a basis of g, and let (Kij) be the matrix inverse to the
matrix (Kij), where Kij = K(ei, ej). Let us denote the structure con-
stants of g in this basis by fk

ij . Then

ϕ =
1
4
KilKjmfk

lmei ⊗ ej ⊗ ek =
1
24

KilKjmfk
lmei ∧ ej ∧ ek.

If, in particular, we choose an orthogonal basis such that K(ei, ej) =
1
2δij , then

ϕ =
∑
ijk

f i
jkei ⊗ ej ⊗ ek =

1
6

∑
ijk

f i
jkei ∧ ej ∧ ek.

2.2 Twisting

All Manin quasi-triples corresponding to the same Manin pair (d, g)
differ by a twist t ∈ ∧2 g, defined as follows. An isotropic complement
to g in d always exists and is by no means unique. Let h and h′ be two
isotropic complements of g in d, and let 1d = pg + ph and 1d = p′g + p′h′
be the decompositions of the identity map of d into the sum of the
projections defined by the direct decompositions d = g⊕h and d = g⊕h′.
Then 1h = κ+λ, where κ and λ are the restrictions to h of the projections
p′g and p′h′ .

Let j : g∗ → h and j′ : g∗ → h′ be the isomorphisms of vector spaces
defined by these direct decompositions. We consider the linear map
from g∗ to d, called the twist from h to h′,

t = j′ − j.(2.2.1)

We first remark that t takes values in g. In fact, j′ = λ◦j and t = −κ◦j.
It is easy to show that t is anti-symmetric. In fact, for ξ, η ∈ g∗,

〈t(ξ), η〉 + 〈ξ, t(η)〉 = (t(ξ)|j(η)) + (j′(ξ)|t(η)) = (j(ξ)|j(η)) = 0,

where we have used the isotropy of g, h and h′. Hence, the map t defines
an element in

∧2 g which we denote by the same letter. By convention,
t(ξ, η) = 〈t(ξ), η〉.
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2.3 The canonical r-matrix

Let (d, g, h) be a Manin quasi-triple. We identify d with g ⊕ g∗ using
the isomorphism j−1 of h onto g∗. The map rd : d∗ → d defined by
rd : (ξ, x) �→ (0, ξ) for x ∈ g, ξ ∈ g∗ defines an element rd ∈ d ⊗ d,
called the canonical r-matrix. Let (ei), i = 1, . . . , n, be a basis of g and
(εi), i = 1, . . . , n, be the dual basis in g∗. Then

rd =
n∑

i=1

ei ⊗ εi.(2.3.1)

The symmetric part of rd coincides with the scalar product of d up
to a factor of 2, and therefore it is ad(d)-invariant. The element rd

satisfies a relation that generalizes the classical Yang-Baxter equation.
To derive that relation we introduce the notion of a Drinfeld bracket for
elements of a ⊗ a, for any Lie algebra a.

Definition 2.3.2. Let a be a Lie algebra with a basis (eα), α =
1, . . . , N , and let r =

∑
αβ rαβeα ⊗ eβ be an element of a ⊗ a. The

Drinfeld bracket of r is the element in a ⊗ a ⊗ a defined as follows,

〈r, r〉 = [r12, r13] + [r12, r23] + [r13, r23],(2.3.3)

where r12 = r ⊗ 1, r13 =
∑

αβ rαβeα ⊗ 1 ⊗ eβ, r23 = 1 ⊗ r, and 1 is the
unit of the universal enveloping algebra U(a).

If r is anti-symmetric, then

〈r, r〉 = −1
2
[r, r],(2.3.4)

where [ , ] is the algebraic Schouten bracket of
∧

a. (See, e.g., [12] or
[13].) If r is symmetric and ad(a)-invariant, then

〈r, r〉 = [r12, r13],(2.3.5)

and 〈r, r〉 is the ad(a)-invariant element in
∧3 a with components rκβrλγfα

κλ.
For any r ∈ a ⊗ a with ad(a)-invariant symmetric part s,

〈r, r〉 = 〈a, a〉 + 〈s, s〉,(2.3.6)

where a is the anti-symmetric part of r. Therefore, when the symmetric
part of r is invariant, 〈r, r〉 is in

∧3 a.
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Proposition 2.3.7 ([5]). The canonical r-matrix, rd, associated
to the Manin quasi-triple (d, g, h) satisfies

〈rd, rd〉 = ϕ,(2.3.8)

where the element ϕ ∈ ∧3 g is considered as an element in
∧3 d.

Proof. In the basis (ei, ε
i), the commutation relations of d have the

form,

[ei, ej ] = fk
ijek , [ei, ε

j ] = −f j
ikε

k + F jk
i ek , [εi, εj ] = F ij

k εk + ϕijkek.

The computation of the three terms entering the Drinfeld bracket yields

[r12, r13] = [ei ⊗ εi ⊗ 1, ej ⊗ 1 ⊗ εj ] = fk
ijek ⊗ εi ⊗ εj

[r12, r23] = [ei ⊗ εi ⊗ 1, 1 ⊗ ej ⊗ εj ] = f i
jkei ⊗ εk ⊗ εj − F ik

j ei ⊗ ek ⊗ εj

[r13, r23] = [ei ⊗ 1 ⊗ εi, 1 ⊗ ej ⊗ εj ] = F ij
k ei ⊗ ej ⊗ εk + ϕijkei ⊗ ej ⊗ ek,

whence 〈rd, rd〉 = ϕijkei ⊗ ej ⊗ ek = ϕ. q.e.d.

We now list properties of the anti-symmetric part of the canonical
r-matrix, rd.

Proposition 2.3.9. Let (d, g, h) be a Manin quasi-triple, where
we identify h with g∗. Let ad ∈ ∧2 d be the anti-symmetric part of rd.
For any x ∈ g, ξ ∈ g∗,

[x, ad] = F (x), [ξ, ad] = −f(ξ) + ϕ(ξ), [ad, ϕ] = 0.(2.3.10)

Proof. The proof of the first two equalities is by computation, using
the formula ad = 1

2

∑n
i=1 ei ∧ εi and the derivation property of the

algebraic Schouten bracket. To prove the third equality, we use formulas
(2.3.6), (2.3.8) and (2.3.4) to obtain

[ad, ϕ] = −1
2
[ad, [ad, ad]] + [ad, 〈sd, sd〉].

The first term vanishes by the graded Jacobi identity and the second
term vanishes because 〈sd, sd〉 is ad(d)-invariant. q.e.d.

Under a twist t, the canonical r-matrix rd is modified to

r′d = rd + t.(2.3.11)
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Indeed, any element of d can be decomposed in two ways, as x + j(ξ)
and as x′ + j′(ξ′), where x, x′ ∈ g, ξ, ξ′ ∈ g∗. Then, by definition,
t(ξ) = j′(ξ′) − j(ξ) ∈ g , while

(r′d − rd)(j(ξ) + x) = r′d(j
′(ξ′) + x′) − rd(j(ξ) + x)

= j′(ξ′) − j(ξ) = t(ξ).

If t =
∑

ij tijei ⊗ ej = 1
2

∑
ij tijei ∧ ej , then after twisting by t, the dual

basis of g∗ becomes

ε′i = εi + tijej .(2.3.12)

Under the twist t relating isotropic complements h and h′, the cobracket
F of the Lie quasi-bialgebra and the element ϕ are modified as follows
[7] [11]:

Fh′ = Fh + F1,(2.3.13)
ϕh′ = ϕh − 〈t, t〉 + ϕ1,(2.3.14)

where F1(x) = adx t and ϕ1(ξ) = ad∗
ξt. Here ad denotes the adjoint

action of g on
∧2 g, while ad∗

ξt denotes the projection of ad∗
ξ t onto∧2 g, where g∗ ⊂ d∗ acts on

∧2 g ⊂ ∧2 d by the coadjoint action. In
fact,

ϕijk
1 = F jk

l til − F ik
l tjl.(2.3.15)

3. Group pairs and quasi-Poisson structures

In this section, we study the global objects corresponding to Manin
pairs and Manin quasi-triples. In the rest of this paper, we shall assume
that the base field is R, and all manifolds and maps will be assumed to
be smooth. We shall often abbreviate “fields of multivectors” to “mul-
tivectors”. A bivector map between (M1, PM1) and (M2, PM2), where
PMi is a bivector on manifold Mi (i = 1, 2), is a map u from M1 to M2

such that

u∗PM1 = PM2 .

(If PM1 and PM2 are Poisson bivectors, such a map is called a Poisson
map.)
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3.1 Group pairs and quasi-triples

We first introduce the objects which integrate Manin pairs and Manin
quasi-triples.

Definition 3.1.1. A group pair is a pair (D, G), where D is a con-
nected Lie group with a bi-invariant scalar product and G is a connected,
closed Lie subgroup of D, such that the Lie algebras, d and g, of D and
G form a Manin pair.

It is evident from this definition that, given a finite-dimensional
Manin pair (d, g) it can be integrated into a unique group pair, where
D is simply connected, provided g is the Lie algebra of a closed Lie
subgroup of D.

Example 3.1.2. A group pair corresponding to the standard Manin
pair (g⊕ g∗, g) of the Lie algebra g is (T ∗G, G). Here T ∗G is the cotan-
gent bundle of the connected, simply connected Lie group corresponding
to the Lie algebra g, equipped with the group structure of a semi-direct
product, upon identification with G×g∗ by left translations. The group
G is embedded into T ∗G as the zero section.

Example 3.1.3. For a Lie algebra g with an invariant, nondegen-
erate symmetric bilinear form, the Manin pair (g⊕g, g) of Example 2.1.5
can be integrated to a group pair (G×G, G). The group G is embedded
into D = G × G as the diagonal.

Definition 3.1.4. A quasi-triple (D, G, h) is a group pair (D, G),
where an isotropic complement h of g in d has been chosen.

Note that a quasi-triple is not a triple of Lie groups. In general, the
subspace h ⊂ d is not a Lie subalgebra and cannot be integrated into a
Lie subgroup. If (d, g, h) is a Manin triple, integrating h to a Lie group
H yields a triple of groups (D, G, H). (See [17].)

We shall now study the bivectors on D and G which generalize the
multiplicative bivectors obtained when (d, g, h) is a Manin triple, and D
and G are Poisson Lie groups [6] [20].

3.2 The quasi-Poisson structure of D

Let (D, G, h) be a quasi-triple. We have recalled in Section 2 the def-
inition of the canonical r-matrix of d, rd ∈ d ⊗ d. Thus rd defines a
contravariant 2-tensor on D,

PD = rλ
d − rρ

d ,(3.2.1)
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where rλ
d (resp., rρ

d) denotes the left- (resp., right-) invariant 2-tensor on
the Lie group D with value rd at the identity. Sometimes we denote the
bivector PD corresponding to the complement h ⊂ d by P h

D to render
the dependence on h explicit.

Actually, PD is a bivector because the symmetric part of rd, being
ad(d)-invariant, is invariant with respect to the adjoint action of D and
cancels in (3.2.1).

At the identity of D, PD vanishes because there rλ
d coincides with

rρ
d . The following multiplicativity property of PD is obvious from the

definition.

Proposition 3.2.2. The bivector PD on the Lie group D is multi-
plicative with respect to the multiplication of D, i.e., the multiplication
map m : D × D → D is a bivector map from D × D with the product
bivector to (D, PD).

In general, the Schouten bracket [PD, PD] does not vanish.

Proposition 3.2.3. The Schouten bracket of the bivector PD is
given by

1
2
[PD, PD] = ϕρ − ϕλ.(3.2.4)

Proof. Since PD = aλ
d −aρ

d, and since left- and right-invariant vector
fields commute with each other, we obtain

[PD, PD] = [aλ
d − aρ

d, a
λ
d − aρ

d] = [aλ
d , aλ

d ] + [aρ
d, a

ρ
d]

= [ad, ad]λ − [ad, ad]ρ.

Using (2.3.4), (2.3.6) and the fact that 〈sd, sd〉 is ad(d)-invariant, the
right-hand side is 2(〈rd, rd〉ρ −〈rd, rd〉λ). Since 〈rd, rd〉 = ϕ, we arrive at
formula (3.2.4). q.e.d.

We collect some properties of the bivector PD in the following propo-
sition.

Proposition 3.2.5. The bivector PD satisfies

LxλPD = F (x)λ, LxρPD = F (x)ρ,(3.2.6)

for x ∈ g, and

LξλPD = −f(ξ)λ + ϕ(ξ)λ, LξρPD = −f(ξ)ρ + ϕ(ξ)ρ,(3.2.7)
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for ξ ∈ h, and

[PD, ϕλ] = 0, [PD, ϕρ] = 0.(3.2.8)

Proof. Here and below h is identified with g∗. By Proposition 2.3.9,

[xλ, aλ
d ] = [x, ad]λ = F (x)λ,

[ξλ, aλ
d ] = [ξ, ad]λ = −f(ξ)λ + ϕ(ξ)λ,

[aλ
d , ϕλ] = [ad, ϕ]λ = 0.

To conclude we use the fact that PD = aλ
d −aρ

d and, again, the fact that
left- and right-invariant vector fields commute. The proof for right-
invariant vector fields is similar. q.e.d.

In fact, the bivector PD defines a quasi-Poisson structure on the Lie
group D (see Definition 3.3.6).

Modifying the chosen complement h of g by a twist t ∈ ∧2 g leads
to modifying the bivector PD in the following simple way,

P h′
D = P h

D + tλ − tρ,(3.2.9)

since rd is modified according to (2.3.11).

3.3 The quasi-Poisson structure of G

The bivector PD has a natural restriction to the subgroup G ⊂ D. An
isotropic complement h such that d = g⊕ h being chosen, to any g ∈ G,
one can associate another splitting of d, namely d = g ⊕ Adg h. Here
we use the fact that the Lie subalgebra g is stable with respect to Adg.
The identification j′ of g∗ with h′ = Adg h is j′ = Adg ◦ j ◦ tAdg, and
therefore rd is modified to

r′d = Adg rd,(3.3.1)

where Ad denotes the adjoint action of D on the tensor product d ⊗ d.
We denote the corresponding twist by tg. According to (2.3.11) we
obtain

tg = Adg rd − rd.(3.3.2)

For each g ∈ G, tg is an element of
∧2 g. Thus, we can define a bivector

PG on G by right translation of tg, and then

PG = rλ
d − rρ

d .(3.3.3)
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Therefore, the embedding of (G, PG) into (D, PD) is a bivector map.
Actually, this requirement determines PG uniquely.

It is clear that PG inherits the multiplicativity property of PD and
the Schouten bracket of PG is given by the same formula,

1
2
[PG, PG] = ϕρ − ϕλ.(3.3.4)

Note that both ϕρ
g and ϕλ

g are already elements of
∧3 TgG, whereas for

a canonical r-matrix it is only the difference (rλ
d − rρ

d)g which lies in∧2 TgG. Moreover,

[PG, ϕλ] = 0, [PG, ϕρ] = 0.(3.3.5)

We now recall from [11] and [12] the definition of quasi-Poisson Lie
groups, which we shall use in the study of quasi-Poisson actions in Sec-
tion 4.

Definition 3.3.6. A quasi-Poisson structure on a Lie group G is
defined by a multiplicative bivector PG and an element ϕ in

∧3 g such
that 1

2 [PG, PG] = ϕρ − ϕλ and [PG, ϕλ] = 0.

It also follows from the definition that [PG, ϕρ] = 0, because, by the
graded Jacobi identity, [PG, ϕρ − ϕλ] = 0. The identity [PG, ϕλ] = 0 is
the classical limit of the pentagon identity for quasi-Hopf algebras [7].
For a connected Lie group G, the multiplicativity condition is equivalent
to its infinitesimal version,

LxλPG = F (x)λ,(3.3.7)

for each x ∈ g.

Equations (3.3.4) and (3.3.5) show that the Lie group G, equipped
with the bivector PG and the element ϕ in

∧3 g, is a quasi-Poisson Lie
group, in the sense of the preceding definition, and so is the Lie group
D, with the bivector PD and the same element ϕ in

∧3 g, considered
as an element in

∧3 d. This last fact follows from the properties of PD

stated in Propositions 3.2.3 and 3.2.5.
We sometimes refer to the bivector PG as P h

G to emphasize the depen-
dence on the choice of a complement h. For the bivector P h

G correspond-
ing to the complement h, all the properties required in the definition of
a quasi-Poisson Lie group follow from the analogous properties of P h

D,
considered in the previous section. Hence, (G, P h

G, ϕh) is a quasi-Poisson
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Lie group integrating the Lie quasi-bialgebra structure of g, defined by
the Manin quasi-triple (d, g, h). We sometimes refer to (G, P h

G, ϕh) as
Gh

D.
The bivector P h

G vanishes if the complement h ⊂ d is ad(g)-invariant,
[g, h] ⊂ h, because from Adg h = h it follows that tg = Adg rd − rd =
0. This simple observation implies that, in the standard quasi-triple
(T ∗G, G, g∗), the bivector PG = P g∗

G on the group G vanishes, and also
in the quasi-triple (G × G, G, g−), the bivector PG = P

g−
G vanishes.

Under a twist t, the bivector P h
G is modified in the same way as the

bivector P h
D,

P h′
G = P h

G + tλ − tρ.(3.3.8)

3.4 The dressing action of D on D/G

To any group pair (D, G) one can associate the quotient space D/G,
which we shall denote by S. The space S will be the target of the
generalized moment maps in Section 5.

The action of D on itself by left multiplication induces an action of
D on S. Because this action generalizes the dressing of group-valued
solutions of field equations, it is called the ‘dressing action’ [20] [21]. We
denote the corresponding infinitesimal action by X �→ XS , for X ∈ d.
By definition, XS is the projection onto S of the opposite of the right-
invariant vector field on D with value X at the identity, e.

Definition 3.4.1. An isotropic complement h to g in d is called
admissible at the point s ∈ D/G if the infinitesimal dressing action
restricted to h defines an isomorphism from h onto Ts(D/G).

It is clear that any isotropic complement h to g is admissible in some
open neighborhood of eG ∈ D/G. If the complement h is admissible at
a point s ∈ D/G, it is also admissible in some open neighborhood U of
s. If there exists an h which is admissible everywhere on D/G, we call
the corresponding quasi-triple (D, G, h) complete.

If we identitfy the tangent spaces to D with d by means of right
translations, then the tangent space to D/G at s ∈ D/G is identified
with d/ Ads g, and, for X ∈ d, XS(s) is identified with the class of X in
d/ Ads g. If h is admissible, then h is isomorphic to Ts(D/G), and we
obtain both decompositions,

d = g ⊕ h = Ads g ⊕ h.
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If x is in g, then xS(s) is identified with the element θs(x) = (pAds g −
pg)(x) ∈ h, the difference of the projections of x onto Ads g and g,
parallel to h. Thus xS(s) = (θs(x))S(s). So, if this map θs from g to h is
composed with the isomorphism j−1 from h to g∗ defined in Section 2.1,
we obtain τs = j−1 ◦ θs from g to g∗ satisfying

xS(s) = ((j ◦ τs)(x))S(s)(3.4.2)

and, in particular,

(ei)S(s) = (τs)ik(jεk)S(s).(3.4.3)

Because g, h and Ads g are isotropic, τs is anti-symmetric and defines
an element in

∧2 g∗, which we denote by the same letter.

Proposition 3.4.4. At any point s ∈ D/G there exists an admis-
sible complement h of g in d.

Proof. Maximal isotropic subspaces in d form a Grassmannian which
we denote by G(d). Since D is a connected Lie group, the subspaces g

and Ads g belong to the same connected component of G(d). Let h′ be
an isotropic complement of g in d. The Grassmannian G(d) being an
algebraic variety, the set of isotropic complements h of g in the con-
nected component of h′ is a Zariski open set. Since Ads g is in the same
connected component of G(d) as g, the set of isotropic complements to
Ads g in the connected component of h′ is also a Zariski open set. An
intersection of two nonempty Zariski open sets being nonempty, one can
always find an h which is an isotropic complement of both g and Ads g.
Any such subspace is admissible at the point s. q.e.d.

The choice of an admissible isotropic complement h of g in d at a
point s gives rise to an additional structure on D/G. The space h being
isomorphic to Ts(D/G), we can define a map from g to the 1-forms on
D/G at the point s, x �→ x̂h(s), as follows,

〈x̂h(s), ξS(s)〉 = −(x | ξ),

for each ξ ∈ h, where in the left-hand side we have used the canonical
pairing between 1-forms and vectors. The map h → Ts(D/G) being an
isomorphism of linear spaces, so is the map g → T ∗

s (D/G). In other
words, the forms x̂h(s) span the cotangent space to D/G at s. Thus
if h is admissible in an open neighborhood U of s, we define the map
x �→ x̂h from g to the 1-forms on U ⊂ D/G, such that

〈x̂h, ξS〉 = −(x | ξ).(3.4.5)
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When the quasi-triple (D, G, h) is complete, the forms x̂h are globally
defined on D/G. When (d, g, h) is a Manin triple, integrated to Lie
groups D, G, H, then ξS is identified with the opposite of the right-
invariant vector field on H with value ξ at the identity, and therefore x̂h

is the right-invariant 1-form on H with value x ∈ g � h∗ at the identity.

3.5 Properties of the forms x̂h and examples

The forms x̂h will play an essential role in the theory of the moment
map that we shall develop in Section 5. In this Section we study the
properties of these forms and give examples.

We study the effect of a twist t on the map x �→ x̂h. Let us choose
two complements h and h′ admissible at s ∈ D/G. We first compare the
dressing vector fields ξS and ξ′S on D/G defined by ξ0 ∈ g∗ corresponding
to the splittings d = g ⊕ h and d = g ⊕ h′, respectively, where the
twist from h to h′ is t : g∗ → g. Then ξS = (jξ0)S , ξ′S = (j′ξ0)S . It
follows from (3.4.2) that (tξ0)S(s) = ((j ◦ τs)(tξ0))S(s), and therefore
ξ′S(s) = (j(σsξ0))S(s), where σs = 1g∗ + τs ◦ t. Thus

〈x, ξ0〉 = 〈x̂h(s), (jξ0)S(s)〉 =
〈
x̂h′(s), (j(σsξ0))S(s)

〉
.

The pairing on the left hand side being nondegenerate, σs is invertible.
Then

〈x, ξ0〉 =
〈
tσ−1

s x , σsξ0

〉
=

〈 ̂(tσ−1
s x)h(s), (j(σsξ0))S(s)

〉
.

Therefore,

x̂h′(s) = (̂νsx)h(s),(3.5.1)

where νs = tσ−1
s = (1g + t ◦ τs)−1, because t and τs are anti-symmetric.

Example 3.5.2. For the standard group pair (T ∗G, G), the space
S = T ∗G/G coincides with g∗, the dual space to the Lie algebra g. Using
dual bases (ei) and (εi) of g and g∗ one can introduce linear coordinates
(ξi) on g∗. The vector fields generating the dressing action are as follows,
εi
S = −∂/∂ξi, for the action of g∗, and (ei)S(ξ) = − ad∗

ei
ξ = fk

ijξk∂/∂ξj ,
for the action of g. The quasi-triple (T ∗G, G, g∗) is complete, and the
1-forms corresponding to the elements ei ∈ g correspond to the differ-
entials of the linear coordinates, êi = dξi.

Example 3.5.3. For a Lie algebra g with an invariant, nonde-
generate symmetric bilinear form, the group pair (G × G, G) of Exam-
ple 3.1.3 defines the space S = (G × G)/G ∼= G. One can express the
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dressing vector fields as (x, 0)S = −xρ and (0, x)S = xλ, where xρ and
xλ are the right- and left-invariant vector fields on the group G defined
by the element x ∈ g, so that G acts on S ∼= G by the adjoint action.
The quasi-triple (G×G, G, g−) is not necessarily complete. The 1-forms
x̂ are defined by the equation

〈
x̂, 1

2(yλ + yρ)
〉

= ((x, x)|(y,−y)). Using
the Ad(G)-invariance of K, we obtain〈

x̂, yλ
〉
(g) = 2K(x, (1g + Ad−1

g )−1y) = 2K((1g + Adg)−1x, y).

Therefore

x̂g = 2(K� ◦ (1g + Adg)−1x)λ
g ,(3.5.4)

where K�(x)(y) = K(x, y). It is clear that the 1-forms x̂ are well defined
if −1 is not an eigenvalue of the operator Adg.

At the points g ∈ G such that Adg has eigenvalue −1, the comple-
ment g−, defined by g− = {1

2(x,−x)|x ∈ g}, is not admissible. Let us
assume that G is a compact simple Lie group. Without loss of generality,
we can assume that g belongs to a maximal torus T . The eigenspace V
corresponding to the eigenvalue −1 of Adg in g is then even-dimensional,
and it splits into the orthogonal direct sum,

V = ⊕α∈ΓVα,

where each Vα is two-dimensional, and spanned by the linear combina-
tion of the root vectors eα, e−α,

aα =
eα + e−α√

2
, bα =

eα − e−α

i
√

2
,

the sum being taken over a subset Γ of the set of positive roots. If
K(eα, e−α) = 1, then (aα, bα) is an orthonormal basis of Vα. Let us
twist the complement g− by t = ε

2

∑
α∈Γ aα ∧ bα, where ε is a nonzero

real number. After the twist, the new complement is the direct sum of
the orthogonal of V and of the subsbace of ⊕α(Vα⊕Vα) spanned by the
vectors

1
2
(aα,−aα) + ε(bα, bα),

1
2
(bα,−bα) − ε(aα, aα).

Let us compute the 1-forms x̂′ defined by the choice of the admissible
complement thus obtained by twisting. If x is in the orthogonal com-
plement to the eigenspace V , then x̂′ coincides with the 1-forms x̂ of
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formula (3.5.4). In order to determine the 1-forms corresponding to a
basis of V , it is sufficient to deal with one of the Vα’s, and we shall omit
the index α. The dressing vector field on G corresponding to (x, x) is
xλ − xρ, and that corresponding to (x,−x) is −(xλ + xρ). Assuming
that x is in V , then Adg x = −x, and therefore (x, x)G = 2xλ and
(x,−x)G = 0. Thus, the dressing vector fields corresponding to this ba-
sis of V are 2εbλ and −2εaλ, respectively. The dual 1-forms are defined
by

〈
â′, 2εbλ

〉
= −

(
(a, a)|(1

2
a + εb,−1

2
a + εb)

)
= −K(a, a),

〈
â′, 2εaλ

〉
=

(
(a, a)|(1

2
b − εa,−1

2
b − εa)

)
= K(a, b)

and similarly for b, 〈
b̂′, 2εbλ

〉
= −K(a, b),〈

b̂′, 2εaλ
〉

= K(b, b).

Therefore
â′ = − 1

2ε
K(b, θ), b̂′ =

1
2ε

K(a, θ),

where θ is the left-invariant Maurer-Cartan form.

3.6 The bivector on D/G

If we choose a quasi-triple (D, G, h) corresponding to the group pair
(D, G), a bivector is defined on the space S = D/G introduced in the
previous subsection. Since the bivector PD = rλ

d − rρ
d is projectable by

the projection of D onto D/G, it defines a bivector PS on S = D/G.
Because all left-invariant vector fields generated by g are projected to
zero, the projection of rλ

d vanishes, and therefore

PS = −(rd)S .(3.6.1)

The notation (rd)S refers to the homomorphism from d to the vector
fields on D/G induced by the action of D on D/G, extended to a homo-
morphism from the tensor algebra of d to the algebra of contravariant
tensors on S = D/G. Note that although rd ∈ d ⊗ d is not anti-
symmetric, after projection it defines a bivector on S. The bivector PS

corresponding to a complement h will often be referred to as P h
S .
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The properties of PS follow from those of PD. Since the Schouten
bracket of PS is the projection of that of PD, from (3.2.4) we obtain,

1
2
[PS , PS ] = ϕS .(3.6.2)

Clearly, the action of D on D/G is a bivector map from (D, PD) ×
(S, PS) to (S, PS). It follows from (2.3.10) that

LxSPS = −F (x)S , LξS
PS = f(ξ)S − ϕ(ξ)S ,(3.6.3)

for all x ∈ g, ξ ∈ h.
Under a twist t of the Manin quasi-triple (d, g, h) into (d, g, h′), the

bivector P h
S is modified to P h′

S = P h
S − tS .

If the isotropic complement h of g in the Manin quasi-triple (d, g, h)
is a Lie subalgebra of d, all the bivectors P h

D, P h
G and P h

S have vanishing
Schouten brackets, and define Poisson brackets satisfying the Jacobi
identity on the corresponding spaces.

The bivector PS has an interesting characteristic property which
plays the key role in the moment map theory. Let (P h

S)� be the map
from 1-forms to vectors defined by

〈
(P h

S)�α, β
〉

= P h
S(α, β), for any

1-forms α, β on S.

Proposition 3.6.4. Let (D, G, h) be a quasi-triple such that h is
admissible on an open neighborhood U of s ∈ D/G, and let P h

S be the
corresponding bivector on S = D/G. Then, for any x ∈ g,

(P h
S)�(x̂h) = xS(3.6.5)

holds on U , where x̂h is defined by (3.4.5). This property uniquely char-
acterizes the bivector P h

S in the neighborhood U .

Proof. We choose an isotropic complement h of g in d, admissible in
an open neighborhood U of s ∈ D/G. Let x be an element in g. We
apply the map (P h

S)�, where P h
S = −(ei)S ⊗ (εi)S , to the 1-form x̂h. By

definition, we obtain

(P h
S)�(x̂h) = (x|εi)(ei)S = xS ,(3.6.6)

which proves formula (3.6.5). The complement h being admissible, the
1-forms (êi)h form a basis of the cotangent space to D/G at each point
in U . Hence, formula (3.6.5) gives a characterization of the bivector P h

S

on U . q.e.d.
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Example 3.6.7. The standard Manin quasi-triple (d, g, g∗) is in
fact a Manin triple, so the bivector PS has a vanishing Schouten bracket
and defines a Poisson bracket on g∗. Actually, the induced bivector on
S = g∗ coincides with the Kirillov-Kostant-Souriau bivector,

PS = −(rd)S = −(ei)S ⊗ (εi)S =
1
2

∑
ijk

fk
ijξk

∂

∂ξi
∧ ∂

∂ξj
.(3.6.8)

Example 3.6.9. For the quasi-triple (G × G, G, g−), the bivector
PS has the form

PS = −(rd)S = −
∑

i

(∆ei)S ⊗ (∆−ei)S =
1
2

∑
i

eλ
i ∧ eρ

i .(3.6.10)

Here we used the fact that
∑

i eiei ∈ U(g) is a Casimir element, and
therefore

∑
i e

λ
i ⊗ eλ

i =
∑

i e
ρ
i ⊗ eρ

i . Usually, the Schouten bracket of
the bivector (3.6.10) is nonvanishing. A notable exception is the group
G = SU(2), where ϕS vanishes although ϕ �= 0 [23].

4. Quasi-Poisson actions

We shall now introduce quasi-Poisson actions in general, and show
that the actions that we have described in Section 3 are examples of
quasi-Poisson actions arising from Manin pairs.

4.1 The definition of quasi-Poisson actions

Let G be a connected Lie group with Lie algebra g, and let M be a
manifold on which the Lie group G acts. We shall denote by xM the
vector field on M corresponding to x ∈ g, and, more generally, the
multivector field on M corresponding to x ∈ ∧

g. By convention, xM

satisfies

(xM .f)(m) =
d

dt
f(exp(−tx).m)|t=0,(4.1.1)

for x ∈ g, m ∈ M and f ∈ C∞(M). We first recall from [17] the
following characterization of Poisson actions of connected Poisson Lie
groups on Poisson manifolds.

Proposition 4.1.2. If the action of a Poisson Lie group (G, PG) on
a Poisson manifold (M, PM ) is a Poisson action, then, for each x ∈ g,

LxM PM = −F (x)M .(4.1.3)
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The converse holds if G is connected.

Thus, in this case [PM , PM ] = 0 (since PM is Poisson) and (4.1.3)
holds.

Remark 4.1.4. There is a simple interpretation of the above
characterization of Poisson actions. Equation (4.1.3) is equivalent to
the commutativity of the diagram

∧
g

dF−−−→ ∧
g	 	∧X (M)

dPM−−−→ ∧X (M)

where the vertical arrows are induced by the infinitesimal action x ∈
g �→ xM ∈ X (M), the linear space of vector fields on M . The map dF

is, up to a sign, the Chevalley-Eilenberg cohomology operator of the Lie
algebra g∗ with bracket F , with values in the trivial g∗-module. More
precisely, dF =[F, . ], where [ , ] is the “big bracket” on

∧
(g ⊕ g∗).

(See [12].) The map dPM
= [PM , . ], where [ , ] is the Schouten bracket

of multivectors, is the Lichnerowicz-Poisson cohomology operator on
multivectors on M . In other words, the action x ∈ g �→ xM ∈ X (M) is
the infinitesimal of a Poisson action if and only if it induces a morphism
from the complex (

∧
g, dF ) to the complex (

∧X (M), dPM
).

The following definition generalizes the notion of a Poisson action.

Definition 4.1.5. Let (G, PG, ϕ) be a connected quasi-Poisson Lie
group acting on a manifold M with a bivector PM . The action of G on
M is said to be a quasi-Poisson action if and only if

1
2
[PM , PM ] = ϕM ,(4.1.6)

LxM PM = −F (x)M ,(4.1.7)

for each x ∈ g.

Let (D, G, h) be a quasi-triple. We consider G with the quasi-Poisson
structure defined in Section 3.3, and the space S = D/G with the bivec-
tor PS defined in Section 3.5. Then the dressing action of G on D/G
is quasi-Poisson. In fact, properties (4.1.6) and (4.1.7) were proved in
Section 3.5. The action of G obtained by restriction to any G-invariant
embedded submanifold of D/G is also a quasi-Poisson action. In partic-
ular, those G-orbits that are embedded submanifolds of D/G are quasi-
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Poisson spaces, in the sense that they are manifolds with a bivector on
which a quasi-Poisson Lie group acts by a quasi-Poisson action.

Under a twist t, the quasi-Poisson Lie group (G, P h
G, ϕh) is modified

to (G, P h′
G , ϕh′), where P h′

G , ϕh′ are given by (3.3.8) and (2.3.14), and
(M, P h

M ) is modified to (M, P h′
M ), where

P h′
M = P h

M − tM .(4.1.8)

A simple computation in terms of Schouten brackets shows that after
the twist the action remains quasi-Poisson,

LxM P h′
M = LxM P h

M − [xM , tM ] = −(Fh(x) + adx t)M

= − Fh′(x)M ,

1
2
[P h′

M , P h′
M ] =

1
2
[P h

M , P h
M ] +

1
2
[tM , tM ] − [P h

M , tM ]

= (ϕh − 〈t, t〉 + ϕ1)M = (ϕh′)M ,

where we have used the transformation rules and the notations of (2.3.13)
and (2.3.14).

The last calculation shows that one can consider a family of quasi-
Poisson Lie groups Gh

D acting on a family of quasi-Poisson spaces (M, P h
M ),

where P h′
M = P h

M − tM when the complements h and h′ are related by
a twist t. We have just shown that when the action of Gh

D on (M, P h
M )

is quasi-Poisson for an isotropic complement h it is also quasi-Poisson
for any h′. In the moment map theory which we shall present in the
next section, it is more convenient to consider families Gh

D acting on
(M, P h

M ) than individual quasi-Poisson Lie groups acting on individual
quasi-Poisson spaces. It would be interesting to find a geometric frame-
work for this construction which does not explicitly refer to the choice
of an isotropic complement.

Remark 4.1.9. In the case of quasi-Poisson actions, the operators
dF = [F, . ] and dPM

= [PM , . ] can still be defined, but their squares
do not vanish. In fact, (dF )2 = [ϕ, . ] and (dPM

)2 = [ϕM , . ]. In
the first formula the bracket is the algebraic Schouten bracket on

∧
g

and, in the second, it is the Schouten bracket of multivectors on M .
Formula (4.1.7) can still be interpreted as the commutattivity of the
diagram of Remark 4.1.4, defined by the map from

∧
g to

∧X (M)
induced by the action of G on M , and by the operators dF and dPM

. It
follows that the squares of these operators commute with the induced
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map, and this implies that the 3-vector 1
2 [PM , PM ] − ϕM has vanishing

Schouten bracket with any multivector in the image of the induced map.
Condition (4.1.6) expresses the fact that this 3-vector actually vanishes.

4.2 Properties of quasi-Poisson actions

First, we characterize the quasi-Poisson actions as bivector maps.

Proposition 4.2.1. Let ρ : G × M → M be an action of a con-
nected quasi-Poisson Lie group Gh

D on a manifold M equipped with a
bivector P h

M which satisfies the property 1
2 [P h

M , P h
M ] = (ϕh)M . Then ρ

is a quasi-Poisson action if and only if ρ maps the bivector P h
G +P h

M on
G × M to P h

M .

Proof. The proof is identical to that in the case of Poisson actions.
See [17] [13]. q.e.d.

Next, we introduce the notion of quasi-Poisson reduction, similar to
the usual Poisson reduction, which yields a genuine Poisson structure
on the space of orbits.

Theorem 4.2.2. Let Gh
D be a connected quasi-Poisson Lie group

acting on a manifold (M, P h
M ) by a quasi-Poisson action. Then the

bivector P h
M defines a Poisson bracket on the space C∞(M)G of smooth

G-invariant functions on M . This Poisson bracket is independent of
the choice of h.

Proof. First, we show that the bracket of G-invariant functions,
f1, f2, is G-invariant. Indeed,

(LxM P h
M )(df1, df2) = −F (x)M (df1, df2) = 0,

for any x ∈ g, because F (x) ∈ ∧2 g and, hence, F (x)M annihilates
df1 ∧df2. Next, we observe that the bracket defined by P h

M on invariant
functions is a Poisson bracket,

1
2
[P h

M , P h
M ](df1, df2, df3) = ϕM (df1, df2, df3) = 0,

because ϕ ∈ ∧3 g and f1, f2 and f3 are G-invariant. Finally, if one
modifies the complement h to h′, the bivector on M is modified by a
twist, P h′

M = P h
M − tM , and the Poisson bracket of invariant functions is

unchanged,

P h′
M (df1, df2) = P h

M (df1, df2) − tM (df1, df2) = P h
M (df1, df2)



156 anton alekseev & yvette kosmann-schwarzbach

because tM annihilates invariant functions. q.e.d.

Let us introduce the projection p : M → M/G onto the space of
G-orbits on M . If the G-action is free and proper in a neighborhood
U of x ∈ M , the space M/G is smooth near p(x), and PM defines a
Poisson structure on p(U).

5. Generalized moment maps

In this section we define moment maps for quasi-Poisson actions.
For the actions of a quasi-Poisson Lie group Gh

D, the space S = D/G
is the target of the moment maps. We always assume that a moment
map µ : M → D/G is equivariant with respect to the G-action on M
and the dressing action on D/G. As we show in Proposition 5.1.5, the
equivariance condition ensures that the definition is independent of the
choice of an admissible complement h ⊂ d. The following definition of a
moment map for a quasi-Poisson action of a quasi-Poisson Lie group on
a manifold with a bivector is a generalization of the notion of equivariant
moment map for the Poisson action of a Poisson Lie group on a Poisson
manifold, defined in [16], which itself generalizes the usual notion of
equivariant moment map for a hamiltonian action of a Lie group on a
Poisson manifold.

5.1 Definition of a moment map

Let Gh
D be a connected quasi-Poisson Lie group, and let x �→ xM be the

action of g on M by the infinitesimal generators, defined by (4.1.1), of
a quasi-Poisson action of Gh

D on (M, P h
M ). We define the map (P h

M )�

from 1-forms on M to vector fields on M by
〈
(P h

M )�α, β
〉

= P h
M (α, β).

Definition 5.1.1. A map µ from M to D/G, equivariant with
respect to the action of G on M and to the dressing action of G on
D/G, is called a moment map for the action of Gh

D on (M, P h
M ) if, on

any open subset Ω ⊂ M ,

(P h
M )�(µ∗x̂h) = xM ,(5.1.2)

for any h admissible on µ(Ω). The action of Gh
D on (M, P h

M ) is called
hamiltonian if it admits a moment map. A hamiltonian quasi-Poisson
space is a manifold with a bivector on which a quasi-Poisson Lie group
acts by a hamiltonian action.
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We observe that, in this generalized situation, the target of the mo-
ment map is a hamiltonian quasi-Poisson space. (The term “quasi-
hamiltonian” was used in [3] but in the context of group valued moment
maps.) From (3.6.5), it follows immediately that the dressing action of
G on D/G is hamiltonian and has the identity of D/G as a moment
map. Moreover, let N be any G-invariant embedded submanifold of
S = D/G. There is a unique bivector PN on N such that the embed-
ding of N into S is a bivector map. Then the hamiltonian dressing
action of G on S restricts to a hamiltonian action of G on N , and has
the embedding of N into S = D/G as a moment map. In particular,
the orbits of the dressing action of G on D/G which are embedded
submanifolds are hamiltonian quasi-Poisson spaces.

Example 5.1.3. If the Manin quasi-triple (d, g, h) is a Manin triple,
then ϕ = 0, so (G, PG) is a Poisson Lie group and (M, PM ) is a Poisson
manifold. In this case, the preceding definition of an equivariant mo-
ment map reduces to that given by Lu in [16], that is, the infinitesimal
generator of the group action xM is the image under the map P �

M of the
pull-back by the moment map of the right-invariant 1-form with value
x at the identity in the dual group D/G of G.

In the particular case of the standard quasi-triple, (T ∗G, G, g∗),
which corresponds to the Manin triple (g ⊕ g∗, g, g∗), with F = 0 and
ϕ = 0, the Poisson bivector PG vanishes and the dual group is the
abelian group g∗. The moment map then takes values in the vector
space g∗. For any x ∈ g, the right-invariant 1-form xρ is the constant
form x on g∗, and its pull-back by the moment map is d(µ(x)), so we
recover the usual definition of the moment map for a hamiltonian ac-
tion. In this case, the orbits of the dressing action of G on g∗ are the
coadjoint orbits familiar from the usual moment map theory.

Example 5.1.4. In the case of (G×G, G, g−), the quotient space
D/G = G is diffeomorphic to the group G, and the dressing action
is the action by conjugation. Hence, the conjugacy classes in G are
hamiltonian quasi-Poisson spaces, and the inclusion is a moment map.

In fact, we do not need to impose the moment map condition (5.1.2)
for all admissible complements because conditions (5.1.2) for different
admissible complements are equivalent.

Proposition 5.1.5. Let h and h′ be two complements admissible
at a point s ∈ D/G, and let m ∈ M be such that µ(m) = s. Then,
at the point m, conditions (5.1.2) for h and h′ are equivalent, namely
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(P h
M )�(µ∗x̂h) = (P h′

M )�(µ∗x̂h′).

Proof. To prove the proposition, we use both (3.5.1) and the above
definition of the moment map and its equivariance. Thus, at a point m
such that µ(m) = s,

(P h′
M )�(µ∗x̂h′) = (P h

M − tM )�(µ∗x̂h′) = (P h
M )�(µ∗ν̂xh) − tM (µ∗ν̂xh)

= (νx)M + ((t ◦ τs)(νx))M = ((1g + t ◦ τs)(νx))M = xM .

Here we have used the equivariance property of the moment map and
formula (3.4.3), which imply that, for any y in g,〈

µ∗ŷh, (ei)M

〉
(m) =

〈
ŷh, (ei)S

〉
(s) = (τs)iky

k,

when µ(m) = s, and hence

tM (µ∗ŷh)(m) = −((t ◦ τs)y)M (m).(5.1.6)

The proposition is therefore proved. q.e.d.

5.2 Torus-valued moment maps

Let us consider the Manin pair (d, g), where d = u(1)⊕u(1) and g = u(1).
Here d is the direct sum of two copies of g, and this is a particular case
of Example 2.1.5. There are two group pairs with a compact subgroup
corresponding to this Manin pair, (S1 × R, S1) and (S1 × S1, S1). The
first group pair corresponds to the usual moment map theory. Let us
show that the notion of a moment map for the second group pair extends
that of an S1-valued moment map in the sense of McDuff [18] [9] [24]
to the case of a manifold with a possibly degenerate Poisson bivector.
A symplectic action of S1 on a symplectic manifold (M, ωM ) is also a
quasi-Poisson action of the quasi-Poisson Lie group S1 defined by the
quasi-triple (S1×S1, S1, g−), where g− = 1

2∆−(u(1)) (see 2.1.5), because
in this case F = 0 and ϕ = 0. Here S = (S1 × S1)/S1 � S1. Since S1

is abelian, we see from (3.5.4) that X̂ = −dα, where X is the generator
of u(1) and α is the parameter on S1. A moment map for this quasi-
Poisson action is a map, µ, from M to S1, satisfying P �

M (µ∗dα) = XM .
When PM is nondegenerate with inverse ωM , this condition is equivalent
to iXM

ωM = µ∗dα, where i denotes the interior product, which is the
defining property of an S1-valued moment map.

More generally, for r > 1, T r-valued moment maps (see [9]) for
symplectic actions of an r-dimensional torus T r = S1 × . . . × S1 are
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also moment maps for the quasi-Poisson action of the quasi-Poisson Lie
group T r defined by the quasi-triple (T r × T r, T r, g−), where g is the
Lie algebra tr = u(1) ⊕ . . . ⊕ u(1), since in this case also F = 0 and
ϕ = 0, and the preceding relation is valid for each copy of S1.

When G is a compact, connected abelian Lie group, quasi-hamiltonian
G-spaces (M, ωM ) in the sense of [3] are necessarily symplectic. When
M is equipped with the nondegenerate bivector PM defined by ωM , it is
also a hamiltonian quasi-Poisson space for the quasi-Poisson Lie group
G defined by the quasi-triple (G×G, G, g−), because in this case, (5.1.2)
coincides with the defining property of the group-valued moment map
of [3]. For nonabelian compact Lie groups, it can be shown [2] that
the moment map theory developed here also coincides with the moment
map theory of [3].

5.3 The standard quasi-triple and group-valued moment maps

We now summarize the case of the hamiltonian quasi-Poisson spaces,
already considered in Examples 2.1.5, 3.1.3, 3.5.3, 3.6.9 and 5.1.4.

If G is a connected Lie group with a bi-invariant scalar product,
then there is a well-defined Ad-invariant element ϕ in

∧3 g, where g is
the Lie algebra of G. If (K�)−1 denotes the isomorphism between g∗

and g defined by the scalar product K on g, then ϕ satisfies

ϕ(ξ, η, ζ) =
1
4

〈
ξ,

[
(K�)−1η, (K�)−1ζ

]〉
.

The Lie group G diagonally embedded in G × G defines a group pair
and an associated quasi-triple is (g ⊕ g, ∆(g), 1

2∆−(g)), with the scalar
product on g⊕ g defined by (2.1.6). In this quasi-triple, F = 0 and the
element ϕ in

∧3 g is the one defined above.
Let M be a manifold on which the Lie group G acts and let P be

a bivector field on M . Then (M, P ) is a quasi-Poisson space if P is
G-invariant and

1
2
[P, P ] = ϕM ,(5.3.1)

where ϕM is the field of trivectors on M induced from ϕ by the infinites-
imal action of g on M .

If one identifies G with S = (G × G)/G, then the dressing action of
G on S is identified with the adjoint action of G on itself. The 1-forms
x̂ on G defined by the choice of the above quasi-triple are such that

x̂g = 2K((1g + Adg)−1x, θg),(5.3.2)
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for g ∈ G, where θ is the left Maurer-Cartan form on G.
According to Definition 5.1.1, (M, P ) is called a hamiltonian quasi-

Poisson space if it is a quasi-Poisson space and if, moreover, there exists
a moment map for the quasi-Poisson action of G on M .

Proposition 5.3.3. Let (M, P ) be a manifold with a bivector on
which the compact simple Lie group G acts and which is a quasi-Poisson
space. Then (M, P ) is a hamiltonian quasi-Poisson space if and only if
there exists a map µ : M → G which is equivariant with respect to the
given action of G on M and the adjoint action of G on itself, and which
satisfies

P �(µ∗K(x, θ)) =
1
2
((1g + Adµ)x)M ,(5.3.4)

for all x ∈ g.

Proof. At each point m ∈ M , let us apply the construction of
Example 3.5.3, with g = µ(m), to obtain an admissible complement by
means of which we formulate the definition of the moment map. The
bivector on M , after the twist t = ε

2

∑
α∈Γ aα ∧ bα, is

P ′ = P − ε

2

∑
α∈Γ

(aα)M ∧ (bα)M .

If x is in the orthogonal complement of the kernel of 1g + Adµ(m),
then x̂′ = x̂, and P ′(µ∗x̂) = P (µ∗x̂). Taking into account (5.3.2),
we see that the condition (5.3.4) is then equivalent to the definition
P �

m(µ∗(x̂µ(m))) = xM (m). For aα, bα ∈ Vα, the moment map conditions
are P ′�

M (µ∗â′α) = (aα)M , P ′�
M (µ∗b̂′α) = (bα)M . We replace â′α, b̂′α by

their values found in Example 3.5.3. Using the equivariance of the mo-
ment map, and the fact that xρ = −xλ, for x ∈ V , we find, for all
α, β ∈ Γ,

ε

2

∑
α∈Γ

((aα)M ∧ (bα)M )(µ∗â′β) = −(aβ)M ,

ε

2

∑
α∈Γ

((aα)M ∧ (bα)M )(µ∗b̂′β) = −(bβ)M ,

Thus the moment map condition, for x ∈ V , reduces to

P �(µ∗K(x, θ)) = 0,

and therefore it coincides with (5.3.4). q.e.d.
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5.4 Generalized foliations of hamiltonian quasi-Poisson spaces

We now consider a hamiltonian quasi-Poisson G-space (M, P h
M ), as in

Definition 5.1.1, where G = Gh
D is a quasi-Poisson Lie group defined by

a Manin quasi-triple (d, g, h). We wish to show that, under an additional
assumption, there is an integrable generalized distribution on M defined
by the image of any bivector P h

M , where h is admissible.
It follows from the existence of a moment map for the action of G

on M that, at each point in M where h is an admissible complement,
the image of (P h

M )� contains the tangent space to the G-orbit through
this point.

We further observe that, under a change of admissible complement,
when P h

M is modified to P h′
M = P h

M − tM (see (4.1.8)), the image of
(P h′

M )� coincides with that of (P h
M )�. In fact, since by the moment map

property the image of t�M is contained in the tangent space to the G-
orbit, then Im t�M ⊂ Im(P h

M )�, and therefore Im(P h′
M )� ⊂ Im(P h

M )�. By
symmetry, the two images coincide. We denote by D the generalized
distribution thus defined on M .

Proposition 5.4.1. The distribution D on the quasi-Poisson space
M satisfies the Frobenius property, [D,D] ⊂ D.

Proof. Let P = P h
M for an admissible h. Let f and g be arbitrary

functions on M , and let [P, P ]�(df, dg) denote the vector field on M such
that 〈

[P, P ]�(df, dg), α
〉

= [P, P ](df, dg, α),

for any 1-form α on M . Then

[P �(df), P �(dg)] − P �d{f, g} = −1
2
[P, P ]�(df, dg).

Since 1
2 [P, P ] = ϕM , and since the tangent space to the G-orbit at each

point is contained in the distribution ImP � = D, we conclude that
[D,D] ⊂ D. q.e.d.

To conclude that the distribution D is completely integrable, it is
enough, by the Stefan-Sussmann theorem (see e.g., [22]), to assume
that the rank of D is constant along the trajectory of any “hamiltonian
vector field”, P �(df), f ∈ C∞(M). If µt is the flow of P �(df) in the
neighbourhood of m ∈ M , then the dimension of the image of P � at
µtm is at least equal to that of the image of P � at m. Reversing the
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argument, we see that the dimensions of the images at both points are
equal.

Under this assumption, there is a well-defined generalized foliation
(in the sense of Stefan and Sussmann) on M , whose leaves are nonde-
generate hamiltonian quasi-Poisson spaces containing the G-orbits. To
see that each leaf satisfies the nondegeneracy property, we observe that,
by the skew-symmetry of P , the kernel of P �

m is the orthogonal of ImP �
m.

Therefore, P �
m factorizes through the dual of ImP �

m and, by dimension
counting, is an isomorphism onto ImP �

m.

Example 5.4.2. Let the quasi-Poisson space M be D/G = S.
Then the leaves of the generalized foliation D are the orbits of the
dressing action of G on S.

Let, in particular, the quasi-Poisson space M be (G × G)/G ∼= G
as in Section 5.3. In this case, the orbits of the dressing action are the
conjugacy classes of G, each of which is a nondegenerate hamiltonian
quasi-Poisson space.

5.5 Properties of moment maps

The generalized moment maps introduced in the previous section possess
properties which resemble the properties of the usual moment maps.

Theorem 5.5.1. Let (M, P h
M , µ) be a hamiltonian quasi-Poisson

space acted upon by a connected quasi-Poisson Lie group Gh
D. Then, on

any open set Ω ⊂ M such that h is admissible on µ(Ω), the moment
map is a bivector map from (M, P h

M ) to (S, P h
S),

µ∗P h
M = P h

S .(5.5.2)

Proof. By the definition of the moment map, for all x ∈ g,

µ∗xM = µ∗(P h
M )�(µ∗x̂h),

while, by the characteristic property of PS , xS = (P h
S)�(x̂h). Thus, we

see that µ∗P h
M = P h

S follows from the equivariance condition, µ∗xM =
xS , and from the fact that the 1-forms x̂h span the cotangent space to
S. q.e.d.

Sometimes it is convenient to require that the bivector P h
M be non-

degenerate, i.e., that the map (P h
M )� be an isomorphism. We next show

that for hamiltonian quasi-Poisson spaces this condition is independent
of the particular choice of a complement.
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Proposition 5.5.3. Let (M, P h
M , µ) be a hamiltonian quasi-Poisson

space acted upon by Gh
D. Let h and h′ be two isotropic complements of

g admissible on µ(Ω), where Ω is an open subset of M . Then P h
M is

nondegenerate on Ω if and only if P h′
M is nondegenerate on Ω.

Proof. We assume that P h
M is nondegenerate and we let α be a

1-form in the kernel of P h′
M . Then,

(P h
M )�(α) = tMα.

Since h is admissible, there exists x ∈ g, such that tMα = xM . (If
α = αi(εi)M , we can set x = tikαiek.) By the nondegeneracy of P h

M

and the definition of the moment map, α = µ∗x̂h. Applying (5.1.6), we
obtain xM (m) = −((t ◦ τs)x)M (m), where s = µ(m). The equivariance
of the moment map implies that ((1g + t ◦ τs)x)S = 0, which in turn
implies that τs(1g + t ◦ τs)x = 0. If both complements h and h′ are
admissible at s, the operator 1g + t ◦ τs is invertible, and therefore from
(t◦τs)(1g+t◦τs)x = 0, we obtain (t◦τs)x = 0. Since xM = −((t◦τs)x)M ,
the vector field xM vanishes. Therefore α = 0, and P h′

M is nondegenerate.
q.e.d.

Because of the preceding proposition, it is justified to call a family
of bivectors P h

M nondegenerate if P h
M is nondegenerate for an admissible

h.

Example 5.5.4. In the case of the standard quasi-triple studied
in Section 5.3, it follows from (5.3.4) that (M, P, µ) is a nondegenerate
hamiltonian quasi-Poisson space if and only if, for each m ∈ M ,

ker(P �
m) = {µ∗K(x, θ)|x ∈ ker(1g + Adµ(m))}.

Finally, we establish a relation between the Poisson reduction of
Theorem 4.2.2 and moment maps.

Theorem 5.5.5. Let (M, P h
M , µ) be a hamiltonian quasi-Poisson

space such that the bivector P h
M is everywhere nondegenerate. Assume

that M/G is a smooth manifold in a neighbourhood U of p(x0), where
x0 ∈ M . Let x ∈ M be such that p(x) ∈ U and s = µ(x) ∈ D/G
is a regular value of the moment map, µ. Then the symplectic leaf
through p(x) in the Poisson manifold U is the connected component of
the intersection with U of the projection of the manifold µ−1(s).
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Proof. The proof is analogous to that in the case of Poisson actions.
See, e.g., [16] .

Let x ∈ M be as stated and let y = p(x) be its projection in U ⊂
M/G. Let L ⊂ U ⊂ M/G be the symplectic leaf passing through y in
the Poisson manifold U . We choose any complement h admissible at
s = µ(x). We need to prove that the projection of the tangent space to
the level submanifold, p∗Txµ−1(s), coincides with the tangent space to
the symplectic leaf, TyL.

We denote the Poisson bivector which is locally defined on M/G near
y by Q. Let v be a vector in TyL. By definition, v = Q�(α), where α is a
1-form in T ∗

y (M/G), and we can also represent v as v = p∗(P h
M )�(p∗α).

The vectors u that are tangent to the level submanifold µ−1(s) ⊂ M
are characterized by the property 〈u, µ∗x̂h〉 = 0 for any x ∈ g. The
bivector P h

M being nondegenerate, any vector u tangent to M at x can
be represented as u = (P h

M )�(β) for some β ∈ T ∗
xM . Then u is tangent

to µ−1(s) if and only if
〈
β, xM

〉
= 0, for all x ∈ g, in other words, the

1-form β is the inverse image of a 1-form α ∈ T ∗
y (M/G), β = p∗α.

We conclude that TyL = p∗(P h
M )�(p∗T ∗

y (M/G)) = p∗Txµ−1(s) which
proves the theorem. q.e.d.

Thus, we have extended several of the basic properties of hamil-
tonian group actions on Poisson manifolds to the case of hamiltonian
quasi-Poisson actions.
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