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COMPACT SELF-DUAL MANIFOLDS WITH TORUS
ACTIONS

AKIRA FUJIKI

Abstract
We show that a compact self-dual four-manifold with a smooth action of a
two-torus and with non-zero Euler characterestic is necessarily diffeomor-
phic to a connected sum of copies of complex projective planes, and fur-
thermore the self-dual structure is isomorphic to one of those constructed
by Joyce in [11]. This settles a conjecture of Joyce [11] affirmatively. Our
method of proof is to show, by complex geometric techniques, that the asso-
ciated twistor space, which is a compact complex threefold with the induced
holomorphic action of algebraic two-torus, has a very special structure and
is indeed determined by a certain invariant which is eventually identified
with the invariant associated with the Joyce’s construction of his self-dual
manifolds.

1. Introduction

Let m be a non-negative integer and M = mP 2 the connected sum
of m copies of complex projective plane P 2. Suppose that we are given
a smooth effective action of the real two torus K on M . In [11] Joyce
constructed a series of examples of conformal self-dual metrics on M
which are invariant under the given K-action. Further he raised the
following conjecture [11, 3.3.4]:

Let M be a compact connected oriented simply connected
four-manifold with a smooth and effective K-action. Sup-
pose that M admits a K-invariant conformal self-dual met-
ric. Then M must be diffeomorphic to a connected sum of
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complex projective planes, and the conformal self-dual met-
ric coincides with one of his self-dual metrics above.

The purpose of this paper is to give an affirmative answer to this con-
jecture in the following stronger form:

Theorem 1.1. Let M be a compact connected oriented four-
manifold with smooth and effective K-action. Suppose that its Euler-
Poincare characterestic χ(M) is nonzero. Then if M admits a K-
invariant self-dual metric, M is diffeomorphic to a connected sum of
copies of complex projective planes and the conformal self-dual metric
coincides with those constructed in [11].

Together with the results of Poon [22] this leads to a classification
of self-dual conformal structures with two-torus actions in general.

Corollary 1.2. Let M be a compact connected oriented four-mani-
fold with smooth and effective K-action. If M admits a K-invariant self-
dual structure, then either M is conformally flat or M is isomorphic to
one of Joyce’s examples.

As is shown in [22, Th. A], when M is locally conformally flat with
K-action, it is one of the following standard examples: 1) a manifold
covered by a real four-torus, 2) a four-sphere S4, and 3) a Hopf sur-
face. Note also that compact self-dual manifolds which admit a group
of conformal automorphisms of dimension greater than two have been
classified by Poon [21].

Now the method of Joyce [11] for constructing the K-invariant self-
dual metric is to reduce, by using the K-symmetry, the self-duality
equation on M to a certain system of linear partial differential equations
on the quotient N := M/K, which is identified with the unit disc in the
complex plane. Once the underlying smooth K-action on M is fixed, his
solutions of the latter equation, i.e., his self-dual metrics, depend on a
parameter which is a circular sequence of k points on the boundary of the
unit disc considered modulo the action of the conformal automorphism
group of the unit disc and the cyclic permutations, where k = m+ 2.

With this last fact in mind, we start with a general compact ori-
entated self-dual four-manifold M with K-action, and study in detail
the complex analytic structure of the associated twistor space Z with
the induced action of the complexfication G of K, which is an algebraic
two-torus.

Under the assumption of Theorem 1.1 the singular set Σ(Z) of the
inducedK-action on Z, i.e., the points where the stabilizer group is non-
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trivial, turns out to be a disjoint union of cycles of nonsingular rational
curves. We then determine the local G-action at each point of Σ(Z).
Using these results, we further show that the closures of general G-orbits
which intersect a sufficiently small neighborhood of Σ(Z) is necessarily
analytic and smooth in Z. Together with some global consideration
using the Douady space of Z, we then conclude that every G-orbit has
an analytic closure and there exists a canonical meromorphic quotient
f : Z → P of the G-action on Z, where P is a nonsingular rational
curve.

The meromorphic map f becomes a holomorphic map f : Ẑ → P
after blowing up Z with center a distinguished cycle C of nonsingular
rational curves contained in Σ(Z). This is in fact the main object of
study in this paper. Among other things we show that the map f
is given by a subsystem of a G-invariant elements of the fundamental
system |− 1

2K| of Z, which forms a pencil, and that the general members
of this system are mutually isomorphic projective smooth toric surfaces
whose isomorphism class is explicitly determined by the invariant of the
given K-action on M introduced by Orlik and Raymond [18]. At this
stage we can already show that M is diffeomorphic to mP 2 and that Z
is Moishezon, where m is the second betti number of M . Σ(M) consists
then of a single cycle of two-spheres and the quotient N = M/K is
diffeomorphic to a closed two disc by [18] as in the case of Joyce.

The real structure σ on Z induces ones on Ẑ and P , making f σ-
equivariant. The fixed point set R of σ on P is diffeomorphic to S1

and is considered as the boundary of either of the closed two-discs D
which are connected components of P −R. It turns out that there exist
exactly k singular fibers for f and the corresponding points a1, . . . , ak
on the base P all lie in the real part R, where k = m + 2 as above.
Suppose that a1, . . . , ak are arragned cyclically on R. Then we consider
the sequence of points (a1, . . . , ak) (modulo the action of the conformal
automorphism group of D and cyclic permutations) as a basic invariant
of our twistor space Z (endowed with G-action, the real structure σ and
the twistor fibration t : Z → M), and hence, of the original self-dual
manifold M with K-action via the inverse twistor correspondence.

We then proceed to show the effectivity of this invariant in the follow-
ing sense: Suppose that we are given two self-dual conformal structures
[g] and [g′] on M = mP 2 which is invariant under the given K-action
on M . Perform the construction above for the corresponding twistor
spaces Z and Z ′ and obtain fiber spaces f : Ẑ → P and f ′ : Ẑ ′ → P ′

respectively. Suppose further that the sets of points on the bases corre-
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sponding to the singular fibers are identical with respect to a suitable
identification of P and P ′. Then there exists a biholomorphic map
j : Z → Z ′ which is compatible with the real structures and G-actions
and which maps twistor lines to twistor lines. We shall show this, first
by studying the local structure of the fiber space f : Ẑ → P along each
singular fiber, and then by studying its global structure on the basis of
this local consideration.

Finally, for the purpose of identifying our invariant (a1, . . . , ak)
with the Joyce’s “invariant” attached to his examples, we first inter-
pret Joyce’s invariant as a special case of an invariant which can be de-
fined for any simply connected compact conformal four-manifold with
K-action. We then show that in the case of a self-dual manifold with K-
action, this conformal invariant and the invariant above arising from the
associated twistor space are naturally identified via a certain twistor-
like correspondence between the quotient N and one of the discs D in
P with boundary R. Combined with the effectivity of the invariant
mentioned above this immediately yields Theorem 1.1.

This article is arranged as follows. In §2 we summarize what we
need on toric surfaces which will appear in the fibers of the morphism
f : Ẑ → P above. In §3 first we recall some of the results of Orlik-
Raymond [18] on K-actions on a compact smooth four-manifold M .
Furthermore when a K-invariant conformal structure on M is given, we
introduce an invariant of this conformal K-action as a circular sequence
of points on the boundary of the unit disc on a complex plane modulo
certain equivalence.

From §4 on we start our study of a self-dual manifold M with K-
action. After summarizing the basic construction and properties of the
associated twistor space we determine the singular set Σ = Σ(Z) of the
K-action on Z and the isotropic representation of the stabilizer group at
each point of Σ. By using this in §5 we determine the local behaviour of
G-orbits near the singular set Σ . From this we deduce that any G-orbit
which intersects with a sufficiently small neighborhood of Σ has, up to a
finite number of exceptions, a smooth analytic closure in Z. Combined
with global consideration using the structure of the space of divisors on
Z we obtain in §6 the meromorphic quotient Z → P and the associated
holomorphic fiber space f : Ẑ → P mentioned above. In this section
we further study the structure of this fiber space in detail. Especially,
we show that there exist exactly k singular fibers Sai , ai ∈ P , for f and
that ai are real points with respect to the induced real structure on P .

We then proceed to show that f is determined uniquely by the lo-



compact self-dual manifolds with torus actions 233

cation of the points ai. For this purpose we first show in §7 that this is
the case at least locally along each singular fiber. Here the deformation
theoretic method and the toric method give supplmentary descriptions
of the local structure of this fiber space. Then in §8 we prove the global
uniqueness of the fiber space f with the given invariant (a1, . . . , ak). Fi-
nally in §9 we prove the coincidence of this invariant with the conformal
invariant defined in §3.

Notation and Convention. Unless otherwise is mentioned, G and K
denote respectively the real and algebraic two-torus so thatG = C∗×C∗

and K ∼= S1×S1. In this paper we often encounter the sentences which
contain ± more than once such as: “A± is contained in B±”, which
should always read as: “A+ is contained in B+ and A− is contained in
B−.”

Acknowlegdement. The author expresses gratitude to A. Huckle-
berry for giving him the oppotunity for writing up the manusucript of
the paper in the nice atomosphere of Bochum University. Thanks are
also due to N. Honda for stimulating discussions at the early stage of
this investigation.

2. Toric surfaces

(2.1) We recall some basic definitions and results on toric surfaces
[17, 13]. Let G ∼= C∗ ×C∗ be an algebraic torus of dimension two. A
compact smooth toric surface is a compact connected nonsingular pro-
jective algebraic surface S on which G acts effectively and algebraically
and with a unique open orbit U .

The complement C := S − U then forms a cycle of nonsingular
rational curves in the sense that it has the irreducible decomposition
C = C1∪· · ·∪Cs, where each Ci is a nonsingular rational curve, Ci∩Cj =
∅ if |i − j| ≥ 2, and Ci and Ci+1 intersect transversally at exactly one
point, with Cs+1 := C1. Moreover C with reduced structure belongs to
the anti-canonical system |−KS | of S and it is called the anti-canonical
cycle of the toric surface S. We also refer to the curves Ci as boundary
curves of S.

Let ai = C2
i be the self-intersection number of Ci. Then we may

associate with S a weighted circular graph with vertices vi, one for each
Ci, with weights ai. The isomorphism class of a toric surface is com-
pletely determined by the associated circular weighted graph modulo
cyclic permutations and reversing the order (cf. [17, Cor. 1.29]).
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We also note that by [24, 7.6] the anti-Kodaira dimension κ−1(S) of
S always satisfies

κ−1(S) = 2.(1)

(2.2) A toric surface is completely described by the associated
combinatorial data [17, 1.1,1.2]. Let N be the set of one parameter
subgroups of G, which is naturally a free abelian group of rank 2. We
may write G = C∗ ⊗Z N and any isomorphism N ∼= Z2 gives rise to
an isomorphism G ∼= C∗ ×C∗. Let NR = N ⊗Z R ∼= R2.

A complete fan on N , or a complete rational polyhedral decompo-
sition of N , is by definition a collection

	 = {{0}, τj , σi}, 1 ≤ i, j ≤ s

of one-dimensional simplices τi and two-dimensional simplices σj in NR,
both defined over the rationals, such that NR = ∪σi and that the faces
of σi consist of τi and τi+1, where τs+1 = τ1, σs+1 = σ1 by convention
and τ1, . . . , τn are numbered so that it is arranged cyclically around
the origin in NR. For any τi there exists a unique primitive element
ρi ∈ τ∩N such that τi = R≥0ρi. The fan	 is then completely recovered
from the circular sequence {ρ1, . . . , ρs}. Conversely, any such sequcence
gives rise to a complete fan, if ρi are not contained in a fixed halfplane
in NR, by the above correspondence.

(2.3) Compact smooth toric surfaces are in natural bijecitive cor-
respondence with complete fans in NR such that

for every i, ρi and ρi+1 form a Z-basis of N.(2)

If we fix an isomorphism N ∼= Z2, and hence, an isomorphism G ∼=
C∗ ×C∗, we may write ρi = (mi, ni) for coprime integers mi and ni so
that ρi is the one parameter subgroup given by ρi(t) = (tmi , tni), t ∈ C∗.
We assume that ρi are arranged counterclockwise in NR

∼= R2. Then
the condition (2) is equivalent to the condition∣∣∣∣ mi ni

mi+1 ni+1

∣∣∣∣ = 1.(3)

The correspondence between toric surfaces and fans is determined by
the following condition: If a compact smooth toric surface S corresponds
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to a fan 	, then the one-parameter subgroup ρi : C∗(t)→ G fixes each
point of Ci and for any point x ∈ U we have

lim
t→0

ρi(t)(x) ∈ Ci.(4)

We also note the relation [17, p.43 (∗)]

ρi−1 + ρi+1 = −aiρi.(5)

(2.4) Let Aut(S,C) be the group of automorphisms of S which
preserves C, and Aut0(S,C) its identity component. Moreover, denote
by Aut(S, {Ci}) the subgroup of Aut(S,C) consisting of those elements
which preserves each irreducible component of C.

Lemma 2.1. G = Aut0(S,C) = Aut(S, {Ci}).
Proof. We have the natural inclusions

G ⊆ Aut0(S,C) ⊆ Aut(S, {Ci}).

The Lie algebra of Aut0(S,C) is naturally identified with the sheaf
Θ(− logC) of holomorphic vector fields on S which are tangent to C,
while the latter is isomorphic to OS ⊗Z N (cf. [17, Prop. 3.1]). Thus
we have

dim Aut0(S,C) = dimH0(S,Θ(− logC)) = 2

and hence the equality G = Aut0(S,C).
It remains to see that the latter inclusion is an equality. Let

g ∈ Aut(S, {Ci}) be an arbitrary element. It induces an automorphism
a(g) : t → gtg−1 of G, t ∈ G. But since g leaves each boundary com-
ponent fixed, it also fixes the corresponding one parameter subgroup.
This implies that the automorphism of N induced by a(g) is trivial, and
hence, a(g) itself is trivial. Thus g commutes with every element of G.
Let x be an arbitrary element of U and t the unique element of G which
sends g(x) to x. Then tg has a fixed point x on U . The commutativity
with elements of G implies then that tg fixes any point of U . Thus tg
is the identity. Hence g ∈ G as desired. q.e.d.

(2.5) We are interested in a special class of toric surfaces.
Definition. A compact smooth toric surface S is called symmetric

if the number s of boundary curves is even, say s = 2k, with k ≥ 2,
and the weithts ai of the weighted circlular graph associated to S has
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the property that ai = ai+k for all i, 1 ≤ i ≤ k. In this case we call
a1, . . . , ak the reduced weights of S.

For instance if S0 := P 1 × P 1 with standard toric structure, it is
symmetric with k = 2 and a1 = a2 = 0.

Suppose that S is a symmetric toric surface with s = 2k. Denote by
pj the intersection point of Cj and Cj+1, 1 ≤ j ≤ 2k. We call a pair of
points admissible if it is of the form (pi, pi+k) for 1 ≤ i ≤ k. We call a
blowing up S̃ → S admissible if its center is an admissible pair of points
on S. Then any toric surface obtained from a symmetric toric surface
by an admissible blowing-up is again symmetric.

Lemma 2.2. Every symmetric toric surface is obtained from S0 =
P 1 × P 1 by a finite succession of admissible blowing-ups. In particular
if k ≥ 3, ai = C2

i < 0 for all i.

Proof. We proceed by induction on k ≥ 2. When k = 2, the possible
weights for a toric surface S are a, 0,−a, 0 for some non-negative integer
a [17, Cor. 1.29]. Thus S is symmetric if and only if a = 0, i.e., S = S0.

Let S be a toric surface with s = 2k ≥ 6. Suppose that the lemma is
verified for symmetric toric surfaces with smaller s. Since S is obtained
from a minimal toric surface by a finite succession of blowing-ups at
some intersection points of boundary divisors [17, Th. 1.28], there is
a (−1)-curve, say Ci, on S. By symmetry, Ci+k also is a (−1)-curve.
Then by blowing down these two (−1)-curves we obtain a symmetric
toric surface with s = 2k − 2. By induction it is obtained from S0 by a
finite succession of admissible blowing-ups. The lemma follows. q.e.d.

For later use we also give a result on the existence of (−1)-curves
among the boundary curves considered in the above proof. We call a
pair of (−1)-curves of the form (Cj , Cj+k) admissible.

Lemma 2.3. Let S be a symmetric toric surface with s = 2k ≥ 6.
Fix a pair of admissible points (pi, pi+k) on S. Then there eixsts an
admissible pair of (−1)-curves on S which do not pass through either of
pi and pi+k.

Proof. We proceed by induction on k ≥ 3. If k = 3, S is obtained
from S0 by an admissible blowing-up. Then all the weights are −1 and
the conclusion of the lemma is true.

In the general case let S be obtained from a symmetric torus surface
S by an admissible blowing-up. Let (Cj , Cj+k) be the admissible pair of
(−1)-curves which are the exceptional curves of this blowing up. If they
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do not pass through either of pi and pi+k, the proof is done. Suppose not.
Then pi and pi+k are mapped to the center of this admissible blowing-up.
By induction there exists on S an admissible pair of (−1)-curves which
do not pass through these points. Then the proper transforms of these
(−1)-curves to S give rise to a desired admissible pair of (−1)-curves.

q.e.d.

(2.6) We give characterizations of symmetric toric surfaces.

Proposition 2.4. Let S be a toric surface such that the number
s of boundary curves is an even number 2k(≥ 4). Then the following
conditions are equivalent:

1) S is symmetric.
2) The fan defining S satisfies ρi+k = −ρi for all i, 1 ≤ i ≤ k.
3) There exists a holomorphic involution τ of S which interchanges

Ci and Ci+k, 1 ≤ i ≤ k, and which satisfies

τgτ−1 = g−1, g ∈ G.(6)

Proof. 3) =⇒ 2): Applying τ to (4) and taking into account the
relation (6) we obtain

Ci+k = τ(Ci) � lim
t→0

τ(ρi(t)x) = lim
t→0

ρi(t)−1(τ(x))

This implies that −ρi = ρi+k. 2) follows.
2) =⇒ 3): If 2) is true, the multiplication by −1 is an isomorphism

of the fan of S. Therefore it defines an involution τ of S which maps Ci
to Ci+k satisfying (6) (cf. [17, Th. 1.13]).

3) =⇒ 1): Clear.
1) =⇒ 3): We proceed by induction on k. When k = 2, the involu-

tion τ of S0 = P 1 × P 1 defined by (z, w)→ (1/z, 1/w) has the desired
property. In the general case let S be obtained from a symmetric toric
surface S by an admissible blowing-up. Then by induction there exists
an involution τ of S satisfying the desired properties. Since τ inter-
changes the blown-up points pi and pi+k, it lifts to an involution τ on
S inheriting the desired properties from τ . q.e.d.

Let τ be as in 3) above. Let Ĝ be the semidirect product Ĝ := G·〈τ〉
with respect to the action (6) of τ on G. We have Ĝ = G

∐
τG and

any element of τG is an involution and can play the role of τ above.
The above lemma shows that for a symmetric toric surface S, Aut(S,C)
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always contains a subgroup isomorphic to Ĝ and any admissible blowing-
down to S0 is Ĝ-equivariant.

(2.7) Given k = m + 2 ≥ 2, up to isomorphisms there exist at
most a finite number n(k) of symmetric toric surfaces; in fact we have
n(2) = n(3) = n(4) = n(5) = 1 and n(6) = 3. More precisely, we obtain
the following table:

k (−a1, . . . ,−ak) n(k) S
2 (0,0) 1 Del Pezzo
3 (1,1,1) 1 Del Pezzo
4 (1,2,1,2) 1 generalized Del Pezzo
5 (2,1,3,1,2) 1

(1,2,3,1,2,3)
6 (1,3,1,3,1,3) 3

(2,1,4,1,2,2) of maximal type

In general for every k there exists (up to equivalence) a unique
weighted circular graph with 2k vertices which has −m as a reduced
weight; then the whole reduced weights are given (up to cyclic permu-
tations and the inversion of the order) by

(−a1, . . . ,−ak) = (2, . . . , 2, 1,m, 1, 2, . . . , 2)

unless k ≤ 4. In this case we call the corresponding toric surface of
maximal type. In this sense the surfaces for 2 ≤ k ≤ 5 are all of maximal
type although it is not indicated in the table. Moreover the number n(k)
can be determined explicitly for any k (cf. Proposition 3.4 below).

(2.8) We shall determine equivariant morphisms of a symmetric
toric surface onto curves.

Lemma 2.5. Let S be a symmetric toric surface with boundary
components Ci, 1 ≤ i ≤ 2k. Then for each i, 1 ≤ i ≤ k, there exists a
natural equivariant morphism νi : S → Pi onto a nonsingular rational
curve Pi with the following properties:

1) Any proper surjective morphism of S onto a curve coincides with
one of νi. More generally, any nonsingular rational curve L in S
with self-intersection number L2 = 0 is a fiber of νi for a unique i.

2) Ci and Ci+k are mapped isomorphically onto Pi by νi.
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3) With respect to a suitable choice of an affine coordinate z of Pi
the singular fibers of νi appear precisely over 0 and ∞ such that:

a) The singular fiber over 0 is a positive linear combination of
Cj, i + 1 ≤ j ≤ i + k − 1, while the fiber over ∞ is one of
Cj with i + k + 1 ≤ j ≤ i − 1 (index considered modulo 2k)
where the coefficients of Cj and Cj+k coincide for any j.

b) The smooth fibers are orbit closures of the one parameter
group ρi.

4) For any i, νi × νi+1 : S → P 1 × P 1 is a birational morphism
which contracts all the components Cj other than Cl and Cl+k, l =
i, i+ 1.

Proof. We give the definition of νi in two ways.
1) Geometric definition: Fix i. By Lemma 2.3 there exists an ad-

missible blowing-down u : S → S0 in which all the components Cj
other than Cl, Cl+1, l = i, i+ 1, are contracted to an admissible pair of
points on S0 and which is otherwise isomorphic. Then the compositions
S → P 1 of u with the two projections S0 → P 1 yields holomorphic
surjection νi and νi+1. The properties 2), 3) and 4) are all immediately
checked as well as the independency of the definition of the choices of
the points pi or pi−1 used in Lemma 2.3.

2) Combinatorial definition: For every 1 ≤ i ≤ k we consider the
quotient homomorphism χi : N → N i := N/Zρi. Since ρi is prim-
itive, N i is a free abelian group of rank one and χi induces a natu-
ral map of fans (N,	) → (N i,	), where if ξ is a genarator of N i,
	 = {R≥0ξ, 0,−R≤0ξ}.

Corresponding to χi we get a G-equivariant morphism S → Pi onto
the toric projective line Pi, which is easily identified with the above
νi. The map νi × νi+1 : S → S0 is the equivariant birational morphism
corresponding to the “forgetting map” of the fans, where the fan of S0 is
obtained by deleting all the primitive vectors ρj other than ρl, ρl+1, l =
i, i+ 1.

Proof of the property 1). It suffices to show the latter statement. If
L2 = 0, the linear system defined by L gives a morphism f : S → P 1

onto the complex projective line, which is necessarily equivariant with
an induced G-action on P 1 [23, Satz 1.3]. On the other hand, any
equivariant morphism of toric varieties corresponds to a map of fans
(cf. [17, Th. 1.13]); however, from the shape of our fan it is immediate
that the possible such equivariant morphisms are those given by χi.

q.e.d.
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(2.9) Let S be a symmetric toric surface. Let g → g∗ be the unique
anti-holomorphic involution of G with fixed point set the maximal com-
pact subgroupK ∼= S1×S1. Suppose that S admits an anti-holomorphic
fixed point free involution satisfying

σgσ−1 = g∗, g ∈ G.(7)

Then the following holds:

Lemma 2.6. The equivariant morphisms νi : S → Pi of Lemma 2.5
are all σ-equivariant with respect to an induced action of σ on Pi. If
there exists a real fiber, then the fixed point set Ri of σ on Pi is diffeo-
morphic to S1 and consists of a single K-orbit.

Proof. Applying σ to (4) and taking into account (7) we obtain

σ(Ci) � lim
t→0

σ(ρi(t)(x)) = lim
t→0

(ρi(t)∗)(σ(x)) ∈ Ci+k.

This implies that

σ(Ci) = Ci+k(8)

for any i. Thus the σ-equivariancy of νi follows from 3) b) of Lemma 2.5.
The second assertion is obvious. q.e.d.

Lemma 2.7. There exist up to isomorphisms at most four anti-
holomorphic involutions on S satisfying the condition (7).

Proof. On S0 = P 1 × P 1 we have four natural anti-holomorphic
involutions; with respect to affine coordinates (z, w) of S0 they are
(z, w) → (±1/z,±1/w). Note that these anti-holomorphic involutions
are expressed as σs for some element s of order ≤ 2 of K. It is easy
to see that these all satisfy the property (7). For any succession of
admissible blowing-ups starting from S0 these involutions lift to the
resulting symmetric toric surface. By Lemma 2.2 the existence of four
anti-holomorphic involutions which satisfy (7) is thus verified in general.

Next we show that any such anti-holomorphic involution is isomor-
phic to one of them. If there exist two anti-holomorphic involutions σ
and σ′ of S satisfying (7), then in view of (8) h := σ−1σ′ is a holomor-
phic automorphism of S which preserves all the irreducible components
of C. Then by Lemma 2.1 we have h ∈ G. Since σ′ is an involution,
we must have σhσh = id; thus σhσh(x) = h∗hx = x for any x ∈ S, or
equivalently, with respect to a suitable isomorphism G ∼= C∗ × C∗ we
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may write h = (t1, t2) with ti ∈ R. If we set |h| = (|t1|, |t2|), we may
write h = s|h| with s = (±1,±1). Then

a−1σa(x) = σa2(x) = σ|h|(x) for a = (
√
|t1|,

√
|t2|).

Thus, σh = σ|h|s = a−1(σs)a. Namely, σh is conjugate to σs, and up to
isomorphisms there exist at most four non-isomorphic anti-holomorphic
involutions. q.e.d.

(2.10) We may “divide into halves” a symmetric toric surface along
each of its k “diagonals” pipi+k. Let S be a symmetric toric surface with
reduced weights (a1, . . . , ak). Then for each i, 1 ≤ i ≤ k, we define a
pair of (not necessarily symmetric) projecitve smooth toric surfaces S+

and S− as follows. Let ρ = {ρi, 1 ≤ i ≤ 2k} be the set of primitive
elements giving the fan of S = S(ρ). Then define for each i

S±
i (ρ)(9)

to be the toric surfaces determined by a sequence of primitive elements

±(ρ1, . . . , ρi,−ρi + ρi+1,−ρi+1, . . . ,−ρk)(10)

which generates 1-simplices of a complete fan. (Here and in what fol-
lows we adopt the following convention. If a sentence contains the no-
tation ± more than once, it actually consist of two sentences, one for
+ only and the other for − only. See Convention and Notation in the
Introduction.) It is clear that any two adjacent elements in (10) form
a Z-basis so that the resulting toric surface is smooth and compact.
Both surfaces have k + 1 boundary components, which we shall denote
by (C±

1 , . . . , C
±
i , L

±
i , C

±
i+1, . . . , C

±
k ) respectively. In view of (5), from

ρi + (−ρi+1) = (−1)(−ρi + ρi+1)(11)
ρi−1 + (−ρi + ρi+1) = −aiρi − ρi = −(ai + 1)ρi(12)

the self-intersection numbers are computed as

L±2
i = 1 and C±2

l = al + 1, l = i, i+ 1

respectively. Therefore the corresponding weighted cirular graphs for
S±
i (ρ) are the same and is given by

(a1, . . . ai−1, ai + 1, 1, ai+1 + 1, ai+2, . . . , ak)(13)

modulo cyclic permutations; in particular S+(ρ) and S−(ρ) are mutually
isomorphic. We shall note one important property of surfaces S±

i (ρ).
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Lemma 2.8. Let S be either of S±
i (ρ) of (9). Then there exists

a toric birational morphism f : S → P 2 which blows down all the
boundary curves other than L and the two irreducible components of C
which are adjacent to L.

Proof. We proceed by induction on k ≥ 2. When k = 2, by (13) and
Lemma 2.2 S = P 2 and there is nothing to prove. Suppose that k > 2.
Then by Lemma 2.3 there exists an admissible pair of (−1)-curves on
S(ρ) which do not pass through neither pi nor pi+k. Contracting these
(−1)-curves we obtain a symmetric toric surface S(ρ′) for a suitable ρ′

with (k − 1) boundary components. One of these (−1)-curves may be
naturally identified with a (−1)-curve in S and contracting this curve
in S we obtain a surface S′ which is identified with either of S+

i′ (ρ
′) for

some i′. So we may apply the induction hypothesis to finish the proof.
(One may also note that the fan generated by the primitive vectors
ρi, ρi+1 and −ρi + ρi+1 is exactly the fan defining a complex projective
plane.) q.e.d.

We identify G-equivariantly S+
i = S+

i (ρ) and S−
i = S−

i (ρ) transver-
sally along L. We shall call the resulting surface Si := S+

i ∪L S+
i

with natural G-action a degenerate symmetric toric surface. The G-
equivariancy implies that C+

i , L and C−
i+1 (resp. C−

i , L and C+
i+1) inter-

sect (transversally) at one point p+
i (resp. p−i ). We set b±j = C±

j ∩C±
j+1,

where the indices j are considered cyclically modulo k. We shall call
any blowing up of Si with center a pair of smooth points {b+j , b−j }, j �= i,
an admissible blowing up. Then the resulting surface is again a degen-
erate symmetric toric surface naturally. In particular if k = 2, Si are all
isomorphic and is a union of two copies of the toric projective planes.
Denote this surface by S. Then from Lemma 2.8 we deduce immediately
the following:

Lemma 2.9. Any degenerate symmetric toric surface Si as above
is obtained from a finite succession of admissible blowing-ups from S.

We also use the following:

Lemma 2.10. Let S = S±
i (ρ), L = Li and Cj be as above. Then

the complete linear system |−KS−2L| is non-empty if and only if either
of Ci and Ci+1 has the self-intersection number 3− k = 1−m.

Proof. When k = 2, S is a toric projective plane P 2 and the anti-
canonical cycle L0 + L1 + L2 consists of three lines Lj , one of which
is our L. Thus | − KS − 2L| = |L| on P 2, which is non-empty and
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L2
j = 1 = 3− 2. In the general case let f : S → P 2 be as in Lemma 2.8

and suppose that L is the proper transform of, say L0. If |−KS−2L| �= ∅,
then the successive blowing-ups, of which f is the composition, is done
always on the proper transform of one of Li for a fixed i(= 1 or 2). Then
the proper transform of this Li is either Ci or Ci+1 and it has the desired
self-intersection number 3 − k. It is also easy to see that conversely, if
the latter holds, f is obtained precisely as described above. q.e.d.

3. Torus actions and conformal invariants

(3.1) Let M be a connected compact oritented smooth 4-manifold.
Suppose that a real two-torus K ∼= S1×S1 acts smoothly and effectively
on M . This situation has been extensively studied by Orlik-Raymond
[18], to which we refer for the details.

We begin with a simple and well-known remark on the fixed point
set of our K-action.

Lemma 3.1. Let M with a K-action be as above. Then the Euler-
Poincare characterestic χ(M) of M is nonnegative, and it is positive if
and only if K has a fixed point. In particular the latter is the case when
M is simply connected.

Proof. We first note that the fixed point set F of the action is isolated
if it is not empty. Indeed, let x ∈ F be any point. Then the isotropic
representation of K in the normal space Nx at x of the submanifold F
in M is faithful. But this is possible only when dimNx = 4, i.e., x is
isolated.

Now if we take a general S1-subgroup S of K, its fixed point set
also coincides with F . Hence we have χ(M) = χ(F ) + χ(M − F ) with
χ(M −F ) = 0, S acting on M −F locally freely. Thus, with bi the i-th
betti number of M , we get

0 ≤ #F = χ(F ) = χ(M) = 2− 2b1 + b2,(14)

where #F denotes the cardinality of F . The lemma follows. q.e.d.

(3.2) We call a union

B := B1

⋃
· · ·

⋃
Bk.

of 2-spheres Bi on M a cycle of two-spheres if it has the property that
Bi

⋂
Bj = ∅ if |i − j| ≥ 2, and Bi and Bi+1, 1 ≤ i ≤ k, intersect
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transversally at a single point xi, Bi ∩ Bi+1 = {xi}, 1 ≤ i ≤ k, where
we consider the indices i and j modulo k so that Bk+1 = B1.

Let Σ(M) be the singular set of the K-action, i.e., the set of points
whose stabilizer group is nontrivial.

Lemma 3.2. Suppose that χ(M) �= 0. Then Σ(M) is a disjoint
union of cycles of two-spheres, each of which is of the form B := B1 ∪
· · · ∪Bk as above such that:

1) Each xi := Bi ∩Bi+1, 1 ≤ i ≤ k, is a fixed point.

2) At each point x of B′
i := Bi − {xi−1, xi} the stabilizer group is

a S1-subgroup Ki of K which is independent of the choice of the
point x, where x0 = xk.

Moreover, if M is simply connected, B is unique and coincides with
Σ(M).

Proof. By Lemma 3.1 χ(M) > 0 and there exists a fixed point x.
Then the isotropic representation of K at x is a direct sum of two repre-
sentations, in each of which the representation has a fixed S1-subgroup
as the kernel. The fixed point set of these S1-subgroups consists of
smooth surfaces embedded in M and intersect transversally at x. These
surfaces must be diffeomorphic either to S2 or real projective plane RP 2

since it admits an S1-action with fixed points.
We claim that RP 2 does not occur. Indeed, let R be one of the

surfaces passing through x and K1
∼= S1 the stabilizer group at a general

point of R. We have the effective action of K/K1 on R. Suppose
now that R is a real projective plane RP 2. Then the element −1 ∈
K/K1

∼= S1 admits a component H of a fixed point set on R which is
homeomorphic to S1. We may lift −1 to an element s of order two on
K. Then K1 × 〈s〉(∼= S1 × Z2) acts effectively on the two dimensional
normal vector space Nx at each point x of H, which is impossible. Thus
R is never RP 2. Then for any fixed point x we have two embedded two-
spheres intersecting transversally at x. Take one of it, say B1. On B1

we have exactly one more fixed point, say x2, other than x1. Repeat the
same consideration at x2 and obtain another embedded two-sphere B2

intersecting transversally with B1 at x2 and is pointwise fixed by some
S1-subgroup of K. Continuing in this way we finally obtain a sequence
of two-spheres B1, . . . , Bk each of which is pointwise fixed by some S1-
subgroup of K, where Bk and B0 intersect transversally at a single point
xk. In this way we obtain a cycle of two-spheres B := B1∪· · ·∪Bk with
the desired property.
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2) is well-known (cf. [18]) and the final assertion is proved in
[18, §5]. q.e.d.

(3.3) Fix an identification K = S1 × S1. We identify S1 with the
multiplicative group of complex numbers of modulus one. For any pair
(m,n) of coprime integers we introduce the S1-subgroup K(m,n) of K
by

K(m,n) := {(s, t) ∈ K = S1 × S1; smtn = 1}.

These groups are mutually different except that we have K(m,n) =
K(−m,−n).

Now we consider a generalK-action onM with fixed points as above.
Let B = ∪Bi be one of the cycles of S2 contained in the singular set
of the action. Then the stabilizer group Ki of a point x belonging to
the set B′

i is independent of x and is written as Ki = K(mi, ni) for a
pair (mi, ni) of coprime integers mi and ni which are determined up
to (simultaneous) inversion of signs. Moreover, these pairs of coprime
integers are subject to the condition:∣∣∣∣ mi ni

mi+1 ni+1

∣∣∣∣ = ±1(15)

coming from the effectivity of the action. Thus, associated to the cycle
B one obtains a circular sequence

{±(m1, n1), . . . ,±(mk, nk)}(16)

of pairs of coprime integers considered up to signs as above. We shall
call this sequence (16) the Orlik-Raymond invariant of the cycle B (or
of M when M is simply connected.)

(3.4) When M is simply connected, also the structure of the quo-
tient is determined (cf. [18, §5]). In this case, as follows from (14),
the number m := k − 2 equals the second Betti number of M and the
set {x1, . . . , xk} are precisely the set of fixed points of K The quotient
N := M/K is naturally homeomorphic to the closed two-disc and in
this way N admits a structure of a C∞ manifold with boundary. Let
π : M → N be the quotient map and N0 the interior of N . Then
M0 := π−1(N0) = M −B is the maximal open subset of M on which K
acts freely.
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Further, if bN denotes the boundary of N , we have π−1(bN) = B,
and bN = B/K. Moreover, the images

yi := π(xi), 1 ≤ i ≤ k,

of xi are arranged cyclically on the circle bN with respect to an ori-
entation of bN and then Bi/K is identified with the closed arc on bN
connecting yi−1 and yi. In this case the Orlik-Raymond invariant, con-
sidered modulo cyclic permutations and reversing the orders, completely
determines the isomorphism class of the K-action on M [18].

(3.5) We shall give a supplement to a result of Joyce [11, 3.1].
Namely we show that when M is diffeomorphic to the connected sum
mP 2 of m-copies of the complex projective plane P 2, the number ι(m)
of isomorphism classes of K-actions on M can be explicitly determined.

Proposition 3.3. Set j(m) = (2m)!/m!(m + 1)! for m ≥ 0, where
0! = 1. Then ι(m) for m > 0 is given by the formula:

ι(m) = j(m)/2(m+ 2) + j((m− 1)/3)/3 + h(m),

where h(m) = 3j(m/2)/4 if m is even and = j((m − 1)/2)/2 if m is
odd, with j(l) = 0 if l is not an integer.

Proof. By [11, Prop. 3.1.1] the Orlik-Raymond invariant

{±(mi, ni); 1 ≤ i ≤ k = m+ 2}

can be normalized as follows: There exists a unique element h of
SL(2,Z) such that, after changing the identification K = S1 × S1 by
the automorphism of K induced by h if necessary, one may choose the
signs of ±(mi, ni) so that it is arranged couterclockwise in this order in
R2 such that

(m1, n1) = (1, 0) and (mk, nk) = (0, 1).(17)

In this case we automatically have mi > 0 if i < k and

mini+1 −mi+1ni = 1, 1 ≤ i < k.(18)

Moreover, by [11, Prop. 3.1.2] given an integer k ≥ 2 the number of the
sequences (16) satisfying the above conditions (17) and (18) is equal to
j(m). In his proof this number is in fact identified with the number of
subdivisions of a regular k-gon into triangles.
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On the other hand, the Orlik-Raymond invariant is determined up
to the cyclic permutations and reversing the orders. In the above cor-
respondence counting the number of possible Orlik-Raymond invariants
modulo this equivalence relation exactly corresponds to counting the
number of the above subdivisions modulo rotations and reflections of
the k-gons. This latter numer is indeed computed to be equal to be
the number given in the statement of the proposition by Moon and
Moser [16] (cf. the reference of Brown’s article listed in [11]). Since the
Orlik-Raymond invariant determines the action completely, this yields
the proposition. q.e.d.

The number ι(m) also coincides with the number of the isomorphism
classes of symmetric toric surfaces.

Proposition 3.4. For k ≥ 2 the number ι(k−2) coincides with the
number n(k) of isomorphism classes of symmetric toric surfaces with
2k boundary components.

Proof. If {±(mi, ni); 1 ≤ i ≤ k} is an Orlik-Raymond invariant,
then with respect to a suitable choice of signs (which is unique up to
simultaneous inversion of signs) the vectors

(n1,−m1), . . . , (nk,−mk), (−n1,m1), . . . , (−nk,mk)

form a cyclic sequence of primitive vectors arranged counterclockwise in
Z2. These give rise to a fan defining a symmetric toric surface by setting
ρi = (ni,−mi) and ρi+k = (−ni,mi) for 1 ≤ i ≤ k (cf. Lemma 4.12
below). This sets a bijective correspondence of the set of Orlik-Raymond
invariants and symmetric fans when both are considered modulo the
action of GL(2,Z). q.e.d.

Remark. One can establish a geometric correspondence between
symmetric toric surfaces and mP 2 with K-actions.

(3.6) In the rest of this section we shall introduce an invariant for
a simply connected conformal four-manifold with K-action. So suppose
now that M is simply connected and is endowed with a K-invariant
conformal structure [g].

Let	 be the open unit disc {|z| < 1} in the complex plane C = C(z)
with the unit circle S = {|z| = 1} as the boundary. We denote by A
the set of (ordered) sequences (q1, . . . , qk) of distinct points qi of S ar-
ranged cyclically on S with respect to an orientation of S and considered
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modulo cyclic permutations. Let H be the group of conformal automor-
phisms of 	, any of which extends to a diffeomorphism of the closure
∆. H thus acts on the set A and the quotient A := A/H is the set
in which our invariant for the action belongs. Note that two sequences
(q1, . . . , qk) and (q′1, . . . , q′k) defines the same element of A if and only
if there exist a conformal automorphism h of 	 and an integer l with
1 ≤ l < k such that h(qi) = qi+l (resp. qi−l) for all i.

We use freely the notation of (3.4). We have a natural conformal
structure [h] on N0. In fact, for any point y ∈ N0 the corresponding
conformal structure on the tangent space TyN0 is described as follows.
Take a point x of π−1(y). Let Kx be the orbit of x and T⊥

x the orthog-
onal complement of the tangent space of Kx in the tangent space of M
at x with respect to the given conformal structure. Then via the natural
isomorphism T⊥

x
∼→ TyN we get an induced conformal structure, which

is independent of the choice of the point x ∈ π−1(y).
Since N0 is of real dimensional two, the conformal structure defines

a unique complex structure up to complex conjugation. Hence by the
Riemann’s mapping theorem there exists a conformal isomorphism of
N0 onto the open unit disc 	. (From the argument below it follows
that N0 is not isomorphic to C.) Let α : N0 → 	 be such a map. We
shall prove below the following:

Lemma 3.5. α extends to a unique homeomorphism α of N onto
the closed disc 	.

Then our invariant for a conformal torus action is defined as follows.

Definition. Let x1, . . . , xk, k ≥ 2, be the fixed points of the K-
action and yi = π(xi) ∈ bN, 1 ≤ i ≤ k, be as in (3.4). Then we
set

qi = α(yi), 1 ≤ i ≤ k.
Since any other choice of α is obtained by composing an element of H
with α, the image [q1, . . . , qk] of the cyclic sequence (q1, . . . , qk) in A is
an invariant of the given K-action.

Example. In the construction of self-dual metrics on mP 2 in [11]
Joyce first puts a conformal structure on the quotient N0 = M0/K by
identifying N with the closed unit disc 	 and then specifies k points
{y1, . . . , yk} on the boundary bN , which is to be the parameter of his
self-dual metrics. By the very construction of his, this conformal struc-
ture on N0 is precisely the one coming from the conformal structure
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of M as explained above and the points yi are exactly the images by
π : M → N of the fixed points of K on M . Thus the parameter of Joyce
is naturally identified with the conformal invariant of the K-action on
M defined above.

(3.7) For the proof of Lemma 3.5 we use the following classical
result due to Lindelöf [2, p.86]:

Lemma 3.6. Let D be a simply connected bounded domain in the
complex plane C whose boundary is a Jordan curve. Let α : D →	 be a
biholomorphic map onto the unit disc, whose existence is guaranteed by
the Riemann’s mapping theorem. Then α extends to a homeomorphism
up to the boundary of both domains.

In order to apply this result we prove the following:

Proposition 3.7. N is realized as a closed subdomain of a sim-
ply connected manifold N̂ to which the conformal structure [h] on N0

extends smoothly.

Proof of Lemma 3.5 from Proposition 3.7. By Proposition 3.7 and
the Riemann’s mapping theorem, there exists a conformal isomorphism
of N̂ (with the extended conformal structure) onto the unit disc 	 in
C, after restricting N̂ if necessary. The restriction of this map to N
realizes N0 as a bounded domain in C with smooth boundary so that
we can apply Lemma 3.6 to get a desired homeomorphic extension of φ.
q.e.d.

(3.8) Before going into the proof of Proposition 3.7 we recall some
of the general facts in the construction of the quotient N = M/K in
the smooth category.

To get N̂ we consider N as a C∞ manifold with corners rather
than as a manifold with boundary. Here, in our two dimensional case
a manifold with corners means a manifold structure which is modelled
on open subsets of the first quadrant R2

≥0 := {(x, y);x, y ≥ 0} and C∞

maps i.e., the maps which extend to C∞ maps of open neighborhoods
in R2. Such a structure on N is determined roughly as follows.

For each point y ∈ N take a point x ∈ π−1(y) and a local slice S at
x for the action; S is a locally closed subset of M passing through x,
which is mapped homeomorphically by π onto a neighborhood, say P ,
of y of N , and which is diffeomorphic to an open subset Q of R2

≥0. Then
the homeomorphism P → S → Q defines a coordinate neighborhood of
N for the structure of a manifold with corners on N . In our case we
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prove further:

Lemma 3.8. A slice S as above can be taken to be an open subset
of a locally closed submanifold Ŝ of M such that there exists a diffeo-
morphism of Ŝ onto an open subset of R2 which maps S onto an open
subset of R2

≥0.

Proof. The construction of the slices at x ∈ B is as follows. We take a
Kx-invariant (complex) coordinate neighborhood W of x in M in which
the action of Kx is complex linearlized. Let z1, z2 be (smooth) complex
coordinates around x and write zi = ui +

√−1vi, ui, vi ∈ R, i = 1, 2.
We have two cases:

Case 1. x �= xi.
In this case, by a suitable choice of zi the Kx-action takes the form:

(z1, z2)→ (z1, sz2), s ∈ Kx
∼= S1

where the orbits of the induced action of K/Kx is defined by u1 = const.
and z2 = const. We then define a local slice S (resp. its extension Ŝ)
to be the intersection of W with the halfplane (resp. plane) {v1 = v2 =
0, u2 ≥ 0} (resp. {v1 = v2 = 0}).

Case 2. x = xi.
With respect to a suitable isomorphism K ∼= S1(s) × S1(t), the

K-action takes the form

(z1, z2)→ (sz1, tz2).

We define a local slice S (resp. its extension Ŝ) as before to be the
intersection of W with the quadrant (resp. the plane) {ui ≥ 0, vi =
0, i = 1, 2} (resp. {v1 = v2 = 0}).

Clearly in either case the pair (S, Ŝ) meets the requirement of the
lemma. q.e.d.

(3.9) The main point in the proof of the existence of a smooth
structure on the quotient is that if we take another slice S′ at the same
point x defined in the same way as above, starting from another Kx-
linearlized coordinates, we can construct naturally a diffeomorphism
between S and S′.

To understand this, it is convenient to perform the real blowing up
ν : M̃ → M along B = ∪Bi. Then M̃ is a smooth 4-manifold with
corners to which the K-action naturally lifts. The main advantage in
passing to M̃ is that the action becomes free there. Moreover, since each
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fiber of ν is in the same K-orbit, we have N = M̃/K. A slice on M is
then nothing but a diffeomorphic image of a slice for the free K-action
on M̃ , and if S̃ and S̃′ are such slices on M̃ we have a corresponding
deffeomorphism ũ : S̃ → S̃′ in the form ũ(s̃) = g̃(s̃)s̃ for a unique smooth
map g̃ : S̃ → K. Since ν is K-equivariant, this induces a diffeomorphism
u : S → S′ with u(s) = g(s)s, where the smooth map g : S → K is
naturally induced by g̃.

Now we show

Lemma 3.9. The above diffeomorphism u : S → S′ extends to a
diffeomorphism û : Ŝ → Ŝ′ between their respective extensions Ŝ and Ŝ′

as defined in Lemma 3.8.

Proof. In Case 1 (resp. Case 2), by the construction of Ŝ in the proof
of Lemma 3.8 there exists an element k (resp. k1, k2) of Kx of order two
such that

Ŝ = S ∪ k(S) (resp. Ŝ = S ∪ k1(S) ∪ k2(S) ∪ (k1k2)(S));

in fact in the local expression there we may take

k = −1 (resp. k1 = (−1, 0), k2 = (0,−1)).

Then for x ∈ k(S) we have

g(k−1x)(x) = (kg(k−1x)k−1)(x) = kg(k−1x)(k−1x) ∈ k(S′) ⊆ Ŝ′

where k = ki, i = 1, 2 in Case 2. Thus the map g : S → K extends
naturally to a continuous map ĝ : Ŝ → K such that x → ĝ(x)x gives a
homeomorphism of Ŝ onto Ŝ′; in fact it is characterized by the equation

ĝ(x) = g(kx), x ∈ Ŝ − S and k as above.(19)

It remains to show that the extended map is smooth on Ŝ. For this
purpose we may consider the map g also as a smooth map g : P → K
since S → P is diffeomorphic. On the other hand, we may consider P
also as the quotient Ŝ/〈k〉 (resp. Ŝ/〈k1, k2〉). Then by (19) our map ĝ
is nothing but the pull-back of the map g : P → K to Ŝ by the quotient
map, and hence is smooth. q.e.d.

Proof of Proposition 3.7. Using Lemma 3.9 we can patch together the
extended slices Ŝ in Lemma 3.8 and obtain a desired smooth manifold
N̂ which contains N as a compact subdomain with corners. Restricting
N̂ if necessary, we may assume that N̂ is simply connected.
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It remains to show that the conformal structure on N is extendible
to N̂ . For this purpose we have only to show the extendibility locally
across any boundary point of N ; indeed, then we can use a partition of
unity to obtain a global extension to N̂ .

Let Tπ be the relative tangent bundle for the projection π : M0 →
N0, which is a subbundle on M0 of the tangent bundle TM of M . Let
S be any slice and Ŝ its extention as in Lemma 3.8. We claim that the
restriction Tπ|S ∩M0 extends to a subbundle T ′ of TM |Ŝ. Indeed, in
either of Cases 1 and 2 we have only to define T ′ to be the subbundle
of TM |Ŝ generated by the two independent sections ∂/∂v1, ∂/∂v2, for
Tπ is generated on S ∩M0 by the two sections ∂/∂v1 and u2∂/∂v2 in
Case 1 and by u1∂/∂v1 and u2∂/∂v2 in Case 2.

The natural conformal structure on the orthogonal complement T
′⊥

of T ′ in TM |Ŝ defines a desired local extension of the conformal struc-
ture on the interior of P = π(S) to P̂ := π(Ŝ). q.e.d.

4. Self-dual manifolds with two-torus action

(4.1) In the first few subsections we summarize basic facts about self-
dual manifolds and the associated twistor spaces (cf. [1]). Let (M, g)
be a compact connected oriented four-dimensional Riemannian mani-
fold. (M, g) is called self-dual if the anti-self-dual part W− of the Weyl
conformal curvature tensor of (M, g) vanishes identitically. Since W−
depends only on the conformal class [g] of g, the notion of self-duality
is defined actually for the conformal manifold (M, [g]).

For any self-dual conformal manifold (M, [g]), one constructs nat-
urally a compact complex manifold Z of dimension three, called the
twistor space of (M, [g]), with the following properties.

1) Z admits a structure of a C∞ fiber bundle t : Z →M over M .
2) Each fiber Lx := t−1(x), x ∈ M , of t is a complex submanifold

of Z and is isomorphic to a complex projective line P 1. Moreover, its
holomorphic normal bundle Nx in Z is isomorphic to the direct sum
O(1)⊕O(1), where O(1) is the line bundle of degree one on P 1.

3) There exists an anti-holomorphic and fixed point free involution
σ on Z which leaves each fiber Lx invariant. We call t : Z → M the
twistor fibration, each Lx a twistor line and σ the real structure of Z.

(4.2) We need some information on the construction of Z from
(M, [g]). Let T be an oriented real four-dimensional vector space with a
positive definite inner product g. We denote by C(T ) = C(T, g, ι) the set
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of isometric complex structures J on T which defines an orientation that
is opposite to the given orientation ι of T . Namely, J is an endmorphism
of T such that J2 = −identity, g(Ju, Jv) = g(u, v) for any u, v ∈ T
and for any complex basis e, f of the complex vector space (T, J), the
resulting real basis e, Je, f, Jf of T defines the orientation opposite to
the original one on T . C(T ) is naturally identified with a complex
projective line and each twistor line Lx is naturally identified with the
set C(Tx) = C(Tx, gx, ιx) for any representative g of [g], where Tx =
TxM is the tangent space of M at x.

To explain these statements we take an orientation preserving isom-
etry u : T → H of real vector spaces, where H is the space of real
quaternions with the oriented orthonormal basis 1, i, j, k. Denote by
Sp(1) the group of unit quaternions. Let

Sp(1)+ × Sp(1)−(20)

act on H by left and right multiplications;

h→ qhq′−1
, h ∈H, (q, q′) ∈ Sp(1)+ × Sp(1)−(21)

where Sp(1)± are copies of Sp(1). If we identity H with R4 naturally,
this action gives a natural isomorphism of groups

(Sp(1)+ × Sp(1)−)/〈(−1,−1)〉 ∼= SO(4).(22)

Now we consider the set

C : = {q ∈ Sp(1)−; q2 = −1}
= {ai+ bj + ck; a2 + b2 + c2 = 1, a, b, c ∈ R}(23)
∼= S2.

Any element q of this set defines by right multiplications

h→ hq−1(24)

an isometric complex structure on H which defines an orientation that
is opposite to the given one on H, and in this way one identifies C with
C(H) = C(Tx) naturally.

The identification of this set with a complex projective line is seen as
follows. Denote by V+ (resp. V−) the complex two dimensional vector
space (H,×i) (resp. (H, i×)), where ×i and i× denote respectively
the complex structures given by the right and the left multiplications
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by i ∈ H. Note that the natural action of Sp(1)± on H defines a
complex representation of these groups on V± respectively.

Let π : V− − 0 → C be defined by π(h) = h−1ih. Then π gives a
smooth fibration whose fiber over h−1ih is precisely the complex line Ch
of V− with the origin deleted. Thus we obtain a natural identification

C = (V− − 0)/C∗ =: P (V−)(25)

and the map π is Sp(1)−-equivariant if we let Sp(1)− act on C by
q → gqg−1, g ∈ Sp(1)−. Note that the latter action induces an action
of Sp(1)−/〈−1〉 ∼= SO(3) on C, and therefore by (22), of SO(4), where
the action of Sp(1)+-factor is trivial.

(4.3) Now for simplicity fix any Riemannian metric g in the given
conformal class [g] on M although the construction below actually de-
pends only on the conformal class [g]. Let α : P →M be the associated
principal bundle of oriented orthonormal frames of M . Then Z is noth-
ing but the fiber bundle overM with typical fiber P (V−) = C associated
to α via the above action of SO(4) on P (V−)

Z := P ×SO(4) P (V−) = P ×SO(4) C.

In this way we get a natural interpretation of each fiber Lx as C(Tx)
above. Further, the left multiplication by j on H descends to an anti-
holomorphic and fixed point free involution on P (V−) which commutes
with the action of SO(4); therefore it globalizes and gives the desired
real structure σ on Z.

The complex structure of Z is defined as follows. First of all, the
Levi-Civita connection of g defines at any point z of Z a horizontal
subspace Hz of the real tangent space Tz of Z, which is mapped isomor-
phically by the differential t∗ onto the tangent space Tx, where x = t(z).
We have thus a natural direct sum decomposition

Tz = Hz ⊕ TzLx = Tx ⊕ TzLx(26)

of real vector spaces. Let Jz be the complex structure on Tx correspond-
ing to z ∈ Lx = C(Tx) and J ′

z the natural complex structure of TzLx
coming from the complex structure of Lx. Then the complex structure
on Z is by definition the direct sum of Jz and J ′

z with respect to (26)
at each point of Z.

With respect to the identification Lx = P (V−) = Sp(1)−/S1 the
normal bundle Nx of Lx in Z is described as the complex homogeneous
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vector bundle by

Nx = Sp(1)− ×S1 V+,

where S1 ⊆ Sp(1)− is identified with {a + bi; a2 + b2 = 1, a, b ∈ R}
acting on V+ = (H,×i) by right multiplications. The map

Sp(1)− ×S1 V+ → V+, (g, v)→ gv(27)

gives rise to a canonical C∞ trivialization

Nx
∼= C × V+.(28)

(4.4) Let (M, [g]) be a compact connected self-dual manifold with
the associated twistor fibration t : Z → M . Suppose now that a real
two-torus K ∼= S1 × S1 acts on (M, [g]) by conformal transformations.
Then the K-action on M lifts naturally to a biholomorphic action on
the twistor space Z, which in turn extends to a biholomorphic action
of the complexfication G ∼= C∗ ×C∗ of K. The lifted K-action clearly
sends a real twistor line onto a real twistor line, commutes with the real
structure σ and is compatible with the direct sum decomposition (26)
at various points of Z. G-action satisfies (7).

We shall use the notation of §2 for the underlying topological action
of K on M . In what follows we assume that χ(M) �= 0 and take and fix
once and for all a cycle B of two-spheres which is a connected component
of the singular set Σ(M) of the action.

(4.5) First we shall determine the singular set Σ = Σ(B) of the
K-action on Z along t−1(B), i.e., the set of points of t−1(B) with non-
trivial stabilizer groups.

For this purpose we study for each point x of B the induced action
on the twistor line Lx of the stabilizer group Kx at x.

It is convenient to distinguish two cases:

Case A. x �= xi for any i, 1 ≤ i ≤ k, so that x ∈ B′
i for some i. In

this case Kx is the S1-subgroup Ki := K(mi, ni) of K.

Case B. x = xi for some i, 1 ≤ i ≤ k. In this case Kx = K.

First we show the following:

Lemma 4.1. For any point x ∈ B there exists on Lx exactly two
fixed points of the stabilizer group Kx, which are σ-conjugate to each
other. If x ∈ B′, the stabilizer group Kz at any other point z of Lx is
trivial.
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Proof. There exists a Kx-invariant orthogonal decomposition of Tx
into two inequivalent two-dimensional Kx-invariant subspaces

Tx = T1 ⊕ T2.(29)

In fact, in Case A we may take T1 to be the maximal subspace on
which Kx acts trivially, i.e., the tangent space of Bi at x, and T2 to
be its orthogonal complement, while in Case B, (29) is nothing but the
isotropic representation of Kx = K = Ki × Ki+1, where e.g., Ki acts
faithfully on T1 and trivially on T2, so that T2 (resp. T1) is identified
with the tangent space of Bi (resp. Bi+1) at x.

On the other hand, a point z ∈ Lx is a fixed point of Kx if and only
if the isotropic action of Kx on Tx commutes with the corresponding
complex structure Jz on Tx. Thus, if z is a fixed point of Kx, then
the complex structure Jz should preserve the direct sum decomposition
(29). In fact, among Jz, z ∈ Lx, precisely two complex structures leave
invariant the decomposition, and if one is denoted by J = Jz0 , z0 ∈ Lx,
the other is given by −J = Jσ(z0). Hence, we have proved the existence
of precisely two σ-conjugate fixed points on Lx. This proves the first
assertion.

For the second assertion, we note that in Case A ifKz is nontrivial at
some point of z ∈ Lx, the above argument still works with Kx replaced
by Kz, so that Jz still must preserve the decomposition (29). Thus it
must be either of ±Jz0 above and z must coincide with one of the fixed
points of Kx. q.e.d.

Denote these two Kx-fixed points on Lx by z±, and when x = xi we
write them z±i . Since a point is fixed by K if and only if it is fixed by
G, the above lemma immediately implies the following:

Corollary 4.2. The fixed point set of G on t−1(B) consists of 2k
isolated points z±i , 1 ≤ i ≤ k. The two points z±i are σ-conjugate to each
other. When M is simply connected, they exhaust all the fixed points of
G on Z.

From Lemma 4.1 we conclude:

Lemma 4.3. There exist precisely two irreducible nonsingular ra-
tional curves C±

i , 1 ≤ i ≤ k, contained in Σ which are mapped dif-
feomorphically onto Bi by t. Moreover we have C+

i ∩ C−
i = ∅ and

σ(C±
i ) = C∓

i .

Proof. The fixed point set Fi of Ki on t−1(Bi) is a σ-invariant
complex submanifold of Z. From Lemma 4.1 we see readily that it is a
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nonsingular curve and is an unramified double covering of Bi. Since Bi
is simply connected, Fi is a disjoint union of two nonsingular rational
curves C±

i which are σ-conjugate to each other. q.e.d.

We call twistor lines Lx over points x of B special and the twistor
lines

Li := t−1(xi), 1 ≤ i ≤ k
very special. We may assume that z±i ∈ C±

i .

Proposition 4.4. The singular set Σ(B) of the K-action along
t−1(B) is written as a union of nonsingular rational curves as

Σ(B) = (∪ki=1Li)
⋃

(∪ki=1(C
+
i ∪ C−

i )).

Moreover, the stabilizer group of each point of C
′±
i := C±

i − {z±i−1, z
±
i }

coincides with Ki. Σ(B) is connected.

Proof. Since xi is a fixed point, K acts naturally on Li, but since the
two-torus cannot act on a projective line effectively, Li is contained in
Σ(B). The rest follows immediately from Lemmas 4.1 and 4.3. q.e.d.

Remark. The singular set of K-action on Z is thus a disjoint union
of Σ(B′) for various components B′ of Σ(M). The singular set of G-
action on Z is more difficult to identify because of the possible stabilizer
group which is isomorphic to the additive group C. It finally turns out
that the singular set of the G-action also coincides with that of K ; our
proof for this, however, will be indirect.

(4.6) We shall give some notational remark. Let C denote the
union of C±

i , 1 ≤ i ≤ k;

C =
k⋃
i=1

(C+
i ∪ C−

i ).

We have two possibilities:
a) C is connected, or
b) C has exactly two connected components which are σ-conjugate

to each other.
In Case b) the ±-signs of C±

i can be chosen in such a way that

C±
i ∩ C±

i+1 = {z±i }, 1 ≤ i ≤ k, k + 1 = 1
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and there exist no other intersections among any of the irreducible com-
ponents of C. Thus there exist two mutually disjoint and σ-conjugate
cycles of nonsingular rational curves C±

1 ∪ · · · ∪ C±
k in C.

On the other hand, in Case a) the notation ± is not quite reasonable
and it is more convenient to denote the curves C±

i by Ci and Ci+k, and
the points z±i by zi and zi+k in such a way that

Ci ∩ Ci+1 = {zi}, 1 ≤ i ≤ 2k, 2k + 1 = 1

and there exist no other intersections among any two irreducible com-
ponents of C. C itself forms a cycle of nonsingular rational curves.

However, when we want a universal notation which is valid in both
cases we make the following identification of the components

Ci = C+
i , Ck+i = C−

i , zi = z+
i , zk+i = z−i , 1 ≤ i ≤ k.

For k < i ≤ 2k it is sometimes convenient to put Li = Li−k and
Ki = Ki−k.

In these notations the intersections with the very special twistor
lines are given by

Li ∩ Ci ∩ Ci+1 = {zi}, 1 ≤ i ≤ 2k

in Case a), where the intersections are transversal. In Case b) for i = k
and 2k we need obvious modifications.

(4.7) With the above notational conventions Ki, 1 ≤ i ≤ 2k, is the
stabilizer group in K of points of C ′

i := Ci − {zi−1, zi}. Let Gi(∼= C∗)
be the complexfication of Ki(∼= S1).

Lemma 4.5. For any point z of C ′
i, 1 ≤ i ≤ 2k, the stabilizer group

Gz in G coincides with Gi.

Proof. Clearly we have the inclusion Gi ⊆ Gz with dim Gz = 1. If
Gz �= Gi, Gz/Gi is a non-trivial closed subgroup of G/Gi ∼= C∗. Since
Gz ∩K = Ki, it is easy to show that Gz/Gi is an infinite group. Since
Gz is discrete in G, Gz/Gi is an infinite cyclic subgroup of G/Gi. Then
the C∗-orbit C ′

i
∼= G/Gz must be a complex torus of dimension one,

which is absurd. q.e.d.

Let z be any point of C. We next compute the isotropic representa-
tion of the stabilizer group Gz on the holomorphic tangent space TzZ
of Z at z.
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Proposition 4.6.

1) Let z ∈ C ′
i, 1 ≤ i ≤ 2k. Then with respect to suitable C-linear

coordinates u, v, w of TzZ and an isomorphism Gz ∼= C∗(t), Gz
acts on TzZ by

(u, v, w)→ (u, tv, tw),

where the tangent space of C ′
i at z is given by v = w = 0.

2) Let z = zi for some i, 1 ≤ i ≤ 2k. Then with respect to suitable C-
linear coordinates u, v, w of TzZ and an isomorphism Gz = G ∼=
C∗(s)×C∗(t), Gz acts on TzZ by

(u, v, w)→ (stu, sv, tw),

where the tangent space of Li (resp. Ci, resp. Ci+1) at z is given
by v = w = 0 (resp. u = v = 0, resp. u = w = 0).

Proof. By what we have explained in (4.4) we see that the complex
isotropic representation of Kz on TzZ is a direct sum of the two complex
representations, one on (Tx, Jz) and the other on TzLx, where x = t(z)
and TzLx is the holomorphic tangent space of Lx.

A) First we normalize the representation of Kx on (Tx, Jz). The
computation will be done by using a suitable model. Take an orientation
preserving isometric C-linear isomorphism

(Tx, Jz) ∼= (H,×i)(30)

which sends the decomposition (29) into H = C⊕ jC, and we consider
the corresponding action of Kx on the latter. Write an element of
H = C ⊕ jC ∼= C2 as

(z, w) = z + jw, z, w ∈ C.

It is clear from (30) that in Case A, with respect to a suitable isomor-
phism Kx

∼= S1(t), the action of Kx on H is given by

(z, w)→ (z, tw),(31)

and in Case B with respect to the isomorphismKi×Ki+1
∼= K composed

with suitable isomorphisms Ki
∼= S1(s) and Ki+1

∼= S1(t) the action of
K on H is given by

(z, w)→ (sz, tw).(32)
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In both cases the stabilizer group Kx is realized as (a subgroup of) the
distinguished maximal torus T = S1 × S1 in U(2) ⊆ SO(4).

B) In order to understand the action of Kx on C, it is convenient to
consider Kx as the image of a subgroup of the distinguished subtorus
T̃ := S1(u)× S1(v) of Sp(1)+ × Sp(1)− of (20), where S1 is considered
as the subgroup {a + bi ∈ Sp(1); a, b ∈ R} of Sp(1). The action of
Sp(1)+ × Sp(1)− on H is given by (21) and so the induced action of
(u, v) ∈ T̃ is given by

(z, w)→ (uv−1z, (uv)−1w).(33)

In view of (31) and (32) this implies that the action of Kx is realized in
Case A by the action of the subgroup {(u, u)} of T̃ with

t = u−2,(34)

and in Case B by the action of the whole group T̃ via the double cov-
ering map (u, v) → (s, t) = (uv−1, (uv)−1), giving the isomorphism
T̃ /〈(−1,−1)〉 ∼= T = K. In particular we get in this case

st = v−2.(35)

C) Now we detect the action of Kx on TzLx. By the isomorphism
(30), the twistor line Lx, considered as a set of isometric complex struc-
tures on Tx, is mapped bijectively to the set C defined by (23), in which
z ∈ Lx is mapped to −i ∈ C, i.e., Jz corresponds to the right multipli-
cation by i. (Recall that C operates on H by (24).)

We next identify the tangent space T−iC of C at −i and the induced
tangential representation of T̃ . Note first that by (25) the holomorphic
tangent space of C = P (V−) at −i is identified with the set of C-linear
maps Hom(Cj,C) since −i = j−1ij and (V−/Cj) ∼= Ci = C. Since the
action of Sp(1)− on C is induced by the right multiplications on V−, if
f ∈ Hom(Cj,C), the action of v ∈ S1(v) on f is given by

f(wj)→ f(wjv)v−1 = v−1f(v−1wj) = v−2f(h), wj ∈ Cj,

i.e., the action takes the form

f → v−2f.

Because of (34) and (35) we get that the action of Kx on T−iC ∼= TzLx
is by multiplication by t in Case A and by st in Case B (cf. (4.2)).
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Combining this with (31) and (32) we get the assertion of the proposition
after passing to the complexfication Gx of Kx. q.e.d.

(4.8) Example. When M = S4 with standard conformal struc-
ture, the associated twistor space is the complex projective 3-space
P 3(z0 : z1 : z2 : z3) and the twistor fibration t : P 3 → P 1H = S4

is given by

(z0 : z1 : z2 : z3)→ (z0 + jz3 : z1 + jz2),

where S4 is identified with the right quaternionic projective line P 1H.
Introduce the complex affine coordinates (u, v) on S4 = C2 ∪ {∞} so
that (u + jv)(z0 + jz3) = z1 + jz2. Define the K-action on P 3 and on
S4 respectively by

(z0 : z1 : z2 : z3)→ (z0 : sz1 : tz2 : stz3) and (u, v)→ (su, tv)

for (s, t) ∈ K = S1 × S1. Then we see readily that π is K-equivariant,
in compatible with Proposition 4.6.

Remark. The restriction of t over C2 ⊆ S4 is nothing but the
twistor fibration for C2 = R4 with flat metric. This has the following
general significance. For a general self-dual manifold M and any point
x ∈M let Nx be the normal bundle of Lx in Z. Then the differential t∗
induces a surjection tx : Nx → Tx giving a linear isomorphism of each
fiber of Nx onto Tx, which is identified with (27). This map tx may be
considered as giving a twistor fibration of Tx with the flat metric gx, and
moreover, as such, it is isomorphic to the above fibration t−1(R4)→ R4.
In this way we may elaborate on the above example so that it gives
another proof of Proposition 4.6.

(4.9) By Lemma 4.5 for each i, 1 ≤ i ≤ 2k, the stabilizer group
Gi of G at points of C ′

i is independent of the choice of the points, is a
complexfication of Ki and is isomorphic to C∗. In particular Gi = Gi+k.

However, in view of the structure of the isotropic representation in
Proposition 4.6 we can specify for each i not only the subgroup Gi
of G, but also a one parameter subgroup ρi : C∗ → G with image
Gi, which amounts to specifying one of the two possible isomorphisms
C∗(t)→ Gi, by the following rule: For any point z in a sufficiently small
neighborhood of a point of Ci we have

lim
t→0

ρi(t)z ∈ Ci.(36)
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Let N be the free abelian group of rank two of one parameter subgroups
of G as in (2.2).

Lemma 4.7. For any i, 1 ≤ i ≤ k, we have ρi = −ρi+k.
Proof. Take any point x of B′

i and consider the induced action of Gi
on the twistor line Lx. For any z ∈ L′

x = Lx−{z±} if limt→0 ρi(t)z = z±,
then limt→∞ ρi(t)z = z∓. From this the lemma follows readily. q.e.d.

5. Analyticity of orbit closures

(5.1) We study first the G-action in a neighborhood of C in Z. Let
z be any point on C. Then there exist

1) a Kz-invariant neighborhood U of the origin o in the holomorphic
tangent space Tz = TzZ of Z at z,

2) a Kz-invariant neighborhood V of z in Z, and

3) a Kz-equivariant isomorphism φ : U → V , namely,

φ(gx) = gφ(x), g ∈ Kz, x ∈ U(37)

(cf. [12, Satz 4.4]). We may use linear coordinates u, v, w of Tz as local
coordinates of Z at z via φ. This local linear description of theKz-action
extends partly to that of the Gz-action.

Lemma 5.1. Let U1 be a connected open neighborhood of o which
is relatively compact in U and let V1 = φ(U1). Define an open subset
A0 of Gz × U1 by A0 := {(g, x) ∈ Gz × U1; gx ∈ U} and let A be the
connected component of A0 containing Kz × U1. Then for any element
(g, x) of A, gφ(x) belongs to V and the equivariancy (37) holds true on
A.

Proof. Let A′ be the connected component of the open subset
{(g, x) ∈ A; gφ(x) ∈ V } of A containing Kz ×U1. The two holomorphic
maps φ(gx) and gφ(x) from A′ to Z are defined and coincide identically
on Kz×U1. Since Gz is a complexfication of Kz, they must also coincide
identically also on A′. We show that A′ is also closed in A. In fact, let
(g0, x0) ∈ A be on the boundary of A′. Take a sequence (gn, xn) ∈ A′

converging to (g0, x0). We know that gnφ(xn) = φ(gnxn) ∈ U . Then we
have

g0φ(x0) = lim
n→∞ gnφ(xn) = lim

n→∞φ(gnxn) = φ(g0x0)
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with limit taken in Z; since g0x0 ∈ U , we have g0φ(x0) ∈ V , i.e.,
(g0, x0) ∈ A′. Since A is connected, A = A′. q.e.d.

(5.2) Let z be any point of C. We describe a local action of G in
a neighborhood of z.

We distinguish two cases:
Case A: z ∈ C ′ := C − {zi} and Case B: z = zi for some i.
In each case by using Proposition 4.6 and Lemma 5.1 we see that

there exists a neighborhood W of z with the following properties.
Case A. Suppose that z ∈ C ′

i := Ci − {zi−1, zi} for some i. The
corresponding one parameter group ρi : C∗(s) → G has the image Gi,
and Gi admits a complement G′ = C∗(t) (e.g., G′ = Gi−1 or Gi+1) and
we obtain an isomorphism G = Gi ×G′ = C∗(s)×C∗(t). There exists
a coordinate neighborhood W of z in Z with local coordinates u, v, w
such that

W = {(u, v, w); |u− 1| < ε, |v| < 1, |w| < 1}, ε > 0, z = (1, 0, 0),
(38)

v = w = 0 is a defining equation of C in W and the action of Gi = Gi×1
takes the form

(u, v, w)→ (u, sv, sw), |s| ≤ 1.(39)

Moreover, the action of t ∈ G′ is of the form (u, v, w)→ (tu, v, w) where
|tu− 1| < ε.

Case B. z = zi for some i:
In this case the natural isomorphism

ρi × ρi+1 : C∗(s)×C∗(t)→ G

gives natural coordinates of G. There exists a coordinate neighborhood

W = {(u, v, w); |u| < 1, |v| < 1, |w| < 1},(40)

of z in Z with local coordinates u, v, w around z such that 1) u = v = 0
and u = w = 0 are defining equations in W of Ci and Ci+1 respectively,
and v = w = 0 is one of Li, and 2) the action of

(s, t) ∈ G ∼= C∗(s)×C∗(t)

takes the form

(u, v, w)→ (stu, sv, tw), |s|, |t| ≤ 1.(41)
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We shall call any of the above neighborhoods W of points of C simply
an admissible neighborhood.

(5.3) Let W be an admissible neighborhood and set

W ′ := W − (C ∪ L),

where L = ∪Lj . Define subsets W ′
ab and W ′′

01 of W ′ as follows.
Case A. For any (a, b) �= (0, 0)

W ′
ab := {(u, v, w) ∈W ′; av = bw}.

Case B. For any (a, b) with a �= 0

W ′
ab := {(u, v, w) ∈W ′; au = bvw}

and

W ′
01 := {(u, v, w) ∈W ′; v = 0}, and W ′′

01 := {(u, v, w) ∈W ′;w = 0}.
From the description of G-action on W in (5.2) the following lemma is
clear.

Lemma 5.2. The subsets defined above are all connected and closed
submanifolds of W ′ and are contained in a single G-orbit. Moreover,
the closure of W ′

ab contains C ′ ∩W in Case A.

Lemma 5.3. For any point x ∈ W ′ the stabilizer Gx at x reduces
to the identity.

Proof. We may assume that x belongs to an admissible neighborhood
W of Case A. (If x belongs to some W of Case B, we may find a suitable
admissible neighborhood of Case A containing x and contained in W .)

If g ∈ Gx, g fixes any points of the G-orbit of x. In particular by
Lemma 5.2 g fixes any point of the subset W ′

ab containing x, and hence
g also fixes the points of C ′

i ∩W which is contained in the closure W ′
ab.

However, by Lemma 4.5 the stabilizer group of a point of C ′
i is Gi itself;

so g must belong to Gi. On the other hand, as follows from (39) and
(41), no element of Gi other than the identity e fixes any point of W ′.
Thus g = e. q.e.d.

By Lemma 5.3 the G-action defines a foliation on W ′ whose leaves
we call local leaves on W ′. Local leaves are precisely the subsets W ′

ab

and W ′′
01 of W defined above before Lemma 5.2
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Lemma 5.4. The closure of each local leaf in W is an analytic
submanifold of W .

Proof. The closures are defined in W by the same equations and
their locus are again nonsingular. q.e.d.

(5.4) We next consider the behavior of G-orbits on Z along C. Let
W and W ′ = W − (C ∪L) be as above. Let O be a G-orbit on Z which
intersects with W ′. Then O ∩W ′ consists of a union of local leaves on
W ′. We shall show that actually O ∩W ′ consists of a unique local leaf
modulo finite number of exceptions. In this connection we shall call the
two local leaves W ′

01 and W ′′
01 special leaves in Case B.

Lemma 5.5. Let F and F ′ be distinct local leaves in W ′. Sup-
pose that neither F nor F ′ is special in Case B. Then they are never
contained in the same G-orbit.

Proof. Suppose that they are contained in one and the same G-orbit.
We use the notation of (5.3) and consider the two cases separately.

Case A. Let z0 := (1, 0, 0) ∈ C be the center of the admissible
neighborhood. There exist points z ∈ F and z′ ∈ F ′ with the same
u-coordinate 1. By assumption there exists an element g ∈ G with
gz = z′. Then we have

gsz = sgz = sz′(42)

for any s = (s, 1) ∈ Gi ⊆ G, and then letting s tend to zero, we have

gz0 = z0.(43)

This implies that g ∈ Gi by Lemma 4.5. This, however, is impossible
because any element s of Gi with |s| ≤ 1 preserves each local leaf. (If
g = (sg, 1) satisfies |sg| > 1, consider g−1 instead, interchanging the
roles of z and z′.)

Case B. The proof is same as in Case A. Since neither F nor F ′

is special, we can find two points z ∈ F and z′ ∈ F ′ with the same
w-coordinate, w0 �= 0 say. Take an element g ∈ G with gz = z′. Then
again we have (42) and then have (43) with z0 = (0, 0, w0), which implies
that g ∈ Gi. This is, however, impossible exactly by the same reasoning
as above. q.e.d.

We call a G-orbit O on Z special if O contains a special local leaf
at some zi. Clearly special orbits are finite in number (≤ 4k). Now
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we take and fix a small neighborhood U of C in Z which is covered by
admissible neighborhoods. We set U ′ = U − (C ∪ L).

Corollary 5.6. For any non-special G-orbit O in Z with O∩U ′ �= ∅,
the closure of O in U is analytic and smooth.

Proof. By Lemma 5.5 O ∩W ′ is a single local leaf in W ′ and the
closure of the latter inW is analytic and smooth by Lemma 5.4. q.e.d.

Remark. Actually, with a little more preparation we can show that
the above lemma, and hence the corollary also, is actually true without
exceptions by the same method.

(5.5) We turn to considering the closures of G-orbits in the whole
Z. We first prove the following:

Lemma 5.7. Any non-special G-orbit O on Z with O ∩ U ′ �= ∅
intersects with any admissible neighborhood of points of C.

We use the following:

Lemma 5.8. Let z be any point of C ′
i := Ci − {zi−1, zi} (resp.

L′
i := Li − {zi, zi+k}) and W an admissible neighborhood of zi−1 or zi

(resp. z+
i or z−i ). Then there exist a neighborhood V of z in Z and an

element g of G such that g(V ) ⊆W .

Proof. First we consider the case z ∈ C ′
i. Take an admissible neigh-

borhood of z in Z with coordinates u, v, w as in (5.2). Then the equation
u = 0 defines a Gz-invariant 2-dimensional local slice D for the local
G-action at z. We consider the induced action of G′

G′ ×D → Z

which is locally biholomorphic onto an open neighborhood of C ′
i = G′z

in Z. Since C ′
i ∩W �= ∅, the lemma follows.

The proof for L′
i is similar. In this case its stabilizer group Hi is the

image of the one parameter group ρiρ
−1
i+1 : C∗(s) → G and it admits

a complement G′ = C∗(t) (e.g., = Gi or Gi+k) so that we have an
isomorphism G ∼= Hi ×G′ = C∗(s)×C∗(t). There exists a coordinate
neighborhood W of z in Z with local coordinates u, v, w around z as in
(38) such that v = w = 0 is a defining equation of Li in W , where the
action of Hi takes the form

(u, v, w)→ (u, sv, s−1w), |s| ≤ 1.(44)
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Moreover, for t ∈ G′ the action is of the form (u, v, w) → (tu, v, w)
where |tu− 1| < ε. So the same argument applies also in this case.

q.e.d.

Proof of Lemma 5.7. Let W1 be any admissible neighborhood and
z1 an arbitrary point of C ∩W1. Then any non-special local leaf in W1

intersects with any neighborhood of z1, as follows from the description
of local leaves.

Now let W be an arbitrary admissible neighborhood of a point z
of C. Take an admissible neighborhood W0 of a point z0 of C which
intersects with O. Suppose that z0 ∈ Ci and z ∈ Cj . Since Σ = C ∪ L
is connected by Proposition 4.4, we have a finite chain {Y1, . . . , Yn}
of irreducible components of Σ such that Yi ∩ Yi+1 = {yi} �= ∅ for
1 ≤ i ≤ n − 1, Y1 = Ci and Yn = Cj . Then since O is nonspecial, in
view of the first remark, by applying succesively the previous lemma we
can transform a point of W0 by elements of G into a point of W . This
shows that O also intersects with W . q.e.d.

(5.6) Let O be any non-special G-orbit with O ∩ U ′ �= ∅. By
Corollary 5.6 the closure Ô of O ∩ U ′ in U is analytic and smooth. We
next consider the closure of O in the whole Z. Our basic observation is
that Ô looks like a neighborhood of the anti-canonical cycle of a compact
smooth toric surface. We shall determine this toric surface first. For
each i, 1 ≤ i ≤ 2k, we specified in (4.9) a one parameter subgroup
ρi : C∗(t)→ G determined by the following two conditions

1) ρi(t) fixes any element of Ci, and
2) for any sufficiently small neighborhood Vi of Ci in Z we have

lim
t→0

ρi(t)z ∈ Ci, z ∈ Vi.

Also recall by Lemma 4.7 that we have ρi+k = −ρi as elements of
N .

Lemma 5.9. For any element ρ of N which is in the open simplex
spanned by ρi and ρi+1 the following holds true: Let z be any point of an
admissible neighborhood of the point zi. Then we have limt→0 ρ(t)z = zi.
Here the range of indices are 1 ≤ i ≤ 2k, 2k + 1 = 1, in Case a) of
(4.6) and 1 ≤ i ≤ k − 1, k + 1 ≤ i ≤ 2k − 1, in Case b) of (4.6)
respectively. Moreover, in Case b) the same statment holds true if we
replace in the above statements (ρi, ρi+1) and zi = Ci ∩Ci+1 by (ρk, ρ1)
and zk = Ck ∩ C1 respectively.
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Proof. We only consider the first statement, the supplementary case
being treated in the same way. By assumption ρ is written as ρ =
mρi + nρi+1 for some positive integers m and n. By Proposition 4.6,
in an admissible neighborhood of zi, with respect to the isomorphism
ρi×ρi+1 : C∗(t1)×C∗(t2)→ G the action ofG takes the form (u, v, w) =
(t1t2u, t1v, t2w), and therefore the induced action of ρ takes the form
ρ(t) = (tm+nx, tmy, tnz). The assertion is clear from this. q.e.d.

The following lemma is crucial for the construction of our toric sur-
face.

Lemma 5.10. For 1 ≤ i ≤ 2k, 2k + 1 = 1, in Case a) (resp. for
1 ≤ i ≤ k − 1, k + 1 ≤ i ≤ 2k − 1 in Case b)) of (4.6), there exists no
ρj , j �= i, i + 1, in the closed simplex spanned by ρi and ρi+1. In Case
b) the same statement holds true if we replace (ρi, ρi+1) and j �= i, i+ 1
in the above statements by (ρk, ρ1) and j �= k, 1 respectively.

Proof. We only show the first statement. Suppose that some ρj , j �=
i, i+1, is between ρi and ρi+1. Take a G-orbit O with O∩U ′ �= ∅ which
is not special. By Lemma 5.7 we can find a point z (resp. y) of O ∩ U ′

which is in an admissible neighborhood of a general point of C ′
j (resp.

in an admissible neighborhood W of zi). We can find an element g ∈ G
which maps z to a point y.

Suppose first that ρj �= ρi, ρi+1. By Lemma 5.9 our assumption
implies that limt→0 ρj(t)y = zi, while we have z0 := limt→0 ρj(t)z ∈ C ′

j .
Since G is commutative, we thus get

zi = lim
t→0

ρj(t)y = lim
t→0

ρj(t)gz = g lim
t→0

ρj(t)z = gz0.

But this is impossible since zi is a fixed point and z0 ∈ C ′
j .

Suppose next that ρj = ρi, say. In the above proof we have only to
replace the equality limt→0 ρj(t)y = zi by the following one

v := lim
t→0

ρj(t)y = lim
t→0

ρi(t)y ∈ C ′
i,

where the derivation of the contradiction is similar, noting the assump-
tion that j �= i, i+ 1 and the fact that C ′

i and C ′
j are different G-orbits.

q.e.d.

As an important conclusion of the lemma we obtain

Corollary 5.11. C is connected.
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Proof. Suppose that C is not connected, i.e., we are in Case b).
The lemma says that there exists no other ρj ’s between ρi and ρi+1 for
any 1 ≤ i ≤ k, k + 1 = 1. This would lead to the non-existence of
ρk+j , 1 ≤ j ≤ k, which is absurd. q.e.d.

Remark. A. Huckleberry pointed out that once Lemma 5.3 is
proved, then the connectedness of C and the analyticity of the clo-
sure of the general orbits follows by topological argument using the fact
that G has only one end. This could certainly simplify the exposition
above and below.

(5.7) By Lemma 5.10 we conclude that

ρ1, . . . , ρ2k, ρi+k = −ρi,

are arranged on N couterclockwise or clockwise in this order around the
origin. To fix an idea let us assume that they are arranged couterclock-
wise, reversing the numbering if necessary. If we fix an identification
K = S1 × S1, we have the corresponding identifications G = C∗ ×C∗

and N = Z2.

Lemma 5.12. Let {±(mi, ni)} be the Orlik-Raymond invariant
of the underlying K-action on M , and (ki, li) ∈ Z2 the coordinates
of ρi. Then these satisfy the following equalities for any i; (ki, li) =
±(−ni,mi), (−li+k, ki+k) = −(−li, ki) and∣∣∣∣ ki li

ki+1 li+1

∣∣∣∣ = 1.(45)

Proof. The assertions follows readily from the fact that the image
Gi of ρi : C∗ → G is the complexfication of Ki = K(mi, ni), noting the
dual description of Ki and Gi via characters and one parameter groups
respectively. q.e.d.

Clearly, the one parameter groups ρi, 1 ≤ i ≤ 2k, define a complete
fan 	(ρ) on N and we get a (compact smooth) symmetric toric surface

S = S(ρ)(46)

with the anti-canonical cycle D = D1∪· · ·∪D2k, Di corresponding to ρi.
We identify the open orbit of S with G once and for all (by fixing a point
of the open orbit) and consider S as a distinguished compactification of
G = C∗ ×C∗ associated to our G-action on Z.
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Lemma 5.13. Let O be a non-special G-orbit with O∩U ′ �= ∅. Then
its closure O in Z is analytic and smooth. O is obtained by adding C to
O, is G-equivariantly isomorphic to the toric surface S = S(ρ) of (46),
and has C as the anti-canonical cycle. In particular such closures are
all isomorphic to each other.

Proof. Let F = O ∩ U and N = O − O. Clearly O = GF . Take
any point o of N and a sequence {xn} of points of O which converges
to o. Fix any point z ∈ F and write zn = gnz for some gn ∈ G which is
unique by Lemma 5.3. Then after passing to a subsequence if necessary,
we can assume that gn converge to a point g0 ∈ S with respect to the
compactification G ⊆ S above. If g0 ∈ G, then o = limxn = lim gnz =
g0z and o is in the orbit O, which contradicts our choice of o.

Thus g0 �∈ G so that g0 ∈ Di ⊆ S for some i. Suppose first that g0
is not a G-fixed point. With respect to the isomorphism

ρi × ρi+1 : C∗(s)×C∗(t) ∼= G,

g0 admits an affine neighborhood in S of the form C(s)×C∗(t) contain-
ing G, where s = 0 is a defining equation of Di. In this neighborhood
we may identify g0 with a point (0, t0) with t0 �= 0 and gn takes the form
(sn, tn), where sn → 0 and tn → t0 when n → ∞. Thus we may write
gn = tnsn with sn = (sn, 1) ∈ G and tn = (1, tn) by abuse of notations.

Now coming back to the action on Z, take an admissible neighbor-
hoodW of a point of C ′

i. Since z ∈ F ⊆ O and F∩W �= ∅ by Lemma 5.7,
there exists an element h of G such that hz ∈W . Then we have

gnz = tnsnh
−1(hz) = h−1(tnsnhz).(47)

Note that snhz converge to a point, say b, on Ci. Hence we have

o = lim gnz = h−1 lim tn(snhz) = h−1t0b ∈ C ′
i(48)

since C ′
i is G-invariant.

Next suppose that g0 is a fixed point so that g0 = Di ∩ Di+1 for
some i. With respect to the isomorphism ρi×ρi+1 : C∗(s)×C∗(t) ∼= G,
then g0 admits an affine neighborhood in S of the form C(s) × C(t)
containing G, where st = 0 is a defining equation of Di∪Di+1 and g0 is
identified with the origin (0, 0). Further, gn takes the form (sn, tn) with
sn, tn → 0 when n→∞. Write gn = tnsn as before.

Now coming back again to the action on Z take an admissible neigh-
borhood W of zi. As in the previous case we may find an element h
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of G such that hz ∈ W . Then we again have (47), where in this case
tnsnhz converge to zi. Hence as in (48) we obtain

o = lim
n→∞ gnz = h−1t0zi = zi(49)

since zi is fixed by G.
By (48) and (49) we get that N ⊆ C and by Corollary 5.6 the closure

O of O in Z is analytic and smooth since O = [O ∩ (Z −U)]∪ Ô, where
Ô is the closure of O ∩ U ′ in U . Note also that since F intersecs with
any admissible neighborhood we actually have N = C.

Finally, the compact nonsingular G-surface O is a toric surface with
all the data of the boundary divisors same with those of S, Di corre-
sponding to Ci with the same one parameter group ρi. This implies
that O is isomorphic to S = S(ρ) as a toric surface. q.e.d.

Since the special orbits are finite in number, summarizing what we
have obtained we get the following:

Proposition 5.14. There exist uncountably many G-orbits on Z
such that their closures in Z are analytic and smooth. Moreover, they
are projecitve nonsingular toric surfaces which are isomorphic to S(ρ)
and which contain C as the anti-canonical cycles. In particular, the
closures are obtained by adding C to the G-orbits.

So far we have fixed throughout a connected component B of the
singular set Σ(M) of the K-action on M and have been dealing exclu-
sively with the G-action along C ⊆ t−1(B). However, we shall see in
the next section that B is actually the unique connected component of
Σ(M).

6. Associated fiber space and invariants

(6.1) In order to show that all the orbit closures are analytic,
instead of studying the individual orbit structure more in detail, we
apply the method of meromorphic quotient. In fact for the application
of the latter, Proposition 5.14 is sufficient. To explain this we begin
with the following general setting.

Let Z be a compact connected complex manifold of dimension n.
Then there exists a natural structure of a reduced complex space on the
set D of effective divisors on Z [5]. The following property of this space
proved in [8] is important for our purpose.
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Lemma 6.1. Any connected component of D is compact and pro-
jective.

We note that the essential ingredient of the proof is the result of [6]
to the effect that, up to finite number of exceptions, every irreducible
divisor E on Z is of the form h∗E, where h : Z → Y is an algebraic
reduction of Z and E is a divisor on the projective variety Y . See [8]
for the detail.

(6.2) Suppose now that a connected complex Lie group G acts
biholomorphically on Z such that general orbits are of codimension one,
namely there exists a nonempty Zariski open subset U of Z such that
every G-orbit of a point of U is of codimension one. Let DG be the
fixed point set of the induced G-action on D. For any d ∈ D let Yd be
the corresponding effective divisor on Z. Denote by DG0 the union of
those irreducible components Fα of DG such that for a general point d of
Fα the corresponding divisor Yd is reduced and irreducible. Then take
an irreducible component F of DG0 of positive dimension (if any). F is
projective by Lemma 6.1. We consider the universal family of divisors
on Z parametrized by F :

Y

p
��

⊆ F × Z
pF����

��
��

��
�

F

(50)

Lemma 6.2. An irreducible component F of DG0 as above is unique
(if any) and is of dimension one. The natural projection q : Y → Z is
bimeromorphic.

Proof. Y is compact of dimension n − 1 + dimF and the natural
projection q : Y → Z is surjective. For every d ∈ F , p−1(d) is identified
with the corresponding divisor Yd of Z and is G-invariant. There exists
a nonempty Zariski open subset V of F such that for any d ∈ V , Yd is
reduced and irreducible and Yd ∩ U �= ∅, and hence, Yd is a closure of
a G-orbit. Since different orbits do not intersect each other, q−1(U) ∩
p−1(V )→ Z is injective; it follows that q is bimeromorphic and F is of
dimension one. Also by the construction we see that F is the unique
irreducible component of DG0 of positive dimension. q.e.d.
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We call the commutative diagram

Y
q ��

p
��

Z

pq−1����
��

��
�

F

(51)

or simply, the meromorphic map pq−1 : Z → F , the meromorphic quo-
tient of Z by G, which is canonically associated with the given action
of G on Z. In this case Y is nothing but the graph of the meromor-
phic map pq−1 and there exists a natural G-action on the diagram (51),
where the action on F is trivial.

(6.3) On the existence of the meromorphic quotient we have the
following criterion:

Proposition 6.3. Let Z be a compact connected complex manifold.
Suppose that a connected complex Lie group G acts effectively on Z such
that its general orbits are of codimension one and that the closures of
uncountably many orbits of codimension one are analytic. Then the
meromorphic quotient (51) of Z by G exists. Moreover, every orbit of
codimension one has an analytic closure in Z and is identified with an
irreducible component of a fiber of p.

Proof. Let Ot, t ∈ T , be a family of G-orbits of codimension one
whose closure Ot in Z is analytic, where the index set T is uncountable.
Let dt be the point of D corresponding to the irreducible divisor Ot of Z.
Since Ot is G-invariant, dt is a point of DG0 . Moreover, since DG0 as well
as D has at most countably many irreducible components, there must
exist an irreducible component F of DG0 containing infinitely many dt’s.
This F must be of positive dimension and the meromorphic quotient
exists.

Since Z is nonsingular, there exists an analytic subset A of Z of
codimension ≥ 2 such that q is isomorphic over q−1(Z − A). Then by
the equivariancy of the diagram (51) every one-codimensional orbit on
Z is uniquely lifted to one on Y , which then should be mapped to a
point of F . Thus the latter is Zariski open in an irreducible component
of a fiber of f ; in particular its closure is analytic, and then, as its
biholomorphic image in Z, the closure of the original G-orbit in Z also
is analytic. q.e.d.

(6.4) We now apply the above consideration to our G-action on the
twistor space Z, where G is an algebraic two-torus.
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Proposition 6.4. Let Z be the twistor space with G-action as in
(4.4).

1) There exists the meromorphic quotient of Z by G :

Ẑ
µ→ Z

f ↓
P

(52)

where P is a nonsingular rational curve.

2) Every two-dimensional orbit has an analytic closure in Z and is
identified with an irreducible component of a fiber of f .

3) The action of σ on Z naturally lifts to one on the diagram (52).
In particular, P admits a naturally induced real structure.

Proof. In our case the general orbit has codimension one and the
assumption of Proposition 6.3 is fulfilled by Proposition 5.14. Therefore
by that proposition we obtain 1) and 2) except the identification of P .

Since a general twistor line is mapped holomorphically and surjec-
tively onto P , P is rational. This implies that for general a ∈ P the divi-
sors Sa := µ(f−1(a)) are all linearly equivalent. Let Q be the complete
linear system containing such Sa’s. Then G acts (projective) linearly on
Q and it is easily seen that P coincides with a connected component of
the fixed point set of this action. Thus it must be a complex projective
line in Q since G is an algebraic torus.

The anti-holomorphic involution on D induced by σ preserves P
because of (7). 3) follows. q.e.d.

(6.5) We now study the structure of the diagram (52) more in detail.
Note first that the meromorphic map fµ−1 : Z → P is obtained by the
linear pencil V whose members are Sa := µ(Ẑa), a ∈ P , where Ẑa :=
f−1(a). (For simplicity of notations, however, in what follows we often
identify Sa with Ẑa by µ and use the two notations interchangeably.)

Proposition 6.5.

1) µ is obtained by the blowing-up of Z with center C. E := µ−1(C)
is isomorphic to C × P and f |E is identified with the projection
to the second factor.

2) General members of V are smooth and every smooth member is a
projecitve toric surface isomorphic to S(ρ) of (46) and has C as
its anti-canonical cycle.
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Proof. By Proposition 5.14 there exist uncountably many members
of the system V which are closures of G-orbits obtained by adding C
to the orbits, and are smooth projecitve toric surfaces isomorphic to
S(ρ). Now the meromorphic map fµ−1 is defined by the pencil V and
Ẑ ⊆ Z × P is its graph. Thus µ is obtained by the blowing up of the
intersection of two general members S1 and S2 of this system. In view
of the above remark we may take them to be smooth orbit closures
containing C and intersecting each other only along C.

Locally their intersection property can be read off in each admissible
neighborhood W of a point of C; in Case A the intersections of Si
with W are given by smooth hyperplanes au = bv, (a, b) �= (0, 0) and
S1 and S2 intersect transversally along C ∩W ; on the other hand, in
Case B the intersections of Si with W are given by equations of the form
auv = bw, a �= 0. Hence we conclude that the base locus of the pencil
V is precisely the curve C with multiplicity one, and therefore that µ
coincides with the blowing up of Z with center C. The assertion about
the structure of E is then clear. In particular every fiber of f contains
C naturally; for a ∈ P, Ẑa ∩ E = a× C = C. This proves 1).

On the other hand, up to finite exceptions every fiber is smooth and
it is obtained as a deformations of (projecitve) toric surfaces. Since it is
known and easy to show that a deformation of a rational surface is again
a rational surface, every smooth fiber of f must be a projecitve toric
surface in view of its admitting G-action with open orbit. As it contains
C in the complement of the open orbit as a connected component, C
must coincide with their anti-canonical cycle. Since the data for the
isotropic one parameter subgroups along each component of C, which
determines a toric surface, is invariant under deformations, they are
indeed isomorphic to each other. q.e.d.

(6.6) On the singularities of Ẑ we prove:

Lemma 6.6. Ẑ has 2k ordinary double points ri, 1 ≤ i ≤ 2k, such
that µ(ri) = zi, 1 ≤ i ≤ 2k, and σ(ri) = ri+k, 1 ≤ i ≤ k. Ẑ is smooth
outside these points. Moreover, f(ri) = f(ri+k) for any i.

Proof. By Proposition 6.5 µ is the blowing up with center C. Thus
Ẑ is smooth over the smooth points of C. At the singular points zi of C,
the defining equation of C in an admissible neighborhood W of (40) is of
the form w = uv = 0. Thus Ẑ is described in a neighborhood of µ−1(zi)
as a hypersurface wξ1 = uvξ0 in W × P 1, with the unique singular
point ri := {(0, 0), (1 : 0)}, where ξi are homogeneous coordinates of
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P 1. These ordinary double points ri are thus the only singular points
of Ẑ.

The twistor line Li is defined in W by u = v = 0, and therefore its
proper transform L̂i in Ẑ passes through ri; similarly, it passes through
ri+k. Since L̂i is an orbit closure, it must be mapped to a point by f .
Therefore

f(ri) = f(Li) = f(ri+k), 1 ≤ i ≤ k.
Moreover, the relation σ(zi) = zi+k lifts to Ẑ to give σ(ri) = ri+k.
q.e.d.

Let

ai := f(ri) = f(ri+k), 1 ≤ i ≤ k.
In view of the σ-equivariancy of f and the above lemma, ai must be a
real point of P . In particular σ has a fixed point on P . The fixed point
set R is then diffeomorphic to S1 and P −R consists of two connected
components. We may choose a suitable inhomogeneous coordinate z of
P so that

P = C(z) ∪ {∞}(53)

and σ takes the form z → 1/z in this coordinate. Then R is given by
|z| = 1 and ai ∈ R.

(6.7) Recall that every effective divisor S on Z has a positive in-
tersection number S · L with any twistor line L. We call this number
the degree of S. S is called an elementary divisor if its degree is one,
and a quadratic divisor when it is two.

Lemma 6.7. Let S be any member of the pencil V . Then S is a
quadratic divisor on Z in the sense defined above.

Proof. Take any smooth member S of V . We show that S · Li =
2. Note that Li − {zi, zi+k} is a one-dimensional G-orbit, while one
dimensional orbits in S are one of C ′

j , 1 ≤ j ≤ 2k. Therefore S intersects
Li only at two points zi and zi+k. In an admissible neighborhood (40)
of either of these two points, a defining equation of Li is u = v = 0 and
one of S is w = cuv for some nonzero c. Thus the intersection of Li and
S is transversal there. Hence we get Li · S = 2. q.e.d.

Since V contains a real member, it contains also a real smooth mem-
ber Sa for a general point a of R. Thus by a theorem of Pedersen-Poon
[19, Theorem 1] we have the following
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Corollary 6.8. M is diffeomorphic to mP 2, where m is the second
betti number of M . In particular M is simply connected.

Proposition 6.9. Z is Moishezon, i.e., bimeromorphic to a com-
plex projective manifold.

Proof. Let r : Z̃ → Ẑ be any resolution of Ẑ. Consider the resulting
holomorphic map f̃ : Z̃ → P . It suffices to show that Z̃ is Moishezon.
Any smooth fiber Z̃a is isomorphic to the toric surface S = S(ρ); in par-
ticular its anti-Kodaira dimension κ−1(Z̃a) = 2 by (1). From this follows
the Moishezon property of Ẑ immediately by applying [27, Prop. 12.2]
to the case where D is the anti-canonical divisor of Z in the notation
there. q.e.d.

Let −1
2K be the canonical square-root of the anti-canonical line

bundle −K = −KZ of Z defined on any twistor space (cf. [10]).

Proposition 6.10. The linear system V coincides with the unique
positive dimensional linear subsystem |− 1

2K|G of the half-anti-canonical
system | − 1

2K| consisting only of G-invariant elements.

Proof. Since both V and −1
2K are real, and −1

2K ·L = 2, Lemma 6.7
shows that −1

2K and the line bundle A := [Sa] determined by the
members of V coincide in the chern class level (cf. [10, §3]). On the
other hand, we have 2 dimH1(OZ) = b1(Z) for the Moishezon manifold
Z, where b1 denotes the first betti number. Thus, in view of b1(Z) =
b1(M) Corollary 6.8 gives H1(OZ) = 0. It follows that −1

2K and A are
isomorphic as line bundles.

The members of V are clearly G-invariant members of | − 1
2K|. On

the other hand, by Proposition 6.4 G-invariant divisors which are not
members of V are identified with union of some of the irreducible com-
ponents of fibers of f and they are discrete. From this the final assertion
follows. q.e.d.

(6.8) We shall next detect the singular fibers of f precisely. We
use the results of Poon [20] and Pedersen-Poon [19], which we quote as:

Lemma 6.11.

1) ([19, Lemma 2.1]) Any real and irreducible quadratic divisor on Z
is smooth.

2) ([20, Lemma 1.9]) Every elementary divisor S on Z is smooth and
contains a unique twistor line L. Moreover, if we set S := σ(S),



278 akira fujiki

S is another elementary divisor in Z such that S ∩ S = L, where
the intersection is transversal.

Following our notational convention (cf. (6.5)) we denote the fiber
Ẑa of f by Sa in what follows. Similarly, Li also denotes its proper
transform in Ẑ.

Proposition 6.12. The fiber Sa, a ∈ P , of f is smooth if and
only if a �= ai for any i, 1 ≤ i ≤ k. The points ai are all distinct and
Si := Sai is a union of two nonsingular projecitve toric surfaces S+

i and
S−
i which intersect transversally along Li and are mutually σ-conjugate.
S+
i and S−

i are isomorphic to the toric surfaces S+
i (ρ) and S−

i (ρ) of (9)
respectively.

Proof. By Lemma 6.7 every member S of V is quadratic. Since every
effective divisor on Z has a positive intersection number with twistor
lines, either S is irreducible or has two irreducible components which
are elementary divisors.

Suppose first that S is irreducible. Since every member of V inter-
sects with C, it is a closure of a two dimensional orbit O with O∩U ′ �= ∅.
If O is non-special, by Lemma 5.13 its closure is irreducible and is iso-
morphic to the smooth toric surface S(ρ).

On the other hand, ifO is special, then there exist some i, 1 ≤ i ≤ 2k,
and an admissible neighborhood W of zi as in (40) such that S ∩ U ′

contains either of the plane u = 0 or v = 0. However, since u = v = 0
defines the twistor line Li and Li is mapped to ai ∈ P , we must have
S = Si and both the planes u = 0 and v = 0 are mapped to the same
point ai by f . Thus, S must contain both the planes u = 0 and v = 0
since S is assumed to be irreducible. In particular S is not smooth.
Now since ai is a real point, S is σ-invariant. Thus S must be smooth
by 1) of Lemma 6.11. This is a contradiction and we conclude that O
cannot be special.

Next suppose that S is reducible so that S is a union of two irre-
ducible components S+ and S−. This is the case for S = Si as the
previous argument shows. By 2) of Lemma 6.11 S± are smooth and if
we set S+ = σ(S), S+ also is an elementary divisor and L := S+ ∩ S+

is the unique twistor line contained in S. Now S
+ is G-invariant as well

as S+, and therefore L also is G-invariant. But the only G-invariant
twistor lines in Z are very special twistor lines Li. Thus L coincides
with Li for some i, and then both S+ and S

+ must be mapped to ai
by f ; hence S = Si. This implies that S is real and S

+ = S−. The
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transversality of the intersection of S+ and S− follows from Lemma 6.11
or directly from the local description (40).

Moreover, Si never intersects with other twistor lines Lj , j �= i, at
its general point since if otherwise Si would contain Lj since Lj is G-
invariant, which is impossible by Lemma 6.11, 2). It follows that ai �= aj
if i �= j.

It remains to identify the irreducible components S±
i of Si, 1 ≤ i ≤ k.

First of all, since they contain an open orbit of G, they are them-
selves smooth toric surfaces. (These surfaces are projective since Z
is Moishezon.) Li is the unique common irreducible component of the
anti-canonical cycles of both surfaces. Li is mapped to itself by σ with
zi and zi+k interchanged on it. Further, σ interchanges the two sur-
faces, their anti-canonical cycles, and interchanges Cj and Cj+k for any
j. Thus, if Cj is in S+, then Cj+k are in S− and vice versa. It follows
that if Ci is adjacent to Li in the anti-canonical cycle of S+, then Ci+k
is adjacent in S− to Li.

From these observations we can readily conclude that the anti-canoni-
cal cycle of S+

i consists of curves Li, Ci+k+1, Ci+k+2, . . . , C2k, C1, . . . , Ci
in this order and that of S−

i consists of Li, Ci+1, Ci+2, . . . , Ci+k in this
order. So in order to identify these surfaces we have only to identify the
one parameter subgroup corresponding to each irreducible component
of the anti-canonical cycles. For Ci, this is again ρi as is clear from the
description (39) of the action along Ci. For Li, because of the local de-
scription (41) of the action at zi we see readily that it is ∓(ρi−ρi+1) on
S±
i . It follows that S±

i have the associated weighted circular sequence
(13) of S±

i (ρ). q.e.d.

(6.9) By Proposition 6.10 and the adjunction formula it follows that
the normal bundle of a smooth member S of V in Z is isomorphic to the
anti-canonical bundle −KS of S, while for the irreducible components
S±
i of the singular members Si we have

Lemma 6.13. The normal bundle [S±
i ]|S±

i of S±
i in Z is isomor-

phic to −KS±
i
− 2Li on S±

i (written additively).

Proof. We have

[S]|S±
i = [S+

i + S−
i ]|S±

i = [C]|S±
i ,

where [C] is the line bundle defined by the Cartier divisor C on Si. On
the other hand, we have [S±

i ]|S∓
i = [Li] on S∓

i . From this we have

[S±
i ]|S±

i = [C ∩ S±
i ]− [Li] = (−KS±

i
− Li)− Li = −KS±

i
− 2Li
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since −KS±
i

= Li + C ∩ S±
i . q.e.d.

Using the above lemma we shall give a characterization of LeBrun’s
twistor spaces [14] among our twistor spaces; we shall also determine
the dimension of the linear system | − 1

2K|.
Proposition 6.14. For a twistor space Z with G-action as above

the following three conditions are equivalent.

1) The discrepancy | − 1
2K|G �= | − 1

2K| occurs.

2) The general member S of V is of maximal type in the sense defined
in (2.7).

3) Z coincides with one of the twistor spaces of LeBrun [14] associ-
ated to an S1-invariant self-dual metric on mP 2.

Moreover, in this case we have

dim | − 1
2
K| = 9− 2m for m ≤ 3 and = 3 for m ≥ 3.

Proof. 1) ⇔ 2): From the short exact sequence

0→ OZ → −1
2
K → −KS → 0

we obtain the cohomology exact sequence

0→ H0(Z,OZ)→ H0(Z,−1
2
K)→ H0(S,−KS)→ H1(Z,OZ) = 0.

Similarly, from the short exact sequence

0→ OS → −KS → −KS |C → 0

we get the cohomology exact sequence

0→ H0(S,O)→ H0(S,−K)→ H0(C,−KS |C)→ H1(S,O) = 0.(54)

Thus we get dim |− 1
2K| = dim |−KS |+1 = dim |−KS |C|+2. Denote

in general a symmetric toric surface with b2 = 2m + 2 by Sm. Sm is
up to isomorphisms unique up to m = 3 (cf. (2.7)). Further, Sm+1 is
obtained by blowing up a pair of σ-conjugate fixed points on the anti-
canonical cycle C of a certain Sm. Moreover, we compute easily that
dim | − KS | = 8 for m = 0 and know that | − KS | is base point free
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for m = 0, 1, 2. Since | −KSm+1 | is considered as the set of elements of
| −KSm | which pass through the points of blowing up, if the blown-up
points are not contained in the base locus, we get dim | − KSm+1 | =
dim |−KSm |− 2, while if the points are in the base locus the dimension
does not change. On the other hand, using (54) we can verify that a
point p on the anti-canonical cycle C is in the base locus of −KS if
and only if p is on an irreducible component of C with self-intersection
number ≤ −3. From all these assertions it is not difficult to check the
above statements.

2)⇔ 3): By Poon [20, Th. 3.1] 3) holds if and only if there exists an
elementary divisor D on Z such that dim |D| ≥ 1 on Z. Since G acts
on the complete linear system |D| with fixed point, we may assume that
D is G-invariant. Then by Propositions 6.4 and 6.10 D is one of S±

i .
By Lemma 6.13 and the fact that H1(Z,OZ) = 0, dim|S±

i | ≥ 1 if and
only if the complete linear system | −KS±

i
− 2Li| on S±

i is non-empty.
By Lemma 2.10 this is precisely the case where one of the irreducible
components of the anti-canonical cycle of S±

i which is adjacent to Li
has self-intersection number 1−m. In view of (13) this is true for some
i if and only if the general member S of the system V is of maximal
type. q.e.d.

Remark. The equivalent conditions of the proposition depends only
on the underlying smooth K-action on M . In fact, the condition 2)
depends only on the Orlik-Raymond invariant of the K-action on M .

(6.10) Recall that a twistor line L is called special if t(L) ∈ B, or
equivalently L ∩C �= ∅. Otherwise we call L general. A general twistor
line L will be identified with its proper transform in Ẑ, and will be
denoted by the same letter L.

Proposition 6.15. Let L be a twistor line.

1) If L is general, then the restriction f |L : L → P is a double
covering with precisely two mutually σ-conjugate branch points on
P . Neither of the branch points is on R.

2) If L is special, L is contained in a unique member Sa of V with
a ∈ R, and it is never tangent to other members Sa′ , a′ �= a.

Proof. 1) By Lemma 6.7 the intersection number of L with every
fiber of f equals two. Thus f makes L a double covering of P with
two branch points. Suppose that one of it, say a, is on R. Since L is
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tangent to Sa at some point z ∈ Sa and both L and Sa are real, L is also
tangent to Sa at σ(z) �= z, which implies that the intersection number
L · Sa ≥ 4. This is a contradiction. Thus the last assertion is proved.
Since L is σ-invariant and f |L is σ-equivariant, the two branch points
are (non-real and) σ-conjugate to each other.

2) In this case L is in the closure of a G-orbit and hence its proper
transform L̂ in Ẑ is mapped to a point a of P by f , f being G-invariant.
Since L is real, a must also be real, i.e., a ∈ R. Finally, if L is not very
special, L intersects C transversally at two points other than zi, at
which Sa and Sa′ intersect transversally for any a′ �= a. This proves the
last assertion for such special twistor lines. If L is very special, we have
a = ai and the transversality of the intersection is already shown in the
proof of Lemma 6.7. q.e.d.

(6.11) Recall that N denotes the quotient M/K and bN its bound-
ary (cf. (3.4)).

Proposition 6.16. There exists a natural homeomorphism
φ : bN → R which sends yi to ai, and hence, the arcs yiyi+1 to
aiai+1, 1 ≤ i ≤ k.

For the continuity part we use the following easy:

Lemma 6.17. Let X,Y and W be topological spaces, and h : W →
X and g : W → Y continuous maps with h proper and surjective.
Suppose that for every point x ∈ X, g(h−1(x)) is a single point y of Y .
Then u : X → Y, u(x) := y, is a continuous map. q.e.d.

Proof of Proposition 6.16. Let y ∈ bN and take an arbitrary point
x ∈ B over y. Then by Proposition 6.15 the special twistor line L = Lx
is contained in Sa for a unique a = a(x) ∈ R. Moreover, since Sa is
K-invariant, this point a(x) is invariant if we replace x by tx for any
t ∈ K. Hence a(x) depends only on y and we obtain a map φ : bN → R
with φ(y) = a(x).

More precisely, if x = xi for some i, then Lx = Li and is mapped to
ai and if x �= xi for any i, a(x) never coincides with any ai; in fact since
σ(S±

i ) = S∓
i , the only twistor line contained in Si is Li. Thus we have

φ(yi) = ai, and if y ∈ bN, y �= yj , then φ(y) �= ai, 1 ≤ i, j ≤ k.
(55)

We proceed to show the bijectivity of φ. In view of (55), it suffices
to show the bijectivity of bN − {yi} and R− {ai}.
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Injectivity. Take any point x of Bi − {xi−1, xi} and set a = a(x).
By the definition of φ it suffices to show that the twistor lines contained
in Sa are K-translates of L = Lx.

On Sa we consider the equivariant morphism νi : Sa → Pi of
Lemma 2.5. Let Gi be the subgroup of G corresponding to ±ρi, which
is the complexfication of Ki. Then every Gi-orbit on Sa is contained in
a fiber of νi. The twistor line L = Lx is invariant by Ki and hence by
Gi; thus it is contained in a fiber of νi. Since νi is G-equivariant and
L is not G-invariant, its image is a point of an open orbit on Pi. In
particular L is itself a fiber of νi. Then any other twistor line contained
in Sa is in a fiber of νi since it cannot intersect with L.

The linear system which defines νi is σ-invariant by Lemma 2.6, and
has a real member L. Thus by that lemma the set of real points Ri on
Pi consists of a single K-orbit.

Surjectivity. Take any point a ∈ R−{ai}. Sa is then a real smooth
quadratic divisor on Z. By the definition of φ it suffices to show that
Sa contains a special twistor line. Suppose otherwise. Since no twistor
line is tangent to Sa unless it is contained in Sa by Proposition 6.15, the
twistor fibration induces an unramified double covering t|Sa : Sa →M ,
which is absurd since M is simply connected by Corollary 6.8. Thus Sa
contains a twistor line L. Clearly, L is not general, but not very special.
Therefore we may write L = Lx for some x ∈ B−{xi}; this means that
a = a(x) is an image of a point of bN − {yi} by φ.

Finally, the continuity of φ follows from Lemma 6.17 by putting
X = bN, Y = R and W = (tµ)−1(B) ∩ f−1(R) there. q.e.d.

Remark. The fact that Sa, a ∈ R−{ai}, contains twistor lines and
these are obtained as fibers over real points of a σ-equivariant holomor-
phic map Sa → P follows at once from [20, Lemma 1.3]. Here we would
like to emphasize the additional information that this map onto P is
given exactly by νi as long as a is on the arc aiai+1.

(6.12) Proposition 6.16 shows in particular that the points a1, . . . , ak
are arranged cyclically in this order on R ∼= S1 with respect to an ori-
entation of R.

Definition. With respect to the coordinate (53) the sequence
(a1, . . . , ak) naturally defines an element [a1, . . . , ak] of A which is in-
dependent of the choices of the affine coordinate (53), where A is as in
(3.6). By construction this invariant depends only on the isomorphism
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classes of the self-dual manifold (M, [g]) with which we have started.
We call [a1, . . . , ak] the twistorial invariant of (M, [g]).

Let m be a nonnegative integer and M = mP 2, where 0P 2 = S4.
Fix an effective and smooth K-action on M . Then denote by C the set
of K-equivariant isomorphism classes of K-invariant self-dual conformal
structures on M . Then we have the natural map

It : C → A(56)

obtained by associating the twistorial invariant to a K-invariant self-
dual structure on M .

We shall show in the next two sections that this map is actually
injective and show in the last section that this map coincides with the
other map

Ic : C → A
given by the conformal invariant defined in (3.6).

(6.13) By a theorem of Hitchin [10] we know that Z is not projecitve
when k − 2 = m ≥ 2. In our case we have a direct proof of this fact.

Proposition 6.18. Z is non-projective for k > 3.

Proof. Suppose that Z is projective. Then as in [10] we conclude
that −1

2K must be ample as it is the unique real line bundle up to
multiples. On the other hand, the general orbit closures are members
of this system and therefore the intersection of two of them is ample on
each member. By Proposition 6.5 such orbit closures are toric surfaces
and the intersection is the anti-canonical cycle on each surface. However,
such an anti-canonical cycle is ample on a toric surface if and only if
k = 2 or 3 (cf. [17, Prop. 2.21]). q.e.d.

On the other hand, we show in general that Z is not merely a Moishe-
zon manifold, but has a structure of a complete algebraic variety of spe-
cial type. For each pi, 1 ≤ i ≤ 2k, the local action of the one parameter
subgroup ρi + ρi+1 with respect to the coordinates (41) at pi takes the
form

(x, y, z)→ (sx, sy, s2z), s ∈ C∗, |s| ≤ 1.

We then set

Ui := {z ∈ Z; lim
s→0

sz = pi}.
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We have pi, pi+k ∈ Si and we shall name the two irreducible components
S±
i of Si such that pi ∈ S+

i and pi+k ∈ S−
i . Then by our previous

description we check easily the following:

Ui = Z −
⋃
j 
=i

S−
j , 1 ≤ i ≤ k, and Ui = Z −

⋃
j 
=i−k

S+
j , k + 1 ≤ i ≤ 2k.

Moreover, by the result of [3] we see that for each i there exists an
isomorphism of Ui onto the complex affine space C3 which extends to
a bimeromorphic map of Z to the natural compactification P 3 of C3.
(In [3] the result is proved for a compact Kähler manifold, but the proof
applies equally well for a Moishezon manifold in general.) Thus we
obtain the following:

Proposition 6.19. Z has a natural structure of a rational complete
algebraic variety which is covered by 2k copies of C3, the complement
of each of which is a union of k − 1 smooth toric surfaces in Z.

For k = 2, Z = P 3 is covered by 4 copies of C3, the complement
of each of which is isomorphic to P 2. For k > 2 the complementary
divisor are reducible and are not of normal crossings type. (The author
is grateful to M. Pontecorvo for asking him about the rationality of Z.)

7. Local structures along the fibers

(7.1) Let m be a nonnegative integer. Let M = mP 2 be the
connected sum of m copies complex projective planes for m > 0 and set
0P 2 = S4. Fix an effective and smooth K-action on M . Suppose that
we are given two K-invariant self-dual conformal structures (M, [g]) and
(M, [g′]) on M . Let Z and Z ′ be the corresponding twistor spaces with
the associated fiber spaces (cf. Propositions 6.4 and 6.5):

f : Ẑ → P and f ′ : Ẑ ′ → P,(57)

where P is the complex projective line with the coordinate (53) and
with real structure σ. Then supposing that the points a1, . . . , ak of R
corresponding to the singular fibers of f and f ′ coincide, we shall show
that Ẑ and Ẑ ′ are isomorphic over P .

By Propositions 6.5 and 6.12 the fibers of f and f ′ over the same
point a of P are isomorphic to each other. In this section, as a first step
we prove that f and f ′ are locally isomorphic along each fiber. Namely
we prove:
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Theorem 7.1. Let the notations and assumptions be as above. For
every point a ∈ P there exists a neighborhood U of a in P such that
f−1(U) and f

′−1(U) are isomorphic as a complex space over U .

The result is well-known if a �= ai for any i, since in this case both
f and f ′ are isomorphic over U as above to the product U × S(ρ) if U
is taken sufficiently small. Therefore we assume that a = ai in what
follows.

There exist two ways for treating the problem, one by a deformation-
theoretic method and the other by using the theory of torus embeddings.
We first follow the former method and prove the above theorem as a
consequence of Propositions 7.10 and 7.11 below. Then by using the
latter method we give an explicit description of f (or f ′) along the fiber
over ai in terms of torus embeddings. Also we shall indicate how the
latter method gives another proof of the local uniqueness.

(7.2) We consider the fiber space f : Ẑ → P . For any ai ∈ P the
fiber Si contains a cycle of nonsingular rational curves C = ai×C, and
consider deformations of the pair (Si, C) which induces a trivial defor-
mation of C. Our first purpose is to construct explicitly a Kuranishi
family of this deformation theory.

For the notational convenience, however, fixing i, 1 ≤ i ≤ k, we
write S = Si and L = Li in what follows. Accordingly we set S± = S±

i

so that S = S+ ∪ S− and L = S+ ∩ S−. Let U± be the open orbits
in S± so that C

±
:= S± − U± forms the anti-canonical cycle of S±.

Using the notation of (2.10) we write the irreducible components of C
±

as (C±
1 , . . . , C

±
i , L

±
i , C

±
i+1, . . . , C

±
k ). Then B := L ∩ C consists of two

points p = L∩C+
i = L∩C−

i+1 and q = L∩C+
i+1 = L∩C−

i . Thus in this
notation the one parameter group ρi fixes each point of C+

i and C−
i .

For holomorphic maps hi : Yi → T, i = 1, 2 over the same base space
T by a (relative) isomorphism of Y1 to Y2 over T we shall mean an
isomorphism u : Y1 → Y2 of complex spaces with h2u = h1. We consider
deformations of the pair (S,C) which induce trivial deformations of C,
i.e., a flat morphism f : S → T over an analytic germ T = (T, o)
together with a relative divisor C of S over T such that (So, Co) = (S,C)
(fixed isomorphism) and there exists an isomorphism φ : C × T → C
over T , where (So, Co) denotes the fiber over o (Thanks are due to K.
Ohno for asking the precise meaning of the deformations here, which
has eventually led to the correction of the original argument.) We call
such a deformation simply a deformation of the pair (S,C) and denote
it by f : (S, C)→ T . If f ′ : (S ′, C′)→ T is another deformation over the
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same space T , the two deformations f and f ′ are said to be isomorphic,
if there exists an isomorphism u : S → S ′ over T which sends C over
C′ (in compatible with the given identifications of the fibers over o with
(S,C)). In what follows we shall call the corresponding semiuniversal
deformation briefly a Kuranishi family of (S,C).

Lemma 7.2. A Kuranishi family of (S,C) exists.

Proof. Let u : (S̃, C̃) → T̃ be a Kuranishi family of (S,C) in the
ordinary sense (for which C̃ is not necessarily trivial) (cf. [7, Th.8.5]
applied to the case of an embedding) and v : Ĉ → P a Kuranishi family
of C. We have an induced versal map b : T̃ → P , i.e., the map induced
by the versality of the family v. Then the restriction of u to the inverse
image b−1(o) is clearly a Kuranishi family for the deformations of (S,C)
in our sense here, where o is the base point of P . q.e.d.

(7.3) We shall consutruct explicitly a deformation of (S,C) which
turns out to be a Kuranishi family of (S,C). First we introduce some
terminology. Let f : (S, C) → T be a deformation of the pair (S,C).
Then C is a union of divisors C±j which are (trivial) deformations of
C±
j , 1 ≤ j ≤ k. Then for any j �= i, b±j := C±j ∩ C±j+1 (with j considered

cyclically modulo k) defines a holomorphic section of f which does not
intersect L ⊆ So = S. We call any blowing up η : (S̃, C̃) → (S, C) of
(S, C) with center b+j

∐
b−j , j �= i, an admissible blowing up of (S, C).

Proposition 7.3. There exists a natural deformation f : (S, C) →
C of (S,C) parametrized by C such that (S, C) admits a natural relative
G-action over C and that for t �= 0 the fibers St are mutually isomorphic
nonsingular symmetric toric surface with anti-canonical cycle Ct with
respect to the induced G-action. Moreover, S is nonsingular except at
the two points p and q of S = S0, where S has ordinary double points.

Proof. First consider the case k = 2. In this case S± are complex
projective planes and S is realized as a reducible quadric
Q := {ξ1ξ2 = 0} in P 3 = P 3(ξ1 : ξ2 : ξ3 : ξ4) with irreducible com-
ponents Q± := {ξi = 0}, i = 1, 2, where C =: A is the union of four
lines Aij := {ξi = ξj = 0}, i = 1, 2, j = 3, 4. Then we consider the one
parameter deformation ξ1ξ2 = tξ3ξ4, t ∈ C of Q, in which each member
Qt, t �= 0, is a smooth quadric isomorphic to P 1×P 1 and which contains
all the above four lines. Therefore we may consider this deformation,
denoted especially by q : (Q,A) → C, as a deformation of the pairs
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(Q,A) in the sense defined above. With respect to the G-action

(ξ1 : ξ2 : ξ3 : ξ4)→ (ξ1 : s1ξ2 : s2ξ3 : s1s2ξ4), (s1, s2) ∈ G = C∗2

each member Qt, t �= 0, becomes a symmetric torus surface as in the
proposition. It is also immediate to check the final assertion concerning
the singularity of Q.

Next we consider the general case. In this case the desired deforma-
tion will be obtained by successive blowing-ups of the above family q.
By Lemma 2.9 our S is obtained from the above Q for k = 2, identified
with S in that lemma, by a succession of admissible blowing ups. Since
our deformation is trivial for C, we can extend the succession of admis-
sible blowing ups sideways to a succession of admissible blowing ups of
the families so that starting from the deformation (Q,A) → C for the
case k = 2 constructed above, we obtain a deformation of (S,C) for any
pairs under consideration with the same parameter space C (where the
triviality of C over T is obvious). Moreover, the relative G-action on the
family defined above for the case k = 2 lifts canonically to any of the
deformation obtained in the above way. The final assertion follows from
that for the case k = 2 since all the blowing-ups occur on the smooth
parts of the varieties under consideration. q.e.d.

(7.4) Our purpose is to show the following:

Proposition 7.4. Let (S,C) be as above. Then the deformation
f : (S, C)→ C of (S,C) consutructed in Proposition 7.3 is a Kuranishi
family of (S,C).

In view of the construction of f in the proof of Proposition 7.3, we
immediately obtain the following:

Corollary 7.5. Any Kuranishi family u : (S, C) → C of (S,C) is
obtained from a Kuranishi family of the pair (Q,A) with k = 2 by a
finite succession of admissible blowing-ups.

As for the proof of Proposition 7.4, since the irreducible components
of C which intersect with L are not Cartier divisors on S, the cohomolog-
ical description of the tangent space for our deformation problem seems
a bit complicated. So we shall follow some round-about way in showing
the proposition. Namely we consider a modified deformation problem
for which the cohomological description is easier. For this purpose we
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prepare some more notations. We define

D± = C±
i

⋃
C±
i+1 and C

′± =
⋃

j 
=i,i+1

C±
j .

Then we set

C ′ = C
′+

⋃
C

′− and D = D+
⋃
D−.

Note that D is a Cartier divisor in S as the inclusion D ⊆ S looks
locally at p or q like

D = {xy = z = 0} ⊆ S = {xy = 0} ⊆ C3.

By a D-deformation of the pair (S,C) we mean a deformation
f : (S, C) → T of (S,C) as above together with an isomorphism
φ : D × T → D, where D = ∪±(C±i ∪ C±i+1). We shall study the tangent
space of this modified deformation theory.

First we recall some general notation and terminology. Let X be
a complex space and Y a divisor with normal crossings contained in
the smooth locus of X. We shall denote by Ω1

X the sheaf of germs of
holomorphic 1-forms on X. Then its dual ΘX := HomOX

(Ω1
X , OX) is

the holomorphic tangent sheaf of X. Ω1
X(log Y ) will denote the sheaf

of germs of meromorphic 1-forms with at most logarithmic poles along
Y and then its dual ΘX(− log Y ) is the sheaf of germs of holomorphic
vector fields which are tangent to Y . If D is a Cartier divisor on X,
the notations (D) and (−D) are used to indicate ⊗[D] and ⊗[D]−1

respectively, where [D] is the line bundle associated to D, e.g.,

Ω1
X(log Y )(D) = Ω1

X(log Y )⊗ [D].

Note that when dimX = 1, we have

Ω1
X(log Y ) = Ω1

X(Y )

and
Θ(− log Y ) = Θ(−Y ).

Using these notation the tangent space of the modified deformation
theory is identified with the Ext-group

Ext1(Ω1
S(logC ′)(D), OS)
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which we shall now compute. (Actually, this space parametrizes the
infinitesimal deformations which induce locally analytically trivial de-
formations of C with globally trivialization of D. But for a cycle of
nonsingular rational curves we know that every locally analytically triv-
ial deformation is necessarily globally trivial, and hence, this is a right
choice.)

(7.5) With the simplified notations

Ξ := Θ(− logC ′)(−D) and τ := Ext1(Ω1
S(log(C ′)(D), OS).

the local-to-global spectral sequence of Ext functor gives us the follow-
ing exact sequence of vector spaces

0→ H1(S,Ξ)→ Ext1(Ω1
S(logC ′)(D), OS)

→ H0(S, τ)→ H2(S,Ξ).
(58)

Then we prove the following:
Proposition 7.6.

1) There exist a natural isomorphism

H1(S,Ξ) ∼= H0(L,ΘL(B))(∼= C)

and we have H2(S,Ξ) = 0.

2) τ ∼= OL.

Corollary 7.7. The exact sequence (58) reduces to

0→ H1(S,Ξ) ∼= C → Ext1(Ω1
S(logC ′)(D), OS)

β→ H0(S, τ) ∼= C → 0.
(59)

In particular dimExt1(Ω1
S(logC ′)(D), OS) = 2.

Proof of Proposition 7.6. 1) In order to compute H i(S,Ξ) we recall
the following sheaf exact sequence [4, (5.4)]

0→ ΘS →
⊕
±
n±∗ ΘS±(− logL)→ ΘL → 0,(60)

where n± : S± → S are the inclusions. Since C ′ does not intersect with
L and D is a Cartier divisor with D∩L = B := {p, q}, from (60) we get

0→ Ξ→
⊕
±
n±∗ Ξ± → ΘL(−B)→ 0,(61)
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where

Ξ± = ΘS±(− log(C± ⋃
L))(−D±).

Note that ΘL(−B) ∼= OL so that H i(L,ΘL(−B)) = 0 for i = 1, 2 and
∼= C for i = 0. From the cohomology exact sequence associated to
(60) we have the following long exact sequence of cohomology and an
isomorphism

0→ H0(S,Ξ)→
⊕
±
H0(S±,Ξ±)→ H0(L,ΘL(−B))

→ H1(S,Ξ)→
⊕
±
H1(S±,Ξ±)→ 0(62)

H2(S,Ξ) ∼=
⊕
±
H2(S±,Ξ±).(63)

We next compute H i(S±,Ξ±). Consider the natural short exact se-
quence of sheaves

0→ Ξ± → ΘS±(− logC±)→
⊕

j=i,i+1

ΘC±
j

(−B±
j )→ 0(64)

where B±
j consists of two intersection points of C±

j with the other com-
ponents of C±. Since ΘC±

j
(−B±

j ) are isomorphic to OC±
j

we have

H i(C±
j ,ΘC±

j
(−B±

j )) = 0

for i = 1, 2 and ∼= C for i = 0. On the other hand, by the sheaf
isomorphism ([17, Prop.3.1])

ΘS±(− logC
±
) ∼= OS± ⊗Z N ∼= O⊕2

S ,

we have H i(S±,ΘS±(− logC±)) = 0 for i = 1, 2 and ∼= C2 for i = 0.
Then H0(S±,Ξ±) consists of vector fields associated to the torus action
on S± which vanishes identically on C±

i ∪ C±
i+1, which must be identi-

cally zero on the whole S±; namely H0(S±,Ξ±) = 0. Thus from the
cohomology exact sequence associated to (64) we have H2(S±,Ξ±) = 0
and the following exact sequence of vector spaces

0→ H0(S±,ΘS±(− logC±)) ∼= C2

→
⊕

j=i,i+1

H0(C±
j ,ΘC±

j
(−B±

j )) ∼=C2 → H1(S±,Ξ±)→ 0.(65)
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Therefore we also have dimH1(S±,Ξ±) = 0. Substituting the results
into (62) we get the desired result.

2) Since Ω1
S(logC ′)(D) is locally free outside L and D is a Cartier

divisor on the whole S, τ has support in L and we have

τ ∼= Ext1(Ω1
S(D), OS) ∼= Ext1(Ω1

S , OS)(−D).

On the other hand, as is well-known the last term is an OL-module and
we have

Ext1(Ω1
S , OS) ∼= NL/S+ ⊗NL/S− = OL(2)

where NL/S± denotes the normal bundle of L in S±. Thus

τ ∼= OL(2)(−B) ∼= OL. q.e.d.

Remark. From the above argument it also follows that

Ext2(Ω1
S(logC ′)(D), OS) = 0.

(7.6) We shall construct a Kuranishi family for D-deformation of
(S,C). In view the proof of 1) of Proposition 7.6 nonzero elements of
H1(S,Ξ) are described as follows. We set

V + = S+ − C+
i+1, W

+ = S+ − C+
i , V

− = S− − C−
i , W

− = S− − C−
i+1.

Then V := V + ∪ V − and W := W+ ∪ W− are open subsets of S
and V ∩W = S − D. Fix any nonzero element v of H0(L,ΘL(−B)).
Let χ = χi be a holomorphic vector field on S coming from the ac-
tion of the one parameter group ρi which restricts to v on L. (The
action of ρi is nontrivial on L.) Since ρi fixes each point of C+

1 and
C−
k , χ vanishes identically on C+

1 and C−
k . Thus (χ, 0) defines an ele-

ment of H0(V +,Ξ1)
⊕
H0(V −,Ξ2) which restricts to v on L− q. Sim-

ilarly (0,−χ) defines an element of H0(W+,Ξ1)
⊕
H0(W−,Ξ2) which

restricts to v on L − p. Then (χ, χ) = (χ, 0) − (0,−χ) is considered to
be an element of H0(V + ∩ V −,Ξ) which defines a nonzero element χ of
H1(S,Ξ) corresponding to to v ∈ H0(L,ΘL(−B)) via the isomorphism
of Proposition 7.6.

The correspondingD-deformation parametrized by C∗ with the base
point 1 ∈ C∗ is described as follows. Define a family of complex
spaces Ss parametrized by s ∈ C∗ by patching V and W via ρi(s);
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Ss = V ∪ρi(s) W . For s = 1 we obtain the original space S although
clearly all Ss are isomorphic to S. As a D-deformation this family is
isomorphic to the trivial deformation (S,C) × C∗ → C∗ of (S,C) to-
gether with the non-trivial trivialization φ : D × C∗ → D × C∗ given
by the condition that φs|C−

i+1 = ρi(s)|C−
i+1 and φs is the identity on

the other irreducible components of D. The infinitesimal deformation
at s = 1 is then precisely the above element χ up to constants.

We can perform the same construction for the family f : (S, C)→ C
constructed in Proposition 7.3 using its relative G-action. Fixing a
trivialization φ : D × T → D we may consider f as a D-deformation of
(S,C). As in the absolute case we set

V+ = S − C+
i+1,W+ = S − C+

i ,V− = S − C−i , and W− = S − C−i+1.

Then V := V+ ∪ V− and W := W+ ∪ W− are open subsets of S and
V ∩W = S − D. We patch together as before V and W via ρi(s), s ∈
C∗. In this way we obtain a D-deformation f̂ : (Ŝ, Ĉ) → R of (S,C)
parametrized by R := C × C∗ with the base point o := (0, 1), where
the trivialization of D is obtained by perturbing the original one φ by
using ρi as in the absolute case. By construction the following is clear.

Lemma 7.8. As a deformation of the pair (S,C) the family f̂ is
isomorphic to the family induced from f : (S, C) → T via the natural
projection p : R→ T = C.

(7.7) Now we are ready to identify a Kuranishi family for D-defor-
mations of (S,C).

Proposition 7.9. The map f̂ : (Ŝ, Ĉ) → R of (S,C) gives a Ku-
ranishi family for the D-deformations of (S,C).

Proof. First we shall show that the tangent space of R at o is natu-
rally identified with the vector space Ext1(Ω1

S(logC ′)(D), OS). Indeed,
the tangent space of the subspace 0×C∗ is, by the description of (7.6)
in the absolute case, naturally identified with the subspace H1(S,Ξ) in
(39). On the other hand, if w : T0C → Ext1(Ω1

S(logC ′)(D), OS) is the
natural tangential map (Kodaira-Spencer map) for the original family
f : (S,C)→ C with φ chosed and fixed, where T0C is the tangent space
of T at 0, the composition of w with the quotient map β in (39) is nec-
essarily surjective. In fact, the image of βw measures the infinitesimal
variation of the singularity of S along L; however by Proposition 7.3 the
total space S of the family f is smooth along L so that the composite
map βw cannot be the zero map. Since H0(S, τ) ∼= C, the assertion is
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verified.
The proposition is deduced from this. However, for the D-deforma-

tions we have not found a suitable reference to quote for the existence of
a Kuranishi family in general. So we shall proceed in an ad hoc way here.
First of all it is not difficult to show that the D-deformation functor has
a hull in the sense of [25]; indeed, the proof is basically the same as in
the case of the ordinary deformation functor (cf. [28, Th.3.6], [25, (3.7)])
using the criterion of Schlessinger [25, Th.2.11]. Then, since the param-
eter space of our family is smooth, and the tangent space is identified
with the tangent space of the functor, i.e., Ext1(Ω1

S(logC ′)(D), OS),
by [28, Th.3.5] this family is formally semiuniversal in the sense that
it is semiuniversal for any deformations whose parameter space is zero-
dimensional. Then by the same argument as in the proof of [28, Th.3.7]
(in the case of ordinary deformation functor) using, e.g., [9, Lemma
2] we conclude that the family is complete (or versal), and hence is a
Kuranishi family. q.e.d.

Proof of Proposition 7.4. Let f ′ : (S ′, C′) → T ′ be any deformation
of the pair (S,C). By taking a trivialization D × T ′ → D we may
consider f ′ as a D-deformation of the pair (S,C). Then by the previous
proposition we have a semiuniversal map δ : T ′ → R. Compose this
with the projection p : R→ T . Then by Lemma 7.8 u is isomorphic as
a deformation of (S,C) to the induced family from f via pu. This shows
that f is a versal family. Moreover, if (S̃, C̃)→ T̃ is a Kuranishi family
of (S,C), the differential of the versal map ToC → ToT̃ is not the zero
map since otherwise S will have singularity along L. Thus the Kodaira-
Spencer map of f is injective and f is a semiuniversal deformation of
(S,C) as desired. q.e.d.

We come back to our twistor space Z and consider the associated
morphism f : Ẑ → P or more precisely the morphism f : (Ẑ, E) →
P . Take any ai ∈ R and consider the germ fi of f along the fiber
Si = S+

i ∪ S−
i as a deformation of the pair (Si, C) inducing the trivial

deformation of C.

Proposition 7.10. The map fi gives rise to a Kuranishi family of
(Si, C) at ai.

Proof. Let f : (S, C) → (T, o) be the Kuranishi family of the
pair (Si, C) constructed in Proposition 7.4. We have a versal map
τ : (P, ai) → (T, o) which is induced by the versality of the family
f . If τ has ramification at ai, then Ẑ should have singularity along
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the intersection Li = S+
i ∩ S−

i . This is a contradiction; so τ must be
isomorphic. Thus fi and f are isomorphic as a deformation of (Si, C),
and hence, fi itself is a Kuranishi family of (Si, C). q.e.d.

(7.8) In order to prove Theorem 7.1 we still have to prove the
following:

Proposition 7.11. Let u : (S, C)→ (T, o) and u′ : (S ′, C′)→ (T, o)
be two Kuranishi families of the pair (S,C) with the same parameter
space T . Then there exists an isomorphism j : (S, C)→ (S ′, C′) over T
which maps each irreducible component Cj to the corresponding com-
ponent C′j. Moreover, if we are given a section s : T → S (resp.
s′ : T → S ′) of u (resp. u′) which do not pass through C (resp. C′),
then j can be taken so that js = s′ on T .

Remark. The versality in general implies the existence of such an
isomorphism over some automorphism α of T . Our claim is that, in our
case, an arbitrary automorphism of the base lifts to an isomorphism of
the two families. This would not be automatic in general.

Proof. We first consider the case k = 2. In this case S = S+ ∪ S−,
S± ∼= P 2, and the intersection S+ ∩ S− is a line L. Moreover, the
general fiber of u is isomorphic to P 1 × P 1. Our method is to perform
some canonical bimeromorphic modifications to both the fiber spaces u
and u′ and reduce them to the trivial fiber spaces for which the existence
of the isomorphism is clear; and then we follow the inverse process to
get a desired isomorphism between the original fiber spaces. Now the
total space S has two singular points p and q, which are ordinary double
points. We may perform a small resolution S̃ → S at p and q with the
exceptional nonsingular rational curves Np and Nq respectively. At each
point there exist two choices of such small resolutions; our choice is that
Np and Nq are contained in one and the same component of S, say S+.
(In the presence of a section s we take the component which does not
intersect with the image of s, noting that the image never intersects with
L.) Then the proper transform S̃− of S− in S̃, which is still isomorphic
to P 2, is exceptional in S̃; hence we can blow down S̃− to a smooth



296 akira fujiki

point r of a complex manifold S:

S
u ���

��
��

��
� S̃�� ��

��

S

u����
��

��
��

T

(66)

It turns out that the resulting morphism u : S → T is smooth and is
a trivial bundle with fiber P 1 × P 1. We denote by Ai, i = 1, 2, the
proper transforms in S of the two irreducible components of the anti-
canonical cycles of S+ other than L, and by Np and N q those of Np

and Nq respectively. Then one sees that Np ∩N q = {r}. Furthermore,
the cycle of rational curves C0 := Np + A1 + A2 + N q extends to the
anti-canonical cycle Ct on the general fiber St so that u is considered
as a deformation of the pair (S0, C0).

We perform the same construction to the other family u′ : (S ′, C′)→
(T, o) and obtain a manifold S̃ ′ and a trivial family u′ : S ′ → T consid-
ered as a deformation of the pair (S′

0, C
′
0) defined in the same way as

(S0, C0). Let r′ ∈ S ′ be the point corresponding to r.
Now take an isomorphism j : (S, C) → (S ′, C′) over T which sends

Ai, Np, N q to A′
i, N

′
p, N

′
q respectively, and hence sends r to r′, which is

always possible. Then j clearly lifts to an isomorphism j̃ : S̃ → S̃ ′ of the
blown-up manifolds which automatically sends Np onto N ′

p and Nq to
N ′
q. Hence, after contracting these curves, j̃ further descends to an iso-

morphism j between the original fiber spaces S → T and S ′ → T which
obviously sends each irreducible component of C to the corresponding
components of C′. This is a desired isomorphism.

Finally suppose that we are given sections s and s′. Let s and s′

be the corresponding sections to u and u′. Since js(t) and s′(t) are in
the open orbit of S′

t for any t ∈ T , there exists a unique element g(t)
of G such that g(t)js(t) = s′(t). This g(t) defines a holomorphic map
g : T → G. Then replacing j by gj in the above argument we get a
desired isomorphism j.

Next we consider the general case. By Proposition 7.4 and Corol-
lary 7.5 u : (S, C) → T is obtained by a succession φ := φ1 · · ·φm of
admissible blowing-ups φd : Sd → Sd−1, d = 1, . . . ,m, over T such that
Sm = S and that (S0, C0) is a Kuranishi family of the pair (Q,A) for
the case k = 2 where m = k − 2 (cf. the proof of Proposition 7.3). The
similar statement is true for u′, too. Let φ′d : S ′d → S ′d−1, d = 1, . . . ,m,
over T be the corresponding admissible blowing ups. Moreover, these
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blowing-ups are determined by the induced admissible blowing-ups of
the central fiber so that we may assume that at each step (Sd, Cd) and
(S ′d, C′d) are deformations of one and the same pair.

Now by the proof in the case k = 2 there exists an isomorphism
j0 : S0 → S ′0 over T which maps the irreducible components of C0 onto
the corresponding components of C′0, and in the presence of sections
maps the image of the section s in S0 to that of the section s′ in S ′0.
Then by the definition of admissible blowing-ups it is immediately seen
that j0 lifts to a desired isomorphism j of S onto S ′. q.e.d.

Proof of Theorem 7.1. Immediate from Propositions 7.10 and 7.11.

(7.9) Let f : X → Y be holomorphic maps of complex spaces. Then
a relative automorphism of X over Y is an autmorphism h : X → X of
complex spaces such that f = fh. We also need the following result in
the next section.

Proposition 7.12. Let u : (S, C) → T be a Kuranishi family of
(S,C). Let β : S → S be a relative automorphism over T which pre-
serves each irreducible component Ci of C. Then there exists a unique
holomorphic map h : T → G such that the automorphism βt : St →
St, t ∈ T , is induced by the action of the element h(t).

Proof. The existence of a unique holomorphic map h defined on
T − {0} follows from Lemma 2.1 immediately. The problem is to show
that it extends across the origin 0.

First consider the case k = 2. In this case in view of Proposition 7.4
and the proof of Proposition 7.3 we may assume that u is the family of
quadrics in P 3 constructed in the proof of Proposition 7.3. Thus S is
naturally embedded in P 3 × T over T and β is given by a holomorphic
map h : T → PGL(3) which has values in G for t �= 0 with respect
to the natural embedding G ↪→ PGL(3) induced by the given action.
Since G is closed in PGL(3), h(0) also belongs to G.

In the general case, as in the last part of the proof of the previous
proposition we take a bimeromorphic morphism φ : S → S0 over T .
Then β descends to an automorphism β of S0 over T preserving the
irreducible components of C0 and with β(t), t �= 0, induced by the action
of h(t). By what we have proved above for the case k = 2, h extends
across the origin. But then the extended map h : T → G already meets
the requirement of the lemma for the original S, too. q.e.d.

Remark. It is clear that G is the identity component of the group
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of extendible automorphisms of the fiber S0. But a priori it may contain
another components to which βo belongs as in the case of degeneration
of elliptic curves.

(7.10) We shall construct by the method of torus embedding a local
model of the degeneration at ai of the morphism f for any i, 1 ≤ i ≤ k.

Let N = Z3 be the additive group of one parameter subgroups
of the algebraic three-torus C∗3. Decompose N into the direct sum
N = N2 ⊕N1 = Z2 ⊕Z. Let

ρ = {ρ1, . . . , ρ2k}, ρj+k = −ρj , 1 ≤ j ≤ k,
be the set of primitive elements in N2 = Z2 arranged counterclockwise
in this order.

Fixing i take any elements η and η′ of N whose last coordinates are
equal to 1 and which satisfy the condition

η − η′ = ρi − ρi+1.(67)

Define a fan	 inNR by the following prescription: The one-dimensional
simplices are those generated by the primitive vectors η, η′ and ρj , 1 ≤
j ≤ 2k. The two-dimensional simplicies consist of

{η, η′}, {ρj , ρj+1}, 1 ≤ j ≤ 2k (2k + 1 = 1),
{η, ρj}, j = 1, . . . , i, i+ k + 1, . . . , 2k, and
{η′, ρj}, j = i+ 1, . . . , i+ k,

while three-dimensional simplices are given by

{η, ρ1, ρ2}, . . . {η, ρi−1, ρi}, {η,−ρi+1,−ρi+2}, . . . {η,−ρk,−ρ1}
and

{η′,−ρ1,−ρ2}, . . . {η′,−ρi−1,−ρi}, {η′, ρi+1, ρi+2}, . . . {η′, ρk, ρ1}.
(Here, for example {η, ρ1, ρ2} denotes the simplex spanned by η, ρ1, ρ2.)
Besides these, we take the following two three-dimensional quadrilateral
cones

{η, η′, ρi, ρi+1} and {η, η′,−ρi+1,−ρi}
as constituents of our fan. It is immediate to see that these data
actually define a fan 	 whose support coincides with the half space



compact self-dual manifolds with torus actions 299

N2R ⊕ N1R≥0
. Let X be the corresponding three dimensional toric

variety.
Let 	1 = {{0},R≥0} be a fan on N1R = R, which gives the toric

affine line C = C∗(s) ∪ {0}. Then the projection N → N1 gives rise to
a map of fans ψ : (N,	) → (N1,	1), which in turn induces a proper
morphism of toric varieties h : X → C (cf. [17, Th. 1.13, Th. 1.15]).

Lemma 7.13. Given ρ, the fiber space h is, up to C∗3-equivariant
isomorphisms, independent of the choices of η and η′ above.

Proof. It suffices to show that the map of fans ψ is up to isomor-
phisms independent of the choice of η and η′. Consider the subgroup
H ∼= Z2 ⊆ SL(3,Z) consisting of elements of the form

g =


 1 0 α

0 1 β
0 0 1


 , α, β ∈ Z.

The natural action of the group H on N leaves fixed any element
of N2 ⊆ N and induces the identity on the quotient N1 = N/N2. Thus
if we apply g to our original fan 	, the change occurs only on η and
η′ with the difference η − η′ unchanged. On the other hand, the image
of (0, 0, 1) becomes (α, β, 1). From this we easily conclude that any
two fans constructed according to the above prescription are mutually
mapped to each other by some element of H. q.e.d.

(7.11) We show that h gives a local model of f along Si.

Proposition 7.14. We consider the morphism f : Ẑ → P as
a germ along the fiber Si = Sai over ai and consider the morphism
h : X → C as a germ along the fiber X0 over 0 ∈ C. Then f and h are
isomorphic.

Proof. Let Ej be the irreducible divisor on X corresponding to ρj
and S (resp. S′) the irreducible divisor corresponding to η (resp. η′).
Because of (67) X has ordinary double points at the intersection point
of the four divisors S,Ei, Ei+1 and S′ (resp. S,Ei+k, Ei+k+1 and S′)
(cf. [13, pp. 38–39] [17, p. 37, Ex.]). Since the third coordinate of η
(resp. η′) is equal to one, η, ρj and ρj+1 form a Z-basis of N so that X
is nonsingular at any other point.

Let 	(ρ) be the fan in N2R = R2 generated by ρ, which defines
the toric surface S(ρ). Then we have the natural inclusion of fans
(N2,	(ρ)) ↪→ (N,	), giving rise to an embedding of the toric sur-
face S(ρ) onto the fiber of h over 1, and hence onto any fiber over
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s �= 0. Note that the divisors Ej are of the form E0j ×C on X, where
E0j = Ej ∩ h−1(0).

The fiber over s = 0 consists of two toric surfaces S and S′, whose
structures are easily read off from the fan 	. For S, for instance, we
set according to [17, Cor.1.7] Nη := N/Zη and

	η := {σ = the image of σ in NηR; η is a face of σ}.

Then S is isomorphic to the toric surface associated to the fan (Nη,	η)
and we have

	η = {η′ and ρj , j = 1, . . . , i, i+ k + 1, . . . , 2k},

where η′ = η′−η = −ρi+ρi+1 because of (67). Therefore S is isomorphic
to S+

i (ρ). Similarly, we get S′ ∼= S−
i (ρ) of (9). Finally since they

intersect transversally along the curve L := S ∩S′ corresponding to the
two-simplex {η, η′}, it follows that X0

∼= Si = Sai .
Thus, if we set E = ∪jEj with its fiber E0 = ∪jE0j over 0, the

map h, regarded as a map (X,E) → C, is considered as giving a local
deformation of the pair (X0, E0) which is isomorphic to (Si, C) by the
above consideration. Hence we have a versal map τ : (C, 0) → (P, ai)
of analytic germs, considering f : Ẑ → P as a Kuranishi family of the
pair (Si, C) by Proposition 7.10. However since X is smooth along the
general points of L, τ cannot have ramifcation, i.e., τ is isomorphic.
Thus the proposition follows. q.e.d.

In passing we also note the following:

Proposition 7.15. There exists a relative involution of X over C
which interchanges the two irreducible components of the fiber X0 over
the origin 0 ∈ C.

Proof. Lemma 7.13 shows that we may take η to be (0, 0, 1). Then
if η′ = (α, β, 1), the element

h =


 −1 0 α

0 −1 β
0 0 1


 ∈ SL(3,Z)

defines an involution of the fan (N,	) which interchanges the vectors
(0, 0, 1) and (α, β, 1). This induces a desired relative automorphism.

q.e.d.
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(7.12) Note that the existence of toric description of the Kuranishi
family of (Si, C) as above is actually a priori guaranteed by the following
result of Mumford (cf. the proof of Theorem in [13, IV,§1]).

Lemma 7.16. Let f : A→ B be a proper morphism of a complex
algebraic variety A of dimension n+ 1 onto a complex smooth algebraic
curve B. Suppose that there exists an effective algebraic action of the
algebraic torus C∗n on A over B. Let b ∈ B be an arbitrary point.
Then there exist a toric variety X of dimension n+1 and an equivariant
morphism h : X → C such that the germ of f , considered along the fiber
over b, and the germ of h, considered along the fiber over the origin 0 of
C, are C∗n-equivariantly and analytically isomorphic, where the action
of C∗n on X over C is induced by the given torus action (first n factors).

In fact by applying the lemma to our G-action on Ẑ over P at each
point ai ∈ R, we obtain a priori the exsitence of a toric description of
f along the singular fiber Si.

Conversely, we can replace the deformation theoretic argument in
the first part of this section by the toric argument above in showing the
local uniqueness of the fibering of f over ai. In fact, from the structure
of Ẑ along Si we conclude that any of the toric models describing f
along Si must be isomorphic to h in Proposition 7.14. For instance,
from the fact that Ẑ has ordinary double point at zi or zi+k we obtain
the condition (67), from the fact that Ẑ is otherwise smooth along Si
we get that the last coordinates of η and η′ should be equal to one, and
etc.

Remark. In order to apply Lemma 7.16 we have to check that a
suitable neighborhood of Si is algebraic; in this respect it is not difficult
to show that if we set Pi = {a ∈ P ; a �= aj , j �= i}, h−1(Pi) is quasi-
projective over Pi.

8. Effectivity of invariants

(8.1) The purpose of this section to prove the following global
isomorphism theorem which implies the effectivity of the twistorial in-
variants, i.e., the injectivity of the map It in (56).

Theorem 8.1. Let (M, [g]), (M, [g′]), Z, Z ′, f : Ẑ → P and
f ′ : Ẑ ′ → P be as in (7.1). Suppose that the points a1, . . . , ak on P
corresponding to the singular fibers of f and f ′ coincide. Then there
exists an isomorphism j : Z → Z ′ of complex manifolds which is G-
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equivariant, is compatible with real structures and maps twistor lines to
twistor lines.

By the (equivariant) inverse twistor correspondence this implies the
following

Corollary 8.2. The original self-dual manifolds (M, [g]) and
(M, [g′]) are K-equivariantly isomorphic.

We first construct a global isomorphism between the two fiber spaces
f : Ẑ → P and f ′ : Ẑ ′ → P forgetting the additonal structures for a
while.

(8.2) As a preliminary result, we first deduce a consequence of
Proposition 7.12 on the (global) automorphism group of Ẑ over P . Let
E = µ−1(C) ∼= C × P and Ei, 1 ≤ i ≤ 2k, its irreducible components
as in Proposition 6.5.

Lemma 8.3. Let AutP (Ẑ, {Ei}) be the group of relative automor-
phisms of Ẑ over P which preserve any irreducible components Ei of
E. Then the embedding G ↪→ AutP (Ẑ, {Ei}) induced by the natural G-
action on Ẑ is an isomorphism. Moreover, the same conclusion is also
true for any fiber space f1 : (Ẑ1, {E′

1i}) → P1 obtained by pulling back
f by a finite covering P1 → P which is unramified over all ai, where P1

is any compact curve.

Proof. Let g ∈ AutP (Ẑ, {Ei}) be any element. Let P0 := P−{ai, 1 ≤
i ≤ k}. By Lemma 2.1 for any a ∈ P0 there exists a unique element
h(a) of G depending holomorphically on a such that g|Ẑa is given by the
action of h(a). Moreover, by Proposition 7.12 the resulting holomorphic
map h : P0 → G extends to a holomorphic map h̃ : P → G such that
g|Ya coincides with the action of the element h̃(a) for all a ∈ P . Then
h̃ must be a constant map since G is Stein. This implies that g is an
element of G. The proof is completely the same for f1. q.e.d.

(8.3) In what follows for an auxiliary purpose we fix general twistor
lines L and L′, one for each Ẑ and Ẑ ′, with the same branch points a
and a := σ(a) on P (cf. (6.10)).

Take and fix a ramified double covering u : P̃ → P ramified precisely
over a and a. We set R̃ := u−1(R), which is connected and is an
unramified double covering of R. We write

u−1(ai) = {bi, bi+k},
where b1, . . . , b2k are arranged cyclically in this order on the circle R̃.
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We consider the pull-back f̃ : Z̃ → P̃ of f by u, i.e., Z̃ = Ẑ ×P P̃ with
f̃ the natural projection. Z̃ inherits a natural G-action over P̃ from Ẑ.
Denote the inverse image of E in Z̃ by Ẽ(∼= C× P̃ ). Since L is a double
coverings of P branched exactly over a and a, the inverse image of L in Z̃
decomposes into two irreducible components which determine sections
of f̃ . We then choose and fix one of its irreducible components L̃. The
branch locus of the double covering map p : Z̃ → Ẑ is precisely the
two nonsingular fibers Ẑa := f−1(a) and Ẑa := f−1(a). The morphism
f̃ has singular fibers precisely over bi. L̃ intersects neither with Ẽ nor
with the inverse images of special twistor lines.

We perform the same construction to f ′ : Ẑ ′ → P and denote the
corresponding objects by putting ′ on the same letter; for instance its
pullback to P̃ is denoted by f̃ ′ : Z̃ ′ → P̃ . By our assumption the general
fibers of f and f ′ are isomorphic to the same toric surface S(ρ). So the
irreducible components of Ẽ and Ẽ′ may be numbered in such a way
that Ẽi and Ẽ′

i correspond with respect to a fixed isomorphism of the
general fibers. This in particular implies that the one parameter groups
corresponding to Ẽi and Ẽ′

i are the same and is equal to ρi. We then
show the following:

Lemma 8.4. There exists an isomorphism j̃ : Z̃ → Z̃ ′ over P̃ which
sends Ẽi to Ẽ′

i, 1 ≤ i ≤ 2k, and L̃ to L̃′.

Proof. Let I = Isom
P̃
((Z̃, {Ẽi}, L̃), (Z̃ ′, {Ẽ′

i}, L̃′)) be the analytic
space over P̃ whose fiber Iq, q ∈ P̃ , parametrizes all the isomorphisms
of (Z̃q, {Ẽiq}, L̃q) and (Z̃ ′

q, {Ẽ′
iq}, L̃′

q)), namely the isomorphisms of Z̃q
to Z̃ ′

q which sends each Ẽiq to Ẽ′
iq and L̃q to L̃′

q, where L̃q and L̃′
q consist

of single points. See [26] and [9, 3.1]. We have natural identifications
(Z̃q, {Ẽiq}) = (Su(q), {Ciu(q)}) and (Z̃ ′

q, {Ẽ′
iq}) = (S′

u(q), {C ′
iu(q)}).

Since we know that each smooth fiber of f and f ′ are isomorphic as a
toric surface, the set of such isomorphisms Isom((Z̃q, {Ẽ}iq), (Z̃ ′

q, {Ẽ}′iq))
is non-empty, and then by using the torus action we conclude that the
fiber Iq = Isom((Z̃q, {Ẽ}iq, L̃q), (Z̃ ′

q, {Ẽ}′iq, L̃′
q)) is non-empty either; in

fact the latter consists of a single element in view of Lemma 2.1.
Thus the natural projection i : I → P̃ is an isomorphism over

P̃0 := P̃ − {bi} and hence the closure I ′ of i−1(P̃0) in I is an irre-
ducible component of I. On the other hand, at any point of P̃ we
have by Proposition 7.11 a local section to I → P̃ . This implies that
I ′ is mapped surjectively, and hence isomorphically, onto P̃ . Thus we
have obtained a section of I → P̃ , which in turn gives rise to a desired
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isomorphism of two fiber spaces. q.e.d.

(8.4) We want the P̃ -isomorphism j̃ : Z̃ → Z̃ ′ obtained in Lem-
ma 8.4 to descend to a P -isomorphism between original fiber spaces
f : Ẑ → P and f ′ : Ẑ ′ → P . For this it suffices to show that j is
compatible with the covering transformations κ and κ′ of the double
coverings Z̃ → Ẑ and Z̃ ′ → Ẑ ′ respectively;

j̃κ = κ′j̃.(68)

For this purpose we first prove the following:

Lemma 8.5. The covering transformation κ is the unique holo-
morphic involution of Z̃ which covers the covering transformation of
P̃ → P and which induces the identity on the two fibers Z̃b and Z̃b,
where b = u−1(a) and b = u−1(a).

Proof. Suppose that there exist two such involutions, say κ and
κ1. Then g := κ−1κ1 gives a relative automorphism of Z̃ over T which
induces the identity on Z̃b and Z̃b. In particular g preserves each irre-
ducible component of Ẽ. Then by Lemma 8.3 g is induced by the action
of an element of G, which will be denoted by the same letter g. Then
g must be the identity since g|Z̃b is the identity; therefore κ = κ1 as
desired. q.e.d.

From this we get the desired uniqueness immediately.

Lemma 8.6. The isomorphism j̃ : Z̃ → Z̃ ′ obtained in Lemma 8.4
descends to an isomorphism ĵ : Ẑ → Ẑ ′ over P which sends each Ei to
E′
i, where Ei and E′

i are the images of Ẽi and Ẽ′
i respectively.

Proof. The composite map j̃−1κ′j̃ is a holomorphic involution on Z̃
with all the properties of Lemma 8.5. Hence, by Lemma 8.5 we have
j̃−1κ′j̃ = κ and (68) follows. The rest of the assertion is clear. q.e.d.

(8.5) So far we have shown that the two fiber spaces f and f ′

are isomorphic as complex spaces over P . Next we show that such an
isomorphism can be taken to commute with real structures. First we
show the following:

Lemma 8.7. Let σ and σ′ be anti-holomorphic and fixed point free
involutions of Ẑ which send the divisors Ej to Ej+k for every j, 1 ≤ j ≤
k, and which induce the given real structure on P . Then there exists an
automorphism d of Ẑ such that σ′ = dσd−1.
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Proof. As usual if we set v = σ′σ−1, v defines a holomorphic and
relative automorphism of Ẑ over P . By our assumptions v preserves
each irreducible component of E. Hence by Lemma 8.3 we conclude
that v is induced by the action of some element g of G. Thus we may
write σ′ = σg, g ∈ G.

From the fact that σg is an involution, by the same argument as in
Lemma 2.7, after conjugation by a suitable element of G we may assume
that g is either an element of order two of K or the unit element. We
show, however, that if g �= e and k > 2, σg necessarily has a fixed point
on Z and therefore is inappropriate.

Indeed, since g is an involution which is homotopic to the identity,
and M is topologically mP 2 with m > 0 by our assumption, it has
always a two dimensional component in its fixed point set on M (cf.
the proof of [15, Prop. 1]), which then must be one of Bi. Take a point
x of B′

i. Then g has two fixed points on the twistor line Lx; take an
isomorphism Lx → P which sends these two points to 0 and ∞. Take
an affine coordinate z of P such that the action of g takes the form
z → −z. Then the action on σ on Lx takes the form z → −a/z with
a > 0. It follows that σg admits a fixed point set |z| = √a on Lx ⊆ Z.

When k = 2, there exists a unique element g of order two with only
isolated fixed points. However, in this case Z is the complex projective
space and a direct computation shows easily that σg is conjugate to σ
by some element of Aut Ẑ. The detail is left to the reader. q.e.d.

Lemma 8.8. The isomorphism ĵ : Ẑ → Ẑ ′ over P obtained in
Lemma 8.6 can be taken so that it is compatible with the real structures
σ̂ on Ẑ and σ̂′ on Ẑ ′.

Proof. We set σ̂1 = ĵ−1σ̂ĵ. Then both σ̂ and σ̂1 are anti-holomorphic
involutions satisfying the condition of Lemma 8.7. Hence by that lemma
there exists an element d ∈ G such that σ̂ = dσ̂1d

−1. Then if we replace
the original ĵ by ĵd−1, we get the desired compatibility. q.e.d.

(8.6) Next we verify the G-equivariance of the isomorphism.

Lemma 8.9. The isomorphism ĵ : Ẑ → Ẑ ′ above is G-equivariant.

Proof. By Lemma 8.3 we have natural identifications

G = Aut(Ẑ, {Ei})

and
G = Aut(Ẑ ′, {E′

i}).
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On the other hand, the map

g → ĵgĵ−1, g ∈ Aut(Ẑ, {Ei}),

induces a group isomorphism of Aut(Ẑ, {Ei}) and Aut(Ẑ ′, {E′
i}), which

in view of the above identification is considered as an automorphism
ζ : G → G. We have to show that this is the identity; in fact since ĵ
maps the irreducible components Ei to E′

i, the induced automorphism
of the group N of one parameter groups reduces to the identity. Thus
ζ itself must be the identity, i.e., ĵ is G-equivariant. q.e.d.

(8.7) By the above lemmas we have obtained a G-equivariant iso-
morphism ĵ : Ẑ → Ẑ ′ over P which is compatible with the real struc-
tures of both spaces. Since it maps E onto E′, it descends to an iso-
morphism j : Z → Z ′ of the twistor spaces which is compatible with
the real structures of both spaces. Finally the following lemma finishes
our proof of Theorem 8.1.

Lemma 8.10. The isomorphism j : Z → Z ′ above sends any
twistor line of Z to a twistor line of Z ′.

Proof. Let D be the open subset of the Douady space of Z [5] con-
sisting of points whose corresponding subspaces are nonsingular rational
curves with normal bundle isomorphic to O(1) ⊕ O(1). Then the real
structure σ of Z acts on D as an anti-holomorphic involution and M is
considered as a connected component of the fixed point set of this action.
Similar statement holds true also for Z ′ and M ′ and the corresponding
objects will be denoted with the superscript ′.

Since j is (σ, σ′)-equivariant, the induced map δ : D → D′ sends the
fixed point set of σ to the fixed point set of σ′. Now ĵ sends the fiber
Ẑai isomorphically onto Ẑ ′

ai
and hence the corresponding singular locus

L̂i to L̂′
i, which are the proper transforms of the twistor lines Li and L′

i

on Z and Z ′ respectively. This implies that j sends the twistor line Li
onto L′

i, and hence δ(di) = d′i, where di ∈ D and d′i ∈ D′ are the points
corresponding to Li and L′

i respectively. By what we have remarked
above, this already shows that σ maps M diffeomorphically onto M ′.
Namely, the twistor lines are mapped to twistor lines by j. q.e.d.

(8.8) For the reference in the next section we study further the
structure of the real part of the fiber space f : Ẑ → P , i.e., we consider
the structure of the induced fiber space fR : ẐR → R, where ẐR =



compact self-dual manifolds with torus actions 307

f−1(R). Especially we are interested in the structure of

Q := (tµ)−1(B) ∩ ẐR(69)

and its complement in ẐR

A := ẐR −Q.
Q is the union of the proper transforms in Ẑ of all the special twistor
lines on Z. Thus for any a ∈ R the fiber Qa is the union of twistor lines
contained in Ẑa = Sa. K acts smoothly on ẐR over R and the action is
free on A.

Lemma 8.11. Each fiber Aa, a ∈ R, of A has exactly two connected
components.

Proof. 1) When a �= ai and a is on the arc aiai+1, consider the
σ-equivariant morphism νi : Sa → Pi in Lemma 2.6 and write Pi−Ri =
D+
i

∐
D−
i as two disjoint open discs D±

i where Ri is the real part of Pi.
Then

Qa = Sa ∩ t−1(B) = ν−1
i (Ri)

and
Aa = Sa − ν−1

i (Ri) = ν−1
i (D+

i )
∐

ν−1
i (D−

i );

thus Aa has two connected components.
2) When a = ai, Sa = Si and we have Si ∩ t−1(B) = Li. Thus

Aa = Si − Li = (S+
i − Li) ∪ (S−

i − Li) and Aa has two connected
components. q.e.d.

Nevertheless we have the following:

Lemma 8.12. A is connected.

Proof. We consider the quotients ZR := ẐR/K,Q := Q/K and
A := A/K over R. We have

A = ZR −Q.
For each a ∈ R we set Sa := ZRa = Sa/K. For a �= ai it is a 2k-gon,
i.e., a polygon with 2k-edges (together with its interior) considered as
a 2-manifold with corners (cf. [17, 1.3]). For a = ai it is a union of two
(k + 1)-gons with a unique common edge li which is the image of the
very special twistor line Li. We may “flatten” this union topologically
along the edge li and consider it as a 2k-gon in this case too, regarding
li as a special diagonal of it.
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The boundary ∂Sa of Sa is naturally identified with the quotient
C := C/K and the union

⋃
a ∂Sa is a trivial fiber bundle over R with

fiber C. Thus Ci := Ci/K, 1 ≤ i ≤ 2k, form boundary edges of each
2k-gon Sa and the images zi of zi(= Ci ∩ Ci+1), 1 ≤ i ≤ 2k, form the
vertices of the 2k-gon. For a = ai the mentioned diagonal li connects
exactly the vertices zi and zi+k. Also for a �= ai, real twistor lines in
Qa are K-equivalent to each other and the quotient Qa/K gives again
a kind of diagonal la connecting some points zia and zi+k,a on the edges
Ci and Ci+k other than the vertices.

Thus, topologically we may consider ZR → R as the trivial bundle
R × D → R where D is a closed two-disc, and Q is then the union of
diagonals

⋃
a∈R la, and form a bundle over R = S1 with closed interval

as a fiber. Since its boundary C is connected, Q is homeomorphic to
a Möbius band; indeed, when a moves from ai to ai+1 on the edge
aiai+1, a diagonal starts from li and by way of la reaches to li+1, while
both edges of the diagonal which are the points on Ci (resp. Ci+k)
goes from zi (resp. zi+k) to zi+1 (resp. zi+k+1) via zia (resp. zi+k,a) for
1 ≤ i ≤ k, with the indices i considered cyclically modulo 2k. Therefore
the complement A of Q in ZR is connected, and hence its inverse image
A also is connected. q.e.d.

(8.9) Let L be a general twistor line, identified with its inverse
image in Ẑ. By Proposition 6.15 the induced map f |L : L → P is a
double covering branched exactly over σ-conjugate points, say a and
a ∈ P −R. We note that L∩ ẐR ⊆ A; otherwise it would intersect with
some other twistor line in view of the definition of A.

As in (8.3) take a double covering u : P̃ → P branced exactly over
the two points a and a and let b1, . . . , b2k be points of R̃ := u−1(R)
which are the inverse images of ai. We set

Ẑ0 = Ẑ − (E
⋃

(∪L̂i))

where L̂i is the proper transform of Li in Ẑ. Ẑ0 is a G-invariant set on
which G acts freely. Then Z̃0 := Ẑ0 ×P P̃ is a G-invariant Zariski open
subset of the total space of the induced fiber space Z̃ := Ẑ ×P P̃ → P̃
with the induced G-action. The inverse image of L in Z̃ decomposes
into two irreducible components L±. The following lemma is used in
the proof of the injectivity of a certain map in the next section.

Lemma 8.13. There exist G-invariant Zariski open subsets V ± of
Z̃ contained in Z̃0 such that Z̃0 = V +∪V −, V ± ∼= P̃ ×G and L± ⊆ V ±
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by a suitable choice of the signs ±.

Proof. By Lemma 8.12 A is connected, while its inverse image Ã :=
A ×R R̃ in Z̃ admits exactly two connected components Ã±. In fact,
the pull-back Q̃ := Q×R R̃→ R̃ of the Möbius band Q→ R becomes a
trivial bundle over R̃. Correspondingly Ã/K = A×R R̃ gets exactly two
components with common boundary Q̃. This implies that Ã also has
two connected components. Ã is contained in Z̃0 and Ã±

bi
:= Ã± ∩ S̃bi

is Zariski open in S̃bi := f̃−1(bi). We now define

V ± := Z̃0 −
⋃

1≤i≤2k

Ã∓
bi

so that V ±∩ Ãbi = Ã±
bi
. V ± are clearly G-invariant Zariski open subsets

of Z̃ contained in Z̃0 with Z̃0 = V + ∪ V −.
Since L±

R̃
:= L± ∩ f̃−1(R̃) is connected and contained in Ã, after

changing the signs if necessary, we may assume that L±
R̃
⊆ Ã±. Then

we have L± ⊆ V ±.
Finally the map L± ×G → V ± induced by the G-action is isomor-

phic since the G-action on Z̃0 is free, G-orbits on V ± are precisely the
fibers of V ± → P̃ , and that the intersection of L± with each G-orbit is
transversal at exactly one point. q.e.d.

9. Coincidence of invariants

(9.1) Let m be a non-negative integer and M = mP 2 with an
effective and smooth K-action. Suppose that we are given a K-invariant
self-dual conformal structure [g] on M . Then the quotient N = M/K is
a closed two-disc and we have a cyclic sequence (y1, . . . , yk) of points on
the boundary bN which are the images of fixed points of theK-action on
M . On the other hand, let Z be the twistor space associated to (M, [g])
and f : Ẑ → P the associated fiber space, where P is endowed with the
affine coordinate z (53) with σ given by σ(z) = 1/z. Let a1, . . . , ak be
the points of the fixed point set R of σ corresponding to the singular
fibers of f such that yi is mapped to ai by the natural homeomorphism
φ : bN → R obtained in Proposition 6.16. We set

D := {z ∈ P ; |z| ≤ 1}
so that R is the boundary of D. In this section we prove that φ extends
naturally to a diffeomorphism ψ : N → D which preserves the geometric
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structures on the interiors D0 and N0 respectively: namely the induced
complex structure on D0 and the induced conformal structure of N0 (cf.
(3.6)). Recall that in real dimension two, giving a conformal structure is
equivalent to giving a complex structure modulo the complex conjugate.
The precise statement of our theorem is as follows.

Theorem 9.1. There exists a natural homeomorphism ψ : N → D
with the following properties:

1) ψ restricts to φ on the boundary bN ; in particular ψ sends yi to
ai for each 1 ≤ i ≤ k, and

2) ψ induces a diffeomorphism N0 → D0 of the interiors, with re-
spect to which the conformal structure on N0 and the holomorphic
structure of D0 modulo its complex conjugate are compatible, i.e.,
ψ sends the conformal structure of N0 to one on D0 which coin-
cides with that defined by the complex structure of D.

One may think of D0 as a kind of (mini-mini)-twistor space of N0.
We first deduce Theorem 1.1 from Theorem 9.1.

Proof of Theorem 1.1. By Corollary 6.8 we may assume that M =
mP 2.

Let J be the subset of C of (6.12) consisting of the isomorphism
classes of Joyce’s self-dual manifolds [11]. We have a diagram

J Ic→ A
∩ ‖
C It→ A

where Ic and It are the maps given by the conformal invariants and the
twistorial invariants respectively (cf. (6.12)). This diagram is commu-
tative by Theorem 9.1 and It is injective by Theorem 8.1. Thus Ic on
the top line is also injective and we have J = C. This is precisely the
assertion of Theorem 1.1. q.e.d.

Proof of Corollary 1.2. Since M admits a K-action, χ(M) is non-
negative by Lemma 3.1. The case χ(M) > 0 is treated in Theorem 1.1.
If χ(M) = 0, the K-action has no fixed points. Thus by [22, Th. 3.6]
M must be conformally flat. q.e.d.

The rest of this section is devoted to the proof of Theorem 9.1.
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(9.2) First we give the definition of ψ(y), y ∈ N , set-theoretically.
When y ∈ bN , we just set ψ(y) = φ(y) with φ in (6.11). In case
y ∈ N0, we define ψ(y) ∈ D0 as follows. Let x ∈M −B be an arbitrary
point with π(x) = y and L = Lx the corresponding general twistor line.
By Proposition 6.15 precisely one of the branch points of the double
covering f |L : L → P is in D0, which we shall denote by a(x). Since
Sa are K-invariant, we have a(x) = a(t(x)), and hence, we may write
a(x) = a(y). Thus we can define

ψ(y) = a(x).

We show the following:

Lemma 9.2. ψ|N0 : N0 → D0 is bijective.

Together with Proposition 6.16 this would imply

Corollary 9.3. ψ : N → D is bijective.

We need the following lemma for the injectivity.

Lemma 9.4. Let L be a general twistor line. If g(L) is again a
twistor line for some g ∈ G, then g ∈ K.

Proof. If g(L) is a twistor line, we have (σgσ)L = g(L). On the
other hand, since σgσ−1 = g∗ (cf. (2.9)) we get g−1g∗(L) = L. Namely,
|g|2 := g−1g∗ ∈ G stabilizes the point d of the Douady space DZ of Z
corresponding to the submanifold L; d = t(L) ∈ M0 ⊆ DZ . Since Z
is Moishezon and L is general, the stabilizer group of d is finite, and
therefore it is contained in K; |g|2 ∈ K. Since the K-action on M0 is
free, this implies that |g|2 = 1, i.e., g ∈ K. q.e.d.

Proof of Lemma 9.2. Surjectivity: Let a be any point of D0 and
consider the corresponding non-real fiber S = Sa of f : Ẑ → P . By
Lemma 6.7 t induces a double covering s : S → M , which cannot be
unramified since M is simply connected. If z ∈ S is a ramification
point, then the twistor line Lx, x = t(z), is tangent to S at z. Thus
a = a(x) = ψ(π(x)).

Injectivity. Suppose that a = ψ(y) = ψ(y′) in D0 for y and y′ in
N0. Take any point x and x′ in M0 over y and y′ respectively. Then the
twistor lines Lx and Lx′ are both tangent to the fibers Sa and Sa. Take
a double covering P̃ → P branced exactly at a and a, and consider the
pull-back f̃ : Z̃ → P̃ of f as in (8.9). Then the inverse images of Lx and
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Lx′ in Z̃ are decomposed into two irreducible components L±
x and L±

x′

respectively and define sections of f̃ . L+
x and L+

x′ are entirely contained
in the Zariski open subset V + ∼= G × P̃ by Lemma 8.13. Since any
compact curves in V + is of the form g × P̃ for some g ∈ G, we see that
L+
x is a G-translate of L+

x′ , and then as their G-equivariant images Lx
is a G-translate of Lx′ . Thus by Lemma 9.4 Lx further is a K-translate
of Lx′ , which implies that y = y′. q.e.d.

(9.3) We next check the smoothness of ψ on N0. Let M0 = M −B
and Z0 = t−1(M0). We consider the subset

Γ := {z ∈ Z0;Lx is tangent to Sa, x = t(z), a = a(x) = f(z)}.
(70)

Lemma 9.5. Γ is a closed submanifold of real codimension two
in Z0 and consists of two connected components Γ+ and Γ− which
are mapped diffeomorphically onto M0 by t and which are mutually σ-
conjugate.

Proof. Take any point z0 ∈ Z0. Since t is a submersion, we can
find real local coordinates x1, x2, x3, x4, y1, y2 of Z0 at z0 such that t
is described by the projection to the first four coordinates and that
z := y1 +

√−1y2 gives a holomorphic local coordinate on Lx for any
x in a neighborhood of t(z0). Then with respect to a suitable complex
coordinate of P around f(z0), f is locally considered as a complex-
valued smooth function which is holomorphic when restricted to each
Lx. Thus a point z in a neighborhood of z0 belongs to Γ if and only if
(∂f/∂z)(z) = 0. Namely, g := ∂f/∂z = 0 is a defining equation of Γ in
a neighborhood of z0. In particular, Γ is closed in Z0.

Since the ramification indices at branch points of Lx → P are al-
ways two, at any point z of Γ we have ∂g/∂z �= 0. Thus the implicit
function theorem shows that a neighborhood of z of Γ is mapped dif-
feomorphically onto a neighborhood of t(z) in M . This shows that Γ is
a submanifold of real codimension two in Z0 and t|Γ : Γ→M is locally
diffeomorphic. Since each general twistor line has exactly two ramifica-
tion points, we conclude that t|Γ is an unramified double covering.

Let F := µ(f−1(R)). Then F is a closed subset of Z, and Z−F has
two connected components

Z+ := µ(f−1(D0)− E)

and
Z− := µ(f−1(σ(D0))− E);
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namely Z is a disjoint union of F,Z+ and Z− with Z+ and Z− σ-
conjugate to each other. By Proposition 6.15 Γ never intersects with F
so that Γ is a disjoint union of Γ+ := Γ ∩ Z+ and Γ− = Γ ∩ Z− with
σ(Γ±) = Γ∓. Since for each general twistor line the corresponding two
ramification points are σ-conjugate to each other, each of Γ± is mapped
surjectively onto M0. Thus t|Γ± is a diffeomorphism onto M0. q.e.d.

Corollary 9.6. The restricted map ψ|N0 : N0 → D0 is smooth.

Proof. The map πt|Γ+ : Γ+ → N0 is a submersion by Lemma 9.5;
thus it admits a smooth section N0 → Γ+. Composing this with the
smooth map f |Γ+ : Γ+ → D0 we obtain ψ, which is smooth. q.e.d.

(9.4) Next we show the following:

Proposition 9.7. ψ : N → D is a homeomorphism.

Since N and D are compact and Hausdorff and ψ is bijective by
Corollary 9.3, Proposition 9.7 follows from the next lemma.

Lemma 9.8. The map ψ : N → D is continuous.

Proof. We use Lemma 6.17. We set X = N and Y = D. Both are
compact. Define

W := Q ∪ Γ+ ⊆ Ẑ
where Q is defined by (69) and Γ+ is a closed submanifold of Z0 in
Lemma 9.5 and is identified with a subset of Ẑ via µ−1. We may
also consider Q as the proper transform of (πt)−1(bN) = t−1(B) in
Ẑ, namely, it is the closure of µ−1(t−1(B)− C) in Ẑ. By the definition
Q is clearly compact.

Putting on W the relative topology from Ẑ we have the continuous
maps h := πtµ|W : W → X and g := f |W : W → Y with h surjective;
moreover by our definition of the map ψ, it is clear that h and g satisfy
the condition ψ(x) = g(h−1(x)), x ∈ X. Thus, in view of Lemma 6.17,
we have only to show that W is closed in Ẑ, and hence, is compact.

Let Γ̂+ be the closures of Γ+ in Ẑ. Clearly, Γ̂+ ∪ Q is closed. It
suffices to show that Γ̂+ ∪ Q = W , which in turn would follow if we
show that Γ̂+ − Γ+ ⊆ Q. Since Γ+ is closed in Ẑ − µ−1(t−1(B)), we
must have

Γ̂+ − Γ+ ⊆ µ−1(t−1(B)) = Q ∪ µ−1(C).

Now take an arbitrary point y ∈ Γ̂+ − Γ+. Take a sequence of
points yn ∈ Γ+ converging to y. Then µ(yn) converge to µ(y) =: ỹ in
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Z and xn := tµ(yn) converge to x := t(ỹ) in M . Thus ỹ ∈ Lx and
y ∈ µ−1(Lx). On the other hand, since y �∈ Γ+, we have x ∈ B and
Lx is a special twistor line. Thus µ−1(Lx) has the form l+x ∪ L̂x ∪ l−x ,
where L̂x is the proper transform of Lx in Ẑ, and l±x = µ−1(z±), where
Lx ∩ C = {z+, z−}.

We have to show that y ∈ L̂x since L̂x ⊆ Q. So supposing that y �∈
L̂x and hence that y ∈ l+x −L̂x say, we shall derive a contradiction. Since
xn converge to x, we have the convergence Lxn → Lx as subspaces of Z.
Thus by taking the inverse image by µ we see that in a neighborhood
of y, Lxn (identified with its inverse image µ−1(Lxn) in Ẑ) converge to
l+x , and yn ∈ Lxn ; in particular we get the convergence of the tangent
spaces TynLxn → Tyl

+
x . But l+x is transversal, at each of its point z, to

the fiber f−1(f(z)). Hence, for all sufficiently large n, Lxn should also
be transversal at yn to the fiber of f passing through this point. This
contradicts the fact yn ∈ Γ+. q.e.d.

(9.5) Finally, we study in detail the differential ψ∗ of ψ on N0.
Especially we show that it is isomorphic everywhere; this would follow
from the submersiveness of fµ−1|Γ : Γ→ P , in view of the commutative
diagram

Γ ⊆ Z
µ← Ẑ

t ‖ t ↓
M0 ⊆ M ↓ f
π ↓ π ↓
N0 ⊆ N

ψ→ P.

For this purpose we pass to the complexfication of the situation. This
has the advantage that we can work in a purely complex analytic setting.
The desired submersiveness of ψ will be proved in Proposition 9.17 below
in this complexfied setting.

We start with the complexfication of M . Let M
′C be the irreducible

component of the Douady space of Z [5] which contains the points corre-
sponding to twistor lines of Z, and MC the Zariski open subset of M

′C

corresponding to nonsingular rational curves whose normal bundle in Z
is of type O(1)⊕O(1). Then MC is a 4-dimensional complex manifold
and M , as the parameter space of twistor lines, is considered as a totally
real submanifold of MC . Indeed, σ induces an anti-holomorphic invo-
lution on MC and M is one of the connected components of its fixed
point set. MC also admits a natural G-action. We have the universal
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family tC : ZC → MC over MC which fits into the commutative
diagram

Z ⊆ ZC α→ Z
t ↓ ↓ tC
M ⊆ MC

where α : ZC → Z is the natural projection and α|Z : Z → Z is
the identity. The G- and σ-actions lift naturally to ZC making α and
tC equivariant. ZC is a 5-dimensional complex manifold and tC is a
holomorphic submerion.

For each point x ∈MC the fiber t−1

C
(x) is identified with the corre-

sponding subspace of Z and will be denoted again by Lx. We call such
an Lx a complex twistor line in general.

We take and fix a G-invariant Zariski open subset MC
0 of MC such

that MC
0 ∩M = M0 and Lx ⊆ Z−(C∪L) for any x ∈MC

0 (cf. (5.3)) so
that fµ−1|Lx : Lx → P is holomorphic and is a double covering; e.g., we
may take MC

0 = MC − t(Z ′C), where Z
′C = {z ∈ ZC ; dimGz > 0}.

Moreover, we have

Lemma 9.9. The G-action on MC
0 is free.

Proof. Let x be any point ofMC
0 . Then the stabilizer Gx acts on Lx,

while theG-action on Z is free at each point of Lx since Lx ⊆ Z−(C∪L).
Thus the action of Gx is free on Lx ∼= P 1, which implies that Gx reduces
to the identity. q.e.d.

(9.6) For any z ∈ Z the fiber F (z) := α−1(z) ⊆ ZC of α is mapped
isomorphically by tC onto its imageMC(z) := tC(F (z)) inMC , which
in turn is identified with the subspace of MC parametrizing complex
twistor lines Lx with z ∈ Lx. Denote by Nx the normal bundle of Lx in
Z.

Lemma 9.10. F (z) and MC(z) are smooth of dimension two. The
map α : ZC → Z is a submersion.

Proof. Let Nx(−z) denote the sheaf of sections of Nx vanishing
at z. Since H1(Lx, Nx(−z)) = 0 for any x ∈ MC(z), by standard
deformation theory we have that MC(z) is smooth of dimension two.
The assertion on F (z), and hence the submersiveness of α also, follows
from this. q.e.d.
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The inclusions of the tangent spaces at x ∈ MC(z) are described
cohomologically as follows:

TxM
C(z) ⊆ TxM

C

‖ ‖
H0(Lx, Nx(−z)) ⊆ H0(Lx, Nx).

(71)

When x ∈M , TxMC is identified with the complexfication of the (real)
tangent space TxM . If, further, x ∈M0, then since the K-action is free
at x, the associated infinitesimal action on M determines a (real) two
dimensional subspace E = Ex of TxM , whose complexfication EC =
ECx arises from the infinitesimal G-action on MC at x;

E ⊆ EC
∩ ∩

TxM ⊆ TxM
C .

Lemma 9.11. For any z ∈ Γ and x ∈MC(z) we have

dim(TxMC(z) ∩ EC) = 1.(72)

Proof. Since z �∈ k(Lx) for any k ∈ K with k �= e, we have
TxM

C(z)∩E = {0}. It thus suffices to show that TxMC(z)∩EC �= {0}
since for TxMC(z) and EC are of dimension two. By the definition of
Γ, Lx is tangent to Sa at z, where a = f(z). Since Sa coincides with the
G-orbit of z at z, there exists an element v of the Lie algebra Lie G of
G whose associated vector field v on Z is tangent to Lx at z. Then the
section w ∈ H0(Lx, Nx) induced from v|Lx via the natural projection
TZ|Lx → Nx vanishes at z. However w is identified, with respect to the
identification (71), with the element δ(v) of TxMC where δ denotes the
infinitesimal G-action on MC at x;

LieG δ→ TxM
C

↓ a
H0(Lx, TZ|Lx) → H0(Lx, Nx).

Thus if we consider δ(v) ∈ TxM
C as an element of H0(Lx, Nx), it

vanishes at z ∈ Lx. Then δ(v) is an element of TxMC(z) in view of
(71), while it is obviously an element of EC . Note finally that δ(v) is
nonzero because the G-action on MC is locally free at x by Lemma 9.9.
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q.e.d.

(9.7) Set ZC
0 = t−1

C
(MC

0 ). We now define a complex analogue of Γ
by

ΓC := {z ∈ ZC
0 ;Lx is tangent to Sa, where x = tC(z) and a = fα(z)}

which fits into the commutative diagram

Γ ⊆ ΓC ⊆ ZC
0

↓ t ↓ tC ↓ tC
M0 ⊆ MC

0 = MC
0 .

Clearly we have Γ = ΓC ∩ Z; moreover, Γ and ΓC are K- and G-
invariant respectively and the induced actions are free by Lemma 9.9;
moreover they are σ-invariant. Analogously to Lemma 9.5 we get

Lemma 9.12. ΓC is a σ-invariant closed and smooth divisor in
ZC

0 and is an unramified double covering of MC
0 .

Proof. The ramifcation locus of v = tC×(fµ−1α) : ZC
0 →MC

0 ×P
coincides with ΓC . Thus it is a closed divisor in ZC

0 . More precisely,
for any point z0 ∈ ZC

0 we may take holomorphic local coordinates of
MC at x := tC(z0) and (z1, z2, z3, z4, z) of ZC

0 around z0 such that
tC is given by tC(z1, z2, z3, z4, z) = (z1, z2, z3, z4). Then z|Lx is a local
parameter on Lx and the Jacobian matrix for v is of the form Jac

v =
(
I 0
∗ ∂f/∂z

)
,

where I is the identity matrix of size four and we have written f =
fµ−1α for simplicity. Therefore

z ∈ ΓC ⇔ detJac v(z) = 0⇔ ∂f

∂z
(z) = 0

Since the defining function ∂f/∂z of ΓC restricted to Lx is locally of
the form qz for some function q with q(z0) �= 0, ΓC is smooth and its
intersection with each fiber of tC is transversal.

The final assertion follows from the fact that Lx ⊆ Z − (C ∪L) and
Lx → P is a double covering. q.e.d.

(9.8) Let ẼC (resp. Ẽ) be the subspace of the tangent space TzΓC
(resp. of TzΓ) arising from the infinitesimal action of G on ΓC (resp.
K on Γ).
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Lemma 9.13. For any z ∈ Γ we have ẼC ∩ TzF (z) = {0} and

dim(TzF (z) ∩ TzΓC) = 1.

Proof. Let v be any element of ẼC ∩ TzF (z). Since v ∈ TzF (z), we
have α∗v = 0, while since α is G-equivariant and the G-action is free at
z ∈ Z0, the restriction α∗|ẼC must be injective. Thus v = 0 and the
first assertion is proved.

Since F (z) is of dimension two and ΓC is of codimension one, we
have dim(TzF (z) ∩ TzΓC) ≥ 1. So assuming that this dimension is
equal to two, i.e., that TzF (z) is contained in TzΓC , we shall derive a
contradiction. In fact the natural isomorphism tC∗ : TzΓC

∼= TxM
C ,

x = t(z), induces isomorphisms ẼC
∼= EC and TzF (z) ∼= TxM

C(z).
Then (72) would imply that ẼC ∩ TzF (z) �= {0}. This contradicts the
first assertion. q.e.d.

Corollary 9.14. In a neighborhood of Γ the induced map α|ΓC :
ΓC → Z is a holomorphic submersion; therefore so is the composite
morphism fµ−1α|ΓC : ΓC → P .

Proof. This follows from the above lemma and the fact that the
kernel of the differential of α|ΓC is precisely TzF (z) ∩ TzΓC for z ∈ Γ.

q.e.d.

(9.9) Let x be any point of M0. TxMC admits a holomorphic con-
formal structure which induces the given conformal structure on TxM .
Let E⊥ be the orthogonal complement of E in TxM with respect to
the given conformal structure. Then its complexfication E⊥

C is the or-
thogonal complement of EC with respect to the holomorphic conformal
structure on TxMC . We have the direct sum decomposition

TxM
C = EC ⊕ E⊥

C(73)

which is defined over the reals.
For the computation below it is convenient to work with a concrete

model of the space TxMC = H0(Lx, Nx) as follows. Fix an oriented
(conformal) isometry TxM → H inducing the identification Lx = C,
where 1, i, j, k is an oriented orthonormal basis of H, such that its com-
plexfication

TxM
C →H ⊗C(74)
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maps the direct sum decomposition (73) into the natural decomposition

H ⊗C = (C ⊕Ci)⊕ (Cj ⊕Ck),(75)

where one should not confuse i ∈H with
√−1 ∈ C; in particular 1 and

i are linearly independent over C.
Correspondingly, we take a (real) model of the normal bundle N =

Nx as C ×H as in (28). In this identification the fiber Nq over q ∈ C
of N → C is identified with the complex vector space H with complex
structure given by the right multiplication by q−1. Thus, when one
considers an element w of H ⊗ C as a section of Nx with respect to
the identifications (71) and (74), at any point q ∈ C = Lx the value
w(q) ∈ Nq

∼= H is obtained by replacing any
√−1 in the expression of

w via (75) by q−1 = −q. Now we have the following:

Lemma 9.15. Let x ∈M0 be as above. Then we have Γ∩Lx = {±i}
with respect to our identifications Lx = C above.

Proof. Consider an element of EC as a holomorphic section of Nx

via the isomorphisms (73) and (71). Let z ∈ Γ ∩ Lx. By Lemma 9.11
and (71) there exists a nonzero element β ∈ EC which vanishes at z.
Let z correspond to q ∈ C with respect to our identification Lx = C.
We may write β = u+

√−1v for some u, v ∈ R + Ri. Now for a point
q ∈ C, β vanishes at q as a section of Nx if and only if u − vq = 0,
or equivalently, u − vsi − jvt = 0 if q = si + jt, s ∈ R, t ∈ C, namely,
vt = 0 and u = vsi. This implies that t = 0; thus z = q = ±i. From
this follows the assertion since Γ ∩ Lx consists of two points. q.e.d.

The method of the above proof also yields the following:

Lemma 9.16. Let x ∈M0 and z ∈ Γ ∩ Lx. Then we have

dim(TxMC(z) ∩ E⊥
C) = 1.

Proof. The element ±√−1j + k ∈ Cj + Ck = E⊥
C vanishes at

±i ∈ C when considered as a section of Nx. Thus by Lemma 9.15 either
of ±√−1j + k belongs to TxMC(z), and hence, TxMC(z) ∩ E⊥

C �= ∅.
On the other hand, dimTxM

C ∩E⊥
C ≤ 1 by Lemma 9.11. The lemma

follows. q.e.d.

Remark. The method of the proof of Lemma 9.15 also shows
the following: Let J be the complex structure of TxM corresponding to
z ∈ Lx. Let T±

z M
C be the ±√−1-eigenspaces of J on TxM

C . Then
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we have the natural identifications T+MC = TxM
C(z) and T−MC =

TxM(z). Thus we have the identical direct sum decompositions

TxM
C = TxM

C(z)⊕ TxMC(z) = T−
z M

C ⊕ T+
z M

C .

This in turn yields the following identification of the normal bundle Nx:
(Nx)z = TxM(z) for each z ∈ Lx.

(9.10) Using Lemma 9.15 we now prove the anticipated result:

Proposition 9.17. For any point z of Γ the composite map fµ−1|Γ :
Γ→ P is submersive at z. In fact, the differential (fµ−1)∗ induces a real
isomorphism of Ẽ⊥ onto TR

a P , where Ẽ⊥ = (t|Γ)−1∗ (E⊥), a = fµ−1(z)
and TR

a P denotes the real tangent space of P at a.

Proof. Note first the following facts: α∗ : TzΓ → TzZ is injective,
the kernel of (fµ−1)∗ at z is TzSa and α∗ maps ẼC isomorphically onto
TzSa; indeed, first two assertions are clear and the last follows from
the fact that α is G-equivariant and Sa is G-homogeneous locally at
z. In particular ẼC is mapped into the kernel of f∗. Thus, in view of
fµ−1|Γ = fµ−1α|Γ, our task is to show that

α∗TzΓ ∩ TzSa = α∗Ẽ.

Indeed, by dimensional consideration we then deduce that (fµ−1α)∗
induces an isomorphism Ẽ⊥ → TR

a P .
Suppose now that α∗TzΓ∩ TzSa is strictly larger than α∗Ẽ, namely

that there exists a (real) subspace Ẽ′ of TzΓ of dimension ≥ 3 which
contains Ẽ and is mapped into TzSa by α∗. Since α∗(ẼC) = TzSa, any
element d of Ẽ′ is then written in TzΓC in the form

d = b+ c, b ∈ ẼC , c ∈ Kerα∗ = TzF (z).(76)

Passing to TxM
C , with respect to the natural isomorphisms

(TzΓC , TzΓ) ∼= (TxMC , TxM) and TzF (z) ∼= TxM
C(z) we may con-

sider (76) as a relation in TxMC with d ∈ E′ := tC∗(Ẽ
′), b ∈ EC and

c ∈ TxMC(z). Since dimE′ ≥ 3, E′ ∩ E⊥ �= {0}. We consider (76) in
the case 0 �= d ∈ E⊥. We shall derive a contradiction from this.

For this purpose we use (74) and (75) to identify d as an element of
Rj + Rk and b as an element of C + Ci. We interpret these elements
as sections of Nx on Lx by the isomorphism (71). By Lemma 9.15 we
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have z = ±i under the identification Lx = C there. Then, considering
d = b + c as a relation among sections, and evaluating at z = ±i, we
get d(z) = b(z) as an element of (Nx)z = H. This is a contradiction
because if b = u +

√−1v, where u, v ∈ R + Ri, then b(z) = u − zv =
u∓ iv ∈ C + Ci, while we have 0 �= d(z) = d ∈ Rj + Rk by our choice
of d. q.e.d.

Corollary 9.18. The differential ψ∗ of ψ is isomorphic at every
point y of N0. It is identified with the composite of natural isomorphisms
TyN0

∼= E⊥ ∼= Ẽ⊥ ∼= TR
a P .

Proof. For any point y ∈ N0, we may canonically identify the tangent
space of N0 at y with the orthogonal complement E⊥ of E in TxM ,
where x is an arbitrary point over y. Then ψ∗ is identified with the real
isomorphism E⊥ → TR

a P in Proposition 9.17. q.e.d.

(9.11) For the proof of Theorem 9.1 it remains to show that the
conformal structure of N0 and the complex structure of D0 are compat-
ible with respect to the diffeomorphism ψ. For this purpose we need
the following two lemmas.

Lemma 9.19. For any z ∈ Γ the restriction to E⊥
C of the composite

map

(fµ−1α)∗(tC |ΓC)−1
∗ : TxMC → TzΓC → TaP, x = t(z), a = fµ−1(z)

is surjective and its kernel is E⊥
C ∩ TxMC(z).

Proof. First we consider (fµ−1α)∗ : TzΓC → TaP . Let V be its
kernel. By Corollary 9.14 it is three dimensional and contains both ẼC
and TzF (z) ∩ TzΓC . By Lemma 9.13 the latter is one dimensional and
they have zero intersection. Hence we have

V = ẼC ⊕ (TzF (z) ∩ TzΓC).

On the other hand, by the isomorphism tC∗ : TzΓC
∼= TxM

C , ẼC is
mapped onto EC . The surjectivity of E⊥

C → TaP already follows.

If we let I be the image of TzF (z) ∩ TzΓC in TxM
C , the kernel

of our composite map is a direct sum EC ⊕ I = EC ⊕ I ′, where I ′

denotes the orthogonal projection of I onto E⊥
C in (73). We know that

I ⊆ TxMC(z), and as follows from Lemmas 9.11 and 9.16 TxMC(z) is
compatible with the direct sum decomposition (73); therefore I ′ must
coincide with E⊥

C ∩ TxMC(z). The lemma follows. q.e.d.
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Lemma 9.20. Let W be a 2-dimensional real vector space with
(positive definite) inner product. Let W± be the (non-trivial) isotropic
subspaces of the complexfication WC with the complexified inner prod-
uct. Then W± are complex conjugate to each other and we have WC =
W+ ⊕W−. Moreover, the projections WC → W± induces a real iso-
morphism W → W±, with respect to which the conformal structure on
W and the complex structures on W± are compatible, i.e., the confor-
mal structure on W is hermitian with respect to the complex structures
of W±.

Proof. We take an orthonormal basis of W , with respect to which
we identify W with R2 and WC with C2. The complexified quadratic
form takes the form C2 � (z, w)→ z2 +w2 and we may identify W± =
{z ± iw = 0}. This shows the first assertion.

Moreover, the projection WC → W± restricted to W is identified
with the map R2 � (x, y)→ (x± iy,±i(x± iy)) ∈W± ⊆ C2. Then the
pull-back by this map of the hermitian structure zz +ww on C2 to R2

is just 2(x2 + y2). Thus the latter is hermitian on W with respect to
the complex structure induced from W±. q.e.d.

(9.12) Proof of Theorem 9.1. Fix a Riemannian metric in the given
conformal class [g]. Let y be any point of N0 and x a point of M0

over N0. Let Q be the null-cone of the complex conformal structure of
TxM

C = H0(Lx, Nx) consisting of sections vanishing at some point. By
Lemma 9.20 applied to W = E⊥, Q∩E⊥

C is a union of two σ-conjugate

isotropic subspaces. One of this is E⊥
C ∩TxMC(z) by Lemma 9.16 and

the σ-conjugate of this space is E⊥
C ∩T xMC(z) = E⊥

C ∩TxMC(z). We
consider the following commutative diagram describing the differential
ψ∗:

TyN0
∼= E⊥ ∼= TR

a P
u ↓ ↓

E⊥
C/(TxMC(z) ∩ E⊥

C) ∼= TaP,

where the top and bottom horizontal isomorphisms are due to Propo-
sition 9.17 and Lemma 9.19 respectively, while the vertical real iso-
morphisms are the natural ones. We have to compare the conformal
structure on TyN0 and the complex structure on TaP and this is re-
duced to proving the compatibility of the corresponding structures on
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both hand sides of the map

u : E⊥ → E⊥
C/(TxMC(z) ∩ E⊥

C).

This however follows from Lemma 9.20, where W = E⊥, W = E⊥
C ,

W+ = TxM
C(z) ∩ E⊥

C

and
W− = TxM

C(z) ∩ E⊥
C .

q.e.d.
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