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On the Kodaira problem for uniruled Kähler
spaces

Patrick Graf and Martin Schwald

Abstract. We discuss the Kodaira problem for uniruled Kähler spaces. Building on a
construction due to Voisin, we give an example of a uniruled Kähler space X such that every
run of the KX -MMP immediately terminates with a Mori fibre space, yet X does not admit an
algebraic approximation. Our example also shows that for a Mori fibration, approximability of
the base does not imply approximability of the total space.

1. Introduction

A fundamental problem in complex algebraic and Kähler geometry is to de-
termine the relationship between smooth projective varieties and compact Kähler
manifolds. Since a compact complex manifold is projective if and only if it admits
a Kähler form whose cohomology class is rational, the following question suggests
itself.

Question 1.1. (Kodaira problem) Is it possible to make any compact Kähler
manifold X projective by an arbitrarily small deformation Xt of its complex struc-
ture?

Such a deformation will be called an algebraic approximation of X. See Defini-
tion 2.6 for the precise notion.

Kodaira proved that every compact Kähler surface can be deformed to an al-
gebraic surface [Kod63, Theorem 16.1]. In higher dimensions, the Kodaira problem
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remained open until in [Voi04] Voisin gave counterexamples (of Kodaira dimension
ˇ=0) in any dimension ≥4. In [Voi06], she even constructed examples (uniruled and
of even dimension ≥10) of compact Kähler manifolds XVoi such that no compact
complex manifold X ′ bimeromorphic to XVoi admits an algebraic approximation.

At first sight, this seems to provide a definite negative answer to the Kodaira
problem. However, from the viewpoint of the Minimal Model Program (MMP), it is
natural to take into account also singular bimeromorphic models. A most influential
statement in this direction is Peternell’s conjecture that minimal models of com-
pact Kähler manifolds should admit an algebraic approximation. This conjecture
has recently spawned substantial progress on the Kodaira problem in dimension
three [Gra18], [CHL19], [Lin16], [Lin17a] and [Lin17b].

That said, an obvious desire arises to revisit Voisin’s example XVoi and to in-
vestigate whether some singular model of it is approximable. By construction, XVoi
comes equipped with a bimeromorphic map to a mildly singular Kähler space X,
and the map XVoi→X is a (composition of) KX -negative extremal contractions.
Our first result shows that this new space X does not admit an algebraic approxi-
mation. Of course, one would then like to contract (or flip) further extremal rays,
hoping to arrive at an approximable model. We show that this is impossible: X

is minimal in the sense that every run of the KX -MMP immediately yields a Mori
fibre space. Actually, we prove an even stronger statement—see (1.2.2) below.

In a slightly different direction, one might consider the Mori fibrations of a
given uniruled space and ask whether approximability of the base of such a fibration
implies approximability of the total space. Our example X shows that this is likewise
not the case. Summing up, what we prove is the following:

Theorem 1.2. (Non-approximable minimal uniruled Kähler space) For every

even number n≥10, there exists an n-dimensional uniruled compact Kähler space

X with the following properties:

(1.2.1) X is simply connected and has only terminal quotient singularities.

(1.2.2) Any bimeromorphic map X→X ′ to a normal complex space X ′ is an

isomorphism. In particular, every run of the KX-MMP immediately terminates

with a Mori fibration.

(1.2.3) There is a Mori fibration X→Y such that Y admits an algebraic ap-

proximation.

(1.2.4) X does not admit an algebraic approximation.

In [Lin17a], Lin has shown that any uniruled Kähler threefold is approximable.
Our result shows that in higher dimensions, the situation becomes considerably
more complicated. We are not aware of any natural condition on a uniruled Kähler
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space that would guarantee, at least conjecturally, the existence of an algebraic
approximation. This suggests that higher-dimensional uniruled spaces are quite
pathological from this point of view.

Open questions

We cannot exclude the possibility that our example X is bimeromorphic to an
approximable Kähler space X ′ in some haphazard way. But by (1.2.2), the existence
of such an X ′ would not be explained by general principles such as the MMP. Hence
from a systematic viewpoint, we do not expect such an X ′ to exist.

Nevertheless, this is of course an interesting question. All we can say at the
moment is that such an X ′ would necessarily have non-rigid singularities. This
follows from our proof of (1.2.4).

Acknowledgments. This project was started during a stay at the Mathema-
tisches Forschungsinstitut Oberwolfach, whose hospitality is unmatched.

2. Basic facts and definitions

Complex spaces

All complex spaces are assumed to be separated, connected and reduced, unless
otherwise stated.

An irreducible compact complex space X is said to be of Fujiki class C (or in
C, for short) if it is bimeromorphic to a compact Kähler manifold. We say that X is
Moishezon if its field of meromorphic functions M (X) has maximal transcendence
degree trdegC M (X)=dimX. Being Moishezon is equivalent to being bimeromor-
phic to a projective manifold. We say that a (not necessarily irreducible) compact
complex space is Moishezon if each of its irreducible components is Moishezon.

Resolution of singularities

A resolution of singularities of a complex space X is a proper bimeromorphic
morphism f : X̃→X, where X̃ is smooth. We say that the resolution is projective if f
is a projective morphism. In this case, if X is projective (resp. compact Kähler) then
so is X̃. A resolution is said to be strong if it is an isomorphism over the smooth locus
of X. A log resolution is a resolution whose exceptional locus is a simple normal
crossings divisor in X̃. It will be important for us that resolving singularities is not
only possible any-old-how, but there is a canonical way of doing so:
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Theorem 2.1. (Functorial resolutions) There exists a resolution functor which

assigns to any complex space X a strong projective log resolution πX : R(X)→X,

such that R commutes with smooth maps in the following sense: For any smooth

morphism f : W→X, there is a unique smooth morphism R(f) : R(W )→R(X) such
that the following diagram is a fibre product square.

R(W )
R(f)

��

πW

��

R(X)

πX

��

W
f

�� X.

Proof. See [Kol07, Theorem 3.45]. �

Kähler spaces

While we will not work directly with the definition of a singular Kähler space,
we include the definition here for the reader’s convenience.

Definition 2.2. (Kähler space) Let X be a normal complex space. A Kähler
form ω on X is a Kähler form ω¨ on the smooth locus Xreg⊂X such that X can
be covered by open sets Uα with the following property: there is an embedding
Uα ↪→Wα of Uα as an analytic subset of an open set Wα⊂Cnα and a Kähler form
ω̃α on Wα such that

ω¨

∣∣
Uα∩Xreg

= ω̃α

∣∣
Uα∩Xreg

.

A normal complex space X is said to be Kähler if there exists a Kähler form on X.

For example, the analytification of a normal complex projective variety is a
Kähler space.

Deformation theory

We collect some notation and basic facts from deformation theory.

Definition 2.3. (Deformations of complex spaces) A deformation of a complex
space X is a flat morphism X→(S, 0) from a (not necessarily reduced) complex space
X to a complex space germ (S, 0), together with the choice of an isomorphism X0∼=
X, where we write Xs :=π−1(s) for the fibre over any s∈S. We usually suppress both
the base point 0∈S and the choice of the isomorphism from notation. Deformations
of complex space germs are defined similarly.

Definition 2.4. (Locally trivial deformations) A deformation π : X→S is
called locally trivial if for every x∈X0 there exist open subsets 0∈S¨⊂S and x∈
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U⊂π−1(S¨) and an isomorphism

U
∼ ��

π
��
��

��
��

��
(X0∩U)×S¨

pr2
�����

���
���

�

S¨.

Definition 2.5. (Rigid singularities) A complex space germ (X,x) is called rigid
if every deformation of X is trivial. A complex space X is said to have rigid singu-
larities if for each x∈X, the germ (X,x) is rigid. Equivalently, every deformation
of X is locally trivial.

Definition 2.6. (Algebraic approximations) Let X be a compact complex space
and π : X→S a deformation of X. Consider the set of projective fibres

Salg :=
{
s∈S

∣∣Xs is projective
}
⊂S

and its closure Salg⊂S. We say that X→S is an algebraic approximation of X if
0∈Salg.

3. Voisin’s example: construction and properties

The aim of this section is threefold. First we recall Voisin’s example from
[Voi06] in order to fix notation and for the reader’s convenience. Second, we inves-
tigate some of its properties which have not been discussed by Voisin. In particular,
we take a closer look at the singularities arising in the construction. Third, we make
the example as concrete as possible by providing an explicit example of Voisin’s
“property (∗)”.

Definition 3.1. (Scenic tori) A scenic torus is a pair (T, ϕ) consisting of an
n-dimensional complex torus T and an endomorphism ϕ : T→T such that the in-
duced map ϕ∗ : H1(T,C)→H1(T,C) has the following property: the eigenvalues
μ1, ..., μ2n of ϕ∗ are pairwise distinct, none of them are real, and the Galois group
Gal

(
Q(μ1, ..., μ2n)

/
Q

)
is the full symmetric group S2n.

3.A. Polynomials with large Galois group

In [Voi04, §1], it is explained how to construct a scenic torus starting from a
rank 2n lattice Γ and an endomorphism ϕZ of Γ whose characteristic polynomial has
full symmetric Galois group and no real roots, as above. So for us it only remains
to give an example of such a lattice and endomorphism. We will see that such
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examples are abundant for any value of n. The following theorem gives a criterion
for the characteristic polynomial f of ϕZ to have the desired Galois group.

Theorem 3.2. (Polynomials with full symmetric Galois group) Let f∈Z[x] be
a monic polynomial of degree d with the following properties:

(3.2.1) The image of f in F2[x] is irreducible.

(3.2.2) The image of f in F3[x] splits into a linear factor and an irreducible

factor of degree d−1.
(3.2.3) The image of f in F5[x] splits into an irreducible quadratic factor and

one or two irreducible factors of odd degree.

Then the splitting field K of f has Galois group Gal(K/Q)=Sd.

Proof. See [vdW93, §66, p. 204]. �

For any prime p, there exist irreducible polynomials over Fp of any given degree.
Thus for any d we can find monic polynomials f2, f3, f5∈Z[x] which over F2,F3,F5
split as described in Theorem 3.2. Then f :=−15f2+10f3+6f5+30k is, for any k∈Z,
a monic polynomial of degree d with Galois group Sd. If d=2n is even and k�0
sufficiently big, then this polynomial does not have any real roots. For a concrete
example, consider the case n=4, which is the smallest value to which [Voi06] applies.
Then we may take

f =−15 (x8+x4+x3+x+1)︸ ︷︷ ︸
irreducible mod 2

+10(x−1) (x7+x2+2)︸ ︷︷ ︸
irred. mod 3

+6 (x2+2)(x3+x+1)(x3+x+4)︸ ︷︷ ︸
each factor irreducible mod 5

+120

=x8−10x7+24x6+30x5+15x4+85x3+26x2+65x+133∈Z[x].

For any f as above, set Γ:=Z[x]
/

(f) and take ϕZ : Γ→Γ to be multiplication by x.
Since f is monic, Γ is a lattice and by construction, the minimal polynomial of ϕZ

is f . By degree reasons, f is then also the characteristic polynomial of ϕZ.

3.B. Voisin’s construction

Before we sum up the construction in [Voi06], recall the following standard
definitions.

Definition 3.3. (Dual torus, Poincaré bundle, Kummer construction) Let T be
an n-dimensional complex torus.
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(3.3.1) The dual torus of T is defined as

T ‹ := H1(T,OT )
/

H1(T,Z).

By the exponential sequence on T , the map exp: H1(T,OT )→H1(T,O∗
T ) induces an

isomorphism
T ‹ ∼−→Pic¨(T ) := ker

(
H1(T,O∗

T ) c1−−→H2(T,Z)
)
.

This identifies T ‹ with Pic¨(T ), the group of topologically trivial holomorphic line
bundles on T . For a point t∈T ‹ , we will denote the corresponding line bundle by
Lt.

(3.3.2) The Poincaré bundle P on T×T ‹ is the line bundle, unique up to
isomorphism, with the following two properties:

• For all t∈T ‹ , we have P
∣∣
T×{t}

∼=Lt.
• P

∣∣
{0}×T ‹∼=OT ‹ is trivial.

If ϕ is an endomorphism of T , we define the twisted Poincaré bundle on T×T ‹ as
Pϕ :=(ϕ, idT ‹ )∗P. In particular, we have P=PidT

.
(3.3.3) Consider the automorphism i of T given by t 	→−t. Its fixed points are

exactly the 22n two-torsion points of T , the set of which we denote by τ2(T ). The
(singular) Kummer variety associated to T is

K(T ) := T
/
〈i〉.

Lemma 3.4. (Pulling back the Poincaré bundle) Let T be a complex torus

with an endomorphism ϕ. We have the following isomorphisms:

(−idT , idT ‹ )∗Pϕ
∼= P−1

ϕ ,

(idT ,−idT ‹ )∗Pϕ
∼= P−1

ϕ .

These isomorphisms are unique if we require them to respect a choice of trivialization

P
∣∣
(0,0)

∼=C fixed in advance.

Proof. The involution −idT acts as −id on π1(T ) and hence also on Pic¨(T ).
Therefore, for all t∈T ‹ we have

(−idT , idT ‹ )∗P
∣∣
T×{t}

∼= (−idT )∗Lt
∼=L −1

t and

(idT ,−idT ‹ )∗P
∣∣
T×{t}

∼= P
∣∣
T×{−t}

∼=L−t
∼= L −1

t ,

as well as

(−idT , idT ‹ )∗P
∣∣
{0}×T ‹ ∼= id∗

T ‹OT ‹ ∼= OT ‹ and
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(idT ,−idT ‹ )∗P
∣∣
{0}×T ‹ ∼= (−idT ‹ )∗OT ‹ ∼= OT ‹ .

This shows that (−idT , idT ‹ )∗P−1 and (idT ,−idT ‹ )∗P−1 both have the defining
properties of the Poincaré bundle. By the uniqueness in (3.3.2), we obtain the
desired isomorphisms in case ϕ=idT . These isomorphisms will only be unique up
to a constant. But as (0, 0) is a fixed point of both (−idT , idT ‹ ) and (idT ,−idT ‹ ),
there will be only one isomorphism of each kind respecting a fixed trivialization
P

∣∣
(0,0)

∼=C.
For the general case, note that pulling back by the map (ϕ, idT ‹ ) commutes

with both (−idT , idT ‹ ) and (idT ,−idT ‹ ), as ϕ is an endomorphism. �

Let T be a complex torus of dimension n≥2 and equipped with an endomor-
phism ϕ. We consider the rank 2 vector bundle Eϕ :=Pϕ⊕P−1

ϕ and the P1-bundle
pϕ : P(Eϕ)→T×T ‹ . By Lemma 3.4, the automorphisms (−idT , idT ‹ ) and (idT ,

−idT ‹ ) of T×T ‹ induce automorphisms iϕ and îϕ of P(Eϕ). These automorphisms
generate a finite group isomorphic to Z

/
2Z×Z

/
2Z. We consider the quotient

(3.4.1) Qϕ := P(Eϕ)
/
〈iϕ, îϕ〉.

Using this notation, we can finally outline Voisin’s example.

Construction 3.5. (Voisin’s example) Let (T, ϕ) be a scenic torus of dimension
n≥4. We do the construction in the above paragraph for the given endomorphism
ϕ and also for the endomorphism idT . In the second case, for the sake of readability,
we drop all the lower indices referring to idT .

The automorphisms i, î, iϕ and îϕ induce automorphisms (i, iϕ) and (̂i, îϕ) of
the fibre product

Z :=P(E )×T×T ‹P(Eϕ).

These automorphisms generate a finite group G, which is isomorphic to Z
/
2Z×

Z
/
2Z. We denote the quotient by X :=Z

/
G. We get the following two commutative

diagrams, where the second one is the quotient of the first one by the action of G:

Z P(Eϕ)

P(E ) T×T ‹

qϕ

q

p

pϕ
π

X Qϕ

Q K(T )×K(T ‹)

Here, Q and Qϕ are as defined in (3.4.1).

The interest in this construction stems from the following result of Voisin.
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Theorem 3.6. ([Voi06, Theorem 4]) Let X ′ be any compact complex manifold

bimeromorphically equivalent to X. Then X ′ does not have the homotopy type

of a complex projective manifold. In particular, it does not admit an algebraic

approximation.

3.C. Local description of the singularities

The aim of this subsection is to prove that X has rigid singularities. To this
end, we examine the singularities arising in the above construction more closely.

Lemma 3.7. (Singularities of Q) The spaces Q and Qϕ are (2n+1)-dimen-

sional, with only terminal quotient singularities of codimension n+1. Locally ana-

lytically the singularities look like one of the following double points:

(3.7.1) (Cn+1/±)×Cn, or

(3.7.2) (C2n/±)×C, or

(3.7.3) (Cn×Cn×C)
/〈

(−id, id,−id), (id,−id,−id)
〉
.

Proof. The variety Qϕ is smooth except possibly for the image of points x∈
P(Eϕ) with non-trivial stabilizer. Let x be such a point and denote the fibre con-
taining it by F :=p−1

ϕ

(
pϕ(x)

)
. Then pϕ(x)∈T×T ‹ is a fixed point of (−idT , idT ‹ ),

(idT ,−idT ‹ ) or (−idT ,−idT ‹ ). This means pϕ(x)∈τ2(T )×T ‹∪T×τ2(T ‹).
Let ψ1 : U×C→Pϕ be a trivialization of Pϕ near F , where we may as-

sume U⊂T×T ‹ to be a symmetric neighbourhood of pϕ(x). Consider the map
(idT ,−idT ‹ ) : U→U . By Lemma 3.4, there is an isomorphism Pϕ

∣∣
U
×UU∼=P−1

ϕ

∣∣
U

.
Using this, we obtain trivializations

ψ2 : U×C → P−1
ϕ

∣∣
U

=Pϕ

∣∣
U
×UU,

(u, t) 	→
(
ψ1

(
(idT ,−idT ‹ )(u), t

)
, u

)
, and

ψ : U×C2 → Eϕ

∣∣
U
,(

u, (a, b)
)
	→

(
ψ1(u, a), ψ2(u, b)

)
,

of P−1
ϕ

∣∣
U

and Eϕ

∣∣
U

, respectively. Projectivizing gives a trivialization

P(ψ) : U×P1 ∼−→P(Eϕ)
∣∣
U
.

In these coordinates the automorphisms iϕ, îϕ and their composition are given as

iϕ :
(
u, [a:b]

)
	→

(
(−idT , idT ‹ )(u), [b:a]

)
,

îϕ :
(
u, [a:b]

)
	→

(
(idT ,−idT ‹ )(u), [b:a]

)
, and

iϕ¨ îϕ :
(
u, [a:b]

)
	→

(
(−idT ,−idT ‹ )(u), [a:b]

)
.
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Their fixed point sets are precisely

Fix(iϕ)=
(
U∩(τ2(T )×T ‹)

)
×

{
[±1 : 1]

}
,

Fix(̂iϕ)=
(
U∩(T×τ2(T ‹))

)
×

{
[±1 : 1]

}
, and

Fix(iϕ ¨ îϕ)=
(
U∩(τ2(T )×τ2(T ‹))

)
×P1.

Now, if x is a fixed point of exactly one of iϕ, îϕ, iϕ¨ îϕ, then the above description
in coordinates shows that locally at x, the quotient Qϕ looks like (3.7.1) or (3.7.2),
respectively. Otherwise x is a common fixed point of all three automorphisms and
we get the local description (3.7.3). All these singularities are terminal by the
Reid–Tai criterion [Kol13, Theorem 3.21]. To be more precise, in our situation
that criterion boils down to having the eigenvalue −1 with multiplicity ≥3 in every
non-identity element of G, and this is clearly satisfied. �

Lemma 3.8. (Singularities of X) The space X is (2n+2)-dimensional, with

only terminal quotient singularities of codimension n+1. Locally analytically the

singularities look like one of the following double points:

(3.8.1) (Cn+2/±)×Cn, or

(3.8.2) (C2n/±)×C2, or

(3.8.3) (Cn×Cn×C2)
/〈

(−id, id,−id), (id,−id,−id)
〉
.

Proof. The space Z is a P1×P1-bundle over T×T ‹ . As G is finite, the quotient
X=Z

/
G is also a (2n+2)-dimensional complex space with only quotient singulari-

ties, contained in the image of the fixed point set of the automorphisms g∈G\{id}.
The action of these g can be described in local analytic coordinates, analougously
to Lemma 3.7. This gives the above local analytic description of the singularities,
and the Reid–Tai criterion shows again that they are terminal. The singular lo-
cus consists of a section over τ2(T )×T ‹∪T×τ2(T ‹), together with the fibres over
τ2(T )×τ2(T ‹). �

Corollary 3.9. (Local rigidity) X has rigid singularities.

Proof. According to Lemma 3.8, the variety X has only quotient singularities
of codimension n+1≥5. Such singularities are rigid by [Ste03, p. 72]. (Actually it
suffices that the codimension is ≥3.) �

3.D. The topology of X

The result of this last subsection says that the obstruction to algebraic approx-
imability is not contained in the fundamental group of X.
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Proposition 3.10. (Fundamental group of X) The space X is simply con-

nected.

Proof. To begin with, a resolution of a Kummer variety is simply connected
by [Spa56, Theorem 1]. By [Tak03, Corollary 1.1(1)], also the Kummer varieties
K(T ) and K(T ‹) themselves are simply connected, so we get that π1

(
K(T )×

K(T ‹)
)
=1. Now, the natural map X→K(T )×K(T ‹) is a fibration with general

fibre P1×P1, which is again simply connected. By construction, this fibration is in
fact a (locally trivial) bundle over the smooth locus of K(T )×K(T ‹). In particular,
the set of points over which the fibres are everywhere non-reduced has codimension
≥2. We conclude by [Nor83, Lemma 1.5.C] that π1(X)=1. �

4. X does not admit an algebraic approximation

In this section, we prove (1.2.4):

Theorem 4.1. The space X from Construction 3.5 does not admit an algebraic

approximation.

We begin with an auxiliary lemma. It says that for locally trivial deforma-
tions, the functorial resolution of the total space is a deformation of a resolution of
the central fibre. This obviously fails if local triviality is dropped (consider e.g. a
deformation f : X →(S, 0) where X is smooth but f−1(0) is not).

Lemma 4.2. (Resolving locally trivial deformations) Let f : X →S be a lo-

cally trivial deformation of a compact complex space X∼=X0 over a smooth base

S, and πX : R(X )→X the functorial resolution of X , as in Theorem 2.1. Then,

after shrinking S around 0, the composition f ¨πX : R(X )→S is a locally trivial

deformation of its central fibre. Furthermore, that central fibre is a resolution of X.

Proof. As the deformation f is locally trivial, for every point x∈X there
are open neighbourhoods 0∈Sx⊂S and x∈Ux⊂X such that Ux is isomorphic to
(Ux∩X)×Sx over S. As the fibres of f are compact, after shrinking S we can
assume Sx=S for all x∈X.

Let x∈X and U :=Ux∩X. The projection U×S→U and the open embedding
U×S↪→X are smooth. Hence we get for the functorial resolutions

R(U×S)=R(U)×U (U×S)=R(U)×S

and that R(U×S)↪→R(X ) is also an open embedding. By definition it follows that
R(X )→S is a locally trivial deformation. It is also clear that the central fibre has
to be smooth. Hence it is a resolution of X, via the restriction of πX . �
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Proof of Theorem 4.1. Let f : X →S be an arbitrary deformation of X∼=X0.
Pulling back the deformation to a resolution of S, we may assume that S is smooth.
As X has rigid singularities by Corollary 3.9, the deformation f is locally trivial.
After shrinking S, the map R(X )→S is a deformation of some resolution X̃ of X,
by Lemma 4.2. According to Theorem 3.6, no fibre of R(X )→S can be projective.
Then the same holds for the fibres of X →S, because the functorial resolution is a
projective morphism. Therefore f is not an algebraic approximation of X. �

5. Q does admit an algebraic approximation

Keeping notation from Construction 3.5, in this section we will prove a sub-
stantial part of (1.2.3).

Theorem 5.1. The space Q admits an algebraic approximation.

An approximation of Q will be constructed out of an approximation of T ,
which is well-known to exist. To this end, we will show that the construction of Q

can be done in families.

5.A. The Poincaré bundle in families

We show in this auxiliary section that for a family X of complex tori, the
Poincaré bundles belonging to the fibres Xs locally glue together to a line bundle
on the total space of the induced family (Xs×X ‹

s )s.

Proposition 5.2. (Deformations of the Poincaré bundle) Let π : X →S be a

deformation of a complex torus T∼=X0. Then:

(5.2.1) Each fibre Xs is a complex torus, and there is a deformation p : Y →S

with fibres Ys=Xs×X ‹

s .

(5.2.2) After shrinking S around 0, there is a line bundle L on Y whose re-

striction Ls :=L
∣∣
Ys

is isomorphic to Ps, the Poincaré bundle on Ys, for each s∈S.
The proof is based on the following computational lemma. To fix notation, let

T= V
/
Λ be a complex torus. Then we have π1(T )=Λ and consequently H1(T,Z)=

Λ ‹ :=Hom(Λ,Z). By (3.3.1), it follows that H1(T ‹,Z)=Λ ‹ ‹=Λ.

Lemma 5.3. The identity map of Λ, viewed as an element of H2(T×T ‹,Z)
via the natural maps

(5.3.1) End(Λ)=Λ ‹⊗Λ=H1(T,Z)⊗H1(T ‹,Z) ↪−→H2(T×T ‹,Z) ,

is equal to c1(P), the first Chern class of the Poincaré bundle on T×T ‹. In par-

ticular, it is of Hodge type (1, 1).
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Proof. The inclusion map in (5.3.1) is given by the Künneth formula, that is,
by pulling back and taking cup product. Furthermore, H2(T×T ‹,Z) is naturally
identified with the set of alternating integral 2-forms on Λ×Λ ‹. Spelled out, this
means that an element g⊗μ∈Λ ‹⊗Λ is sent to the following 2-form on Λ×Λ ‹:

(
(λ1, f1), (λ2, f2)

)
	−→ g(λ1)f2(μ)−g(λ2)f1(μ).

Now, choose a basis γ1, ..., γ2n of Λ and let γ ‹

1, ..., γ

‹

2n be the dual basis of Λ ‹. Then
idΛ=

∑2n
i=1 γ

‹

i ⊗γi and by the above formula, under (5.3.1) this gets sent to
(
(λ1, f1), (λ2, f2)

)
	−→ f2(λ1)−f1(λ2).

According to [BL04, Theorem 2.5.1], this form represents c1(P). This proves the
first claim. The second one is then clear since the first Chern class of any line bundle
is of type (1, 1). �

Proof of Proposition 5.2. Any deformation of a complex torus is a complex
torus, so all fibres Xs are complex tori by [Cat02, Theorem 4.1]. Now we consider
the total space of the sheaf X ‹ :=R1π∗OX

/
R1π∗ZX on S. Since R1π∗OX is

a vector bundle and in each fibre we are dividing out a lattice, it is clear that
π ‹ : X ‹→S is a flat family of complex tori. By definition, the fibres (X ‹)s are the
dual tori (Xs) ‹. Hence π ‹ is a deformation of T ‹ , called the dual family of X . The
fibre product Y :=X ×SX ‹ fits into a commutative diagram

Y
r′ ��

r

��

p

����
���

���
���

���
X ‹

π ‹

��

X
π �� S,

where p : Y →S is a deformation of T×T ‹ . For each s∈S, the fibre Ys is the
complex torus Xs×X ‹

s . This proves (5.2.1).
In order to fix the group structure on the complex tori Xs, we pick an arbitrary

section σ : S→X of π and regard it as the zero section. The family X ‹→S already
comes equipped with a zero section τ : S→X ‹ . Pulling back induces sections j=
(σ¨π ‹, idX ‹ ) : X ‹→Y of r′ and i=(idX , τ ¨π) : X →Y of r.

After shrinking S, we may assume that S is Stein and contractible and hence
in particular the sheaf R2p∗ZY is trivial. Consider the cohomology class c1(P) on
the central fibre Y0=T×T ‹ . By the triviality of R2p∗ZY , this extends to a global
section ϕ of the latter sheaf and by Lemma 5.3, for all s∈S the class ϕ(s)∈H2(Ys,Z)
continues to be the first Chern class of the Poincaré bundle Ps on Ys. In particular,
ϕ(s) is of type (1, 1) for all s∈S. The pushforward of the exponential sequence on
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Y , more precisely the exact sequence

R1p∗O
×
Y −→R2p∗ZY −→R2p∗OY ,

then shows that ϕ lifts to a section ϕ̃∈H0(S,R1p∗O
×
Y

)
, at least after shrinking S.

The space S being Stein and contractible, the sheaf cohomology groups Hi(S,OS)
and Hi(S,ZS) vanish for i>0. By the exponential sequence on S, also Hi

(
S,O×

S

)
vanishes for i>0. Hence the five-term exact sequence associated to the Leray spec-
tral sequence for p and O×

Y induces an isomorphism Pic(Y )∼=H0(S,R1p∗O
×
Y

)
. This

shows that the germ ϕ̃ comes from a line bundle L on Y . By construction, L has
the property that c1(Ls)=c1(Ps) for each s∈S, where Ls :=L

∣∣
Ys

. We normalize
L by replacing it with

L ⊗r∗
(
i∗L −1)⊗r′ ∗

(
j∗L −1).

Then by the uniqueness in (3.3.2), we have Ls
∼=Ps for each s∈S. This is the

statement of (5.2.2). �

5.B. Proof of Theorem 5.1

Consider the miniversal deformation of T=X0,

π : X −→S :=Def(T ).

Using notation from Proposition 5.2, let p : Y →S be the deformation of T×T ‹ with
fibres Ys=Xs×X ‹

s , and let L be the line bundle on Y restricting to the Poincaré
bundle on each fibre.

Consider the rank two vector bundle ES :=L ⊕L −1 on Y , as well as its projec-
tivization P(ES)→Y . It is clear that P(ES)→S is a deformation of P(E ). Further-
more the action of G=Z

/
2Z×Z

/
2Z on the central fibre described in Section 3.B

extends to all of P(ES), since the other fibres are built in the same way. We denote
by QS the quotient of P(ES) by G. Then QS→S is a deformation of its central
fibre (QS)0∼=Q.

It is well-known that π : X →S is an algebraic approximation of T , see [Voi03,
Chapter 5, Example 1]. Also Pic¨ of any projective variety is again projective [Voi02,
Proposition 7.16]. Finally, projectivized vector bundles over projective varieties and
finite quotients thereof remain projective [Laz04] and [Knu71, Chapter IV, Propo-
sition 1.5]. Taken together, this shows that QS→S is an algebraic approximation
of Q, as desired.

6. X cannot be contracted further

The purpose of this section is to prove (1.2.2).
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Theorem 6.1. (MMP for X) Let X be as in Construction 3.5.

(6.1.1) Any bimeromorphic map X→X ′ onto a normal complex space X ′ is an

isomorphism.

(6.1.2) Every run of the KX-MMP immediately terminates with one of the Mori

fibre spaces X→Q or X→Qϕ.

6.A. Auxiliary results

The following proposition is a strengthening of [Sha13, Chapter III, §4.3, Lem-
ma] in the analytic setting. If π is a submersion and Z is compact Kähler, then
the claim follows easily from the fact that all fibres of π have the same homology
class. However, for the applications we have in mind, Z can only be assumed to be
of class C and then it may contain curves that are homologous to zero.

Proposition 6.2. (Maps contracting fibres of another map) Let π : E→S be

a proper surjective morphism with connected fibres between complex spaces E and

S. Furthermore let f : E→Z be any holomorphic map to another complex space Z.

(6.2.1) If for some s0∈S, the map f contracts the fibre π−1(s0) to a point, then

it contracts all fibres π−1(s) for s in a non-empty Zariski-open subset of S.

(6.2.2) If moreover π is equidimensional and S is locally irreducible and con-

nected (e.g. if S is normal and irreducible), then f contracts each fibre of π to a point.

Proof. We denote the fibres of π as Es :=π−1(s). For (6.2.1), we want to show
that the set

S0 :=
{
s∈S

∣∣ f(Es) is a point
}
⊂S

is Zariski-open in S. We consider the graph Γ of f , which is closed in E×Z. The
map π×idZ is closed because π is proper [GPR94, Chapter III, Corollary 4.3] and
maps Γ onto the image Γ′ of π×f . Thus Γ′ is an analytic subspace of S×Z. The
projection p : Γ′→S has fibres p−1(s)={s}×f(Es), and by assumption p−1(s0) is a
point. Hence the subset of S where the fibres of p are zero-dimensional is non-empty,
and it is Zariski-open by [GPR94, Chapter II, Theorem 1.16]. This set equals S0
because the fibres Es are connected.

For (6.2.2), we assume additionally that S is locally irreducible and connected.
Then equidimensionality of π is equivalent to π being an open map [GPR94, Chap-
ter II, Theorem 1.18]. We will show that S0 is also closed in S. Then connectedness
of S implies S=S0.

If S\S0 �=∅, let s∈S\S0 be arbitrary. Then f(Es) contains at least two dis-
tinct points x, y∈Z. As Z is Hausdorff, we can separate these points by disjoint
open analytic neighborhoods Ux, Uy⊂S. The preimages f−1(Ux), f−1(Uy)⊂E are
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disjoint and open in E. As π is an open map, the set

U :=π
(
f−1(Ux)

)
∩π

(
f−1(Uy)

)
is an open neighborhood of s in S. Note that for any t∈U , the set f(Et) contains
at least two distinct points. Hence U⊂S\S0, i.e. S\S0 is open in S. �

Proposition 6.3. (Bimeromorphic maps contract curves) Let f : X→Y be a

proper bimeromorphic morphism of normal complex spaces. Then for every y∈Y ,

the fibre f−1(y) is Moishezon. In particular, if f is not an isomorphism then there

exists a compact curve C⊂X which is mapped to a point by f .

Proof. By Hironaka’s Chow Lemma [Hir75, Corollary 2], there exists a projec-
tive bimeromorphic morphism g : Y ′→Y which factors through f via a morphism
h : Y ′→X. Then h is automatically a bimeromorphism and closed, hence h surjects
for any y∈Y the fibre g−1(y) onto the fibre f−1(y). As g−1(y) is projective, the
fibre f−1(y) is Moishezon. If f is not an isomorphism, then some fibre f−1(y0)
is positive-dimensional. Being Moishezon, it must contain a curve, which is then
mapped to the point y0. �

6.B. Proof of Theorem 6.1

Let ρ : Z→X=Z
/
G be the quotient map. Let f : X→X ′ be a bimeromorphic

map onto a normal complex space X ′. As f ¨ρ is proper, we can consider the Stein
factorization f ¨ρ=ρ′¨fZ , where fZ : Z→Z ′ is bimeromorphic, ρ′ is finite and Z ′ is
normal. If f is not an isomorphism, then by Proposition 6.3 it contracts a curve
C⊂X. Let CZ⊂Z be any curve contained in ρ−1(C). Then fZ contracts CZ and
in particular fZ is not an isomorphism. So we have reduced (6.1.1) to showing that
every bimeromorphic map g : Z→Z ′ with Z ′ normal is an isomorphism.

If such g is not an isomorphism, then by Proposition 6.3 it contracts a curve
C⊂Z. The image π(C) has to be a point, as T×T ‹ does not contain any curves
by [Voi06, Lemma 7]. Hence C is contained in the fibre π−1(π(C)

)
. This fibre

is isomorphic to P1×P1 and the restrictions of q and qϕ to it are nothing but the
projections onto the first and second factor, respectively. Any curve C in P1×P1 is
numerically equivalent to an effective linear combination of the horizontal and the
vertical fibre. Hence any morphism from P1×P1 contracting C contracts at least a
horizontal or a vertical fibre. So g contracts a fibre of q or a fibre of qϕ.

If g contracts a fibre of the P1-bundle q : Z→P(E ), then by Proposition 6.2
every fibre of q is contracted by g. In particular, g factors through q, contradicting
the assumption that g is bimeromorphic. Analogously, if g contracts a fibre of qϕ,
then it factors through qϕ and we get a similar contradiction. This proves (6.1.1).
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Concerning (6.1.2), let us first note that both X→Q and X→Qϕ are Mori fibre
spaces since KX is relatively ample and the relative Picard numbers are ρ(X/Q)=
ρ(X/Qϕ)=1. Conversely, let ψ : X→W be the first map produced by the KX -MMP.
By (6.1.1), ψ can be neither a divisorial nor a small contraction. Hence ψ is a Mori
fibre space. By an argument completely analogous to the proof of (6.1.1), we see
that ψ has to factor through either X→Q or X→Qϕ. In the first case, it has to be
equal to X→Q since otherwise ρ(X/W ) would be at least two. In the second case,
ψ is equal to X→Qϕ for the same reason. The proof of (6.1.2) is thus finished.

7. Proof of Theorem 1.2

Let n≥10 be an arbitrary even integer. Pick a scenic torus (T, ϕ) of dimension
(n−2)/2≥4, and do Construction 3.5 for this choice of T . The resulting space X will
be our example: Using notation from Construction 3.5, we have X=Z

/
G, where

Z is obviously uniruled and Kähler. Hence also X is uniruled, and it is Kähler
by [Var89, Chapter IV, Corollary 1.2]. Now, Lemma 3.8 and Proposition 3.10
imply (1.2.1), and (6.1.1) is (1.2.2). By (6.1.2) our variety X admits the Mori fibre
space X→Q, where the base Q admits an algebraic approximation by Theorem 5.1.
This proves (1.2.3), with Y =Q. However, we showed in Theorem 4.1 that X itself
does not admit an algebraic approximation. This is (1.2.4).

References
[BL04] Birkenhake, C. and Lange, H., Complex Abelian Varieties, Grundlehren der

mathematischen Wissenschaften 302, Springer, 2004.
[Cat02] Catanese, F., Deformation types of real and complex manifolds, in Contempo-

rary trends in algebraic geometry and algebraic topology, Nankai Tracts
Math. 5, Tianjin, 2000, pp. 195–238, World Sci. Publ., River Edge, NJ,
2002. 1945361.

[CHL19] Claudon, B., Höring, A. and Lin, H.-Y., The fundamental group of compact
Kähler threefolds, Geom. Topol. 23 (2019), 3233–3271.

[Gra18] Graf, P., Algebraic approximation of Kähler threefolds of Kodaira dimension
zero, Math. Ann. 371 (2018), 487–516.

[GPR94] Grauert, H., Peternell, Th. and Remmert, R., Several Complex Variables
VII, Encyclopaedia of Mathematical Sciences 74, Springer, 1994.

[Hir75] Hironaka, H., Flattening Theorem in Complex-Analytic Geometry, Amer. J.
Math. 97 (1975), 503–547.

[Knu71] Knutson, D., Algebraic Spaces, Lecture Notes in Mathematics 203, Springer,
1971.

[Kod63] Kodaira, K., On Compact Analytic Surfaces, III, Ann. Math. 78 (1963), 1–40.
[Kol07] Kollár, J., Lectures on resolution of singularities, Annals of Mathematics Stud-

ies 166, Princeton University Press, Princeton, NJ, 2007.



284
On the Kodaira problem for uniruled Kähler spaces

Patrick Graf and Martin Schwald:

[Kol13] Kollár, J., Singularities of the minimal model program, Cambridge Tracts in
Mathematics 200, Cambridge University Press, Cambridge, 2013. With
a collaboration of Sándor Kovács. 3057950.

[Laz04] Lazarsfeld, R., Positivity in Algebraic Geometry I, Ergebnisse der Mathematik
und ihrer Grenzgebiete, 3. Folge, 48, Springer, Berlin, 2004.

[Lin16] Lin, H.-Y., The bimeromorphic Kodaira problem for compact Kähler threefolds
of Kodaira dimension 1, 2016. arXiv:1612.09271 [math.AG].

[Lin17a] Lin, H.-Y., Algebraic approximations of uniruled compact Kähler threefolds,
2017. arXiv:1710.01083 [math.AG].

[Lin17b] Lin, H.-Y., Algebraic approximations of compact Kähler threefolds of Kodaira
dimension 0 or 1, 2017. version 2. arXiv:1704.08109v2 [math.AG].

[Nor83] Nori, M. V., Zariski’s conjecture and related problems, Ann. Sci. École Norm.
Sup. (4) 16 (1983), 305–344.

[Sha13] Shafarevich, I. R., Basic Algebraic Geometry 1: Varieties in Projective Space,
3rd ed., Springer, Heidelberg, 2013.

[Spa56] Spanier, E., The homology of Kummer manifolds, Proc. Amer. Math. Soc. 7
(1956), 155–160.

[Ste03] Stevens, J., Deformations of singularities, Lecture Notes in Mathematics 1811,
Springer, Berlin, 2003.

[Tak03] Takayama, S., Local simple connectedness of resolutions of log-terminal singu-
larities, Int. J. Math. 14 (2003), 825–836.

[vdW93] van der, B. L., Waerden: Algebra I, ninth ed., Springer, 1993.
[Var89] Varouchas, J., Kähler spaces and proper open morphisms, Math. Ann. 283

(1989), 13–52.
[Voi02] Voisin, C., Hodge Theory and Complex Algebraic Geometry I, Cambridge Stud-

ies in Advanced Mathematics 76, Cambridge University Press, 2002.
[Voi03] Voisin, C., Hodge Theory and Complex Algebraic Geometry II, Cambridge Stud-

ies in Advanced Mathematics 77, Cambridge University Press, 2003.
[Voi04] Voisin, C., On the homotopy types of compact Kähler and complex projective

manifolds, Invent. Math. 157 (2004), 329–343.
[Voi06] Voisin, C., On the homotopy types of Kähler manifolds and the birational

Kodaira problem, J. Differential Geom. 72 (2006), 43–71.

Patrick Graf
Department of Mathematics
University of Utah
Salt Lake City
UT 84112
U.S.A.
patrick.graf@uni-bayreuth.de
www.graficland.uni-bayreuth.de

Martin Schwald
Fakultät für Mathematik
Universität Duisburg–Essen
D-45117 Essen
Germany
martin.schwald@uni-due.de
www.esaga.uni-due.de/martin.schwald/

Received June 14, 2019
in revised form September 24, 2019

http://arxiv.org/abs/arXiv:1612.09271
http://arxiv.org/abs/arXiv:1710.01083
http://arxiv.org/abs/arXiv:1704.08109v2
mailto:patrick.graf@uni-bayreuth.de
http://www.graficland.uni-bayreuth.de
mailto:martin.schwald@uni-due.de
http://www.esaga.uni-due.de/martin.schwald/

	On the Kodaira problem for uniruled Kähler spaces
	1 Introduction
	2 Basic facts and definitions
	3 Voisin's example: construction and properties
	4 X does not admit an algebraic approximation
	5 Q does admit an algebraic approximation
	6 X cannot be contracted further
	7 Proof of main
	References


