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Singular equivalences arising from Morita rings

Nan Gao and Wen-Hui Zhao

Abstract. We obtain new classes of singular equivalences which are constructed from
Gorenstein-projective modules.

1. Introduction

The singularity category Dsg(A) of an algebra A over a field k, introduced by
R.O. Buchweitz in [4], is defined as the Verdier quotient Dsg(A)=Db(A-mod)/per(A)
of the bounded derived category Db(A-mod) by the category of perfect complexes.
In recent years, D. Orlov ([14]) rediscovered the notion of singularity categories in his
study of B-branes on Landau-Ginzburg models in the framework of the Homological
Mirror Symmetry Conjecture. The singularity category measures the homological
singularity of an algebra in the sense that an algebra A has finite global dimension
if and only if its singularity category Dsg(A) vanishes.

Two Artin algebras A and B are said to be singularly equivalent if there is a
triangle equivalence between their singularity categories. In this case, the corre-
sponding equivalence is called a singular equivalence between the two algebras. It
is well known that derived equivalences can induce naturally singular equivalences.
We recall that a derived equivalence between two algebras is a triangular equiv-
alence between their bounded derived categories. J. Rickard ([15, Theorem 3.3])
proved that a tilting module T over an algebra A induces an equivalence between
the derived category D(A) and the derived category D(B), where B is the endo-
morphism algebra of T . Through this point we can get many examples of singular
equivalences. Inspired by stable equivalences of Morita type introduced by M.
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Broué ([3]), X.W. Chen and L.G. Sun ([10]) introduced a special singular equiva-
lence between two k-algebras, which is called singularly equivalent of Morita type,
as a generalization of stable equivalences of Morita type. Singularity categories and
singular equivalences have drawn much attention. Their structural properties and
construction were investigated among in e.g. [5], [6], [7], [8] and [9].

Recall that Morita rings are 2×2 matrix rings associated to Morita contexts
([2], [11]). A particular case of interest is the Morita ring with bimodule homo-
morphisms zero. Gao and Psaroudakis [13] investigated its Gorenstein homological
properties.

The aim of this article is to construct new classes of singular equivalences
arising from Morita rings.

2. Singular equivalences of Morita rings

We first recall the definition of a singular equivalence of Morita type.

Definition 2.1. ([10, Definition 3.1]) Let k be a field. Two finite-dimensional
k-algebras A and B are singularly equivalent of Morita type if there exist an A-B-bi-
module AMB and a B-A-bimodule BNA such that

(i) M and N are finitely generated projective as left and right modules;
(ii) M⊗BN∼=A⊕P as A-A-bimodules for some finitely generated A-A-bimod-

ule P with finite projective dimension, and N⊗AM∼=B⊕Q as B-B-bimodules for
some finitely generated B-B-bimodule Q with finite projective dimension.

Now we need recall the notion of a Gorenstein algebra and a Gorenstein-
projective module. Let A be a finite-dimensional k-algebra over a field k. A is
a d-Gorenstein algebra for some non-negative integer d if the injective dimension
of A is finite and also equals d as left and right A-modules. Denote by A-mod the
category of finitely generated left A-modules, and by A-proj the full subcategory of
finitely generated projective A-modules. An A-module M in A-mod is called Goren-
stein projective, if there exists an exact sequence P ˝=...→P−1→P 0 d0

−−→P 1→... in
A-proj with HomΛ(P ˝, Q) exact for any Q∈A-proj, such that M∼=ker d0 (see [12]).

Lemma 2.2. Let A and B be two finite-dimensional k-algebras which are sin-

gularly equivalent of Morita type induced by bimodules M and N . Then the following

hold:

(1) The functors M⊗B−:B-mod→A-mod and N⊗A−:A-mod→B-mod are

exact and take finitely generated projective modules to finitely generated projective

modules.
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(2) Suppose that A and B are Gorenstein. Then the functors M⊗B− and N⊗A

− induce a one-to-one correspondence between the indecomposable non-projective

objects of A-Gproj and B-Gproj, where A-Gproj (resp. B-Gproj) denotes the cate-

gory of finitely generated Gorenstein-projective A-modules (resp. B-modules).

Proof. (1) follows from the fact that AM and BN are finitely generated pro-
jective modules. (2) follows from [16, Proposition 3.7]. �

Lemma 2.3. Let A and B be two finite-dimensional Gorenstein k-algebras

which are singularly equivalent of Morita type induced by bimodules M and N . Let

P be a finitely generated A-A-bimodule satisfying Definition 2.1(ii) with the minimal

projective resolution as A-A-bimodule

0−→Pn
dn−−→Pn−1 −→ ...−→P1

d1−−→P0 −→APA −→ 0 (∗)

Let C be a k-algebra and V (resp. W ) an A-C-bimodule (resp. C-A-bimodule) such

that V (resp. W ) is a finitely generated non-projective Gorenstein-projective left

(resp. right) A-module. Then we have the following:

(1) Pi⊗AV =0 for all 1≤i≤n, and P0⊗AV ∼=P⊗AV as a left A-module.

(2) W⊗APi=0 for all 1≤i≤n, and W⊗AP0∼=W⊗AP as a right A-module.

(3) Let Λ=
(

A AVC

CWA C

)
be the Morita ring which is an Artin algebra such

that V ⊗CW=0 and W⊗AV =0. If V and W are indecomposable, then P⊗AV =0
and W⊗AP=0, and moreover, P has finite projective dimension as a Λ-Λ-bimodule.

Proof. (1). By assumption P has finite projective dimension as a right A-mod-
ule. Since A is d-Gorenstein for some non-negative integer d, it follows that ΩdP

is Gorenstein-projective with finite projective dimension. So ΩdP is either zero or
projective. On the other hand, since AV is Gorenstein-projective, it follows that
there exists a left A-module V1 such that V ∼=ΩdV1. Then for all i≥1,

TorAi (P, V )∼= TorAi (P,ΩdV1)∼= TorAi (ΩdP, V1)= 0

So we obtain a long exact sequence of left A-modules

0−→Pn⊗AV
dn⊗IdV−−−−−→Pn−1⊗AV −→ ...−→P1⊗AV

d1⊗IdV−−−−−→P0⊗AV −→P⊗AV

−→ 0 (∗∗)

Since A(Pi⊗AV ) is projective for all 0≤i≤n and (∗) is a minimal, then (∗∗) is a
minimal projective resolution of the left A-module P⊗AV . On the other hand, since
V and M⊗BN⊗AV are both Gorenstein-projective left A-modules, and M⊗BN∼=
A⊕P , it follows that P⊗AV is also Gorenstein-projective. It follows that M⊗B
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N⊗AV ∼=V ⊕P⊗AV and so P⊗AV is a projective left A-module. Therefore, by the
minimality of (∗∗), we obtain that Pi⊗AV =0 for all 1≤i≤n, and P0⊗AV ∼=P⊗AV .

(2). By assumption P has finite projective dimension as a left A-module. Since
A is d-Gorenstein for some non-negative integer d, it follows that ΩdP is Gorenstein-
projective with finite projective dimension. So ΩdP is either zero or projective. On
the other hand, since WA is Gorenstein-projective, it follows that there exists a
right A-module W1 such that W∼=ΩdW1. Then for all i≥1,

TorAi (W,P )∼= TorAi (ΩdW1, P )∼= TorAi (W1,ΩdP )= 0

So we obtain a long exact sequence of right A-modules

0−→W⊗APn
IdW⊗dn−−−−−→W⊗APn−1 −→ ...−→W⊗AP1

IdW⊗d1−−−−−→W⊗AP0

−→W⊗AP −→ 0 (∗∗)

Since (W⊗APi)A is projective for all 0≤i≤n and (∗) is a minimal, then (∗∗) is a
minimal projective resolution of the right A-module W⊗AP . On the other hand,
since W and W⊗AM⊗BN are both Gorenstein-projective right A-modules, and
M⊗BN∼=A⊕P , it follows that W⊗AP is also Gorenstein-projective. It follows
that W⊗AM⊗BN∼=W⊕W⊗AP and so W⊗AP is a projective right A-module.
Therefore, by the minimality of (∗∗), we obtain that W⊗APi=0 for all 1≤i≤n,
and W⊗AP0∼=W⊗AP .

(3). Since M⊗BN∼=A⊕P as A-A-bimodule, it follows that M⊗BN⊗AV ∼=V ⊕
(P⊗AV ) as left A-modules. Then we have that P⊗AV =0. Since Pl is a projective
A-A-module for all 0≤l≤n, it follows that there exists a finite index set I and
pairs (ei, ej) of idempotents of A such that Pl=⊕(i,j)∈IAei⊗kejA. Since Pl⊗AV =
0, we have ejV ∼=ejA⊗AV =0, and moreover, ejA∼=ejA⊕ejV is a projective right
Λ-module. On the other hand, W⊗AM⊗BN∼=W⊕(W⊗AP ) as right A-modules.
Then we have that W⊗AP=0. Since Pl is a projective A-A-module for all 0≤
l≤n, Pl=⊕(i,j)∈IAei⊗kejA. Since W⊗APl=0, we have Wei∼=W⊗AAei=0, and
moreover, Aei∼=Aei⊕Wei is a projective left Λ-module. Thus we get that Aei⊗kejA

is a projective Λ-Λ-bimodule. This means that P has finite projective dimension as
a Λ-Λ-bimodule. �

Remark 2.4. Use the notation in Lemma 2.3. Let Γ=
(

B N⊗AV

W⊗AM C

)

be the Morita ring which is an Artin algebra. Since N⊗AV and W⊗AM are
indecomposable non-projective Gorenstein-projective B-modules by Lemma 2.2, we
can adapt the proof of Lemma 2.3(3) to obtain that Q is also a Γ-Γ-bimodule with
finite projective dimension such that Q⊗BN⊗AV =0 and W⊗AM⊗BQ=0.
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Theorem 2.5. Let A and B be Gorenstein k-algebras which are singularly

equivalent of Morita type induced by bimodules M and N . Let C be a k-algebra.

Let V (resp. W ) be an A-C-bimodule (resp. C-A-bimodule) such that V (resp. W )

is a non-projective Gorenstein-projective left (resp. right) A-module and V ⊗C

W=0 and W⊗AV =0. Let Λ=
(

A AVC

CWA C

)
and Γ=

(
B N⊗AV

W⊗AM C

)
be the

Morita rings which are Artin algebras. Suppose that EndB⊗kCop(N⊗AV )=kId and

EndC⊗kBop(W⊗AM)=kId. Then Λ and Γ are singularly equivalent of Morita type.

Proof. By assumption, we have an A-A-bimodule isomorphism ρ=(ρ1, ρ2):
M⊗BN∼=A⊕P and a B-B-bimodule isomorphism σ=(σ1, σ2):N⊗AM∼=B⊕Q,
where P and Q have finite projective dimension. From the A-C-bimodule iso-
morphism M⊗BN⊗AV ∼=V , we have two B-C-bimodule isomorphisms IdN⊗μ(ρ1⊗
IdV ):N⊗AM⊗BN⊗AV ∼=N⊗AV and μ′(σ1⊗IdN⊗AV ):N⊗AM⊗BN⊗AV ∼=N⊗A

V , where μ:A⊗AV →V and μ′ :B⊗B (N⊗AV )→N⊗AV are the multiplication
maps. Since EndB⊗kCop(N⊗AV )=kId, there exists a non-zero element k0∈k such
that IdN⊗μ(ρ1⊗IdV )=k0(μ′(σ1⊗IdN⊗AV )). Without loss of generality, we may
assume that k0=1. On the other hand, from the C-A-bimodule isomorphism
W⊗AM⊗BN∼=W , we have two A-C-bimodule isomorphisms μ′′(IdW ⊗ρ1)⊗IdM :
W⊗AM⊗BN⊗AM∼=W⊗AM and μ′′′(IdW⊗AM⊗σ1):W⊗AM⊗BN⊗AM∼=W⊗A

M , where μ′′ :W⊗AA→W and μ′′′ :(W⊗AM)⊗BB→W⊗AM are the multiplica-
tion maps. Since EndC⊗kBop(W⊗AM)=kId, there exists a non-zero element k′0∈k
such that μ′′(IdW ⊗ρ1)⊗IdM =k′0(μ′′′(IdW⊗AM⊗σ1)). Without loss of generality,
we may assume that k′0=1.

Recall that each finitely generated Λ-module X can be described as a tuple
X=(X0, Xω, f, g), where X0 is in A-mod, Xω is in C-mod, and f :V ⊗CXω→X0 is
an A-homomorphism, g :W⊗AX0→Xω is a C-homomorphism, by the way that X=

X0⊕Xω with Λ-module structure given by
(
a v

w c

)
(x, y)=(ax+f(v⊗y), g(w⊗x)+

cy). Now given a Λ-module X=(X0, Xω, f, g), we put F (X):=(N⊗AX0, Xω, f(μ′′⊗
IdX0)(IdW ⊗ρ1⊗IdX0), IdN⊗g). Then F :Λ-mod→Γ-mod is a well-defined exact
functor preserving finitely generated projective modules. By Watt’s Theorem (e.g.
[17, Theorem 3.3.16]), F∼=ΓF (Λ)⊗Λ−. Now let us define the functor G:Γ-mod→
Λ-mod.

Recall that each finitely generated Γ-module Y can be described as a tuple
Y =(U, T, s, t), where U is in B-mod, T is in C-mod, and s:N⊗AV ⊗CT→U is
a B-homomorphism, t:W⊗AM⊗CU→T is a C-homomorphism, by the way that

Y =U⊕T with Γ-module structure given by
(

b n⊗v

w⊗m c

)
(u, p)=(bu+s(n⊗v⊗

p), t(w⊗m⊗u)+cp). Now for (U, T, s, t)∈Γ-mod with the C-morphism s:W⊗A
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M⊗BU→T and the B-morphism t:N⊗AV ⊗CT→U , we define

G(U, T, s, t) := (M⊗BU, T, s, (IdM⊗t)((μ(ρ1⊗IdV ))−1⊗IdT )

Then G is a well-defined exact functor preserving finitely generated projective mod-
ules. By Watts’ Theorem (e.g. [17, Theorem 3.3.16]), G∼=ΛG(Γ)⊗Γ−. Denote by
μ′′′′ :(N⊗AV )⊗CC→N⊗AV and μ′′′′′ :V ⊗CC→V the multiplication maps. Since
there are the Λ-Λ-bimodule isomorphisms

G(Γ)⊗ΓF (Λ) ∼= G(F (Λ))=G(F ((A,W, μ′′, 0)⊕(V,C, 0, μ′′′′)))
= G((N⊗AA,W, μ′′(μ′′⊗IdA)(IdW ⊗ρ1⊗IdA), 0)
⊕ (N⊗AV,C, 0, IdN⊗μ′′′′′))
= (M⊗BN⊗AA,W, μ′′(μ′′⊗IdA)(IdW ⊗ρ1⊗IdA), 0)
⊕ (M⊗BN⊗AV,C, 0, (μ(ρ1⊗IdV ))−1μ′′′′′)
∼= Λ⊕P

and the Γ-Γ-bimodule isomorphisms

F (Λ)⊗ΛG(Γ) ∼= F (G(Γ))=F (G((B,W⊗BM,μ′′′, 0)⊕(N⊗AV,C, 0, μ′′′′)))
= F ((M⊗BB,W⊗BM,μ′′′, 0)
⊕ (M⊗BN⊗AV,C, 0, (μ(ρ1⊗IdV ))−1μ′′′′′)
= (N⊗AM⊗BB,W⊗BM,μ′′′(μ′′⊗IdB)(IdW ⊗ρ1⊗IdB), 0)
⊕ (N⊗AM⊗BN⊗AV,C, 0, (IdN⊗(μ(ρ1⊗IdV ))−1)μ′′′′)
∼= Γ⊕Q,

it follows from Lemma 2.3 and Remark 2.4 that Λ and Γ are singularly equivalent
of Morita type. �

Corollary 2.6. Let A and B be Gorenstein k-algebras which are singularly

equivalent of Morita type induced by bimodules M and N . Let C be a k-algebra and

V an A-C-bimodule such that V is an indecomposable non-projective Gorenstein-

projective left A-module such that EndB⊗kCop(N⊗AV )=kId. Let Λ=
(
A AVC

0 C

)

and Γ=
(
B N⊗AV

0 C

)
. Then Λ and Γ are singularly equivalent of Morita type.

Hochschild homology was introduced by Hochschild as a tool for studying the
structure of associative algebras. Hochschild homology of a finite dimensional al-
gebra has a very rich structure. It has a cup of product making it into a graded
commutative algebra; it also has a Lie bracket of degree −1, making it into a graded
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Lie algebra. Zhou-Zimmermann ([18]) proved that a singular equivalence of Morita
type between finite dimensional k-algebras preserve the Hochschild homology group.
We recall the notion of the Hochschild homology group.

Let A be an Artin algebra and Ae=A⊗kA
op be the enveloping algebra. Let M

be an A-bimodule. Recall that the Hochschild homology group of A with coefficients
in M is defined as HHn(A,M)=TorA

e

n (A,M).

Corollary 2.7. Let A and B be Gorenstein k-algebras which are singularly

equivalent of Morita type. Suppose that C, W , V , Λ and Γ be as above in The-

orem 2.5. Then Λ and Γ have isomorphic Hochschild homology groups for each

n>0,
HHn(Λ)∼= HHn(Γ)

Proof. By Theorem 2.5, we know that Λ and Γ are singularly equivalent of the
Morita type. Thus by [18, Theorem 4.1] there are isomorphisms of the Hochschild
homology groups for each n>0,

HHn(Λ)∼= HHn(Γ) �
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