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Weighted estimates for the Laplacian
on the cubic lattice

Evgeny L. Korotyaev and Jacob Schach Møller

Abstract. We consider the discrete Laplacian Δ on the cubic lattice Zd, and deduce
estimates on the group eitΔ and the resolvent (Δ−z)−1, weighted by �q(Zd)-weights for suitable
q�2. We apply the obtained results to discrete Schrödinger operators in dimension d�3 with
potentials from �p(Zd) with suitable p�1.

1. Introduction and main results

1.1. Introduction

We consider the Schrödinger operator H acting in �2(Zd), d�3 and given by

(1.1) H =Δ+V,

where Δ is the discrete Laplacian on Z
d defined by

(1.2)
(
Δf

)
(n)= 1

2

d∑
j=1

(
fn+ej +fn−ej

)
,

for f=(fn)n∈Zd∈�2(Zd). Here e1=(1, 0, ..., 0), ..., ed=(0, ..., 0, 1) is the standard ba-
sis of Zd. The spectrum of Δ is absolutely continuous and σ(Δ)=σac(Δ)=[−d, d],
and the threshold set – critical energies of Δ in its momentum representation – is
τ(H)=τ(Δ)=(2Z+d)∩[−d, d].

The operator V is the operator of multiplication by a real-valued potential func-
tion, V =(Vn)n∈Zd . The potentials we work with will always satisfy that
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limn→∞ Vn=0, and consequently the essential spectrum of the Schrödinger oper-
ator H on �2(Zd) is σess(H)=[−d, d]. However, this does not exclude appearance of
eigenvalues and singular continuous spectrum in the interval [−d, d].

Before describing our results, we recall some well known classic results by Kato
for the continuous case, established in the famous paper [10]. Kato considered the
Laplacian Δ acting in the space L2(Rd) for d�2. He proved the following estimates:

(i) Let d�2 and q>2. Then for all t∈R\{0} and u∈Lq(Rd), we have

(1.3) ‖ueitΔu‖�Cd,q|t|−
d
q ‖u‖2

q,

for some constant Cd,q depending on d and q only.
(ii) Let ε>0 and d>2+ε. For any u∈Ld−ε(Rd)∩Ld+ε(Rd), we have

(1.4) ∀ λ∈C\[0,∞) : ‖u(−Δ−λ)−1u‖�Cd,ε

(
‖u‖2

d−ε+‖u‖2
d+ε

)
,

for some constant Cd,ε depending on d and ε only.
These estimates have a lot of applications in spectral theory, see [25]. Note

that (1.3) is a simple example of a dispersive (or Strichartz) estimate. Dispersive
estimates are very useful in the theory of linear and non-linear partial differential
equations, see [27] and references therein. Note that the estimate (1.3) implies (1.4)
and that the operator-valued function u(−Δ−λ)−1u is analytic in C\[0,∞) and
uniformly Hölder up to the boundary.

In the present paper we prove a dispersive estimate of the type (1.3) for the
discrete Laplacian (1.2), and we show that by replacing the q-norm with a weighted
q-norm on the right-hand side one may improve the time-decay. This is the content
of Theorem 1.1 below. Secondly, we establish resolvent estimates of the type (1.3)
that are better than what is implied by our dispersive estimates. See Theorem 1.3.
That is, unlike the continuous case studied by Kato, one does not get good resolvent
bounds merely by integrating a dispersive estimate of the type (1.3). Instead we an-
alyze and exploit the pointwise decay of the summation kernel for the free resolvent.
The starting point for our analysis is a representation of the summation kernel of
the propagator in terms of a product of Bessel functions. Our estimates then follow
from a careful use of recent optimal estimates on Bessel functions by Krasikov [17]
and Landau [18]. Finally, in Theorem 1.5, we deduce consequences for the spec-
tral and scattering theory for the Hamiltonian (1.1) with potentials from a suitable
�p(Zd) space. The proof of this last theorem revolves around Birman-Schwinger
type arguments.

For the discrete Schrödinger operators on the cubic lattice, most results were
obtained for uniformly decaying potentials for the Z

1 case, see for example [3], [8],
[13], [31]. For real-valued finitely supported potentials in Z

d, Kopylova [14] has
established dispersive estimates, Shaban and Vainberg [28] as well as Ando, Isozaki
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and Morioka [1, Thm. 7.7], studied Limiting Absorption away from thresholds,
and Isozaki and Morioka [7, Thm. 2.1] proved that the point-spectrum of H on
the interval (−d, d) is absent. Note that in [5] the authors gave an example in
dimension d�5 of an embedded eigenvalue at the endpoint {±d}. Recently, Hayashi,
Higuchi, Nomura, and Ogurisu computed the number of discrete eigenvalues for
finitely supported potential [4].

For Schrödinger operators with decreasing potentials on the lattice Zd, Boutet
de Monvel and Sahbani [2] used Mourre’s method to prove absence of singular
continuous spectrum and local finiteness of eigenvalues away from threshold energies
τ(H), a technique revisited by Isozaki and Korotyaev [6], who also studied the direct
and the inverse scattering problem as well as trace formulae. In a recent preprint,
Mandiche [20] constructed a Wigner-von Neumann type long-range potential with
an eigenvalue embedded in the interior of the essential spectrum.

For �d/2(Zd)-potentials, Rozenblum and Solomyak [26] gave an upper bound on
the number of discrete eigenvalues in terms of the �d/2(Zd)-norm of the potential.

Recently, Ito and Jensen [9] expanded the free resolvent integral kernel in
momentum space near each threshold energy, i.e., near each λ∈τ(Δ). This analysis
complements that of [1], which also relies on a detailed investigation of the resolvent
in its momentum representation.

For closely related problems, we mention that the results of Sahbani and Boutet
de Monvel [2], were recently extended to general lattices by Parra and Richard
[21]. In addition, the result in [7], on absence of embedded eigenvalues (away from
{−d, d}) for finitely supported potentials, has a generalization to other lattices in
[1, Thm. 5.10], where the inverse problem is also considered. Finally, scattering
on periodic metric graphs associated with Z

d was considered by Korotyaev and
Saburova in [15].

1.2. Estimates of free time evolution

Our first result consists of weighted estimates for the propagator of the discrete
Laplacian on Z

d. To fix some notation, we write �p(Zd) for the space of sequences
f=(fn)n∈Zd equipped with the norm

(1.5) ‖f‖pp = ‖f‖p
�p(Zd) =

∑
n∈Zd

|fn|p <∞.

For p�1 and ˇ�0, we shall make use of the weighted spaces �p
ˇ
(Zd), consisting of

sequences with finite weighted norm

(1.6) ‖f‖pp,ˇ = ‖f‖p
�pˇ(Zd) =

∑
n∈Zd

ρ−pˇ
n |fn|p,



400 Evgeny L. Korotyaev and Jacob Schach Møller

where

(1.7) ρn =
d∏

j=1
(1+|nj |)−1, n∈Z

d.

For p=∞ this amounts to ‖f‖∞,ˇ=supn ρ
−ˇ

n |fn|. For bounded operators T on
�2(Zd), we write ‖T‖ for the operator norm of T .

We are now ready to formulate our first result on weighted estimates on the
propagator eitΔ.

Theorem 1.1. Let d�1. The following holds true:

(a) Let q�2. Then for all t∈R\[−1, 1] and u, v∈�q(Zd), we have

(1.8) ‖ueitΔv‖�C
2d
q

Lan|t|
− 2d

3q ‖u‖q‖v‖q,

where the constant CLan<4/5.
(b) Let a>1/2, 2�q�∞ and 0�ˇ�a· q−2

q . Then for all t∈R with |t|�1 and

u, v∈�q
ˇ
(Zd), we have

(1.9) ‖ueitΔv‖�C
2d
q

LanC
dˇ
a

a |t|−d
(

2
3q + ˇ

2a

)
‖u‖q,ˇ‖v‖q,ˇ,

where Ca=3
(
1+ 2a

2a−1
)
. (For q=∞ the obvious interpretation of the estimate ap-

plies.)

Remarks 1.2. (1) One can find Landau’s optimal constant CLan with sev-
eral decimals in [18].

(2) By allowing for the ρ-weights in (b), one may improve the time-decay of
the �q-weighted time evolution from (a) slightly.

1.3. Estimates of the free resolvent

Let γ∈[0, 1], d>2+2γ and q�2. If q>2, we define

(1.10) Γ(q, d, γ)=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
3+ 12(q−2)

12−(5+2γ)q

)3(q−2)
q

, if d=3(
3+2

( 5q−2
8−(3+γ)q

)1+ q
4(q−2)

)4(q−2)
q if d=4(

3+ 6d(q−2)
6d−(2d+1+3γ)q

)d(q−2)
q if d>4.
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If q=2 and d �=4, we set Γ(2, d, γ)=1 and finally we set Γ(2, 4, γ)=(1−γ)−1. We
furthermore need

(1.11) Cγ
d =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2

1−2γ +8 if d=3,
2

1−γ if d=4,
10
d−4 if d>4.

and

(1.12) γd,q =

⎧⎨⎩
6
q−

5
2 , d=3

2d
q − 2d+1

3 , d�4.

Our second main theorem is the following weighted resolvent estimates.

Theorem 1.3. Let d�3. Let u, v∈�q(Zd) with

(1.13) 2� q <

⎧⎨⎩
12
5 if d=3,
6d

2d+1 if d�4.

Then the operator-valued function Y0 : C\[−d, d]→B(�2(Zd)), defined by

(1.14) Y0(z) :=u(Δ−z)−1v

is analytic and Hölder continuous up to the boundary. More precisely, it satisfies:

(a) For all z∈C\[−d, d], we have

(1.15) ‖Y0(z)‖�
(
1+C0

dΓ(q, d, 0)
)
‖u‖q‖v‖q.

(b) Let γ∈[0, 1] satisfy the constraint γ<γd,p. For all z, z′∈C\[−d, d] with

Im(z), Im(z′)�0, we have

(1.16) ‖Y0(z)−Y0(z′)‖� |z−z′|γ
(
1+Cγ

dΓ(q, d, γ)
)
‖u‖q‖v‖q.

Remark 1.4. We observe the following consequences:
(1) The weighted resolvent Y0(z) is analytic in C\[−d, d] and extends by con-

tinuity from C± to a Hölder continuous function on C±. We denote the extension
from C± to [−d, d] by Y0(λ±i0).

(2) If d=3 and q=2 the Hölder exponent must satisfy the constraint γ<1/2 and
for d=4 and q=2 we have γ<1. However, if d�5 and q=2, the extended weighted
resolvent is Lipschitz continuous. In fact, one retains Lipschitz continuity for d�5
provided

(1.17) 2� q <
6d

2d+4 .
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(3) At the cost of a possibly larger prefactor, we actually get resolvent estimates
in Hilbert-Schmidt norm. See Theorem 3.3 for a precise formulation.

(4) While the window of exponents q in (1.13) is fairly small, it turned out to
be crucial for an application to the Laplacian on the cubic metric graph [16]. In
that paper we need Theorem 1.3 to be valid for some q>2.

In [6, Lemmas 5.3 and 5.4], the authors establish free resolvent estimates in
d=1 and d=2 with �2(Zd)-weights. These estimates blow up at the threshold set
τ(Δ), which is no coincidence, cf. [9]. In dimensions d�3, [6, Lemma 5.5] establishes
free resolvent estimates across thresholds but with mixed �2-weights and ρ-weights.
In [6] a Hölder estimate on a suitably weighted free resolvent is also derived, but
with no control over the Hölder exponent γ.

1.4. Applications to Schrödinger operators

Finally we investigate some consequences of the resolvent estimates for a par-
ticle in a cubic lattice, subject to an external potential. We consider the Schrödinger
operator H=Δ+V acting in �2(Zd), d�3, where the real-valued potential V =
(Vn)n∈Zd is an element of a suitable �p(Zd) space. In particular, H is a bounded
operator with σess(H)=[−d, d].

Recall the decomposition

(1.18) �2(Zd)=Hac⊕Hsc⊕Hpp

of the Hilbert space into the absolutely continuous, singular continuous subspaces
of H and the closure of the span of all eigenstates of H.

Theorem 1.5. Let d�3 and V ∈�p(Zd) with

(1.19) 1� p<

⎧⎨⎩
6
5 if d=3,
3d

2d+1 if d�4.

(a) All eigenvalues λ∈σpp(H) are of finite multiplicity.

(b) The closure of the set σpp(H)∪σsc(H) has zero Lebesgue measure. If, in

addition, ‖V ‖p<(1+C0
dΓ(2p, d, 0))−1, then: σpp(H)=σsc(H)=∅.

(c) The wave operators

(1.20) W± := s− lim
t→±∞

eitHe−itΔ

exist and are complete, i.e.; W±�2(Zd)=Hac.
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(d) If d�5 and

(1.21) 1� p<
3d

2d+4 ,

then σpp(H) is a finite set and σsc(H)=∅.

Remark 1.6. Since p�d/2 and d�3, it is a consequence of a result of Rozenblum
and Solomyak [26, Thm. 1.2] that σ(H)\[−d, d] is a finite set. Finiteness of σpp(H)∩
[−d, d] is typically a much harder question, here settled in the affirmative for d�5.

Example 1.7. Let d�3 and let ˇ : Zd→Z
d be injective and θ : Zd→C satisfy

|θn|�1 for all n. Define a potential by setting

(1.22) Vn =

⎧⎨⎩0 if n �∈ˇ(Zd)

θn
∏d

j=1 ρˇ−1(n)j if n∈ˇ(Zd)

Consider the Hamiltonian

(1.23) Hg =Δ+gV.

We conclude from Theorem 1.5 that:
(1) the wave operators exist and are complete. If in addition g is sufficiently

small, more precisely |g|<(1+C0
dΓ(11/10, d, 0))−1‖ρ‖−d

11/10, then the operator Hg

has no eigenvalues and the singular continuous spectrum is empty.
(2) if d�5, then we additionally have, for any g∈R, that the operator Hg has at

most finitely many eigenvalues, all of finite multiplicity, and the singular continuous
spectrum is empty.
Note that the critical coupling in (1) does not depend on ˇ and θ. Even if ˇ(n)=n

and θn=1 all n, the potential is long-range in the direction of each coordinate axis.
Playing with ˇ, one can engineer sparse potentials with arbitrarily slow decay.

We end this section with a discussion of the momentum representation of the
discrete Laplacian.

One may diagonalize the discrete Laplacian, using the (unitary) Fourier trans-
form Φ: �2(Zd)→L2(Td), where T=R/(2πZ). It is defined by

(1.24) (Φf)(k)= f̂(k)= 1
(2π) d

2

∑
n∈Zd

fne
in·k, where k=(kj)dj=1 ∈T

d.

Here k ·n=
∑d

j=1 kjnj is the scalar product in R
d. In the resulting momentum

representation of the discrete Laplacian Δ, we write Δ̂=ΦΔΦ∗. We recall that the
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Laplacian is transformed into a multiplication operator

(1.25) (Δ̂f̂)(k)=
( d∑
j=1

cos kj
)
f̂ .

The operator eitΔ, t∈R is unitary on L2(Td) and has the kernel (eitΔ)(n−n′),
where for n∈Zd:

(1.26)

(eitΔ)(n) = 1
(2π)d

∫
Td

e−in·k+it
∑d

j=1 cos(kj)dk

=
d∏

j=1

( 1
2π

∫ 2π

0
e−injk+it cos(k)dk

)
= i|n|

d∏
j=1

Jnj (t),

where |n|=n1+...+nd. Here Jn(z) denotes the Bessel function:

(1.27) Jn(t)= (−i)n

2π

∫ 2π

0
eink−it cos(k)dk ∀ (n, z)∈Z×R.

We have collected some basic properties of Bessel function with integer index in
(A.1).

1.5. Plan of the paper

In Section 2 we determine properties of the free time evolution and prove
Theorem 1.1. Section 3 contains basic estimates on the free resolvent and a proof
of Theorem 1.3. In Section 4 we apply the above results to discrete Schrödinger
operators and prove Theorem 1.5. In Appendix A and B we recall and expand on
some key estimates of Bessel functions. Finally, in Appendix C, we have collected
some useful discrete estimates.

2. Estimates for the free time evolution

Our first lemma establishes a basic mapping property of the summation kernel
of the free propagator eitΔ.

Lemma 2.1. Let 2�r�∞, s∈[1, 2] and 1
r + 1

s =1. Then for all t∈R

(2.1) ‖eitΔf‖r �C
2d( 1

s− 1
2 )

Lan |t|− 2d
3 ( 1

s− 1
2 )‖f‖s ∀ f ∈ �s(Zd).,

where CLan is one of Landaus optimal constants from Lemma A.1.
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Proof. Note that the operator eitΔ is unitary on �2(Zd). In particular
‖eitΔf‖2=‖f‖2.

If f∈�1(Zd)∩�2(Zd), then it follows from (A.4) that ‖eitΔf‖∞�Cd
Lant

− d
3 ‖f‖1.

By the discrete Riesz-Thorin Interpolation Theorem (Theorem C.1), eitΔ extends
uniquely to a map from �s(Zd) to �r(Zd) and satisfies (2.1). �

Now we describe the more regular case.

Lemma 2.2. Let a> 1
2 , c∈[0, 1] and let t∈R with |t|�1. Abbreviate Ca=3

(
1+

2a
2a−1

)
.

(a) If d=1, then the following estimates hold true:

‖ρaeitΔρa‖�Ca|t|−
1
2 ,(2.2)

‖ρaceitΔρac‖�Cc
a|t|−

c
2 .(2.3)

(b) If d�1, then the following estimates hold true:

‖ρaeitΔρa‖�Cd
a |t|−

d
2 ,(2.4)

‖ρaceitΔρac‖�Cdc
a |t|− cd

2 .(2.5)

Proof. To establish (a), we estimate for d=1 using Proposition A.3

ρ(n)2a|eitΔ(n−m)|2ρ(m)2a = |Jn−m(t)|2
(1+|n|)2a(1+|m|)2a

� t−
1
2

1
(1+|n|)2a(1+|m|)2a(|n−m| 13 +||n−m|−t|) 1

2
,(2.6)

for all t>0 and n,m∈Z. Invoking (A.2) and Lemma C.3 (with α=2a and β=1/2),
we estimate in Hilbert-Schmidt norm:

‖ρae−itΔρa‖2
B2

�
∑

n,m∈Z

ρ(n)2a|eitΔ(n−m)|2ρ(m)2a

� 2
tπ

∑
n′∈Z

1
(1+|n′|)4a +t−

1
2

×
∑

n,m∈Z

1
(1+|n|)2a(1+|m|)2a(1+||n−m|−t|) 1

2

� 2
tπ

(
1+2

∫ ∞

0
(1+x)−4a dx

)
+ 1

t

( 2α2

(α−1)2 + 4α
(α−1)(pα−1)

1
p

32 1
r

)
� 6

tπ
+ 1

t

( 2(2a)2

(2a−1)2 + 4(2a)
(2a−1)(6a−1) 1

3
32 2

3

)
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� 2
t
+ 1

t

( 2(2a)2

(2a−1)2 + 4(2a)
(2a−1)2 1

3
32 2

3

)
=
(
2 (2a)2

(2a−1)2 +32 2a
2a−1 +2

)1
t

� 9
(
1+ 2a

2a−1

)2 1
t
.(2.7)

This proves (2.2) and (2.3) now follows from the estimate ‖T‖�‖T‖B2 valid for
Hilbert-Schmidt operators, and Hadamard’s Three Line Theorem applied for ψ∈
�2(Zd) with ϕ(z)=〈ψ, ρazeitΔρazψ〉 for z∈C with 0�Re z�1. See [24, App. to
IX.4].

To conclude, we observe that the statements in (b) follow from (a). �

Proof of Theorem 1.1. We begin with (a). It suffices to proof the claim for
t�1. From (2.1), we recall the estimate

(2.8) ∀ f ∈ �s(Zd) : ‖eitΔf‖r �Cˇ

Lant
− ˇ

3 ‖f‖s, where ˇ=2d
(1
s
− 1

2

)
,

and 2�r�∞ with 1
r + 1

s =1. Thus, if u∈�q(Zd) with q�2, then r=(1/2−1/q)−1�2
such that we may estimate for u, v∈�q(Zd) using (2.8) and Hölder’s inequality
(2.9)

‖ueitΔvϕ‖2 � ‖u‖q‖eitΔvϕ‖r �C
2d
q

Lant
− 2d

3q ‖u‖q‖vϕ‖s �C
2d
q

Lant
− 2d

3q ‖u‖q‖v‖q‖ϕ‖2,

which yields (1.8).
We now turn to (b). It follows from (1.8) and (2.5) that we have

(2.10)

∀a> 0, c∈ [0, 1] : ‖ρaceitΔρac‖�Ccd
a |t|− dc

2 ,

∀q′ � 2 : ‖ueitΔv‖�C
2d
q′
Lan|t|

− 2d
3q′ ‖u‖q′‖v‖q′ .

Here Ca is the explicit constant from Lemma 2.2.
Let ψ∈�2(Zd), u, v : Zd→[0,∞) with finite support, and put

(2.11) ϕ(z)= 〈ψ, ρac(1−z)uzeitΔvzρac(1−z)ψ〉.

Writing ϕ as a double sum, we see that ϕ is analytic in 0<Re z<1 and continuous
on the closure of the strip. Moreover, ϕ is bounded in the closed strip so we may
apply Hadamard’s Three Line Theorem. The estimates in (2.10) now interpolates
to the estimate

(2.12) ‖ρabcu1−beitΔv1−bρabc‖�C
2d(1−b)

q′
Lan Cdbc

a |t|−β‖u‖1−b
q′ ‖v‖1−b

q′ ,

valid for u, v : Zd→[0,∞). Here

(2.13) β = 2d
3q′ (1−b)+ d

2b= d

(
2(1−b)

3q′ + bc

2

)
.
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For u, v : Zd→C with finite support, we can now estimate for b, c∈[0, 1] and q′�2:

(2.14)

‖ueitΔv‖= ‖|u|eitΔ|v|‖= ‖ρabc(u′)1−beitΔ(v′)1−bρabc‖

�C
2d(1−b)

q′
Lan Cdbc

a |t|−β‖u′‖1−b
q′ ‖v′‖1−b

q′ ,

where u′=ρ−
abc
1−b |u| 1

1−b and v′=ρ−
abc
1−b |v| 1

1−b .
Let q�2 and 0�ˇ�a(q−2)/q be the exponents from the formulation of the

theorem. In order to end up with a q norm, we must pick b∈[0, 1] such that q′=
q(1−b) and to ensure q′�2, we get the constraint 0�b�(q−2)/q. We get best time
decay by picking b=(q−2)/q, in which case we end up with the estimate

(2.15) ‖ueitΔv‖�C
2d
q

LanC
dc(q−2)

q
a t−d

(
2
3q + c(q−2)

2q

)
‖u‖q,ac q−2

q
‖v‖q,ac q−2

q
.

If q>2, then we may choose c=aˇq/(q−2)∈[0, 1] to arrive at the desired estimate
(1.9), at least for u, v with finite support. If q=2, the same conclusion holds im-
mediately. After extension by continuity to arbitrary u, v∈�q

ˇ
(Zd), we conclude the

proof. �

3. Estimates on the free resolvent

We have the standard representation of the free resolvent R0(λ) in the lower
half-plane C− given by

(3.1)
R0(λ)=−i

∫ ∞

0
eit(Δ−λ)dt=R01(λ)+R02(λ),

R01(λ)=−i

∫ 1

0
eit(Δ−λ)dt, R02(λ)=−i

∫ ∞

1
eit(Δ−λ)dt,

for all λ∈C−. Here the operator valued-function R01(λ) has analytic extension from
C− into the whole complex plane C and satisfies

(3.2) ∀λ, μ∈C− : ‖R01(λ)‖� 1 and ‖R01(λ)−R01(μ)‖� |λ−μ|.

We shall need the following lemma.

Lemma 3.1. Let d�3 and γ∈[0, 1] be such that d>2+2γ. Then for each

(t, n)∈R×Z
d the following estimate holds true:

(3.3)
∫ ∞

1
tγ
∣∣(eitΔ)(n)

∣∣ dt�Cγ
d ˜̌γ

d (n),
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where the constant Cγ
d is defined by (B.2),

(3.4) ˜̌γ
d (n)=

d∏
j=1

ˇ
γ
d (nj)

and ˇ
γ
d is defined in (B.3).

Proof. Using (1.26) and (B.1), we obtain for all n∈Zd:∫ ∞

1
tγ |(eitΔ)(n)| dt=

∫ ∞

1

d∏
j=1

t
γ
d |Jnj (t)| dt�

d∏
j=1

(∫ ∞

1
tγ |Jnj (t)|d dt

)1/d
�Cγ

d ˜̌γ
d (n),(3.5)

which yields (3.3). �

The above lemma yield estimates on the summation kernel of R02(λ).

Proposition 3.2. Let d�3. The following estimates for the summation kernel

of R02(λ) hold true:

(a) For all m∈Zd and λ∈C\R:

(3.6) |R02(m,λ)|�C0
d ˜̌0

d(m),

where ˜̌0
d is defined in (3.4).

(b) Suppose γ∈[0, 1] and d>2+2γ. Then for all m∈Zd and λ, μ∈C\R:

(3.7) |R02(m,λ)−R02(m,μ)|�Cγ
d ˜̌γ

d (m)|λ−μ|γ .

Proof. Consider first the case λ, μ∈C−. From (3.1) and the estimate (3.3)
(with γ=0), we find that

(3.8) |R02(m,λ)|�
∫ ∞

1
|(eitΔ)(m)|dt�C0

d ˜̌0
d(m).

where the sequence ˜̌0
p=(˜̌0

p(n))n∈Zd is given by (3.4).
The Hölder estimate (3.7), follows from the identity (3.1) and the estimates

|e−itλ−e−itμ|�tγ |λ−μ|γ and (3.3):

|R02(m,λ)−R02(m,μ)|� |λ−μ|γ
∫ ∞

1
tγ |(eitΔ)(m)|dt�Cγ

d ˜̌γ
d (m)|λ−μ|γ .

For λ, μ∈C+, the two estimates follow from what has already been proven
together with the identity R02(m, z)=R02(−m, z). �
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Proof of Theorem 1.3. Consider the case λ∈C− and let u, v∈�q(Zd) with d�3.
Define Y02 by

Y02(z)=uR02(z) v, ∀z ∈C\[−d, d].
The estimate (3.6) yields an estimate of the Hilbert-Schmidt norm of Y02(z):

‖Y02(z)‖2
B2

=
∑

n,n′∈Zd

|un|2 |R02(n′−n, z)|2|vn′ |2

� (C0
d)2

∑
n,n′∈Zd

|un|2 ˜̌0
d(n′−n)2|vn′ |2

and applying the Young inequality from Theorem C.2 at 2
q + 1

r =1, we obtain

(3.9)

‖Y02(z)‖2
B2

� (C0
d)2

∑
n,n′

˜̌0
d(n′−n)2|un|2|vn′ |2

� (C0
d)2‖u‖2

q‖v‖2
q‖ ˜̌0

d‖2
r.

Note that

(3.10) ‖ ˜̌0
d‖r =

( ∑
n∈Zd

˜̌0
d(n)r

)1
r

=
( ∑

n∈Zd

d∏
j=1

ˇ
0
d(nj)r

)1
r

= ‖ˇ0
d‖dr .

In order to ensure finiteness of ‖ ˜̌0
d‖r we must therefore, according to Lemma B.2,

require that r>r0
d, where r0

d is defined in (B.13). Note q=2r/(r−1) and that this ex-
pression is decreasing in r�2. Since r0

d�2, we may therefore express the constraint
r>r0

d by the constraint q<2r0
d/(r0

d−1) on q instead. Inserting the expression for r0
d

from (B.13), we arrive at the constraint in (1.13). Furthermore, employing the first
estimate in (3.2), and the estimate from Lemma B.2 with γ=0, we arrive at (1.15).
(Recall that ‖T‖B2 �‖T‖.)

The estimate (3.7) and the Young inequality from Theorem C.2 with 1
p + 1

r =1,
implies

‖Y02(z)−Y02(z′)‖2
B2

=
∑

n,n′∈Zd

|un|2 |R02(n′−n, z)−R02(n′−n, z′)|2|vn′ |2

� (Cγ
d )2|λ−μ|2γ

∑
n,n′∈Zd

|un|2 ˜̌γ
d (n′−n)2|vn′ |2

� (Cγ
d )2|λ−μ|2γ‖u‖2

q‖v‖2
q‖ ˜̌γ

d‖2
r

� (Cγ
d )2|λ−μ|2γ‖u‖2

q‖v‖2
qΓ2(q/2, d, γ),

since – due to Lemma B.2 – we have:

(3.11) ‖ ˜̌γ
d‖r =

( ∑
n∈Zd

˜̌γ
d (n)r

)1
r

=
( ∑

n∈Zd

d∏
j=1

ˇ
γ
d (nj)r

)1
r

= ‖ˇγ
d‖dr �Γ(q, d, γ).

This, together with the second estimate in (3.2), completes the proof. �
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In the proof Theorem 1.3, we actually estimated the R02(z) contribution in
Hilbert-Schmidt norm, only the R01(z) contribution was estimated directly in op-
erator norm, cf. (3.2).

We end this section with resolvent estimates in Hilbert-Schmidt norm, where
we must investigate the R01 contribution more closely. Let B2 denote the Hilbert-
Schmidt class. We write ‖K‖B2 for the Hilbert-Schmidt norm of an operator K.

Theorem 3.3. Let d�3. Let u, v∈�q(Zd) with

(3.12) 2� q <

{
12
5 if d=3,
6d

2d+1 if d�4.

Then the operator-valued function Y0 : C\[−d, d]→B2, defined by

(3.13) Y0(z) :=u(Δ−z)−1v

is analytic and Hölder continuous up to the boundary. More precisely, it satisfies:

(a) For all z∈C\[−d, d], we have

(3.14) ‖Y0(z)‖B2 �
(
Dq,d+C0

dΓ(q, d, 0)
)
‖u‖q‖v‖q,

where D2,d=1 and Dq,d=(q/2)
d(q−2)

q

(b) Let γ∈[0, 1] satisfy the constraint γ<γd,p. For all z, z′∈C\[−d, d] with

Im(z), Im(z′)�0, we have

(3.15) ‖Y0(z)−Y0(z′)‖B2 � |z−z′|γ
(
Dq,d+Cγ

dΓ(q, d, γ)
)
‖u‖q‖v‖q.

Proof. We only need to estimate the R01 contribution, since the R02 contribu-
tion was estimated in Hilbert-Schmidt norm in the proof of Theorem 1.3.

We abbreviate Y01(z)=uR01(z)v and estimate using Lemma A.4

(3.16) ‖Y01(z)‖2
B2

�
∑
n,m

|un|2
(∫ 1

0
|eitΔ(n−m)| dt

)2
|vm|2 �

∑
n,m

|un|2ρn−m|vm|2.

Recall from (1.7) the definition of the function ρ. Let r=∞ if q=2 and r=(1−
2/q)−1= q

q−2 if q>2. By the discrete Young inequality, Theorem C.2, we conclude
the estimate

(3.17) ‖Y01(z)‖B2 � ‖ρ‖r‖‖u‖q‖v‖q.

For q>2, we estimate (using (C.8))

(3.18) ‖ρ‖rr =
∑
n∈Zd

d∏
j=1

(1+|nj |)−r =
(∑
m∈Z

(1+|m|)−r
)d

�
( r

r−1

)d
= qd

2d .
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Similar, we estimate for any γ∈[0, 1] and z, z′ in the same half-plane

(3.19) ‖Y0(z)−Y0(z′)‖B2 � |z−z′|γDq,d‖u‖q‖v‖q.

This completes the proof. �

4. Schrödinger operators

Let V ∈�p(Zd) with p�1 and write q1=|V |1/2. Note that q1∈�q(Zd) with
q=2p�2. Choose q2∈�q(Zd), such that V =q1q2. The specific choice q2=q1 sign(V )
would work, but we shall exploit the freedom to choose q2 differently in the proof of
Theorem 4.8 below. Note that for n∈supp(V )=supp(q1), we have q2(n)=
sign(Vn)q1(n).

We say that f∈L2(Zd) solves the Birman-Schwinger equation at λ if

(4.1) f =−q1R0(λ+i0)q2f.

We write

σBS(H)=
{
λ∈R

∣∣The Birman-Schwinger equation has a non-zero solution at λ
}
.

(4.2)

Note that any solution f∈�2(Zd) of the Birman-Schwinger equation satisfies

(4.3) supp(f)⊆ supp(V ),

which in particular implies that σBS(H) does not depend on the choice of q2.

Remark 4.1. In principle one should also consider the Birman-Schwinger equa-
tion with the limiting resolvent coming from the lower half-plane, defined by
q1R0(λ−i0)q2. This would however give rise to the same Birman-Schwinger spec-
trum, so we do not introduce a separate notation. Indeed, choose q2=sign(V )q1,
and define a unitary transformation by setting (Uf)n=sign(Vn)fn if Vn �=0 and
(Uf)n=fn otherwise. Then

(4.4) q1R0(λ−i0)−1q2 =U∗q2R0(λ−i0)q1U =U∗(q1R0(λ+i0)q2
)∗
U,

which implies that the Birman-Schwinger spectrum does not depend on the choice
of limiting resolvent.

Note that since q1R0(λ+i0)q2 is compact, the solution space to the Birman-
Schwinger equation (for a given λ) is finite dimensional, i.e., all λ∈σBS(H) are of
finite multiplicity.
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Lemma 4.2. For any λ∈R, we have the limit s−limμ→0 μR0(λ+iμ)=0.

Proof. Let g∈�2(Zd) and ε>0. Pick δ>0 such that ‖1[|Δ−λ|<δ]g‖�ε/2. We
may now, for μ∈R with 0<|μ|<εδ/2, estimate ‖μ(Δ−λ+iμ)−1g‖�ε. This com-
pletes the proof. �

Lemma 4.3. We have σpp(H)⊆σBS(H) and the map g→q1g takes nonzero

eigenfunctions Hg=λg into nonzero solutions of (4.1) at λ.

Proof. Suppose Hg=λg, for some non-zero g∈�2(Zd). Put f=q1g and compute

(4.5) q1R0(λ+iμ)q2f = q1R0(λ+iμ)(λ−Δ)g=−q1g−iμq1R0(λ+iμ)g.

Taking the limit μ→0, using Lemma 4.2, we arrive at f=q1g being a solution of
the Birman-Schwinger equation (4.1). It remains to argue that f �=0. If f=0, then
V g=0 and consequently, (Δ−λ)g=(H−λ)g=0. This is absurd, since Δ does not
have eigenvalues. �

The Birman-Schwinger equation with limiting resolvent, has been used pre-
viously by Pushnitski [22] to study embedded eigenvalues, in view of the above
lemma.

We are now in a position to give:

Proof of Theorem 1.5 (a). We show that eigenvalues of H have finite multiplic-
ity. Let λ∈σpp(H) and denote by Hλ the associated eigenspace. By Lemma 4.3, the
linear map Hλ
g→q1g∈L2(Zd) is injective and takes values in the vector space of
solutions of (4.1) at λ. Since this vector space is finite dimensional (q1R0(λ+i0)q2
being compact), we may conclude that the eigenspace Hλ is finite dimensional. �

In what remains of this section, we shall use the abbreviations

(4.6) Y0(z)= q1(Δ−z)−1q2, and Ỹ0(z)= q2(Δ−z)−1q2

for z∈C with Im z �=0. For λ∈R, we write Y0(λ±i0) and Ỹ0(λ±i0) for the limiting
objects. By a limiting argument, we observe that the identity Ỹ0(z)=sign(V )Y0(z)
valid for z∈C with Im z �=0 extends to

(4.7) Ỹ0(λ±i0)= sign(V )Y0(λ±i0)

for any λ∈R.
We shall single out energies λ∈R, where the following Lipschitz estimate holds

true:

(4.8) ∃L> 0∀0<μ� 1 :
∥∥Y0(λ±iμ)−Y0(λ±i0)

∥∥�Lμ.
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We write

(4.9) Lip(H)=
{
λ∈R | (4.8) is satisfied at λ

}
.

Clearly R\σ(Δ)=R\[−d, d]⊆Lip(H), and we may write Lip(H) as in increasing
union of subsets

(4.10) Lip(H;L)=
{
λ∈Lip(H) | (4.8) is satisfied at λ with constant L

}
.

The sets Lip(H;L) are closed, since λ→Y0(λ±iμ) are continuous for μ�0. It is
obscured by the choice of notation, that the sets Lip(H) and Lip(H;L) may depend
on the choice of q2 made in the factorization of V .

Lemma 4.4. Let L>0 and suppose λ∈σBS(H)∩Lip(H;L) and f a solution

of (4.1). Then q2f∈D((Δ−λ)−1) and ‖(Δ−λ)−1q2f‖2�L‖f‖2. Furthermore,

(4.11) (Δ−λ)−1q2f = lim
μ→0

R0(λ+iμ)−1q2f.

Proof. Let f∈�2(Zd) be a solution of (4.1) at energy λ∈R. Denote by Eq2f

the spectral measure for Δ associated with the state q2f . Then q2f∈D((Δ−λ)−1)
if and only if

∫
R
(x−λ)−2dEq2f (x)<∞. Compute for μ>0∫

R

((x−λ)2+μ2)−1dEq2f (x) = (q2f,R0(λ−iμ)R0(λ+iμ)q2f)

= 1
2μ

(
f, (Ỹ0(λ−iμ)−Ỹ0(λ+iμ))f

)
= 1

2μ
(
f, (Ỹ0(λ−iμ)−Ỹ0(λ−i0))f

)
+ 1

2μ
(
f, (Ỹ0(λ+i0)−Ỹ0(λ+iμ))f

)
+ 1

2μ Im
{(

f, Ỹ0(λ+i0)f
)}

.(4.12)

Note that by the Birman-Schwinger equation (4.1), as well as Eqs. (4.3) and (4.7):

(4.13)
Im

{(
f, Ỹ0(λ+i0)f

)}
=Im

{(
sign(V )f, Y0(λ+i0)f

)}
=− Im

{(
sign(V )f, f

)}
=0.

The result now follows from (4.8), (4.12), and the monotone convergence theorem.
As for the claimed identity, we need to argue that limμ→0 R0(λ+iμ)−1q2f=

(Δ−λ)−1q2f . But this follows from the computation

(4.14) R0(λ+iμ)q2f−(Δ−λ)−1q2f = iμR0(λ+iμ)(Δ−λ)−1q2f,

together with Lemma 4.2. �
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Lemma 4.5. We have σBS(H)∩Lip(H)⊆σpp(H). Furthermore, for λ∈
σBS(H)∩Lip(H), the linear map f→(Δ−λ)−1q2f is well-defined and takes nonzero

solutions of (4.1) at λ into nonzero eigenfunctions of H with eigenvalue λ.

Proof. Suppose f �=0 solves the Birman-Schwinger equation (4.1). Then, by
Lemma 4.4, q2f∈D((Δ−λ)−1) and we may put g=(Δ−λ)−1q2f . By the spectral
theorem, we have

(4.15) (H−λ)g= q2f+V g=−q2Y0(λ+i0)f+V g=0,

where we used the identity

(4.16) Y0(λ+i0)f = lim
μ→0+

q1R0(λ+iμ)−1q2f = q1(Δ−λ)−1q2f = q1g

in the last step. It remains to argue that g �=0. But f=−q1g �=0 by the above
identity and hence, g �=0. �

Proposition 4.6. σBS(H) is a compact subset of σ(H) with zero Lebesgue

measure.

Proof. Since R\σ(H)⊆Lip(H), we conclude from Lemma 4.5 that σBS(H)⊆
σ(H). That σBS(H) is a closed set (and hence compact) follows from the observation
that λ→Y0(λ+i0) is continuous with values in compact operators.

To see that the measure of σBS(H) is zero, we follow an argument from the
proof of [12, Lemma 4.20]. Let λ∈σBS(H). Since Y0(λ+i0) is compact, there
exists a circle Γλ enclosing −1 in the complex plane such that Γλ⊆ρ(Y0(λ+i0))
– the resolvent set of Y0(z) – and 0 is in the unbounded connected component
of C\Γλ. By continuity of C+
z→Y0(z), we deduce the existence of rλ>0, such
that Γλ⊆ρ(Y0(z)) for z∈Dλ, where Dλ :={z∈C+ | |z−λ|<rλ}. Here and below we
sometimes abuse notation and write, e.g., Y0(z) for Y0(z+i0) when z∈R.

Define for z∈Dλ the finite rank Riesz projection

(4.17) Pz = 1
2πi

∫
Γλ

(w−Y0(z))−1 dw

and observe that rank(Pz)=rank(Pλ+i0)=:n0 is constant throughout Dλ. By pos-
sibly choosing rλ smaller, we may assume that ‖Pz−Pλ+i0‖�1/2 for z∈Dλ.

Abbreviate Hz=Pz�
2(Zd) for z∈Dλ. Let Π: Cn0→Hλ+i0 be a linear isomor-

phism. Define Θz=Pz |Hλ+i0 : Hλ+i0→Hz, which is a linear isomorphism with left
inverse

(4.18) Θ−1
z =

(
1+Pλ+i0(Pz−Pλ+i0)

)−1
Pλ+i0 : Hz −→Hλ+i0.
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We define a family of linear operators on C
n0 by setting

(4.19) X0(z)=Π−1Θ−1
z (I+Y0(z))ΘzΠ

for z∈Dλ. Note that z→X0(z) is holomorphic in Dλ and continuous in the closure.
Furthermore, for z∈Dλ, we have −1∈σ(Y0(z)) if and only if 0∈σ(X0(z)).

Denote by ψ : D→Dλ a conformal equivalence between the unit disc D and
Dλ. Note that ψ extends by continuity to a homeomorphism ψ : D→Dλ. (See
[23, Cor. 17.18] applied to ψ−1.) Then ϕ(ξ):=det(X0(ψ(ξ))) defines a continuous
function on D, holomorphic in D.

We now invoke [23, Thm. 13.20] to conclude that ϕ at most vanishes on a
subset M of T=∂D of zero Lebesgue measure, provided ϕ is not identically zero in
D. To see that this is the case pick ξ∈D and assume towards a contradiction that
ϕ(ξ)=0. Let z=ψ(ξ)∈Dλ, and observe that −1 must be an eigenvalue of Y0(z).
Denote by f an eigenfunction and compute

(4.20)

0 =− Im
{(

sign(V )f, f
)
}=Im

{(
sign(V )f, Y0(z)f

)}
=Im

{(
q1 sign(V )f, (Δ−z)−1q2f

)}
=Im

{(
q2f, (Δ−z)−1q2f

)}
=Im(z)

(
q2f, ((Δ−Re z)2+Im(z)2)−1q2f

)
� ‖q2f‖2

2
Im(z) ,

which is a contradiction unless f=0.
Since ψ(M)=σBS(H)∩[λ−rλ, λ+rλ], and ψ’s extension to the boundary maps

sets of measure zero into sets of measure zero, we conclude the proof by a com-
pactness argument. (Note that w±=ψ−1(λ±rλ) splits T into two open arcs and
ψ’s extension across these arcs are in fact holomorphic by Schwarz’ reflection prin-
ciple.) �

Lemma 4.7. For any L>0, the set σBS(H)∩Lip(H;L) is finite.

Proof. Suppose towards a contradiction that there exists a countable sequence
of distinct real numbers {λn}⊆σBS(H)∩Lip(H;L). Let {fn}∞n=1 be an associated
sequence of normalized solutions of (4.1). By Proposition 4.6 and closedness of
Lip(H;L), we may assume that λn→λ∈σBS(H)∩Lip(H;L).

By Banach-Alaoglu’s theorem, we may extract a subsequence {fnk
}k∈N, such

that fnk
→f weakly. Since Y0(λ)=q1R0(λ+i0)q2 is compact, Y0(λ)fnk

→Y0(λ)f
in norm. Since λ→Y0(λ) is continuous we may finally conclude that fnk

=
−Y0(λnk

)fnk
→−Y0(λ)f in norm. Hence f is a normalized solution of (4.1)

at λ.
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We may now use (4.5) to construct a sequence of eigenfunction gk=(Δ−
λnk

)−1q2fnk
for H, all satisfying ‖gk‖2�L due to Lemma 4.4. Compute

(4.21) (q1f, gk)= (f, q1R0(λnk
+i0)q2fnk

)=−(f, fnk
).

We have arrived at a contradiction, since gk→0 weakly – being an orthogonal uni-
formly bounded sequence – and fnk

→f in norm. �

Recall the notation B2 for the class of Hilbert-Schmidt operators on �2(Zd),
and the exponent γd,q from (1.12).

Theorem 4.8. Put Y (z):=q2(H−z)−1q2 for z∈C\σ(H). Suppose d�3 and

V ∈�p(Zd) with 2p satisfying (1.13). Then:
(a) For any compact set J⊆R\σBS(H), we have

(4.22) sup
λ∈J,μ�=0

‖Y (λ+iμ)‖B2 <∞.

(b) Let O⊆C be an open set with σBS(H)⊆O, and let γ>γd,2p. Then there

exists C>0, such that for all z, z′∈C\([−d, d]∪O) with Im z Im z′�0, we have

(4.23) ‖Y (z)−Y (z′)‖B2 �C|z−z′|γ .

(c) We have σsc(H)⊆σBS(H).
(d) Let Pac denote the orthogonal projection onto the absolutely continuous

subspace Hac pertaining to H. Then the wave operators

(4.24) W± := s− lim
t→±∞

eitHe−itΔ and W̃± := s− lim
t→±∞

eitΔe−itHPac

exist, (W±)∗=W̃±, W±Δ=HW± and W±�2(Zd)=Hac.

Proof. For the purpose of this proof we choose q2, such that q2(n) �=0 for all
n∈Zd. Abbreviate Ω=R\σBS(H) and note that Ω is an open set. Recall the
notation Y0(z) and Ỹ0(z) from (4.6).

To establish (a), we first compute for z with Im z �=0:

(4.25) Y (z)Y0(z)= q2(H−z)−1q2q1(H0−z)−1q2 = q2(H0−z)−1q2−q2(H−z)−1q2.

Hence

(4.26) Y (z)
(
I+Y0(z)

)
= q2(H0−z)−1q2.

Let λ∈J . Then, by continuity, there exists rλ>0 and Cλ such that I+Y0(z) is
bounded invertible for |z−λ|�rλ with Im z �=0 and ‖(I+Y0(z))−1‖�Cλ. Here we
used Remark 4.1, which ensures invertibility also for z with Im z<0. By Theorem 3.3
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and compactness of J , there exists r>0, such that the claimed bound holds for
0<|μ|�r, which clearly suffices. Here we used that if S is Hilbert-Schmidt and T

is bounded, then ST is Hilbert-Schmidt and ‖ST‖B2 �‖S‖B2‖T‖.
The claim (b) follows in a similar fashion from Theorem 3.3 and the computa-

tion

(4.27)

Y (z)−Y (z′) = Ỹ0(z)(I+Y0(z))−1(Y0(z′)−Y0(z)
)
(I+Y0(z′))−1

+
(
Ỹ0(z)−Ỹ0(z′)

)(
I+Y0(z′)

)−1
.

We now turn to (c). It follows from (4.22) and [25, Thm. XIII.20] that for any
bounded open interval (a, b) with J=[a, b]⊆Ω, we have E(a,b)(H)�2(Zd)⊆Hac. Here
we used that q2 was chosen to be nowhere vanishing.

Let Ωn be a sequence of finite unions of disjoint intervals of the form (a, b)
considered above, and chosen such that Ωn⊆Ωn+1 and ∪∞

n=1Ωn=Ω. Let f∈�2(Zd).
It follows that EΩ(H)f=limn→∞ EΩnf∈Hac, and completes the proof of (c).

Finally we verify (d). First note that due to (c) and Proposition 4.6, we may
conclude that EσBS(H)(H)�2(Zd)=Hsc⊕Hpp (recall (1.18)). Consequently, EΩ(H)=
Pac, the orthogonal projection onto the absolutely continuous subspace.

Next we observe that by [25, Thm. XIII.31], the reduced wave operators
(4.28)

W±
n := s− lim

t→±∞
eitHe−itΔEΩn(Δ) and W̃±

n := s− lim
t→±∞

eitΔe−itHEΩn(H)

exist for each n, (W±
n )∗=W̃±

n , W±
n Δ=HW±

n and W±
n �2(Zd)=EΩn(H)�2(Zd).

We may now conclude that the wave operators exist, and we have the relations
s−limn→∞ W±

n =W± and s−limn→∞ W̃±
n =W̃±, where we used that EΩ(H)=Pac.

From this the remaining claims follow. �

We end this section with:

Proof of Theorem 1.5 (b), (c) and (d). We begin with (b). That the closure
of the set σsc(H)∪σpp(H) has zero Lebesgue measure follows from Lemma 4.3,
Theorem 4.8 (c), and Proposition 4.6. That σpp(H)=σBS(H)=∅ if ‖V ‖p<(1+
C0

dΓ(r, d, 0))−1 is a consequence of the observation that σBS(H)=∅, which follows
directly from (1.15). Here we used that σBS(H) does not depend on q2, so that we
may choose q2=sign(V )q1 for which ‖q1‖q‖q2‖q=‖V ‖p.

The asymptotic completeness statement in (c) is a part of Theorem 4.8 (d).
The claim in (d) that σpp(H) is finite under the assumed conditions, follows

by combining Lemma 4.3 with Lemma 4.7, keeping in mind Remark 1.4 (2). The
lemma implies that σBS(H) is a finite set. The absence of singular continuous
spectrum now follows from Theorem 4.8 (c). �
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A. Pointwise estimates of Bessel functions

Recall the following properties of the Bessel function (1.27) valid for all (t, n)∈
R×Z:

2n
t
Jn(t)=Jn+1(t)+Jn−1(t), J−n(t)= (−1)nJn(t) and Jn(−t)= (−1)nJn(t).

(A.1)

The following estimate on J0 is due to Szegő [30]:

(A.2) |J0(t)|�
√

2
π|t| .

We shall make use of two optimal universal estimates on Bessel functions due
to Landau.

Lemma A.1. ([18]) We have the following pointwise bounds for all real n, t:

(A.3) |Jn(t)|�BLan|n|−
1
3 ,

and

(A.4) |Jn(t)|�CLan|t|−
1
3 ,

where BLan<7/10 and CLan<4/5.

One can find Landau’s optimal constants BLan and CLan with several decimals
in [18]. Secondly, we exploit another universal estimate due to Krasikov.

Lemma A.2. ([17]) We have the following pointwise bound for (n, t)∈R×R

with n�1/2 and t�0:

(A.5) |Jn(t)|�
√

2
π

1
|t2−|n2− 1

4 ||
1
4
.

Proposition A.3. For any integer n∈Z and t∈R with |t|�1:

(A.6) |Jn(t)|� 1
max{|t|, |n|} 1

4 (|n| 13 +||t|−|n||) 1
4
.

(The estimate remains valid for non-integer n with n�1.)
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Proof. By (A.1), it suffices to show the estimate for t�1, n�1. Note that for
n=0, the estimate (A.2) implies (A.6).

We estimate first supposing |t−n|�n1/3 using (A.3):

(A.7) |Jn(t)|�BLan
1
n

1
3

�BLan
(2n 1

3 ) 1
4

n
1
3 (n 1

3 +|t−n|) 1
4

=BLan2 1
4

1
n

1
4 (n 1

3 +|t−n|) 1
4
.

If n�t�n+n1/3 observe that t�n+n1/3=n(1+n−2/3)�2n. In conclusion, and
since 21/2BLan<1, we arrive at

(A.8) ∀t, n� 1 with |t−n|�n
1
3 : |Jn(t)|� 1

max{t, n} 1
4 (n 1

3 +|t−n|) 1
4
.

As for the regime |t−n|�n1/3 observe first that

(A.9) 1∣∣t2−(n2− 1
4 )
∣∣ 1
4

� 1

max{t,
√
n2− 1

4}
1
4
∣∣t−√

n2− 1
4
∣∣ 1
4
.

Secondly, we shall frequently exploit the estimate

(A.10) ∀n� 1 :
√
n2− 1

4 =n

√
1− 1

4n2 �n
(
1− 7

52n2

)
,

which is a consequence of x→
√

1−x being concave and the observation that√
1−1/4>1−7/52.

Consider now the regime n�1 and t�n+n1/3. Observe that

(A.11) t−→ n
1
3 +t−n

t−
√
n2− 1

4

is decreasing (towards 1), since n−n1/3−
√
n2−1/4�7/(52n)−n1/3<0 for n�1,

and hence

(A.12) ∀n� 1, t�n+n
1
3 : n

1
3 +t−n

t−
√

n2− 1
4

� 2n 1
3

n+n
1
3 −

√
n2− 1

4

� 2,

where we used that n+n
1
3 −

√
n2− 1

4>n1/3 for n�1 in the last step.
Thirdly, for 1�t�n−n1/3 (hence n�3), we have similarly that

(A.13) t−→ n
1
3 +n−t√
n2− 1

4−t
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is increasing and therefore

(A.14) ∀n� 3, 1 � t�n−n
1
3 : n

1
3 +n−t√
n2− 1

4−t
� 2n 1

3√
n2− 1

4−n+n
1
3

� 21
10 ,

where used that
√

n2−1/4−n+n1/3�n1/3−7/(52n) and 2/(1−7/(52n4/3))�21/10
for n�3.

To sum up, cf. (A.9), (A.12), and (A.14), for n�1 and t�1 with |t−n|�n1/3,
we have:

(A.15) 1
|t2−(n2− 1

4 )| 14
�
(21

10

)1
4 1

max{t,
√
n2− 1

4}
1
4 (n 1

3 +|t−n|) 1
4

.

In the case 1�t�n−n1/3 (and n�3), we observe that
√
n2− 1

4 �n(1−7/(52n2))�
n·62/63. Hence, by (A.5) and (A.15)

∀t, n� 1 with |t−n|�n
1
3 : |Jn(t)|�

√
2
π

(31
15

)1
4 1
max{t, n} 1

4 (n 1
3 +|t−n|) 1

4
.

(A.16)

Recalling (A.8), the desired estimate (A.6) now follows, since the prefactor
√

2/π ·
(31/15)1/4 above is less than 1. �

Lemma A.4. For n∈Z and t∈[−1, 1], we have

(A.17) |Jn(t)|� 1
(|n|+1) 1

2
.

Proof. We may again assume that 0�t�1 and n�0. For n=0 the estimate is
trivial, since |Jn(t)|�1 for all t∈R and integer n.

For n=1, 2, we use (A.3) to estimate

(A.18) |Jn(t)|�BLann
− 1

3 �BLan
(n+1) 1

2

n
1
3

(n+1)− 1
2 .

Since BLan
√

2�1 and BLan
√

3/21/3�1, we are done with the cases n=0, 1, 2.
If n�3, observe first that

(A.19) |t−(n2−1/4)|�n2−5/4 � 31
36n

2 � 31
36 ·

32

42 (n+1)2 = 31
64(n+1)2.

We may now estimate for n�3 using (A.5),

(A.20) |Jn(t)|�
√

2
π

1
|t2−|n2− 1

4 ||
1
4

�
√

2
π

(64
31

)1
4 (n+1)− 1

2 .

This completes the proof since the prefactor is smaller than 1. �
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B. Weighted Lp-estimates on Bessel functions

We have the following weighted �p(Zd) estimate on Bessel functions. This
improves on an estimate of Stempak [29, Eq. (3)], and in particular matches the
asymptotic presented in [29, Eq. (6)].

Lemma B.1. For all γ∈[0, 1], p>2+2γ and n∈Z the following estimate hold

true:

(B.1)
∫ ∞

1
tγ |Jn(t)|pdt�Cγ

pˇ
γ
p (n)p,

where

(B.2) Cγ
p =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2

p−2−2γ + 8
4−p , 2+2γ<p<4

2
1−γ , p=4
10
p−4 , p>4,

ˇ
γ
p (0)=1 and ˇ

γ
p (n) for n �=0 is given by

(B.3) ˇ
γ
p (n)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|n|− 1

2+ 1+γ
p , 1<p<4

|n|− 1−γ
4 (1+log |n|) 1

4 , p=4

|n|− 1
3+ 1

3p+ γ
p , p>4.

Proof. Using Proposition A.3, we have

(B.4)

∫ ∞

1
tγ |Jn(t)|p dt�n− p

4

∫ n

1

tγ

(n 1
3 +n−t) p

4
dt+

∫ ∞

n

tγ−
p
4

(n 1
3 +t−n) p

4
dt

=n1+γ− p
2

(∫ 1

n−1

sγ

(δ+1−s) p
4
ds+

∫ ∞

1

sγ−
p
4

(δ+s−1) p
4
ds
)

�n1+γ− p
2

(∫ 1

0

1
(δ+1−s) p

4
ds+

∫ ∞

1

sγ−
p
4

(δ+s−1) p
4
ds
)
,

where δ=n−2/3. Abbreviate the two integrals as

(B.5) Iγp =
∫ 1

0

1
(δ+1−s) p

4
ds and Jγ

p =
∫ ∞

1

sγ−
p
4

(δ+s−1) p
4
ds.

We now proceed to estimate these two integrals in three different case.
Case I: 2+2γ<p<4, where γ−p/4<0. Estimate first

(B.6) Jγ
p �

∫ 2

1

1
(s−1) p

4
ds+

∫ ∞

2

1
(s−1) p

2−γ
ds= 4

4−p
+ 2
p−2−2γ .
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As for Iγp we estimate

(B.7) Iγp �
∫ 1

0

1
(1−s) p

4
ds= 4

4−p
.

Case II: p=4 and 0�γ<1.
Here we estimate

(B.8) Jγ
p �

∫ 2

1

1
δ+s−1 ds+

∫ ∞

2

1
(s−1)2−γ

ds� ln(2)−ln(δ)+ 1
1−γ

and

(B.9) Iγp =
∫ 1

0

1
δ+1−s

ds=− ln(δ)+ln(1+δ).

The result for p=4 follows since ln(1+δ)�ln(2) and −2 ln(δ)+2 ln(2)+(1−γ)−1�
2(1−γ)−1(1+ln(n)). (Recall that δ=n−2/3.)

Case III: p>4. We again estimate, using that p/4−γ>0,

(B.10) Jγ
p �

∫ 2

1

1
(δ+1−s) p

4
ds+

∫ ∞

2

1
(s−1) p

2−γ
ds� 4

p−4δ
1− p

4 + 2
p−2−2γ

and as for Iγp , we have

(B.11) Iγp =
∫ 1

0

1
(δ+1−s) p

4
ds� 4

p−4δ
1− p

4 .

Inserting δ=n−2/3 and observing that δ1−p/4=np/6−2/3, we conclude the remaining
estimate.

Finally we must check the bounds with n=0. Here we use (A.2) and find that

(B.12)
∫ ∞

1
tγ |J0(t)|p ds�

√
2p
πp

∫ ∞

1
t−

p
2 +γ ds� 2

p−2−2γ �Cγ
p .

This completes the proof. �

The following lemma will be used in conjunction with the weighted Lp-estimate
from Lemma B.1.

Lemma B.2. Let γ∈[0, 1] and p>2+2γ. Define

(B.13) rγp =

⎧⎨⎩
2p

p−2−2γ , 2+2γ<p�4
3p

p−1−3γ , p>4
.
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If rγp<r�∞, then the sequence {ˇγ
p (n)}n∈Z is an element of �r(Z) and if r �=∞ we

have

(B.14) ‖ˇγ
p‖r �

⎧⎪⎪⎨⎪⎪⎩
(
3+ 2

r

r
γ
p
−1

)1
r

, p �=4,(
3+2

( 1+ r
4

r

r
γ
4
−1

)1+ r
4
)1
r

, p=4.
.

We furthermore have ‖ˇγ
p‖∞=1 if p �=4 and ‖ˇγ

4 ‖∞�(1−γ)−1.

Proof. Note first that for any p>2+2γ and r>0, we have

(B.15) ‖ˇγ
p‖rr =3+2

∞∑
n=2

ˇ
γ
p (n)r.

For p �=4, the lemma follows easily from the estimate and computation

(B.16)
∞∑

n=2
ˇ

γ
p (n)r �

∫ ∞

1
ˇ

γ
p (s)r ds= 1

r
rγp

−1 .

For p=4, we use the estimate 1+log(x)� eσ−1

σ xσ�xσ/σ valid for x�1 and
0<σ�1, and obtain

(B.17)
∞∑

n=2
ˇ

γ
4 (n)r �σ− r

4

∫ ∞

1
s
− r

r
γ
4

+σr
4 ds=σ− r

4 · 1
r
rγ4

− σr
4 −1 ,

provided σ<4(r/rγ4 −1)/r�1. The right-hand side is minimized by choosing

(B.18) σ=
r
rγ4

−1
1+ r

4
.

This choice gives

(B.19)
∞∑

n=2
ˇ

γ
4 (n)r �

( 1+ r
4

r
rγ4

−1

)1+ r
4

and completes the proof. �
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C. Various discrete estimates
For the readers convenience we recall first two well-known estimates, the first

of which can be found in [24, Theorem IX.17] and the proof of the second is just a
repetition of the proof in the more usual continuous case [19, Theorem 4.2].

Theorem C.1. (Discrete Riesz-Thorin) Let 1�p0, p1, q0, q1�∞ and suppose

that T is a linear operator from �p0(Zd)∩�p1(Zd) to �q0(Zd)∩�q1(Zd), which satisfies

(C.1) ‖Tf‖q0 �M0‖f‖p0 and ‖Tf‖q1 �M1‖f‖p1 .

Then for each f∈�p0(Zd)∩�p1(Zd) and each t∈(0, 1)

(C.2) Tf ∈ �qt(Zd) and ‖Tf‖qt �Mt‖f‖pt ,

where

(C.3) Mt =M1−t
0 M t

1,
1
pt

= 1−t

p0
+ t

p1
, and

1
qt

= 1−t

q0
+ t

q1
.

Theorem C.2. (Discrete Young’s inequality) Let f∈�p(Zd), g∈�s(Zd) and

h∈�r(Zd), where 1
p + 1

s + 1
r =2 for some p, s, r�1. Then

(C.4)
∣∣∣ ∑
n,m∈Zd

fngn−mhm

∣∣∣� ‖f‖p‖g‖s‖h‖r.

We end with the following estimate.

Lemma C.3. Let α>1, 0<β<1 and t�1. Then∑
n,m∈Z

(1+|n|)−α(1+|m|)−α(1+||n−m|−t|)−β

�
( 2α2

(α−1)2 + 4α
(α−1)(pα−1)

1
p

( 16
1−β

)1
r
)
t−β ,(C.5)

where p=(1+β)/(1−β) and r=(1+β)/(2β).

Proof. Employing the estimate

(C.6) 1[
||n−m|−t|< t

2
] �1[

|n−m|> t
2

] �1[
|n|> t

4
]+1[

|m|> t
4

],

we may simplify:∑
n,m∈Z

(1+|n|)−α(1+|m|)−α(1+||n−m|−t|)−β

�
∑

n,m∈Z

(1+|n|)−α(1+|m|)−α1[
||n−m|−t|� t

2
](1+||n−m|−t|)−β
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+2
∑

n,m∈Z

1[
|n|> t

4
](1+|n|)−α(1+|m|)−α1[

||n−m|−t|< t
2

](1+||n−m|−t|)−β

� 2βt−β
(∑
n∈Z

(1+|n|)−α
)2

+2
∥∥1[

|n|> t
4

](1+|n|)−α
∥∥
p

∥∥(1+|m|)−α
∥∥

1

∥∥1[
||w|−t|< t

2
](1+||w|−t|)−β

∥∥
r
,

(C.7)

where we used the discrete Young inequality (Theorem C.2) in the last step with
p= 1+β

1−β , s=1 and r= 1+β
2β . Note that rβ=(1+β)/2<1.

To complete the proof we observe∑
n∈Z

(1+|n|)−α =1+2
∞∑

n=2
n−α � 1+

∫ ∞

1
x−α dx=1+ 1

α−1 = α

α−1 ,(C.8) ∥∥1[
|n|> t

4
](1+|n|)−α

∥∥p
p

=2
∞∑

n=1
1[

n>
t
4

](1+n)−pα � 2
∫ ∞

0
1[

x>
t
4

](1+x)−pα dx

= 2
pα−1

(
1+ t

4
)1−pα � 2

pα−1
(
1+ t

4
)1−p � 4p

2(pα−1) t
1−p,(C.9)

and finally

(C.10)

∥∥1[
||w|−t|< t

2
](1+||w|−t|)−β

∥∥r
r
=

∑
w∈Z

1[
||w|−t|< t

2
](1+||w|−t|)−rβ

=2
∞∑

w=1
1[

|w−t|< t
2

](1+|w−t|)−rβ .

Let [c] denote the integer part of a real number c>0. Write t=[t]+δ with 0�δ<1
and estimate

∞∑
w=1

1[
|w−t|< t

2
](1+|w−t|)−rβ �

[ 3t2 ]∑
w=[t/2]+1

(1+|w−t|)−rβ

=
[3t/2]−[t]∑

k=[ t2 ]+1−[t]

(1+|k−δ|)−rβ =
0∑

k=[t/2]−[t]+1

(1+|k|)−rβ

+
[3t/2]−[t]∑

k=1
(1+(k−1))−rβ
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� 2
[t/2]∑
k=0

(1+k)−rβ � 2+2
∫ [ t2 ]

0
x−rβ dx� 2+ 2

1−rβ
(t/2)1−rβ

� 6
1−β

t1−rβ .(C.11)

Here we used that for c>0 we have [2c]−[c]�[c]+1 and [3c]−[2c]�[c]+1. Inserting
into (C.10) we find that

(C.12)
∥∥1[

||w|−t|< t
2

](1+||w|−t|)−β
∥∥
r
�
( 12

1−β

)1
r

t
1
r−β .

In conclusion, recalling that 1/p+1/r=1, we have∑
n,m∈Z

(1+|n|)−α(1+|m|)−α(1+||n−m|−t|)−β

�
( 2α2

(α−1)2 + 4α
(α−1)(pα−1)

1
p

( 24
1−β

)1
r
)
t−β . �(C.13)

Acknowledgments. Various parts of this paper were written during Evgeny
Korotyaev’s stay as a VELUX Visiting Professor at the Department of Mathematics,
Aarhus University, Denmark. He is grateful to the institute for the hospitality. In
addition, our study was supported by the RSF grant No 18-11-00032 and the Danish
Council for Independent Research grant No 1323-00360.

References
1. Ando, K., Isozaki, H. and Morioka, H., Spectral Properties of Schrödinger

Operators on Perturbed Lattices, Ann. Henri Poincaré 17 (2016), 2103–
2171. MR3522026

2. Boutet de Monvel, A. and Sahbani, J., On the spectral properties of discrete
Schrödinger operators: (The multi-dimensional case), Rev. Math. Phys. 11
(1999), 1061–1078. MR1725827

3. Damanik, D., Hundertmark, D., Killip, R. and Simon, B., Variational estimates
for discrete Schrödinger operators with potentials of indefinite sign, Comm.
Math. Phys. 238 (2003), 545–562. MR1993385

4. Hayashi, Y., Higuchi, Y., Nomura, Y. and Ogurisu, O., On the number of dis-
crete eigenvalues of a discrete Schrödinger operator with a finitely supported
potential, Lett. Math. Phys. 106 (2016), 1465–1478. MR3555410

5. Hiroshima, F., Sasaki, I., Shirai, T. and Suzuki, A., Note on the spectrum of
discrete Schrödinger operators, J. Math. Ind. 4, 105 (2012). MR3072323

6. Isozaki, H. and Korotyaev, E., Inverse problems, trace formulae for discrete
Schrödinger operators, Ann. Henri Poincaré 13 (2012), 751–788. MR2913620

http://www.ams.org/mathscinet-getitem?mr=3522026
http://www.ams.org/mathscinet-getitem?mr=1725827
http://www.ams.org/mathscinet-getitem?mr=1993385
http://www.ams.org/mathscinet-getitem?mr=3555410
http://www.ams.org/mathscinet-getitem?mr=3072323
http://www.ams.org/mathscinet-getitem?mr=2913620


Weighted estimates for the Laplacian on the cubic lattice 427

7. Isozaki, H. and Morioka, H., A Rellich type theorem for discrete Schrödinger op-
erators, Inverse Probl. Imaging 8 (2014), 475–489. MR3209307

8. Ito, K. and Jensen, A., A complete classification of threshold properties for one-
dimensional discrete Schrödinger operators, Rev. Math. Phys. 27, 1550002
(2015). MR3317555

9. Ito, K. and Jensen, A., Branching form of the resolvent at threshold for ultra-
hyperbolic operators and discrete Laplacians. J. Funct. Anal. 277 (2019), 965–
993. arXiv:1608.03779. MR3959724

10. Kato, T., Wave operators and similarity for some non-selfadjoint operators, Math.
Ann. 162 (1966), 258–279. MR0190801

11. Kato, T., Smooth operators and commutators, Studia Math. 31 (1968), 535–
546. MR0234314

12. Kato, T. and Kuroda, S. T., The abstract theory of scattering, Rocky Mountain J.
Math. 1 (1971), 127–171. MR0385604

13. Killip, R. and Simon, B., Sum rules for Jacobi matrices and their applications to
spectral theory, Ann. of Math. 158 (2003), 253–321. MR1999923

14. Kopylova, E. A., Dispersive estimates for discrete Schrödinger and Klein-Gordon
equations, St. Petersburg Math. J. 21 (2010), 743–760. MR2604564

15. Korotyaev, E. and Saburova, N., Scattering on periodic metric graphs.
arXiv:1507.06441.

16. Korotyaev, E., Møller, J. S. and Rasmussen, M. G., Estimates for the Laplacian
on the cubic metric lattice, in preparation.

17. Krasikov, I., Approximations for the Bessel and Airy functions with an explicit error
term, LMS J. Comput. Math. 17 (2014), 209–225. MR3230865

18. Landau, L. J., Bessel Functions: Monotonicity and Bounds, J. Lond. Math. Soc. 61
(2000), 197–215. MR1745392

19. Lieb, E. and Loss, M., Analysis, Graduate Studies in Math. 14, American Mathe-
matical Society, Providence RI, 1997. MR1415616

20. Mandich, M.-A., Sub-exponential decay of eigenfunctions for some dis-
crete Schrödinger operators. J. Spectr. Theory 9 (2019), 21–77.
arXiv:1608.04864. MR3900779

21. Parra, D. and Richard, S., Spectral and scattering theory for Schrödinger op-
erators on perturbed topological crystals, Rev. Math. Phys. 30, 1850009
(2018). MR3788318

22. Pushnitski, A., The Birman–Schwinger principle on the essential spectrum, J. Funct.
Anal. 261 (2011), 2053–2081. MR2822323

23. Rao, M., Stetkær, H., Fournais, S. and Møller, J. S., Complex analysis: an
invitation, 2nd ed., World Scientific, Singapore, 2015. MR3330180

24. Reed, M. and Simon, B., Methods of modern mathematical physics. II: Fourier anal-
ysis, self-adjointness, Academic Press, New York–London, 1975. MR0493420

25. Reed, M. and Simon, B., Methods of Modern Mathematical Physics. IV: Analysis of
Operators, Academic Press, New York, 1978. MR0493421

26. Rozenblum, G. and Solomyak, M., On the spectral estimates for the Schrödinger
operator on Z

d, d�3, Problems in Mathematical Analysis, No. 41, J. Math.
Sci. (N. Y.) 159 (2009), 241–263. MR2544038

27. Schlag, W., Dispersive estimates for Schrödinger operators: a survey, in Mathemat-

http://www.ams.org/mathscinet-getitem?mr=3209307
http://www.ams.org/mathscinet-getitem?mr=3317555
http://arxiv.org/abs/arXiv:1608.03779
http://www.ams.org/mathscinet-getitem?mr=3959724
http://www.ams.org/mathscinet-getitem?mr=0190801
http://www.ams.org/mathscinet-getitem?mr=0234314
http://www.ams.org/mathscinet-getitem?mr=0385604
http://www.ams.org/mathscinet-getitem?mr=1999923
http://www.ams.org/mathscinet-getitem?mr=2604564
http://arxiv.org/abs/arXiv:1507.06441
http://www.ams.org/mathscinet-getitem?mr=3230865
http://www.ams.org/mathscinet-getitem?mr=1745392
http://www.ams.org/mathscinet-getitem?mr=1415616
http://arxiv.org/abs/arXiv:1608.04864
http://www.ams.org/mathscinet-getitem?mr=3900779
http://www.ams.org/mathscinet-getitem?mr=3788318
http://www.ams.org/mathscinet-getitem?mr=2822323
http://www.ams.org/mathscinet-getitem?mr=3330180
http://www.ams.org/mathscinet-getitem?mr=0493420
http://www.ams.org/mathscinet-getitem?mr=0493421
http://www.ams.org/mathscinet-getitem?mr=2544038


428
Weighted estimates for the Laplacian on the cubic lattice

Evgeny L. Korotyaev and Jacob Schach Møller:

ical aspects of nonlinear dispersive equations, Ann. of Math. Stud. 163, pp.
255–285, Princeton Univ. Press, Princeton, NJ, 2007. MR2333215

28. Shaban, W. and Vainberg, B., Radiation conditions for the difference Schrödinger
operators, J. Appl. Anal. 80 (2001), 525–556. MR1914696

29. Stempak, K., A weighted uniform Lp-estimate of Bessel functions: a note on a paper
of Guo, Proc. Amer. Math. Soc. 128 (2000), 2943–2945. MR1664391

30. Szegő, G., Orthogonal polynomials, Colloqium Publications 23, American Mathe-
matical Society, Providence, RI, 1975. MR0372517

31. Toda, M., Theory of Nonlinear Lattices, 2nd. ed., Springer, Berlin, 1989. MR0971987

Evgeny L. Korotyaev
Department of Mathematics
Saint Petersburg State University
Saint Petersburg
Russia
korotyaev@gmail.com, e.korotyaev@spbu.ru

Jacob Schach Møller
Department of Mathematics
Aarhus University
Aarhus
Denmark
jacob@math.au.dk

Received November 6, 2018

http://www.ams.org/mathscinet-getitem?mr=2333215
http://www.ams.org/mathscinet-getitem?mr=1914696
http://www.ams.org/mathscinet-getitem?mr=1664391
http://www.ams.org/mathscinet-getitem?mr=0372517
http://www.ams.org/mathscinet-getitem?mr=0971987
mailto:korotyaev@gmail.com
mailto:e.korotyaev@spbu.ru
mailto:jacob@math.au.dk

	Weighted estimates for the Laplacian on the cubic lattice
	1 Introduction and main results
	2 Estimates for the free time evolution
	3 Estimates on the free resolvent
	4 Schrödinger operators
	A Pointwise estimates of Bessel functions
	B Weighted Lp-estimates on Bessel functions
	C Various discrete estimates
	References


