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A Cantor set whose polynomial hull
contains no analytic discs

Alexander J. Izzo and Norman Levenberg

Abstract. A generalization of a result of Wermer concerning the existence of polynomial
hulls without analytic discs is presented. As a consequence it is shown that there exists a Cantor
set X in C3 whose polynomial hull is strictly larger than X but contains no analytic discs.

1. Introduction

It was once conjectured that whenever the polynomial hull X̂ of a compact set
X in C

N is strictly larger than X, the complementary set X̂\X must contain an
analytic disc. This conjecture was disproved by Gabriel Stolzenberg [17]. However,
when X is a smooth one-dimensional manifold, the set X̂\X, if nonempty, is a one-
dimensional analytic variety as was also shown by Stolzenberg [18] (strengthening
earlier results of several mathematicians). In contrast, recent work of the first
author, Håkan Samuelsson Kalm, and Erlend Fornæss Wold [10] and the first author
and Lee Stout [11] shows that every smooth manifold of dimension strictly greater
than one smoothly embeds in some CN as a subspace X such that X̂\X is nonempty
but contains no analytic discs.

In response to a talk on the above results given by the first author of the present
paper, Hari Bercovici raised the question of whether a nonsmooth one-dimensional
manifold can have polynomial hull containing no analytic discs. This question was
the motivation for the present paper. The authors would like to thank Bercovici for
his stimulating question.

In the paper [7] of the first author, a construction is given that yields a Cantor
set in C3 such that X̂\X is nonempty but contains no analytic discs, and the
result is used there to answer Bercovici’s question affirmatively by showing that, in
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fact, every uncountable, compact subspace of a Euclidean space can be embedded
in some CN so as to have polynomial hull containing no analytic discs. In the
present paper, a different construction of a Cantor set in C

3 such that X̂\X is
nonempty but contains no analytic discs is presented. The Cantor sets given by the
construction in [7] are different from the ones given by the construction presented
here, and they have different properties. For instance, the Cantor sets X in [7] have
the stronger property that the uniform algebra P (X) has a dense set of invertible
elements. This implies that the polynomial and rational hulls of X coincide. In
contrast, the construction given here does not yield density of invertible elements,
and as shown in the first author’s paper [8], it can be used to obtain rationally
convex examples.

It will be convenient to say that the polynomial hull of a set X⊂C
N is nontrivial

if the set X̂\X is nonempty.
The Cantor sets of the present paper will be obtained by generalizing a result

of John Wermer [21] inspired by an idea of Brian Cole [3]. Specifically, Wermer
produced a compact subset Y of C2 such that, letting π :C2→C be projection onto
the first coordinate, π(Y ) is the unit circle, π(Ŷ ) is the closed unit disc, and Ŷ

contains no analytic discs. We generalize this by replacing the unit circle by an
arbitrary compact set X⊂C

N with nontrivial polynomial hull and replacing the
closed unit disc by X̂.

Theorem 1.1. Let X⊂C
N be a compact set whose polynomial hull is non-

trivial. Then there exists a compact set Y ⊂C
N+1 such that, letting π denote the

restriction to Ŷ of the projection C
N+1→C

N onto the first N coordinates, the fol-

lowing conditions hold:

(i) π(Y )=X

(ii) π(Ŷ \Y )=X̂\X
(iii) Ŷ contains no analytic discs

(iv) each fiber π−1(z) for z∈X̂ is totally disconnected.

By applying this theorem with X taken to be a Cantor set in C
2 with nontrivial

polynomial hull, we will obtain the promised Cantor set. The first example of
a Cantor set with nontrivial polynomial hull was constructed by Walter Rudin
[15] using a modification of an argument of Wermer [20] who produced the first
example of an arc with nontrivial polynomial hull. Later, examples of Cantor
sets whose polynomial hulls even have interior in C

2 were given by Vitushkin [19],
Jöricke [12], [13], and Henkin [5].

Corollary 1.2. There exists a Cantor set in C
3 whose polynomial hull is non-

trivial but contains no analytic discs.
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In an earlier draft of the present paper (see [9]), Theorem 1.1, but with C
2N

in place of CN+1, was proven by generalizing the argument given by Wermer for
the special case when X is the unit circle in the plane given in [21] (and also
presented in [1, pp. 211–218]). The proof of Theorem 1.1 presented below is based
on the suggestions of a referee. The authors thank the referee for suggesting this
approach in which the set Y is obtained from a set E constructed by Tobias Harz,
Nikolay Shcherbina, and Giuseppe Tomassini [4]. The set E is constructed in [4]
by a generalization of Wermer’s construction the technical details of which are
considerably more complicated than those in [9]. It seems likely that a construction
along the lines of the one given in [9] could be used to give a simpler proof of
a statement along the lines of [4, Theorem 1.1] in the case when n is an even
integer.

As a step toward proving Theorem 1.1, we will prove the following general
result which may have further applications.

Theorem 1.3. Let Σ⊂C
N+1 be a set, and let τ :Σ→C

N denote the restriction

of the projection C
N+1→C

N onto the first N coordinates. Suppose that

(i) Σ is closed in C
N+1

(ii) each point of C
N has a neighborhood U such that the set {z∈C:(λ, z)∈

Σ for some λ∈U} is bounded

(iii) τ is surjective

(iv) CN+1\Σ is pseudoconvex.

Then for every compact set X⊂C
N , we have τ−1(X̂)⊂[τ−1(X)]ˆ.

Note that in the context of Theorem 1.3, the set τ−1(X̂) need not be polyno-
mially convex, and thus the equality τ−1(X̂)=[τ−1(X)]ˆ does not in general hold.
For instance if Σ={(z1, z2)∈C2 :|z1|2+|z2|2≥1 and |z2|≤2}, then τ−1({z∈C:|z|≤
1}) contains the unit sphere in C

2 but does not contain its polynomial hull, the
closed unit ball.

Before concluding this introduction, we make explicit the definitions of some
terms already used above. For a compact set X in C

N , the polynomial hull X̂ of X
is defined by

X̂ = {z ∈C
N : |p(z)| ≤max

x∈X
|p(x)| for all polynomials p}.

The set X is said to be polynomially convex if X̂=X. By an analytic disc in C
N ,

we mean an injective holomorphic map σ :{z∈C:|z|<1}→C
N . By the statement

that a subset S of CN contains no analytic discs, we mean that there is no analytic
disc in C

N whose image is contained in S.
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The research in this paper was begun while the first author was a visitor at
Indiana University. He would like to thank the Department of Mathematics for its
hospitality.

2. The proofs

Proof of Theorem 1.3. Let K be the mapping from C
N into the set of non-

empty compact subsets of C whose graph is Σ, i.e., such that

K(λ)= {z ∈C : (λ, z)∈Σ}.

Note that the requirement that K(λ) is nonempty for each λ is fulfilled by condition
(iii). We leave it as an exercise to verify that the combination of conditions (i) and
(ii) is equivalent to the statement that K is upper semicontinuous in the sense
that for every λ0∈CN and every open set V of C containing K(λ0), there exists
a neighborhood U of λ0 such that K(λ)⊂V for every λ∈U . Therefore, condition
(iv) gives, by Słodkowski’s theorem on the equivalence of conditions for a set-valued
function of one complex variable to be an analytic multifunction [16, Theorem 3.2]
(or see [2, Theorem 7.1.10]), that for every plurisubharmonic function φ on C

N+1,
the function Φ on C

N defined by

Φ(λ)=max{φ(λ, z) : z ∈K(λ)}

is subharmonic on each complex line in C
N and hence is plurisubharmonic on C

N .
Now let w0∈τ−1(X̂) be arbitrary, and let p be an arbitrary polynomial on

C
N+1. Since |p| is plurisubharmonic, the conclusion of the preceding paragraph

gives that the function ψ on C
N defined by

ψ(λ)=max{ |p(λ, z)| : z ∈K(λ) }

is plurisubharmonic. Obviously

(1) |p(w0)| ≤ψ
(
τ(w0)

)
.

Since τ(w0) is in X̂, the well-known equality of holomorphic hull and plurisubhar-
monic hull (see for instance [6, Theorem 4.3.4] or [14, Theorem VI.1.18]) gives that

(2) ψ(τ
(
w0)

)
≤max{ψ(λ) :λ∈X}.

Combining (1) and (2), we have

|p(w0)| ≤max{ψ(λ) :λ∈X}.
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But the definition of ψ gives that

max{ψ(λ) :λ∈X}=max{|p(w)| :w∈ τ−1(X)}.

Thus
|p(w0)| ≤max{|p(w)| :w∈ τ−1(X)},

so w0 is in [τ−1(X)]ˆ. We conclude that τ−1(X̂)⊂[τ−1(X)]ˆ. �

Proof of Theorem 1.1. Let E ⊂C
N+1 be the set given by [4, Theorem 1.1] and

let τ :E →C
N denote the restriction of the projection C

N+1→C
N onto the first N

coordinates. The set E has the following properties:
(a) E is closed in C

N+1

(b) each point of C
N has a neighborhood U such that the set {z∈C:(λ, z)∈

E for some λ∈U} is bounded
(c) τ is surjective
(d) τ−1(z) is totally disconnected for each z∈CN

(e) CN+1\E is pseudoconvex
(f) for every R>0, the intersection of E with the closed ball of radius R centered

at the origin in C
N+1 is polynomially convex

(g) E contains no analytic discs.
Properties (a), (e), (f), and (g) are given in [4, Theorem 1.1]. The other properties
are not given in the statement of the theorem; the reader is invited to examine
the proof of [4, Theorem 1.1] to verify that the set constructed there has these
properties.

Let Y =τ−1(X). Then Y is compact by conditions (a) and (b), and (i) of the
theorem holds on account of condition (c). It is easily shown that condition (f) yields
that τ−1(X̂) is polynomially convex. Thus Ŷ ⊂τ−1(X̂)⊂E , so (iii) and (iv) of the
theorem follow from conditions (g) and (d), respectively. In view of conditions (a),
(b), (c), and (e), Theorem 1.3 gives that τ−1(X̂)⊂[τ−1(X)]ˆ=Ŷ , so Ŷ =τ−1(X̂).
Therefore, condition (c) gives that π(Ŷ )=X̂, and this together with the equality
Y =τ−1(X) yields π(Ŷ \Y )=X̂\X, i.e., (ii) of the theorem holds. �

Proof of Corollary 1.2: As mentioned in the introduction, there are several
examples in the literature of Cantor sets in C

2 having nontrivial polynomial hull.
Let X be one of these Cantor sets, and let Y be the set in C

3 given by then applying
Theorem 1.1. Let J be the largest perfect subset of Y . (Recall that a subset of
a space is called perfect if it is closed and has no isolated points. Every space
contains a unique largest perfect subset (which can be empty), namely the closure
of the union of all perfect subsets of the space.) By [7, Lemma 4.2], Ĵ \J⊃Ŷ \Y , so
condition (ii) of Theorem 1.1 gives that Ĵ is nontrivial, and since Ĵ⊂Ŷ , condition
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(iii) gives that Ĵ contains no analytic discs. It follows from conditions (i) and
(iv) of Theorem 1.1 that J is a Cantor set by the well-known characterization of
Cantor sets as the compact, totally disconnected, metrizable spaces without isolated
points. �
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