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Maximizing Riesz means of anisotropic
harmonic oscillators

Simon Larson

Abstract. We consider problems related to the asymptotic minimization of eigenvalues of
anisotropic harmonic oscillators in the plane. In particular we study Riesz means of the eigenvalues
and the trace of the corresponding heat kernels. The eigenvalue minimization problem can be
reformulated as a lattice point problem where one wishes to maximize the number of points
of (N− 1

2 )×(N− 1
2 ) inside triangles with vertices (0, 0), (0, λ

√
β) and (λ/

√
β, 0) with respect to

β>0, for fixed λ≥0. This lattice point formulation of the problem naturally leads to a family of
generalized problems where one instead considers the shifted lattice (N+σ)×(N+τ), for σ, τ>−1.
We show that the nature of these problems are rather different depending on the shift parameters,
and in particular that the problem corresponding to harmonic oscillators, σ=τ=− 1

2 , is a critical
case.

1. Introduction and main result

For β>0, let Lβ denote the self-adjoint operator on L2(R2) acting as

−Δ+βx2+β−1y2,

which we will refer to as the anisotropic harmonic oscillator. For any β>0 the
spectrum of Lβ is positive and purely discrete, consisting of an infinite number of
eigenvalues. Let {λk(β)}k∈N denote the eigenvalues of Lβ numbered in increasing
order and each repeated according to its multiplicity. Here and in what follows we
use the convention that N={1, 2, ...}. It is well known that the eigenvalues have a
one-to-one correspondence with N2, explicitly given by

(1) (k1, k2) �−→ 2(k1−1/2)
√

β+2(k2−1/2)/
√

β =λ(k1,k2)(β).

Key words and phrases: Spectral optimization, harmonic oscillator, lattice point counting,
asymptotics.
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In this paper we consider a number of problems related to the following ques-
tion: Given k∈N for what values of β is the minimum

min{λk(β) :β > 0}

realized? In particular we are interested in how the set of minimizing β behaves as k
tends to infinity. Similar questions concerning minimizing or maximizing functions
of the spectrum of differential operators has in recent years seen large interest, see
for instance [12] and references therein.

1.1. Minimizing eigenvalues and counting lattice points

The problem of minimizing the k-th eigenvalue among the operators Lβ can
be reformulated as finding the β for which the eigenvalue counting function,

(2) N(β, λ) :=#{j ∈N :λj(β)≤λ},

is first to reach k. Hence, if one understands the maximization problem

(3) max{N(β, λ) :β > 0}

for all λ≥0, then one also understands the problem of minimizing λk(β) for any
k∈N.

Due to the form of the eigenvalues of Lβ this maximization problem can be
reformulated as a geometric lattice point problem: Given λ≥0 find the triangle,
amongst those given by the vertices (0, 0), (λ/

√
β, 0) and (0,

√
βλ), which contains

the greatest number of points of the lattice (N− 1
2 )×(N− 1

2 ). (We have here rescaled
the problem to avoid the factor 2 appearing in the explicit form of the eigenval-
ues (1).)

In a similar manner the problem of minimizing eigenvalues of the Dirichlet
Laplacian among cuboids of unit measure, i.e. domains of the form Q=(0, a1)×
...×(0, ad)⊂Rd with

∏d
i=1 ai=1, can be recast as finding which ellipsoid centered

at the origin and of fixed volume contains the largest number of positive integer
lattice points. In [2] Antunes and Freitas used this idea to show that if Qk is a
sequence of unit area rectangles such that Qk minimizes λk then Qk converges to
the square as k tends to infinity. In [4] a similar result was proven for the case
of the Neumann Laplacian. The result of Antunes and Freitas was generalized to
the three-dimensional case in [5], and to arbitrary dimension in [7] where also the
corresponding Neumann result was proven to hold in any dimension.

Generalizing the work of Antunes and Freitas from the viewpoint of lattice
point problems, Laugesen and Liu [16] recently considered the following problem:
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Let f : [0,∞)→R be a strictly decreasing concave function with f(0)=1 and f(1)=0.
Define, for s, r>0, the function

(4) N(s, r) :=#{(k1, k2)∈N2 : k2 ≤ rsf(k1s/r)}.

This function counts the number of integer lattice points under the graph of f

after it has been compressed in the x-direction by a factor s, stretched in the
y-direction by the same factor, and scaled by a factor r. What happens to the set
of maximizers, argmaxs>0 N(s, r), as r (the area under the rescaled graph) tends
to infinity? For a large family of functions f they prove that the maximizing set of
s tends to 1. The corresponding problem with concave curves replaced by convex
ones was treated in [3]. More recently Laugesen and Liu [17] have studied the case
of both concave and convex curves where they also allow for shifting the lattice, i.e.
replacing N2 by (N+σ)×(N+τ). For work on similar problems in higher dimensions
see also [8], [18].

However, the results of [3], [16], [17] all require that the graph of the function
f has non-vanishing curvature. In particular, the case of f(x)=1−x is not covered,
which is precisely the problem of interest here. That the case of vanishing curvature
is excluded from the results of [3], [16]–[18] is no accident, and also more classical
problems in lattice point theory are less well understood in this setting [13], [20].
In fact it was conjectured in [16] that the problem with f(x)=1−x fails to have
an asymptotic maximizer (see also [17] for the shifted case), and that instead the
sequence of maximizing values of s has an infinite number of limit points. In [19]
Marshall and Steinerberger prove the conjecture in the case of the non-shifted lattice
N2.

1.2. Maximizing Riesz means

In what follows we will consider a family of problems closely related to the
maximization problem in (3). The main problem that we are interested in is the
behavior of β which maximizes the function

(5) Rγ
σ,τ (β, λ) :=

∑
k∈N2

(λ−(k1+σ)
√

β−(k2+τ)/
√

β)γ+,

for γ>0 and σ, τ>−1, as λ tends to infinity (if σ=τ we will write simply Rγ
σ). Here

and in what follows x± :=(|x|±x)/2.
Setting γ=0 and interpreting the sum appropriately, (5) reduces to the function

(6) Nσ,τ (β, λ) :=#{(k1, k2)∈ (N+σ)×(N+τ) : k1
√

β+k2/
√

β≤λ}.
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If σ=τ=0 then (6) corresponds to the case considered in [16], [19]. If σ=τ=−1/2
then (6) is the eigenvalue counting function (2) evaluated at 2λ. Similarly, for γ>0,
Rγ

−1/2(β, λ)=Tr(Lβ−2λ)γ− is the Riesz mean of order γ of Lβ . Here we will adopt
this name also for other σ and τ .

Taking γ>0 (instead of γ=0 as in the original problem) leads to a regularization
of the problem and will allow us to use certain tools that are effectively excluded
in the case of the counting function. Using the Aizenman–Lieb Identity [1] the
regularizing effect of increasing γ becomes clear as it allows one to write Rγ

σ,τ as a
weighted mean of lower order Riesz means: for γ2>γ1≥0 and λ≥0,

(7) Rγ2
σ,τ (λ)=B(1+γ1, γ2−γ1)−1

∫ ∞

0
η−1+γ2−γ1Rγ1

σ,τ (λ−η) dη,

where B denotes the Euler Beta function, and we as above interpret R0
σ,τ as Nσ,τ .

This identity follows from linearity and the fact that
∫ ∞

0
τ−1+γ2−γ2(τ−a)γ1

+ dτ = aγ2
+ B(1+γ1, γ2−γ1).

We will also consider a further regularized problem which in the harmonic
oscillator case corresponds to the trace of the heat kernel of Lβ , that is Tr(e−tLβ ).
For general shift parameters σ, τ we define

(8) Hσ,τ (β, t) :=
∑
k∈N2

e−t((k1+σ)
√
β+(k2+τ)/

√
β).

The problem of asymptotically maximizing this function in β as t→0+ can in a
certain sense be seen as a limiting version of the Riesz mean problems with λ and
γ going to infinity simultaneously. A further connection to the Riesz means can
be found by noticing that Hσ,τ can be written using the Laplace transform of the
Rγ

σ,τ :

(9) Hσ,τ (β, t)= t1+γ

Γ(1+γ)

∫ ∞

0
Rγ

σ,τ (β, λ)e−λt dλ.

This connection via the Laplace transform of Rγ
σ,τ and Hσ,τ , combined with the

fact that Hσ,β can be explicitly computed, will be of importance when we study
the behavior of the Riesz means for large λ (following [10], [11]). The main moti-
vation for including the study of the heat kernel problem here is that it is easier to
understand than the Riesz mean problem, and can thus serve as a guide to what
we might expect when studying Rγ

σ,τ .
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1.3. Main results and conjectures

Throughout the paper βγ
σ,τ (λ), for λ≥0, will denote a β which maximizes

Rγ
σ,τ ( · , λ), that is, satisfies

Rγ
σ,τ (βγ

σ,τ (λ), λ)=max{Rγ
σ,τ (β, λ) :β > 0}.

As such a maximizer is not necessarily unique we emphasize that when we make a
claim concerning βγ

σ,τ (λ) we mean that this holds for all maximizers. Similarly we
let βH

σ,τ (t), with t>0, denote a maximizer of Hσ,τ ( · , t), i.e. such that

(10) Hσ,τ (βH
σ,τ (t), t)=max{Hσ,τ (β, t) :β > 0}.

We first turn to what we are able to prove for βH
σ,τ (t). The problem is made

easier due to the fact that the sum (8) can be explicitly computed:

(11) Hσ,τ (β, t)=
∑
k∈N2

e−t((k1+σ)
√
β+(k2+τ)/

√
β) = e−t(σ

√
β+τ/

√
β)

(et
√
β−1)(et/

√
β−1)

.

The question of maximizing with respect to β is thus reduced to an explicit opti-
mization problem in one variable. However, the behavior of this function depends
strongly on the parameters t, σ, τ and carrying out the maximization explicitly is
difficult.

For βH
σ,τ (t) there are two asymptotic regions that we wish to study: when

t→0+ and when t→∞. The asymptotic problem t→0+ is most closely related to
that studied for the Riesz means as more and more of the lattice points (eigenvalues)
become relevant as t becomes smaller, while if t goes to ∞ the main contribution
comes from the lattice points which are closest to the origin. Our first theorem tells
us that we can determine the behavior of βH

σ,τ (t) in both limits.

Theorem 1.1. For each t>0 and σ, τ>−1 there exists a maximizing value

βH
σ,τ (t) satisfying (10). If max{σ, τ}≥−1/2 then the maximizer is unique for each

t>0, moreover, if σ=τ≥−1/2 then βH
σ (t)=1.

Furthermore, for all σ, τ>−1, it holds that

lim
t→∞

βH
σ,τ (t)= 1+τ

1+σ
,

similarly, for all σ, τ>−1/2,

lim
t→0+

βH
σ,τ (t)= 1+2τ

1+2σ .

For all values of σ, τ>−1 not covered above, any sequence of maximizers degener-

ates, i.e. βH
σ,τ (t) tends to 0 or ∞ as t→0+.
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Remark 1.2. One should note that the asymptotic maximizer in the limit t→∞
is precisely the β which minimizes the area of the first triangle containing any lattice
points at all. In the limit t→0+ we find the same limit as Laugesen–Liu [17] found
for the counting function (4). This limit corresponds to balancing the area of the
region below the bounding curve (in our case a line) to the left of the first column
of lattice points, with that of the region below the bounding curve and below the
first row of lattice points (see [17, Figure 1]).

In the same direction we prove the following for Riesz means:

Theorem 1.3. For all γ>0 and σ, τ>−1/2 it holds that

lim
λ→∞

βγ
σ,τ (λ)= 1+2τ

1+2σ .

That is, for all shifts σ, τ>−1/2 any sequence of maximizers, with λ→∞, for
positive order Riesz means has a unique limit. Thus the behavior observed in [16]
and studied in [19] for the counting function with σ=τ=0 effectively vanishes as
soon as we consider the regularized problem of Riesz means with γ>0.

In the case of the harmonic oscillators, σ=τ=−1/2, we find a unique limit first
when γ>1. Specifically we prove that:

Theorem 1.4. For all γ>1 it holds that

lim
λ→∞

βγ
−1/2(λ)= 1.

We do not believe that the failure to prove the corresponding result for smaller
γ is a result of our methods, but that in these cases the behavior of the maximizers
resembles that in [19]. In fact, for the cases that are not covered by the above we
conjecture the following, which extends the conjecture of Laugesen and Liu [16]:

Conjecture 1.5. The conjecture is split into two parts:

(i) For all σ, τ>−1/2 the set⋂
λ>0

⋃
λ′>λ

argmax
β>0

Nσ,τ (β, λ′)

is infinite.

(ii) For all 0≤γ≤1 the set⋂
λ>0

⋃
λ′>λ

argmax
β>0

Rγ
−1/2(β, λ′)

is infinite.

As mentioned earlier the case γ=σ=τ=0 was recently settled by Marshall and
Steinerberger [19].
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1.4. Idea of proof

The conjecture, as well as the proof of Theorems 1.3 and 1.4, is based on precise
asymptotic expansions of Rγ

σ,τ (β, λ) as λ→∞. In [9], [10] the authors study the
asymptotic behavior of R−1/2(1, λ/2)=Tr((−Δ+|x|2)−λ)γ− in connection to Lieb–
Thirring inequalities (see also [6], [15]). The calculations carried out there transfer
without much change to what we study here, see Section 5.

Let ζ : C×C→C denote the Hurwitz ζ-function. In the special case ζ(z, 1) this
is the Riemann ζ-function which we denote simply by ζ(z) [21, Chapter 25]. Let
also {x} denote the fractional part of x∈R, i.e. {x}=x−	x
.

Theorem 1.6. For any γ>0, M∈N, δ>0, β∈R+ and σ, τ>−1, there are

constants αk=αk(β, σ, τ, γ) such that

Rγ
σ,τ (β, λ) =

M+1∑
k=0

αkλ
2−k+γ+Osc(β, λ)+o(λ−M+γ+δ),

as λ→∞. The coefficients αk are continuous in β and |Osc(β, λ)|≤Cβ(λ+1).
Moreover, Cβ and the implicit constant of the remainder term are uniformly bounded

for β in compact subsets of R+. Furthermore,

(i) if β= μ
ν ∈Q+, gcd(μ, ν)=1, then, with x=√

μνλ−μσ−ντ ,

Osc(β, λ) = ζ(−γ, {x})
(μν) 1+γ

2
λ− ζ(−1−γ, {x})

(μν)1+ γ
2

− (1+2σ)μ+(1+2τ)ν
2(μν)1+ γ

2
ζ(−γ, {x})

+ νγ/2Γ(1+γ)
μγ/2(2π)1+γ

∑
k∈N

k/ν /∈N

sin(πk(2x−μ)/ν− π
2 (1+γ))

k1+γ sin(πk μ
ν )

+μγ/2Γ(1+γ)
νγ/2(2π)1+γ

∑
k∈N

k/μ/∈N

sin(πk(2x−ν)/μ− π
2 (1+γ))

k1+γ sin(πk ν
μ ) .

(ii) if β∈R+\Q, it holds that

Osc(β, λ) = β−γ/2Γ(1+γ)
(2π)1+γ

Λ(λ)/
√
β∑

k=1

sin(πk(2λ
√
β−(1+2σ)β−2τ)− π

2 (1+γ))
k1+γ sin(πkβ)

+ βγ/2Γ(1+γ)
(2π)1+γ

Λ(λ)
√
β∑

k=1

sin(πk(2λ/
√
β−2σ−(1+2τ)/β)− π

2 (1+γ))
k1+γ sin(πk/β)

+o(λ−M+γ+δ),

where Λ(λ)=O(λ
M+2−γ

γ ).
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Remark 1.7. A couple of remarks are in order:
1. If γ∈N then αk=0 for all k>2+γ.
2. We emphasize that the amplitude of the oscillatory term Osc(β, λ) grows at

most linearly in λ independently of the values of γ and β:
• In the rational case (i) the only term of Osc(β, λ) that is not bounded is

the first one,

Osc
(
μ
ν , λ

)
= ζ(−γ, {x})

(μν) 1+γ
2

λ+O(1), as λ−→∞.

• In the irrational case (ii) we believe that Osc(β, λ)=o(λ). For γ=0 it
follows that this is the case from the results in [19], but we are currently
unable to prove this when γ>0. Whether or not this statement is true will
be of little importance in what follows, but if one aims to prove (or disprove)
Conjecture 1.5 it would most likely be necessary to understand Osc(β, λ) in
greater detail.

For an explicit formula for the coefficients αk see (29). For our purposes it will
only be important that

α0 = 1
(1+γ)(2+γ) , α1 =− (1+2σ)

√
β+(1+2τ)/

√
β

2(1+γ) ,

α2 = (1+2σ)(1+2τ)
4 + (1+6σ(1+σ))β+(1+6τ(1+τ))/β

12 .

The α2 term will only be important in the case σ=τ=−1/2, in which case α1=0
and α2=−1+β2

24β .
Heuristically, Theorem 1.6 suggests that Theorems 1.3, 1.4 and Conjecture 1.5

should be true. Essentially, since the first order term is independent of β it is
reasonable to conjecture that to asymptotically maximize Rγ

σ,τ one would want to
choose β to maximize the next order term. The cases where we can prove that an
asymptotic maximizer exists is precisely those where:

(i) the subleading polynomial term is asymptotically much larger than
Osc(β, λ), and

(ii) the coefficient of this term is maximized at some β∈R+.
In the harmonic oscillator case, when α1=0, this means that the third term α2λ

γ

needs to be superlinear, and hence γ>1.
For the combinations of σ, τ and γ in Conjecture 1.5 the oscillatory parts of

the expansion are of greater importance. It is suitable to consider the renormalized
quantity

(12)
Rγ

σ,τ (β, λ)−α0λ
2+γ

λ
.
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If σ, τ and γ are as in Conjecture 1.5 then in the limit λ→∞ (12) converges to
a function which is periodic in λ and whose period and amplitude depend on β

(for γ>0 this follows from Theorem 1.6 and for γ=0 from [19, Lemmas 4 and 5]
by a change of variables). It is not unreasonable to believe that one can align
these periods to construct a large set of limit points for βγ

σ,τ (λ). In fact, this is the
underlying idea in Marshall and Steinerberger’s proof of the conjecture in the case
σ=τ=γ=0 [19].

From Theorem 1.6 it is not difficult t conclude that any sequence of maximiz-
ers of Rγ

σ,τ must degenerate when (σ, τ)∈(−1,∞)2\((−1/2,∞)2∪{(−1/2,−1/2)}).
Indeed, for such shifts the second term of the asymptotic expansion is maximized
when β tends either to 0 or ∞. Since the expansion is uniform on compact sets this
implies that any maximizing sequence must eventually leave all compacts.

In the case of Hσ,τ similar reasoning can be used to conclude that any sequence
of maximizers βH

σ,τ must degenerate as t→0+. Indeed, from Theorem 1.6 and (9)
one finds that

Hσ,τ (β, t)= 1
t2
− (1+2σ)

√
β+(1+2τ)/

√
β

2t +O(1), as t−→ 0+,

where the remainder term is uniform for β on compact subsets of R+, which allows
us to argue as above.

1.5. Higher dimensions

Using an idea of Laptev [14] and the bounds proved in Section 2 one can
reduce the corresponding d-dimensional version of the problems considered here to
lower dimensional ones. In [7] this strategy was applied to generalize the results
of [2], [4], [5] to any dimension.

Providing asymptotic expansions similar to those in Theorem 1.6 in higher di-
mensions is possible using the techniques from [9]–[11], see also Section 5. Naturally
the computations in general dimension are more difficult. However, for the cases
where one would expect the existence of an asymptotic maximizer the formulas in
Theorem 1.6 are more detailed than necessary. For the applications considered, it
is sufficient to know the first and second non-vanishing polynomial term, and that
the oscillatory part of the expansion is of lower order than the second polynomial
term. In the d-dimensional case the oscillatory terms will generally be of magnitude
∼λd−1. Precise, and uniform, asymptotic expansions to sufficiently low order can
be obtained following the argument in Section 5.3.
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1.6. Structure of the paper

The remainder of the paper is structured as follows. In Section 2 we prove a
number of bounds for Rγ

σ,τ which will enable us to exclude that there are sequences
of maximizers which degenerate as λ→∞. In Section 3 we study the problem of
maximizing Hσ,τ and prove Theorem 1.1. Section 4 is dedicated to the proofs
of Theorems 1.3 and 1.4, which will rely on the bounds proved in Section 2 and
Theorem 1.6. Finally in Section 5 we study the asymptotic behavior of Rγ

σ,τ (β, λ),
as λ→∞, and prove Theorem 1.6.

2. Preliminaries

Before we continue we need to verify that we can actually talk about maximizers
of Rγ

σ,τ ( · , λ) and Hσ,τ ( · , t). For Hσ,τ it is clear from (11) that the maximization
problem is well posed, and hence we only need to prove that this is the case for
Rγ

σ,τ .

Lemma 2.1. For each λ≥0, γ>0 and σ, τ>−1 there exists a maximizing value

βγ
σ,τ (λ). If λ≤2

√
(1+σ)(1+τ) then Rγ

σ,τ (β, λ)=0 for all β>0, and thus any β is a

maximizer. If λ>2
√

(1+σ)(1+τ) then all maximizers satisfy

βγ
σ,τ (λ)∈

(
(1+τ)2

λ2 ,
λ2

(1+σ)2

)
.

Lemma 2.1 follows directly from [17, Lemma 9], but since our notation is
different and the proof is simple we choose to include it.

Proof of Lemma 2.1. Note first that if we can prove the second part of the
lemma, that there are no maximizers outside

( (1+τ)2
λ2 , λ2

(1+σ)2
)
, then the existence of

a maximizer is clear by the continuity of Rγ
σ,τ (β, λ) as a function of β.

That Rγ
σ,τ (β, λ)=0 for all β if λ≤2

√
(1+σ)(1+τ) follows since the inequality

(13) λ−(1+σ)
√

β−(1+τ)/
√

β≤ 0,

holds for all λ≤2
√

(1+σ)(1+τ). Similarly, (13) holds if β≤ (1+τ)2
λ2 or β≥ λ2

(1+σ)2 ,
and thus Rγ

σ,τ (β, λ)=0 for such β. However, if λ>2
√

(1+σ)(1+τ) then
Rγ

σ,τ (βγ
σ,τ (λ), λ)≥Rγ

σ,τ ( 1+τ
1+σ , λ)>0, which implies that β /∈

( (1+τ)2
λ2 , λ2

(1+σ)2
)

cannot be
a maximizer. �

To conclude that any sequence of maximizers of Rγ
σ,τ , with λ→∞, remains in

a compact subset of R+ we require better control than that provided by Lemma 2.1.
When proving that this is in fact the case the following bounds will be useful:
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Lemma 2.2. We have that:

(i) For σ≥−1/2,

(14)
∑
k≥1

(λ−(k+σ)
√

β)+ ≤ λ2

2
√
β
,

for all β>0 and λ≥0.
(ii) For σ>−1/2 there exist positive constants c1, c2, b0 such that

∑
k≥1

(λ−(k+σ)
√

β)+ ≤ λ2

2
√
β
−c1bλ+c2b

2
√

β,(15)

for all β>0, λ≥0 and b∈[0, b0].
(iii) There exist positive constants c1, c2, b0 such that

(16)
∑
k≥1

(λ−(k− 1
2 )

√
β)2+ ≤ λ3

3
√
β
−c1b

√
βλ+c2b

3/2β,

for all β>0, λ≥0 and b∈[0, b0].

Proof of Lemma 2.2. We begin by proving parts (i) and (ii) of the lemma.
Clearly (ii) implies (i) when σ>−1/2. For σ≥−1/2,

∑
k≥1

(λ−(k+σ)
√

β)+ =
�λ/

√
β−σ�∑

k=1
(λ−(k+σ)

√
β)

= λ2

2
√
β
− 1+2σ

2 λ+ r−r2+σ+σ2

2
√

β,(17)

where r=
{

λ√
β
−σ

}
. Maximizing the right-hand side of (17) with respect to r∈[0, 1)

we find

(18)
∑
k≥1

(λ−(k+σ)
√

β)+ ≤ λ2

2
√
β
− 1+2σ

2 λ+ (1+2σ)2

8
√

β,

which implies (i) when σ=−1/2. Moreover, since the left-hand side of (18) is
decreasing in σ we find (ii) with c1=1/2, c2=1/8 and b0=1+2σ.

The proof of part (iii) is similar:

∑
k≥1

(λ−(k− 1
2 )

√
β)2+ =

�λ/
√
β+1/2�∑
k=1

(λ−(k− 1
2 )

√
β)2

= λ3

3
√
β
−
√
β

12 λ− r(1−r)(1−2r)
6 β
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≤ λ3

3
√
β
−
√
β

12 λ+ β

36
√

3
,

where we again maximized in r=
{

λ√
β

+ 1
2
}
.

We aim for a bound on the form∑
k≥1

(λ−(k− 1
2 )

√
β)2+ ≤ λ3

3
√
β
−b

√
βλ+ 2

3b
3/2β.

The right-hand side is non-negative for b, β>0 and λ≥0, and hence the bound is
trivially true when the left-hand side is zero, i.e. for λ≤

√
β/2. It thus suffices to

prove that
λ3

3
√
β
−
√
β

12 λ+ β

36
√

3
≤ λ3

3
√
β
−b

√
βλ+ 2

3b
3/2β,

when b is small enough and λ≥
√
β/2. The above inequality holds for all λ≥

√
β/2

if and only if
b≤ 1/12 and − 9

2 +
√

3+54b−72b3/2 ≤ 0,

which it is easy to check holds for all b∈[0, 1/12]. This completes the proof of (iii)
with c1=1, c2=2/3 and b0=1/12, and hence the proof of Lemma 2.2. �

Based on Lemma 2.2 we can adapt an idea from [14] (see also [7]) to reduce
the proof of a good enough bound for the counting function to a bound for what is
essentially a one-dimensional Riesz mean of order 1.

Lemma 2.3. Fix σ, τ>−1/2. There exist positive constants c1, c2, c3, b0 such

that

Nσ,τ (β, λ)≤ λ2

2 −c1b
1+β√

β
λ+c2b

2 1+β2

β
+c3(λ+1),

for all λ≥0, β>0 and b∈[0, b0].

Remark 2.4. A similar bound appears in [17, Proposition 10]. However, for
σ, τ small the linear term of that bound becomes positive. In what follows it will
be essential for this term to be negative, which corresponds to the positivity of c1
in Lemma 2.3.

Proof of Lemma 2.3. The bound is an easy consequence of Lemma 2.2. First
observe that for all λ≥0, β>0 and σ′∈(−1/2,min{σ, τ}] we have

Nσ,τ (β, λ)≤Nσ′(β, λ).

A straightforward estimate yields that

Nσ′(β, λ) =
∑
k∈N2

(λ−(k1+σ′)
√

β−(k2+σ′)/
√

β)0+
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=
∑
k1≥1

	(λ
√

β−(k1+σ)β−σ′)+


≤
∑
k1≥1

(λ
√

β−(k1+σ′)β+σ′
−)+

=
√

β
∑
k1≥1

(λ+σ′
−/

√
β−(k1+σ′)

√
β)+.(19)

Applying (15) of Lemma 2.2 one obtains that

Nσ′(β, λ)≤ (λ+σ′
−/

√
β)2

2 −c1b
√

β(λ+σ′
−/

√
β)+c2b

2β(20)

= λ2

2 −c1b
√

βλ+c2b
2β+ σ′

−√
β
λ+ (σ′

−)2

2β −c1bσ
′
−.

Arguing as above but switching the roles of k1 and k2 one correspondingly finds
that

(21) Nσ′(β, λ)≤ λ2

2 − c1b√
β
λ+ c2b

2

β
+σ′

−

√
βλ+ (σ′

−)2

2 β−c1bσ
′
−.

Together these two bounds imply that

(22) Nσ′(β, λ)≤ λ2

2 − c1b

2
1+β√

β
λ+c2b

2 1+β2

β
+σ′

−λ+ (σ′
−)2

2 −c1bσ
′
−.

Indeed, for β≥1 the right-hand side of (22) is larger than that of (20), and for
β≤1 larger than that of (21). This completes the proof of the claimed bound with
constants related to those in Lemma 2.2. �

In the case of the harmonic oscillators we prove the following lemma, which
will play the same role as Lemma 2.3 in what follows.

Lemma 2.5. There exist positive constants c1, c2, b0 such that

R1
−1/2(β, λ)≤ λ3

6 −c1b
1+β2

β
λ+c2b

3/2 1+β3

β3/2 ,

for all β>0, λ≥0 and b∈[0, b0].

Proof of Lemma 2.5. Again the lemma is a simple consequence of Lemma 2.2.
Applying first (14) and then (16) we find that

R1
−1/2(β, λ) =

∑
k∈N2

(λ−(k1− 1
2 )

√
β−(k2− 1

2 )/
√

β)+
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≤
√
β

2
∑
k1≥1

(λ−(k1− 1
2 )

√
β)2+

≤ λ3

6 − c1b

2 βλ+ c2b
3/2

2 β3/2.

Arguing identically but switching the roles of k1 and k2 we find that

R1
−1/2(β, λ)≤ λ3

6 − c1b

2 β−1λ+ c2b
3/2

2 β−3/2.

Taking the average of the two bounds completes the proof of Lemma 2.5. �

Combining Lemmas 2.3 and 2.5 with the Aizenman–Lieb Identity (7) one finds
the following.

Corollary 2.6. We have that:

(i) For σ, τ>−1/2 and γ>0, there exist positive constants c1, c2, c3, b0 such that

(23) Rγ
σ,τ (β, λ)≤ λ2+γ

(1+γ)(2+γ)−c1b
1+β√

β
λ1+γ+c2b

2 1+β2

β
λγ+c3(λ+1)λγ ,

for all β>0, λ≥0 and b∈[0, b0].
(ii) For γ≥1 there exist positive constants c1, c2, b0 such that

(24) Rγ
−1/2(β, λ)≤ λ2+γ

(1+γ)(2+γ)−c1b
1+β2

β
λγ+c2b

3/2 1+β3

β3/2 λγ−1,

for all β>0, λ≥0 and b∈[0, b0].

Remark 2.7. We note that the proofs above lift without much work to the cor-
responding d-dimensional problem. Using again the Aizenman–Lieb Identity (7)
one finds a version of (14) for higher order Riesz means. When γ≥1 one can follow
the lifting argument of [14] (used in a similar context in [7]): use the corresponding
one-term bound to bound the first d−1 sums and then a bound similar to (15)
to bound the final sum. For the case of the counting function one can mimic (19)
reducing the problem to bound a Riesz mean of order one where the spectral param-
eter λ is slightly shifted. Bounding this Riesz mean can be carried out as described
above.
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3. Proof of Theorem 1.1

We now turn to the problem of maximizing Hσ,τ . Due to the fact that we have
a closed expression for Hσ,τ this is reduced to a maximization problem in one real
variable. However solving this problem still turns out to be rather tedious.

Since

Hσ,τ (β, t) = e−t(σ
√
β+τ/

√
β)

(et
√
β−1)(et/

√
β−1)

is non-negative, continuous in β and limβ→0 Hσ,τ (β, t)=limβ→∞ Hσ,τ (β, t)=0 for all
t>0 and σ, τ>−1, it follows that there is at least one maximizing β for each t.

Set x=
√
β and note that

Hσ,τ (x2, t)= e−t((σ+1/2)x+(τ+1/2)/x)

4t2
tx/2

sinh(tx/2)
t/(2x)

sinh(t/(2x) .

By the monotonicity of the logarithm we can equivalently consider maximizing
log(Hσ,τ ):

log(Hσ,τ (x2, t)) =−t((σ+1/2)x+(τ+1/2)/x)

−log
(

sinh(tx/2)
tx/2

)
−log

(
sinh(t/(2x))

t/(2x)

)
−log(4t2).

By recalling that log(sinh(x)/x) is increasing and strictly convex on R+ it follows
that

∂2

∂x2 log(Hσ,τ (x2, t))<−t
τ+1/2

2x3 .

Hence, if τ≥−1/2 the function log(Hσ,τ (x2, t)) is concave in x. Since log(Hσ,τ (x2,

t)) also tends to −∞ when x→0 or ∞ it has a unique maximum. Since Hσ,τ (x2, t)=
Hτ,σ(1/x2, t) we can conclude that the same is true if instead σ≥−1/2. Moreover,
when σ=τ≥−1/2 the symmetry Hσ(x2, t)=Hσ(1/x2, t) implies that x=1 must be
the unique maximizer.

As the function x �→log(Hσ,τ (x2, t)) is smooth any maximizing x∗(t) must sat-
isfy

(25)
∂

∂x
log(Hσ,τ (x2, t))=− t

2x2

[(
1+2σ+coth

( tx

2

))
x2−

(
1+2τ+coth

( t

2x

))]
=0.

When t→0+ it is easy to see that this equation has a solution which converges to√
1+2τ
1+2σ . Similarly when t→∞ we see that there is a solution converging to

√
1+τ
1+σ .
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When max{σ, τ}>−1/2 this concludes the proof of the theorem since we know that
the solution is unique.

When σ and τ are both less than −1/2 maximizers are no longer necessarily
unique when t is small. However, when t→∞ any sequence of maximizers converges.
If there is some solution x∗(t) of (25) which remains in a compact subset of R+ as
t→∞, we must have that

lim
t→∞

x∗(t)=
√

1+τ

1+σ
,

since otherwise the expression in the brackets is bounded away from zero when t is
large enough.

What remains is to conclude that there can be no maximizers which degen-
erate, thus implying that the asymptotically stable stationary point is indeed an
asymptotic maximizer. Since Hσ,τ (x2, t)=Hτ,σ(1/x2, t) any sequence of maximiz-
ers tending to infinity as t→∞ implies the existence of a sequence of maximizers
tending to zero for the problem where σ and τ have been interchanged. Therefore
it is sufficient to show that we cannot have maximizers degenerating to zero.

Assume for contradiction that we have a sequence of maximizers x∗=x∗(t) such
that limt→∞ x∗=0. Since the factor in front of the parenthesis is non-zero, (25)
implies that

lim
t→∞

coth
( tx∗(t)

2

)
x∗(t)2 =2+2τ.

But this is a contradiction since

0≤ coth
( tx∗(t)

2

)
x∗(t)2 ≤

(
1+ 2

tx∗(t)

)
x∗(t)2 −→ 0 as t−→∞,

which completes the proof of Theorem 1.1.

4. Proof of Theorems 1.3 and 1.4

We now turn our attention to the main results of the paper, namely Theo-
rems 1.3 and 1.4. As the proofs of the two theorems are essentially identical we
will write out only the former in detail. The main idea is to combine the bounds
in Corollary 2.6 with Theorem 1.6 following the strategy of [2], with some modifi-
cations resembling those in [7].

Fix σ, τ>−1/2 and γ>0. For notational convenience we will write R(β, λ)=
Rσ,τ (β, λ), β=βγ

σ,τ (λ) and β∗= 1+2τ
1+2σ throughout the proof.

By the maximality of β and (23) of Corollary 2.6 we have that

R(β∗, λ)≤R(β, λ)≤ λ2+γ

(1+γ)(2+γ)−c1b
1+β√

β
λ1+γ+c2b

2 1+β2

β
λγ+c3(λ+1)λγ .
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Using the asymptotic expansion of the left-hand side given by Theorem 1.6, rear-
ranging and using that 1+β2

1+β ≥1+β we find

(26) c1b
1+β√

β

(
1−b

c2(1+β)
c1
√
βλ

)
≤C+O(λ−min{1,γ}),

as λ→∞.

From Lemma 2.1 we know that 1+β√
βλ

≤ 1
1+τ + 1

1+σ , and hence we can choose b

small enough so that the left-hand side of (26) is positive. Therefore we conclude
that

lim sup
λ→∞

1+β√
β

≤C,

and hence β=βγ
σ,τ (λ) remains uniformly bounded away from zero and infinity.

As we now know that all maximizers are contained in a compact subset of R+

we can use Theorem 1.6 to expand both sides of the inequality R(β∗, λ)≤R(β, λ)
with remainder terms independent of β. After rearranging this yields that

(27) (1+2σ)
√

β+(1+2τ)/
√

β≤ (1+2σ)
√

β∗+(1+2τ)/
√
β∗+O(λ−min{γ,1}).

Since β∗ is the unique minimizer of the function x �→(1+2σ)
√
x+(1+2τ)/

√
x and

the remainder term is independent of β, (27) implies that

β =β∗+o(1) as λ−→∞,

which concludes the proof of Theorem 1.3.
The proof of Theorem 1.4 is almost identical with the only change being the

application of (24) instead of (23) in the first part of the proof.

5. Proof of Theorem 1.6

What remains is to prove Theorem 1.6. The calculations follow those of Helffer
and Sjöstrand in [11] for the isotropic harmonic oscillator β=1 and σ=τ=−1/2 (see
also [9], [10]). The key idea is to use the Laplace transform to rewrite Rγ

σ,τ as an
integral which opens up for use of the residue theorem. For any c>0,

Rγ
σ,τ (β, λ)=

∑
k∈N2

(λ−(k1+σ)
√

β−(k2+τ)/
√

β)γ+

=
∑
k∈N2

Γ(1+γ)
2πi

∫ c+i∞

c−i∞
et(λ−(k1+σ)

√
β−(k2+τ)/

√
β)t−1−γ dt

= Γ(1+γ)
2πi

∫ c+i∞

c−i∞

et(λ−σ
√
β−τ/

√
β)

(et
√
β−1)(et/

√
β−1)

t−1−γ dt.
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The integrand in the last expression is a meromorphic function of t outside of
(−∞, 0], with poles at t=2πik

√
β and t=2πil/

√
β, for k, l∈Z\{0}. If β is irrational

all of these poles are simple. If β∈Q say β= μ
ν , with gcd(μ, ν)=1, then there are

degree-two poles whenever k, l are related by μk=νl. The remaining poles remain
simple. That is, degree-two poles at t=2πi√μν m for m∈Z\{0}, and simple poles
at t=2πi

√
μ
ν k1 and t=2πi

√
ν
μk2 for k1, k2∈Z\{0} such that βk1= μk1

ν /∈Z and k2
β =

νk2
μ /∈Z.

Letting f(t)= et(λ−σ
√

β−τ/
√

β)

(et
√

β−1)(et/
√

β−1) t
−1−γ and formally using the residue theorem,

one would obtain that

Rγ
σ,τ (β, λ) = Γ(1+γ)

∑
t∈P(f)

Res(f, t)+ Γ(1+γ)
2πi

∫
Γ1

f(t) dt,(28)

where P(f) denotes the poles of f and Γ1 is a contour oriented counter-clockwise
which encircles the negative real axis but none of the poles of f . However, to make
this rigorous we need that the sum of residues is absolutely convergent. We shall
prove that this is the case when β∈Q+ but possibly not when β /∈Q+.

It is no big surprise that the contributions to the asymptotic expansion coming
from the residues is the most complicated part to analyse. It is this part which
accounts for the oscillatory terms in the expansion and the number theoretic de-
pendence on β. In contrast the integral over the contour Γ1 has an asymptotic
expansion in λ to arbitrary order as λ tends to infinity.

The proof will be split into two parts, first treating β∈Q+ and then β /∈Q+.
Much of the work done in the first case will turn out to be useful also in the second.

5.1. Rational β

In this case it turns out that the use of the residue theorem above is justified.
This will be verified once we prove that the sum of residues is absolutely convergent.
However, we begin by studying the non-oscillatory part of the expansion, that is,
the contribution from the contour integral in (28).

Non-oscillatory part

Let ε∈(0,min{
√
β, 1/

√
β}], and let Γ1=Γ−∪Γ0∪Γ+ with

Γ± =(−∞±i0,−ε±i0],
Γ0 = εeiθ, θ∈ (−π, π).
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For λ>σ
√
β+τ/

√
β and any ε∈(0, 1), we see that

∣∣∣∫
Γ±

f(t) dt
∣∣∣≤ eε(σ

√
β+τ/

√
β)

γ(e−
√
β−1)(e−1/

√
β−1)

e−ελε−2−γ .

Returning to the integral over Γ0,∫
Γ0

f(t) dt=
∫

Γ0

etλ

t3+γ

t2e−t(σ
√
β+τ/

√
β)

(et
√
β−1)(et/

√
β−1)

dt.

For small enough ε and any M∈N we have a uniform expansion

t2e−t(σ
√
β+τ/

√
β)

(et
√
β−1)(et/

√
β−1)

=
M−1∑
k=0

ak(β, σ, τ)tk+O(tM ),

where the implicit constant is uniform for β in compact subsets of R+. The
ak(β, σ, τ) are explicitly given by

ak(β, σ, τ)=
k∑

l=0

(−1)l

l! (σ
√

β+τ/
√

β)lbk−l(β),

where the bk(β) are the coefficients in the expansion

t2

(et
√
β−1)(et/

√
β−1)

=
M−1∑
k=0

bk(β)tk+O(tM ).

The first few coefficients are given by

b0(β) = 1, b1(β) =−1+β

2
√
β
, b2(β) = 1+3β+β2

12β ,

b3(β) =− 1+β

24
√
β
, b4(β) =−1−5β2+β4

720β2 , b5(β) = 1+β3

1440β3/2 .

Thus we find that∫
Γ0

f(t) dt=
M−1∑
k=0

ak(β, σ, τ)
∫

Γ0

etλtk−3−γ dt+eελO(εM−2−γ)

=
M−1∑
k=0

ak(β, σ, τ)
∫

Γ1

eλttk−3−γ dt+eελO(εM−2−γ)+e−ελO(ε−2−γ),

where we used that∫ ∞

ε

e−λttk−3−γ dt≤ sup
t≥ε

(e−λttk)
∫ ∞

ε

t−3−γ dt= e−ελεk−2−γ

2+γ
,
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provided ελ≥k.
Recall Hankel’s integral representation for the reciprocal Γ function [21, eq.

5.9.2]:
1

Γ(z) = 1
2πi

∫
ett−z dt,

where the integral is over a contour which encircles the origin in the positively
oriented direction, beginning and returning to −∞ while respecting the branch cut
along the negative real axis. By a change of variables we find that

∫
Γ1

eλttk−3−γ dt=
2πiλ2+γ−k

Γ(3+γ−k) .
Therefore we conclude that

Γ(1+γ)
2πi

∫
Γ1

f(t) dt=
M−1∑
k=0

ak(β, σ, τ) Γ(1+γ)
Γ(3+γ−k)λ

2−k+γ

+e−ελO(ε−2−γ)+eελO(εM−2−γ).

Choose ε=ε(λ) to solve e−λε=εM/2. For large enough λ this choice satisfies the
requirements above and the error terms become

O(ε(λ)M/2−2−γ)= o(λ−M/2+2+γ+δ), ∀δ > 0,

since ε(λ)=O(log(λ)/λ)=o(λ−1+δ) for any δ>0.
Moving unnecessary parts into the error term, we have for any M ′∈N and δ>0

that

Γ(1+γ)
2πi

∫
Γ1

f(t) dt=
M ′+1∑
k=0

αkλ
2−k+γ+o(λ−M ′+γ+δ),

where

αk(β, σ, τ, γ)= ak(β, σ, τ) Γ(1+γ)
Γ(3+γ−k) .(29)

Oscillatory part

We now turn our attention to the sum of residues

Γ(1+γ)
∑

t∈P(f)

Res(f, t).
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Simple poles

If t=2πik
√
β, with k∈Z\{0} such that βk /∈Z, then it is straightforward to

calculate the residue of f at t, yielding:

Res(f, 2πik
√

β)=β−γ/2 e2πik(λ
√
β−σβ−τ)

(2πik)1+γ(e2πikβ−1) .

If instead t=2πik/
√
β, with k∈Z\{0} such that k/β /∈Z, then an almost identical

calculation leads to:

Res(f, 2πik/
√

β)=βγ/2 e2πik(λ/
√
β−σ−τ/β)

(2πik)1+γ(e2πik/β−1)
.

Let x1=λ
√
β−σβ−τ and x2=λ/

√
β−σ−τ/β. Combining the contributions

from k and −k one obtains that∑
t∈P1

Res(f, t)

= β−γ/2

(2π)1+γ

∑
k∈N

βk/∈N

1
k1+γ

(
e2πikx1

eiπ(1+γ)/2(e2πikβ−1)
+ e−2πikx1

e−iπ(1+γ)/2(e−2πikβ−1)

)

+ βγ/2

(2π)1+γ

∑
k∈N

k/β/∈N

1
k1+γ

(
e2πikx2

eiπ(1+γ)/2(e2πik/β−1)
+ e−2πikx2

e−iπ(1+γ)/2(e−2πik/β−1)

)

= β−γ/2

(2π)1+γ

∑
k∈N

βk/∈N

1
k1+γ

( sin(πk(2x1−β)− π
2 (1+γ))

sin(πkβ)

)

+ βγ/2

(2π)1+γ

∑
k∈N

k/β/∈N

1
k1+γ

( sin(πk(2x2−1/β)− π
2 (1+γ))

sin(πk/β)

)
,

where P1 denotes the simple poles of f .
Let β= μ

ν , with gcd(μ, ν)=1, we shall show that the first of the above series is
absolutely convergent, the second can be treated identically. Since gcd(μ, ν)=1 we
have that μ

ν k /∈N if and only if k
ν /∈N. We find that

νγ/2

μγ/2

∑
k∈N

k/ν /∈N

∣∣∣ sin(πk(2x1−μ/ν)− π
2 (1+γ))

k1+γ sin(πkμ/ν)

∣∣∣

≤ νγ/2

μγ/2

∑
k∈N

k/ν /∈N

1
k1+γ

1
|sin(πkμ/ν)|
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= νγ/2

μγ/2

ν−1∑
l=1

∞∑
j=0

1
(jν+l)1+γ

1
|sin(πlμ/ν)|

≤ νγ/2

μγ/2

ν−1∑
l=1

1
|sin(πlμ/ν)|

(
1

l1+γ
+

∞∑
j=1

1
(jν)1+γ

)

= νγ/2

μγ/2

ν−1∑
l=1

1
|sin(πlμ/ν)|

(
1

l1+γ
+ ζ(1+γ)

ν1+γ

)
,

implying that the series is absolutely convergent.

Degree-two poles

When β= μ
ν then f has poles of degree two at t=2πi√μν k, for k∈Z\{0}. The

residues at these poles can be calculated:

Res(f, 2πi√μν k)=
e2iπk(λ√μν−μσ−ντ)(γ−2πik(λ√μν−μ(σ+ 1

2 )−ν(τ+ 1
2 ))+1)

(2π)γ+2(ik)γk2(μν)1+γ/2 .

It is clear that the sum of these residues is absolutely convergent, which validates
our use of the residue theorem in (28) in the case of rational β.

Letting x3={√μν λ−μσ−ντ} we find that

∑
t∈P2

Res(f, t)=− (1+γ)
(μν)1+γ/2

[
e−

iπ
2 (2+γ)

∞∑
k=1

e2πikx3

(2πk)2+γ
+e

iπ
2 (2+γ)

∞∑
k=1

e−2πikx3

(2πk)2+γ

]

+
λ
√
μν−μ

(
σ+ 1

2
)
−ν

(
τ+ 1

2
)

(μν)1+γ/2

[
e−

iπ
2 (1+γ)

∞∑
k=1

e2πikx3

(2πk)1+γ
+e

iπ
2 (1+γ)

∞∑
k=1

e−2πikx3

(2πk)1+γ

]

=
λζ(−γ, x3)−ζ(−1−γ, x3)/

√
μν−

((
σ+ 1

2
)√

μ
ν +

(
τ+ 1

2
)
/
√

μ
ν

)
ζ(−γ, x3)

(μν)(1+γ)/2Γ(1+γ)
,

where we made use of [21, eq. 25.12.13], and P2 denotes the set of degree-two poles
of f .

5.2. Irrational β

For β∈R+\Q the calculation leading to the precise asymptotic expansion of
Rγ

σ,τ is slightly more complicated. The complication stems from the fact that we
do not know if the sum of residues in (28) is absolutely convergent. Hence we
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cannot justify our use of the residue theorem as above. However, by choosing a
λ-dependent contour where we only use the residue theorem for bounded contours
one can obtain the desired result.

Fix λ>σ
√
β+τ/

√
β. From the residue theorem we find that for c>0 and Λ>1

to be chosen later

Rγ
σ,τ (β, λ) = Γ(1+γ)

2πi

∫ c+i∞

c−i∞
f(t) dt

= Γ(1+γ)
2πi

(∫
Γ0

f(t) dt+
∫

Γ±
Λ,∞

f(t) dt+
∫

Γ±
ε,Λ

f(t) dt+
∫

Γ±
ε,c

f(t) dt
)

+Γ(1+γ)
∑

t∈P(f)
|
(t)|∈(0,Λ)

Res(f, t),

where Γ0, ε are as before and

Γ±
Λ,∞ =(c±iΛ, c±i∞),

Γ±
ε,Λ =(−ε±i0,−ε±iΛ),

Γ±
ε,c =(−ε±iΛ, c±iΛ).

The integral over Γ0 can be computed precisely as in the case of rational β:

Γ(1+γ)
2πi

∫
Γ0

f(t) dt=
M+1∑
k=0

αkλ
2−k+γ+o(λ−M+γ+δ),

for any M∈N, δ>0.
There are now only simple poles, the residues at which can be calculated as

before:

∑
t∈P(f)

|
(t)|∈(0,Λ)

Res(f, t)= β−γ/2

(2π)1+γ

∑
k∈N

2πk
√
β<Λ

sin(πk(2λ
√
β−(1+2σ)β−2τ)− π

2 (1+γ))
k1+γ sin(πkβ)

+ βγ/2

(2π)1+γ

∑
k∈N

2πk/
√
β<Λ

sin(πk(2λ/
√
β−2σ−(1+2τ)/β)− π

2 (1+γ))
k1+γ sin(πk/β) .

Moreover,∣∣∣∣
∫

Γ±
Λ,∞

f(t) dt
∣∣∣∣≤ ec(λ−σ

√
β−τ/

√
β)

(ec
√
β−1)(ec/

√
β−1)

∫ c±i∞

c±iΛ
|t|−1−γ dt
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≤ ec(λ−σ
√
β−τ/

√
β)

c2

∫ ∞

Λ
t−1−γ dt

= ec(λ−σ
√
β−τ/

√
β)

γc2
Λ−γ ,

since ex−1≥x, for x≥0. Furthermore,∣∣∣∣
∫

Γ±
ε,Λ

f(t) dt
∣∣∣∣≤ e−ε(λ−σ

√
β−τ/

√
β)

(1−e−ε
√
β)(1−e−ε/

√
β)

∫ Λ

0
(t2+ε2)−(1+γ)/2 dt

≤ 4e−ε(λ−σ
√
β−τ/

√
β)

ε2 ε−γ

∫ Λ√
Λ2+ε2

0
(1−z2)−1+γ/2 dz

≤
2
√
π Γ(γ2 )

Γ(1+γ
2 )

e−ε(λ−σ
√
β−τ/

√
β)ε−2−γ

= o(λ−M+γ+δ),

where we used that 1−e−x≥x/2, for x≥0, and the change of variables t= εz√
1−z2 .

Finally, for the two last segments of the contour we firstly have that by chang-
ing Λ by something smaller than 2πmin{

√
β, 1/

√
β} we can choose Λ so that

dist(iΛ,P(f))≥ π
2 min{

√
β, 1/

√
β}, that is dist(Λ, 2π

√
βZ∪2π/

√
βZ)≥ π

2 min{
√
β,

1/
√
β}. Hence

dist(Λ
√

β, 2πZ)≥dist(Λ
√

β, 2πβZ∪2πZ)≥ π
2

√
β min{

√
β, 1√

β
}= π

2 min{β, 1},

dist( Λ√
β
, 2πZ)≥dist( Λ√

β
, 2πZ∪ 2π

β Z)≥ π
2
√
β

min{
√

β, 1√
β
}= π

2 min{1, 1
β }.

For �(z)≥− log(2),

|ez−1|2 = e2�(z)−2e�(z) cos(�(z))+1≥ 1−cos(�(z))≥ 2
π2 dist(�(z), 2πZ)2.

Here the first inequality follows from that g(x, y)=e2x−(2ex−1) cos(y) is non-
negative when x≥− log(2). Indeed, if cos(y)≤0 this is clearly the case, and if
cos(y)≥0 this can be seen by writing g as (ex−cos(y))2+(1−cos(y)) cos(y).

For t∈Γ±
ε,c, we thus have that |(1−et

√
β)(1−et/

√
β)|≥ 1

2 min{β, 1}min{1, 1/β}=
1
2 min{β, 1/β}. Therefore

∣∣∣∣
∫

Γ±
ε,c

f(t) dt
∣∣∣∣≤ 2ec(λ−σ

√
β−τ/

√
β)

min{β, 1/β}

∫ c±iΛ

−ε±iΛ
|t|−1−γ dt

≤ 2ec(λ−σ
√
β−τ/

√
β)

min{β, 1/β} Λ−1−γ(c+ε).
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What remains is to choose Λ, c appropriately. If c=O(λ−α) and Λ=O(λβ), for
some α≥1 and β>0, then the errors are of orders

(λ−α+log(λ)λ−1)λ−β(1+γ) ∼ log(λ)λ−1−β(1+γ), λ2α−βγ , λ−M+γ+δ.

The errors contributing are thus only the last two. Hence larger α only makes things
worse so we choose α=1, and β so that 2−βγ=−M+γ, that is β= M+2−γ

γ . This
choice yields the desired expansion with the claimed remainder term o(λ−M+γ+δ),
for any δ>0.

5.3. Bounding Osc(β, λ)

The only remaining part to complete the proof of Theorem 1.6 is to prove that
the sum of oscillatory terms is O(λ) uniformly for β in compact subsets of R+. To
this end we make use of the following one-dimensional asymptotic expansion:

Lemma 5.1. ([11, Lemma 2.1]) For γ>0 we have an expansion

∞∑
k=1

(λ−k)γ+ =
�γ
∑
k=0

ρk(γ)λ1+γ−k+O(1),

as λ→∞.

Using Lemma 5.1 we find that

Rγ
σ,τ (β, λ) =

∑
k∈N2

(λ−(k1+σ)
√

β−(k2+τ)/
√

β)γ+

= 1
βγ/2

�λ/
√
β−τ/β−σ�∑
k1=1

(�1+γ
∑
n=0

ρn(γ)(
√

βλ−τ−(k1+σ)β)1+γ−n+O(1)
)

=
�1+γ
∑
n=0

(
β1−n+γ/2ρn(γ)

∑
k1≥1

(λ/
√

β−τ/β−σ−k1)1+γ−n
+

)
+O(λ)

=
∑

n,m≥0
m+n<2+γ

β(n+m)/2ρn(γ)ρm(1+γ−n)λ2+γ−n−m
(
1− σβ+τ

λ
√
β

)2+γ−n−m

+

+O(λ),

where the error is uniform for β on compact subsets of R+. By expanding the
(1−c/λ)η terms in the sum up to O(λ−1−γ+n+m) we obtain an asymptotic expansion
of Rγ

σ,τ up to O(λ). Comparing this to the precise asymptotics we obtained above
leads us to conclude that the Osc(β, λ)=O(λ) locally uniformly in β.



154 Simon Larson

Acknowledgments. The author is grateful to Didier Robert for providing a
copy of the paper [9], and to the anonymous referee whose comments helped im-
prove the quality of the paper and significantly simplify the proof of Theorem 1.1.
The author also wishes to thank Katie Gittins, Ari Laptev, Richard Laugesen and
Douglas Lundholm for discussions and helpful suggestions. Financial support from
the Swedish Research Council grant no. 2012-3864 is gratefully acknowledged.

References
1. Aizenman, M. and Lieb, E. H., On semiclassical bounds for eigenvalues of

Schrödinger operators, Phys. Lett. A 66 (1978), 427–429.
2. Antunes, P. R. S. and Freitas, P., Optimal spectral rectangles and lattice ellipses,

Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 469 (2013), 2150.
3. Ariturk, S. and Laugesen, R. S., Optimal stretching for lattice points under convex

curves, Port. Math. 74 (2017), 91–114.
4. van den Berg, M., Bucur, D. and Gittins, K., Maximising Neumann eigenvalues

on rectangles, Bull. Lond. Math. Soc. 48 (2016), 877–894.
5. van den Berg, M. and Gittins, K., Minimising Dirichlet eigenvalues on cuboids of

unit measure, Mathematika 63 (2017), 468–482.
6. de la Bretèche, R., Preuve de la conjecture de Lieb–Thirring dans le cas des poten-

tiels quadratiques strictement convexes, Ann. Inst. Henri Poincaré A, Phys.
Théor. 70 (1999), 369–380.

7. Gittins, K. and Larson, S., Asymptotic behaviour of cuboids optimising Laplacian
eigenvalues, Integral Equations Operator Theory 89 (2017), 607–629.

8. Guo, J. and Wang, W., Lattice points in stretched model domains of finite type in
Rd, J. Number Theory 191 (2017), 273–288.

9. Helffer, B. and Robert, D., Riesz means of bound states and semiclassical limit
connected with a Lieb-Thirring’s conjecture, Asymptot. Anal. 3 (1990), 91–103.

10. Helffer, B. and Robert, D., Riesz means of bounded states and semi-classical limit
connected with a Lieb-Thirring conjecture. II, Ann. Inst. Henri Poincaré A,
Phys. Théor. 53 (1990), 139–147.

11. Helffer, B. and Sjöstrand, J., On diamagnetism and de Haas-van Alphen effect,
Ann. Inst. Henri Poincaré A, Phys. Théor. 52 (1990), 303–375.

12. Henrot, A. (ed.), Shape optimization and spectral theory, de Gruyter Open, Warsaw,
2017.

13. Ivić, A., Krätzel, E., Kühleitner, M. and Nowak, W. G., Lattice points in large
regions and related arithmetic functions: recent developments in a very classic
topic, Elementare und analytische Zahlentheorie, in Schr. Wiss. Ges. Johann
Wolfgang Goethe Univ. Frankfurt am Main 20, pp. 89–128, Franz Steiner Ver-
lag Stuttgart, Stuttgart, 2006.

14. Laptev, A., Dirichlet and Neumann eigenvalue problems on domains in Euclidean
spaces, J. Funct. Anal. 151 (1997), 531–545.

15. Laptev, A., On the Lieb–Thirring conjecture for a class of potentials, in The Maz’ya
anniversary collection, vol. 2 (Rostock, 1998), Oper. Theory Adv. Appl. 110,



Maximizing Riesz means of anisotropic harmonic oscillators 155

pp. 227–234, Birkhäuser, Basel, 1999.
16. Laugesen, R. S. and Liu, S., Optimal stretching for lattice points and eigenvalues,

Ark. Mat. 56 (2018), 111–145.
17. Laugesen, R. S. and Liu, S., Shifted lattices and asymptotically optimal ellipses, J.

Anal. 26 (2018), 71–102.
18. Marshall, N. F., Stretching convex domains to capture many lattice points, Int.

Math. Res. Not. IMRN. published online (2018).
19. Marshall, N. F. and Steinerberger, S., Triangles capturing many lattice points,

Mathematika 64 (2018), 551–582.
20. Nowak, W. G., Integer points in large bodies, in Topics in mathematical analysis and

applications, Springer Optim. Appl. 94, pp. 583–599, Springer, Cham, 2014.
21. Olver, F. W. J., Olde Daalhuis, A. B., Lozier, D. W., Schneider, B. I.,

Boisvert, R. F., Clark, C. W., Miller, B. R. and Saunders, B. V. (eds.),
NIST Digital Library of Mathematical Functions. Release 1.0.19.

Simon Larson
Department of Mathematics
KTH Royal Institute of Technology
SE-100 44 Stockholm
Sweden
simla@math.kth.se

Received February 11, 2018
in revised form September 11, 2018

mailto:simla@math.kth.se

	Maximizing Riesz means of anisotropic harmonic oscillators
	1 Introduction and main result
	2 Preliminaries
	3 Proof of Theorem 1.1
	4 Proof of Theorems 1.3 and 1.4
	5 Proof of Theorem 1.6
	References


