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(d, d′)-elliptic curves of genus two

Marco Franciosi, Rita Pardini and Sönke Rollenske

Abstract. We study stable curves of arithmetic genus 2 which admit two morphisms of
finite degree d, resp. d′, onto smooth elliptic curves, with particular attention to the case d prime.

1. Introduction

In this paper we consider stable curves of arithmetic genus two which admit
a (d, d′)-elliptic configurations, namely two morphisms of finite degree d, resp. d′,
onto smooth elliptic curves D and E:

C

E D
d:1

f g

d′:1
.

A curve of genus two is called a (d, d′)-elliptic curve if it admits a (d, d′)-elliptic
configuration. When d=2 and d′=3 we use the terminology bi-tri-elliptic curve.

The study of genus two smooth curves with a degree d morphism onto an elliptic
curve, i.e. genus two d-elliptic curves, goes back to the 19th century, where the
attention was on the analysis of elliptic integrals (cf. the last chapter of [Krazer]).

More recently, Frey and Kani revived the subject in [FK91]; then in [FK09],
[Kan97], [Kani03], [Kani14] and [Kani16] the arithmetic properties of d-elliptic
curves of genus 2 were studied in detail, also providing existence results.

Our starting point for the study of (d, d′)-elliptic is a classical construction
of the Jacobian of a d-elliptic curve of genus two described by Frey and Kani in
[FK91]. Since stable (d, d′)-elliptic curves of arithmetic genus two are automatically
of compact type, i.e., they have compact Jacobian (Corollary 3.4), in §2 we recall
the Frey-Kani construction, noting that it extends to curves of compact type.
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In §3 we study (d, d′)-elliptic curves, with particular attention to the case d

prime. In Theorem 3.14 we give a classification of such curves and in §3.3 we show
that for every pair of integers d, d′>1 there exists a smooth (d, d′)-elliptic curve of
genus two.

The original motivation for this article was the study of bi-tri-elliptic configura-
tions, which parametrise certain strata in the boundary of the moduli space of stable
Godeaux surfaces (see [FPR17]). Thus we describe the geometry of bi-tri-elliptic
configurations in a little more detail in the last section.
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reading a previous version of the paper and making many useful remarks and sugges-
tions. The second author is a member of GNSAGA of INDAM. The third author is
grateful for support of the DFG through the Emmy Noether program and partially
through SFB 701. This project was partially supported by PRIN 2010 “Geometria
delle Varietà Algebriche” of Italian MIUR.

2. d-elliptic curves of genus two

Here we recall and slightly refine some results from [FK91, §1], where the focus
is on smooth curves and on the case d odd (see below).

2.1. Set-up and preliminaries

We work over an algebraically closed field K whose characteristic does not
divide the degree d of the finite morphisms that we consider. Throughout all this
section C is a stable curve of genus two and J=J(C) is the Jacobian of C.

Definition 2.1. Let d≥2 be an integer. We say that C is d-elliptic if there
exists a finite degree d morphism f : C→E such that E is a smooth curve of genus
1 and f does not factor through an étale cover of E; we call f a d-elliptic map.
Sometimes, a d-elliptic map is called an “elliptic subcover” and the curve C is said
to have an “elliptic differential” (cf. [Kan97]); our choice of terminology is due to
the fact that we wish to emphasize the degree d of the map. For d=2, 3, the curve
C is also called bi-elliptic, resp. tri-elliptic.

An isomorphism of d-elliptic curves fi : Ci→Ei, i=1, 2, is a pair of isomor-
phisms ϕ : C1→C2 and ϕ̄ : E1→E2 such that f2¨ϕ=ϕ̄¨f1.

For an abelian variety A we denote by A[d] its subgroup of d-torsion points. If A
is principally polarised then there is a non-degenerate alternating pairing ed : A[d]×
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A[d]→μd (where μd denotes the d-th roots of unity) called Weil pairing (or Riemann
form [Mum74, Chapter IV, §20]).

If A′ is an abelian variety, then we call a group homomorphism α : A[d]→A′[d]
anti-symplectic if for every P,Q∈A[d] one has:

ed(α(P ), α(Q))= ed(P,Q)−1,

or, equivalently, if the graph of α is an isotropic subgroup of (A×A′)[d].

2.2. The Frey-Kani construction

Now assume that C is a stable genus two curve of compact type, i.e., it is either
smooth or the union of two elliptic curves intersecting in one point. Notice that the
Jacobian J=J(C) is a principally polarised abelian surface.

Let f : C→E be a d-elliptic map on C. The pull back map f∗ : E→J is
injective, hence the norm map f∗ : J→E has connected kernel E′. We denote
by h : E×E′→J the map induced by f∗ and by the inclusion E′ ↪→J . Since the
composition f∗f

∗ : E→E is multiplication by d, the abelian subvarieties E′ and
f∗E of J intersect in E[d] and we have a tower of isogenies

(1) E×E′ J E×E′h

d2:1
h′

d2:1
,

whose composition is multiplication by d and h′ is determined by this property.
Composing the Abel-Jacobi map C↪→J with the projection to E′ we get a second
d-elliptic map f ′ : C→E′, which we call the complementary d-elliptic map. Com-
posing h with the inclusions E,E′ ↪→J one sees that h′=(f∗, f ′

∗).
The construction that follows, which we call the Frey-Kani construction, has

been described in [FK91, §1] for smooth curves, but the proof works verbatim for
stable curves of compact type. Therefore one has:

Proposition 2.2. Let C be a stable d-elliptic curve of genus two of compact

type, let f : C→E and f ′ : C→E′ be complementary d-elliptic maps and let h : E×
E′→J=J(C) be as in (1). Then:

(i) there exists an anti-symplectic isomorphism α : E[d]→E′[d] such that kerh
is the graph Hα of α;

(ii) the principal polarization on J pulls back to d(E×{0}+{0}×E′).

Notice that if d=2, then any isomorphism α as in Proposition 2.2 is anti-
symplectic. More generally, for a prime d the number of anti-symplectic isomor-
phisms E[d]→E′[d] is equal to d(d2−1) (cf. [FK91]).
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The above proposition has a converse (see [FK91]):

Proposition 2.3. Let E,E′ be elliptic curves and let α : E[d]→E′[d] be an

anti-symplectic isomorphism. Denote by Hα the graph of α; set A:=(E×E′)/Hα

and denote by h : E×E′→A the quotient map.

Then

(i) d(E×{0}+{0}×E′) descends to a principal polarization Θ on A;

(ii) let C be a theta-divisor on A; then C is a stable curve of genus two of

compact type and the maps f : C→E and f ′ : C→E′ induced by the natural maps

A→E and A→E′ are complementary d-elliptic maps;

(iii) if d is odd, then there is precisely one symmetric Theta-divisor on A that

is linearly equivalent to d(E×{0}+{0}×E′).

2.3. Special geometry for small d

The question of under what conditions the polarisation coming from the Frey-
Kani construction is reducible has been answered by Kani in [Kan97, Theorem 3].

Here we are interested mainly in the case d=2; below we spell out Kani’s result
in this case.

Lemma 2.4. Let A be constructed as in Proposition 2.3 for d=2. Then the

principal polarization Θ of A is reducible if and only if there exists an isomorphism

ψ : E′→E such that the map E×E′→E×E defined by (x, y) �→(x, ψ(y)) maps Hα

to the subgroup Δ[2]={(η, η)|η∈E[2]}.
Moreover, up to isomorphism the bi-elliptic map f is given by the composition

C =E×{0}∪{0}×E ↪−→ J(C)=E×E
+−→E,

that is, it is the identity on each component of C; the complementary map f ′ is the

identity on one component and multiplication by −1 on the other.

Proof. The first part follows from [Kan97, Theorem 3] in the special case d=2.
Moreover, by ibid. we have the following commutative diagram:

(2)
E×E′ E×E

A E×E

(id,ψ)

h q ,

where h is the quotient map and q(x, y)=(x+y, x−y).
To conclude the proof, assume now E=E′ and α is the identity. The map

q : E×E→E×E defined by q(x, y)=(x+y, x−y) has kernel Hα=Δ[2], hence A is
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isomorphic to E×E. Let C=E×{0}+{0}×E; then q∗C=Δ+Δ−, where Δ is the
diagonal and Δ− is the antidiagonal. Since (q∗C)2=8 by the pull-back formula
and q∗C(E×{0}+{0}×E)=4, the divisors q∗C and 2(E×{0}+{0}×E) are alge-
braically equivalent by the Index Theorem, hence C is the principal polarisation
of Proposition 2.3. (More precisely, since q∗C and 2(E×{0}+{0}×E) restrict to
the same divisor on E×{0} and {0}×E they are actually linearly equivalent.) The
final part of the statement follows. �

We close this section with an alternative description of bi-elliptic curves of
genus two of compact type, which basically stems from the fact that a double cover
is the quotient by an involution.

Lemma 2.5. Let C be a genus two stable curve of compact type, let f : C→
E and f ′ : C→E′ be complementary bi-elliptic maps and let σ, resp. σ′, be the

involution induced by f , resp. f ′. Then the group 〈σ, σ′〉 is isomorphic to Z/2×Z/2
and τ :=σσ′ is the hyperelliptic involution.

Proof. Let J be the Jacobian of C. The involution σ on J is induced by
the involution (x, y) �→(x,−y) of E×E′ (cf. (1)) and, similarly, σ′ is induced by
(x, y) �→(−x, y). So τ=σσ′ acts as multiplication by −1 on J and therefore, if C is
smooth, is the hyperelliptic involution. If C is reducible, then τ is multiplication by
−1 on both components of C. Since τ is in the center of Aut(C), σ and σ′ commute
and 〈σ, σ′〉 has order 4. �

It is well known that a normal abelian cover X→Y , with X normal and Y

smooth projective and simply connected, can be reconstructed from its branch data,
i.e. from a certain decomposition of the branch divisor (cf. [Par91, §2], [AP12,
§ 1.2]). We explain this in the case at hand.

Choose points P1, P2 and distinct points Q1, Q2, Q3∈P1 that are also distinct
from P1 and P2 (P1 and P2 are allowed to coincide). Let π : C→P1 be the bidouble
cover branched on D1=P2, D2=P1 and D3=Q1+Q2+Q3, denote by G the Galois
group of π and by σ∈G (resp. σ′ and τ) the involution the fixes the preimage of
D1 (resp. D2, D3). Assume first that P1 	=P2; in this case C is a smooth curve of
genus two and for i=1, 2 the quotients E=C/σ and E′=C/σ′ are smooth curves
of genus 1. The involution τ has 6 fixed points and therefore is the hyperelliptic
involution.

If P1=P2, then C has a node over P1=P2 and the normalization is the bidou-
ble cover of P1 with branch divisors D1=D2=0 and D3=P1+Q1+Q2+Q3. So C

is reducible and has two components, both isomorphic to the double cover of P1

branched on P1+Q1+Q2+Q3.
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This construction is related to the construction given in Proposition 2.3 as
follows.

Let π : C→P1 be as above, with C smooth, and take the preimage of P1 as
the origin 0∈E and the preimage of P2 as the origin 0′∈E′. Denote by A1, A2, A3
(resp. by B1, B2, B3) the preimages of Q1, Q2, Q3 in E (resp. in E′). Then the
nonzero elements of E[2] (resp. E′[2]) are ηi :=Ai−0 (resp. η′i :=Bi−0′), i=1, 2, 3);
we define α : E[2]→E′[2] as the isomorphism that maps ηi→η′i.

We claim that the bi-elliptic structure on C is obtained via the Frey-Kani
construction with the above choice of α, i.e., the kernel of the pull-back map h′∗ : E×
E′→J :=J(C) is the graph Hα of α.

Indeed, since the kernel Γ of the pull-back map has order 4, it is enough to
show that Hα is in contained in Γ. In addition one has f∗Ai=f ′∗Bi for i=1, 2, 3,
hence we only need to show that f∗0 and f ′∗0′ are linearly equivalent. The divisor
f∗0 is the ramification divisor of f ′, hence f∗0≡KC ; the same argument shows that
f ′∗0′≡KC and we are done.

The case C reducible is obvious.

Remark 2.6. For tri-elliptic curves one can apply the general theory of triple
covers [Mir85] to deduce the following result [FPR17, Lemma 2.8]: a stable curve C

of genus two admits a tri-elliptic map C→E such that C embeds into the symmetric
square of E as a tri-section of the Albanese map S2E→E.

Note, however, that a tri-elliptic map C→E cannot be a cyclic cover, since
by the Hurwitz formula it would be ramified over precisely one point and this is
impossible, for instance, by [Par91, Proposition 2.1] (more generally, in [Kani03] it
is proven that the Galois group of a map C→E of degree d>2 is trivial). So there
is no elementary description of C just in terms of the ramification divisor.

Finally, notice that the genus two curve C and the degree d map f : C→E can
be constructed as the fibre product of two covers of P1 (cf. the discussion of [FK09,
Section 2.2]).

3. (d, d′)-elliptic curves of genus two

We consider stable curves of genus two admitting two distinct maps to elliptic
curves.

3.1. (d, d′)-elliptic curves and configurations

Definition 3.1. Let C be a stable curve of genus two. A (d, d′)-elliptic config-
uration (C, f, g) is a diagram
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(3)
C

E D
d:1

f g

d′:1
,

where f is a d-elliptic map and g is a d′-elliptic map such that there is no isomor-
phism ψ : E→D such that g=ψ¨f . We refer to C as to a (d, d′)-elliptic curve (of
genus two).

An isomorphism of (d, d′)-elliptic configurations is an isomorphism of diagrams
like (3).

Lemma 3.2. Let C be a d-elliptic stable curve of genus two, and let f : C→E

be the d-elliptic map. Then C is one of the following:

(i) a smooth curve of genus 2
(ii) the union of two elliptic curves equipped with isogenies of degrees d1, d2

onto E, where d=d1+d2
(iii) a curve with one node, such that the induced map ψ : Cν→E is a degree

d isogeny (Cν being the normalization); C is obtained from Cν by gluing the origin

to a point P that generates kerψ.
In case (iii) the d-elliptic structure on C is unique and for d′ 	=d there is no

d′-elliptic structures on C.

Proof. Let f : C→E be the d-elliptic map.
The curve C cannot have rational components, nor more than one singular

point, since it has a finite map onto an elliptic curve, hence the only possibilities
for C are as in (i), (ii) and (iii).

To prove the last statement, assume by contradiction that there exists another
d′-elliptic structure g : C→D, let Cν→C be the normalization map and denote
by ψ1 : Cν→E (resp. ψ2 : Cν→D) the map of degree d (resp. d′) induced by f

(resp. g). With a suitable choice of the origins in E and D we can assume that ψ1
and ψ2 are isogenies.

Since ψ1 and ψ2 factor through Cν→C, P belongs to kerψ1∩kerψ2 and for
i=1, 2 ψi factors through the étale covers Cν/〈P 〉→E and Cν/〈P 〉→D. It fol-
lows that f and g also factor through Cν/〈P 〉→E and Cν/〈P 〉→D hence, by the
definition of d-elliptic curve, it follows that Cν/〈P 〉→E and Cν/〈P 〉→D are iso-
morphisms, hence d′=d and the two d-elliptic structures differ by an isomorphism
E→D, a contradiction. �

Remark 3.3. The above lemma can be seen as a special case of the analy-
sis of moduli functors of normalized genus two covers of elliptic curves and their
compactification given in [FK09].
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As an immediate consequence of Lemma 3.2 we obtain the following

Corollary 3.4. If C is a (d, d′)-elliptic stable curve of genus two, then it is of

compact type.

Remark 3.5. By the Frey-Kani construction given in §2, if C is of compact type
and has a d-elliptic map f : C→E then, if we denote f ′ : C→E′ the complementary
d-elliptic map, (C, f, f ′) is a (d, d)-elliptic configuration. We refer to this as to the
trivial (d, d)-elliptic configuration.

3.2. Existence of (d, d′)-elliptic curves

Frey and Kani in [FK09, Section 6.1] developed a method to construct d-elliptic
curves via isogenies E→E′, obtaining a genus two curve C such that J(C)∼=E×E′

(see also [Frey95]).
Here we use an analogous construction to produce a (d, d′)-elliptic curve. We

start by giving the definition of twisting number, which turns out to be useful also
in the analysis of stable Godeaux surfaces given in [FPR17].

Assume we are given a (d, d′)-elliptic configuration as in (3), which is non-
trivial in the sense of Remark 3.5. Then both elliptic maps factor, up to isomor-
phism, through the Abel-Jacobi map of C and are thus uniquely determined by the
subgroups ker f∗ and ker g∗.

Definition 3.6. For a given (d, d′)-elliptic configuration (C, f, g) we denote ¸F=
ker g∗ and ¸E′=ker f∗ and we define the twisting number of (C, f, g) as

m=m(C, f, g) :=¸F¸E′ =deg(¸F×¸E′ −→ J(C))

Even if the above definition is symmetric with respect to f and g we view it via
the Frey-Kani construction applied to the d-elliptic map given by f , i.e., we extend
diagram (1) to the following commutative diagram

(4)

F ¸F

E×E′ J(C) E×E′ E

D

(ϕ,ϕ′)

hF

m:1

h h′

g∗

,

where ¸FΘ=d′ (Θ denoting the principal polarization), F is the connected compo-
nent of h−1¸F containing the origin and ϕ, ϕ′ are the isogenies induced by the two
projections of E×E′.
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Remark 3.7. A genus two curve of compact type has a d-elliptic structure if
and only if its Jacobian J contains a connected 1-dimensional subgroup ¸E′ such
that ¸E′Θ=d.

Therefore a d-elliptic curve C has a (d, d′)-elliptic structure if and only if J

contains a second connected 1-dimensional subgroup ¸F such that ¸FΘ=d′ and ¸F 	=
¸E′. So, except in the case of a trivial (d, d)-structure (cf. Remark 3.5), the Jacobian
of a (d, d′)-elliptic curve of genus two contains at least three, hence infinitely many,
connected 1-dimensional subgroups. In particular the curve C has infinitely many
elliptic structures, and the curves E and E′ are isogenous. This is a classical theorem
of Bolza and Picard (see e.g. [Krazer]).

Since the map h′
¨h is the multiplication by d, diagram (4) yields the following

equalities

(5) m=m(C, f, g) :=¸F¸E′ =¸F ker f∗ =deg(¸F −→E)= d2 degϕ
deg hF

.

Remark 3.8. One has m>0, by the definition of (d, d′)-elliptic curve.
Denote by ¸E the kernel of f ′

∗ : J→E′, where f ′ is the complementary map of f .
Then by the Frey-Kani construction we have Θ= ¸E+¸E′

d , hence dd′=d¸FΘ=m+¸F¸E.
It follows that m≤dd′, with equality holding if and only if ¸F¸E=0, namely if we are
in the trivial case g=f ′.

Moreover, we have

d(deg(ϕ)+deg(ϕ′))=deg(hF )d′.

We first provide three examples that fit into this general pattern and then
prove that when d is a prime these cover all possibilities for non trivial elliptic
configurations.

Example 3.9. Let d, d′ be integers. Let F be an elliptic curve and let ϕ : F→E

and ϕ′ : F→E′ be isogenies such that:
– kerϕ∩kerϕ′={0}, hence (ϕ,ϕ′) : F→E×E′ is injective;
– degϕ+degϕ′=dd′, and d and degϕ are coprime.
We abuse notation and denote again by F the image of (ϕ,ϕ′). The subgroup

H :=F [d]⊂(E×E′)[d] satisfies H∩E=H∩E′={0}, since EF=degϕ′ and E′F=
degϕ are coprime to d. Hence H is the graph of an isomorphism E[d]→E′[d].
The polarization d(E×{0}+{0}×E′) restricts on F to a divisor of degree d2d′,
which therefore is a pull back via the map F→F defined by multiplication by d.
By the functorial properties of the Weil pairing (see statement (1) of [Mum74,
Chapter IV, §23, p.228]) it follows that F [d] is an isotropic subspace of (E×E′)[d].
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Let A=(E×E′)/H and let Θ be the principal polarization of A (see Propo-
sition 2.3). Denote by ¸F be the image of F in A: then we have d2¸FΘ=dF (E×
{0}+{0}×E′)=d2d′, namely ¸FΘ=d′. By Remark 3.7 we obtain a (d, d′)-elliptic
configuration with twisting number m=d2 degϕ

deghF
=degϕ (cf. (5)).

Remark 3.10. The above example is closely connected with the construction of
covers induced by isogenies (see [FK09]).

To see the connection, let ϕt : E→F denote the dual isogeny and set ϕ̃:=ϕ′
¨

ϕt : E→E′. Fix an integer z∈Z such that z degϕ≡1 mod d (which exists by our
hypothesis). Then

F [d] = Graph(zϕ̃|E[d]),

and so the anti-symplectic isomorphism is induced by the isogeny zϕ̃. It thus follows
from [FK09, Proposition 6.2] (see also [DF08]) that J(C)∼=E×E′ as abelian surfaces
(but not as principally polarized abelian varieties). The existence, structure, and
moduli of such Jacobians was studied in detail in [Kani16].

In the next two examples, we will focus on the case where d is a prime number.

Example 3.11. Let d, d′ be integers and assume that d is a prime. Let F be an
elliptic curve and let ϕ : F→E and ϕ′ : F→E′ be isogenies such that:

– kerϕ∩kerϕ′={0};
– degϕ+degϕ′=d′;
– F [d] 	⊂kerϕ and F [d] 	⊂kerϕ′.
Under the above conditions, it is possible to find an antisymplectic isomorphism

α : E[d]→E′[d] such that Hα∩F has order d, where Hα is the graph of α. This
follows because by our assumptions there exists 0 	=v∈F [d] such that v /∈kerϕ∪
kerϕ′. Moreover, since the Weil pairing of a product is given by the product of
the Weil pairings (see statement (2) of [Mum74, Chapter IV, §23, p.228]), the
annihilator W of v in (E×E′)[d] does not contain E[d]×{0} nor {0}×E′[d]. The
linear subspace W is three dimensional, hence P(W ) is a projective plane over
Fd. Now consider in P(W ) the pencil F of lines through [v]: since F consists
of d+1 lines, if d>2 there is at least a line l∈F that does not intersect the lines
r :=P(E[d]×{0}) and s:=P({0}×E′[d]) and distinct from t:=P(F [d]). The subspace
of (E×E′)[d] corresponding to l is the graph of an isomorphism α : E[d]→E′[d]
and is also isotropic, hence α is anti-symplectic. For d=2, any isomorphism α is
antisymplectic, hence it is enough to find a line in P((E×E′)[2]) that contains [v],
which is distinct from t and does not intersect r and s. An elementary geometrical
argument shows that there exist two lines with this property.

Therefore, we can consider A:=(E×E′)/Hα and the principal polarization Θ
of A (cf. Proposition 2.3). Again, we denote by ¸F the image of F in A, obtaining
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d2¸FΘ=dF (d(E×{0}+{0}×E′))=d2d′, namely ¸FΘ=d′, i.e. by Remark 3.7 we get
a (d, d′)-elliptic configuration. In this case by (5) we have m=d2 degϕ

deghF
=ddegϕ.

Example 3.12. Let d, d′ be integers such that d is a prime and d′ is divisible
by d. Write d′=dδ and let F be an elliptic curve with ϕ : F→E and ϕ′ : F→E′

isogenies such that:
– kerϕ∩kerϕ′={0};
– degϕ+degϕ′=δ;

We look for an antisymplectic isomorphism α : E[d]→E′[d] such that Hα∩F={0},
Hα being the graph of α.

To see that such α exists we argue as follows. As in Example 3.11, we identify
2-dimensional subspaces of (E×E′)[d] with lines in P3(Fd):=P((E×E′)[d]). We
have seen in Example 3.11 that there are d+1 isotropic lines through any point,
hence there exist (d+1)(d2+1) isotropic lines.

The isotropic lines meeting a given line are d(d+1)+1 or (d+1)2, according
to whether the line is isotropic or not. Set r :=P(E[d]×{0}), s:=P({0}×E′[d]) and
t=P(F [d]); note that r and s are not isotropic. Hence there are at most 3(d+1)2
isotropic lines meeting r∪s∪t. However, all the lines joining a point of r and a point
of s are isotropic hence, by subtracting these lines (that we had counted twice) we
get the better upper estimate 2(d+1)2 for the number of isotropic lines meeting
r∪s∪t. For d≥3 this shows the existence of the isotropic subspace Hα that we are
looking for, since (d+1)(d2+1)−2(d+1)2=(d+1)(d2−2d−1)>0.

For d=2, we need only find a line that is disjoint from r∪t∪s. We observe
that P3(F2) contains 35 lines, that the lines intersecting a given line are 19, that
the lines meeting two given skew lines are 9 and the lines meeting three mutually
skew lines are 3.

If degϕ and degϕ′ are odd, then the three lines r, s and t are mutually skew:
then the set of lines meeting at least one of these consists of 3·19−3·9+3=33 lines,
hence there are 2 possibilities for Hα.

Now assume that both degϕ and degϕ′ are even. In this case, t meets both
r and s. The number of lines intersecting r∪t is equal to 7+7−3=11, since there
are 7 lines in plane spanned by r and t, there are 7 lines passing through r∩t, and
3 lines common to these two sets. An analogous argument shows that there are
3+3−1=5 lines meeting t, r and s. So the number of lines intersecting r∪t∪s is
equal to 3·19−9−2·11+5=31, so there are 4 possibilities for Hα.

Finally we consider the case where degϕ is even and degϕ′ is odd. There are
two possibilities: either r=t or r and t are coplanar but distinct. In the former
case, the number of lines meeting r∪t∪s=r∪s is equal to 2·19−9=29, so there are
6 possibilities for Hα. In the latter case, the number of lines meeting r∪t∪s is equal
to 3·19−2·9−11+5=33, so there are 2 possibilities for Hα.
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Taking A:=(E×E′)/Hα and Θ the principal polarization of A (cf. Proposi-
tion 2.3) and denoting by ¸F the image of F in A, we get d2¸FΘ=d2F (d(E×{0}+
{0}×E′))=d2d′, namely ¸FΘ=d′, i.e. by Remark 3.7 we get a (d, d′)-elliptic config-
uration. In this case (5) yields m=d2 degϕ

deghF
=d2 degϕ.

The above examples yield the following existence result.

Theorem 3.13. Let d, d′>1 and 0<m<dd′ be integers and let F be an elliptic

curve. There exists a stable genus two curve C and a non trivial (d, d′)-elliptic
configuration with twisting number m

C

E D
d:1

f g

d′:1

such that E and D are isogenous to F in the following cases:

(a) d and m are coprime

(b) d is a prime number.

Proof. Case (a) can be obtained as in Example 3.9: it suffices to take Γ, Γ′

finite subgroups of F of orders m and dd′−m, respectively, such that Γ∩Γ′={0}
and let ϕ : F→E :=F/Γ and ϕ′ : F→E′ :=F/Γ′ be the quotient maps.

Assume now that d is a prime. Since we have already proven existence in case
(a), it is enough to consider the case when m=td is divisible by d. We choose Γ,
Γ′ finite cyclic subgroups of F of orders t, d′−t respectively, such that Γ∩Γ′={0},
we let ϕ : F→E :=F/Γ and ϕ′ : F→E′ :=F/Γ be the quotient maps and we use the
construction of Example 3.11. �

Conversely, we have the following

Theorem 3.14. Let d be a prime and let d′ be a positive integer. Let C

be a stable curve of genus two and let (C, f, g) be a non-trivial (cf. Remark 3.5)

(d, d′)-elliptic configuration

C

E D
d:1

f g

d′:1
.

Denote by ¸E′ (resp. ¸F ) the kernel of f∗ : J=J(C)→E (resp. g∗ : J→D) and let

m=¸E′¸F be the twisting number as in (5). Then
(i) the (d, d′)-elliptic configuration arises as in Example 3.9, or 3.11, or 3.12,

with 1≤m≤dd′−1;
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(ii) the case of Example 3.12 can occur only if d divides d′ and d2 divides m;

(iii) the case of Example 3.9 occurs if and only if m is not divisible by d.

Proof. By Remark 3.8 we have 1≤m≤dd′, and m=dd′ holds only in the trivial
case g=f ′. Therefore, by our assumptions, it is 1≤m≤dd′−1.

We use freely the notation of §3.2 and diagram 4 and we denote by ϕ : F→
E and ϕ′ : F→E′ the isogenies induced by the two projections of E×E′. Note
that kerϕ∩kerϕ′={0} by construction. The pull-back h∗¸F⊂E×E′ is algebraically
equivalent to νF for some integer ν∈{1, d, d2} (one has d2=ν|H∩F |). We have
d2m=d2¸F¸E′=νF (d2({0}×E′)), i.e., m=νF ({0}×E′)=ν degϕ. In the same way,
one obtains dd′−m=νF (E×{0})=ν degϕ′. In particular, ν=1 if m is not divisible
by d.

Consider the case ν=1, i.e., H=F [d]. In this case, the map E×E′→J(C)
induces a degree d2 isogeny F→¸F∼=F , the degree of ϕ is equal to m and the degree
of ϕ′ is equal to dd′−m. Since H, being a graph, intersects E×{0} and {0}×E′

only in 0, it follows that m, which is equal to the order of ({0}×E′)∩F , is prime to
d, and the same is true for degϕ′=dd′−m. So, C is constructed as in Example 3.9.

Next, assume that ν=d, i.e. H∩F has order d. In this case, one has m=ddegϕ
and degϕ+degϕ′=d′. Since H∩F has order d and H is a graph, it follows that
F [d] 	⊂kerϕ and F [d] 	⊂kerϕ′, hence C is constructed as in Example 3.11.

Finally, consider the case ν=d2. In this case, one has m=d2 degϕ and d′=
d(degϕ+degϕ′), hence C is constructed as in Example 3.12. �

3.3. Existence of smooth (d, d′)-elliptic curves

First of all, let us recall that an irreducible (d, d′)-elliptic curve is smooth by
Corollary 3.4.

By Lemma 2.4, for d=2 a necessary condition for the irreducibility of the
genus two curve C constructed as in Proposition 2.3 is that the curves E and E′ are
isomorphic, hence if E does not have complex multiplication then the constructions
of Examples 3.9, 3.11 and 3.12 yield examples of smooth (2, d′)-elliptic curves of
genus two for every d′>2.

In general, it is not clear whether the constructions of Examples 3.9, 3.11
and 3.12 give rise to irreducible, hence smooth, curves. We are able to settle this
point at least in a special case:

Proposition 3.15. Let d≥2, d′≥3 be integers; let E be an elliptic curve with-

out complex multiplication, ξ∈E an element of order r :=dd′−1, and ϕ′ : E→E′ :=
E/〈ξ〉 the quotient map.
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Then the (d, d′)-elliptic genus two curve constructed as in Example 3.9 with

F=E, ϕ=IdE and ϕ′ as above is smooth.

As an immediate consequence we obtain:

Corollary 3.16. For every pair of integers d, d′>1 there exists a smooth

(d, d′)-elliptic curve of genus two with twisting number m=1.

Proof. For d=d′=2 the claim follows by Lemma 2.4, for instance by using the
construction of Example 3.9, and by Proposition 3.15 in the remaining cases. �

Remark 3.17. The above results are strictly related with the theory developed
by Kani in [Kani16]. Arguing as in Remark 3.10, we have J(C)∼=E×E′ and there-
fore the problem of finding a smooth (d, d′)-elliptic curve of genus two becomes the
problem of finding a smooth genus two curves lying on E×E′.

By the irreducibility criterion (cf. [Kani16, Proposition 6]), such a curve does
exist if and only if the refined Humbert invariant never takes the value 1 (see
[Kani14] for the definition and main properties), and in the situation of Proposi-
tion 3.15 one can deduce that this is the case (one can compute the refined Humbert
invariant via [Kani16, Proposition 29]).

Before giving the proof of Proposition 3.15 we recall a well known fact, for
which we give a proof due to the lack of a suitable reference.

Lemma 3.18. Let E be an elliptic curve without complex multiplication.

Then the connected 1-dimensional subgroups of E×E distinct from E×{0} and

{0}×E are of the form {(ax, bx) | x∈E}, with a, b coprime integers.

Proof. Let G be such a subgroup, and denote by ψi : G→E, i=1, 2 the isogenies
induced by the two projections. Note that kerψ1∩kerψ2={0}. If G is isomorphic
to E, then the ψi are multiplication maps and G is of the form {(ax, bx) | x∈E}
for some pair of coprime integers a, b. So assume that G and E are not isomorphic
and consider an isogeny χ : E→G. Since χ is not a multiplication map, there
exists an integer k and elements u, v∈E[k] such that χ(u)=0 and χ(v)=v′ 	=0. Now
consider the maps μi :=ψi¨χ : E→E, which are multiplication maps by integer ti,
i=1, 2. Both t1 and t2 are divisible by k, since for i=1, 2 we have μi(u)=0, hence
ψi(v′)=μi(v)=0 and so v′=0, a contradiction. �

Proof of Proposition 3.15. Denote by Ξ the product polarization on E×E′.
Set H :={(η, ϕ′(η))|η∈E[d]} and let h : E×E′→A:=(E×E′)/H be the quotient
map.

We argue by contradiction, so assume that the principal polarization of A

induced by dΞ is reducible and denote it by C=C1+C2, where C1 and C2 are
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smooth elliptic curves meeting transversally in a unique point. Up to a translation
we may assume that the singular point of C is the origin of A. Let C̃i be the
connected component of the preimage of Ci containing the origin of E×E′, i=1, 2,
so that h∗Ci is numerically equivalent to νiC̃i for a positive integer νi. One has

(6) d2 = νi|H∩C̃i| and d

νi
= C̃iΞ∈Z.

By Lemma 3.18 the connected 1-dimensional subgroups of E×E′ distinct from
E×{0} and {0}×E′ are of the form Da,b :={(ax, bϕ′(x)) | x∈E} with a, b coprime
integers.

Since Da,b=D−a,−b, we may always assume a≥0.
Notice that the kernel of the induced map E→Da,b is the cyclic subgroup of

〈ξ〉 of order δ :=g.c.d.(a, r). Using this observation one computes:

(7) Da,b({0}×E′)= a2

δ
, Da,b(E×{0})= b2r

δ
, Da,bD1,1 =(b−a)2 r

δ
.

For i=1, 2, let ai, bi∈Z be such that C̃i=Dai,bi , with ai≥0; set δi=g.c.d.(ai, r). We
will now derive a contradiction using intersection numbers.

Step 1. We have ai>0. Indeed if ai=0 we have C̃iΞ=1 and |H∩C̃i|=1, so
(6) gives d=νi and νi=d2, against our assumptions.

Step 2. We show (ai, bi) 	=(1, 1). Indeed, assuming C̃i=D1,1 (6) gives

d

νi
= C̃iΞ =D1,1Ξ=1+r= dd′,

which is impossible since d′>1. In particular, since ai and bi are coprime, we have
ai 	=bi.

Step 3. From the above steps we derive two inequalities and a divisibility
property which will lead to a contradiction.

First of all we have, for i=1, 2,

(8) d|νi(ai−bi).

Indeed, since D1,1∩C̃i is a subgroup containing H∩C̃i we have that C̃iD1,1=(bi−
ai)2 r

δi
is divisible by d2

νi
, hence (bi−ai)2 is divisible by d2

νi
, since r

δi
is an integer

prime to d. So ν2
i (bi−ai)2 is divisible by d2, and therefore νi(ai−bi) is divisible

by d.
Secondly, by (7) we have d=(ν1C̃1+ν2C̃2)({0}×E′)=ν1a1

a1
δ1

+ν2a2
a2
δ2

and d=
(ν1C̃1+ν2C̃2)(E×{0})=ν1b

2
1

r
δ1

+ν2b
2
2

r
δ2

. In particular, we have

(9) ν1a1+ν2a2 ≤ d, d′(ν1b
2
1+ν2b

2
2)≤ d,

since r
δi

is an integer and r
δi
≥d′ d

ai
−1>d′−1.
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Step 4. We cannot have bi>0. Indeed, in this case, since 0≤νiai, νibi<d by
(9) and d divides the difference νiai−νibi by (8), then we necessarily have ai=bi
contradicting Step 2.

Step 5. We cannot have bi≤0. Indeed the same argument as in the previous
step shows that we would necessarily have νibi=νiai−d for i=1, 2. By (9) we may
assume, say, ν1a1≤ d

2 and thus by the above equality ν1|b1|=−ν1b1≥ d
2 . Then (9)

gives:

d≥ d′ν1b
2
1 ≥ |b1|

dd′

2 ,

a contradiction since d′>2.
Combining the last two steps we arrive at a contradiction and have thus proved that
the polarisation is irreducible and hence is a smooth (d, d′)-elliptic curve of genus
two. �

4. bi-tri-elliptic curves

For the applications to the classification of Gorenstein stable Godeaux surfaces
the case of bi-tri-elliptic configurations is of particular interest. In this section we
first formulate Theorem 3.14 in this case and then analyse reducible bi-tri-elliptic
curves in more detail.

Indeed, by Theorem 3.14 we have the following characterization of bi-tri-elliptic
configurations.

Corollary 4.1. Let (C, f, g) be a bi-tri-elliptic configuration on a stable curve

of arithmetic genus two. Then the twisting number m defined in (5) satisfies 1≤
m≤5 and there are the following possibilities:

(a) m is odd and the configuration arises as in Example 3.9 with degϕ=m;

(b) m=2μ is even and the configuration arises as in Example 3.11 with

degϕ=μ.

Remark 4.2. Counting parameters we see that the space of bi-tri-elliptic con-
figurations is one-dimensional, but we did not consider its finer structure, e.g., the
number of irreducible or connected components.

Note that the image in the moduli space A2 of principally polarized abelian
varieties of these configurations is given by the intersection of the Humbert surfaces
H4 and H9 (see e.g. [HKW93]).

Now let us consider an elliptic curve E with a degree 2 endomorphism ψ : E→E

and let C∼=E∪0E i.e., C is given by two copies of E meeting transversally at the
origin. Then we can build a natural bi-tri-elliptic configuration
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(10)
E∪0E

E E
2:1

f=id∪id g=id∪ψ

3:1
.

We will now show that every bi-tri-elliptic configuration (C, f, g) with C reducible
is of this form. Indeed, by Lemma 2.4 the bi-elliptic map f on the reducible curve
C is isomorphic to the composition of horizontal arrows in the diagram

¸F

C=E×{0}∪{0}×E E×E E

D

g

+ ,

and the tri-elliptic map is uniquely determined by the subgroup ¸F . Note that the
covering involution of f exchanges the components of C.

We have ¸FC=3 and without changing f we can assume that ¸F ({0}×E)=1 and
¸F (E×{0})=2. In other words, ¸F is the graph of a degree 2 endomorphism ψ : E→E

and E×{0} is identified with the second elliptic curve D by the restriction of g.
Therefore, the bi-tri-elliptic configurations is as in (10).

An isomorphism from (C, f, g) to another bi-tri-elliptic configuration (C̃=Ẽ∪0
Ẽ, f̃ , g̃) such that f̃ is the identity on each component of C̃ is uniquely determined
by an isomorphism E∼=Ẽ and thus we have proved the first part of the following

Proposition 4.3. The above construction induces a bijection on the set of iso

morphism-classes of bi-tri-elliptic configurations (C, f, g) with C a reducible stable

curve of genus two and the set {(E,ψ)} of elliptic curves together with an endo-

morphism of degree 2.
For every 1≤m≤5 there are exactly two such pairs (E,ψ), which are listed in

Table 1, thus in total there are 10 isomorphism classes of bi-tri-elliptic configurations

with C a reducible stable curve of genus two.

Table 1. Endomorphisms of degree 2 on elliptic curves.

E=C/Γ Γ=End(E) ξ m

E1 Z [i] −1±i 1
1±i 5

E2 Z

[
i
√

2
]

±i
√

2 3

E3 Z

[
1
2 (1+i

√
7)

] − 1
2 (1±i

√
7) 2

1
2 (1±i

√
7) 4
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Proof. We need to recall some elementary facts about endomorphisms of elliptic
curves. Details can be found for example in [Sil09, Chapter 11] or [Sil94, Chapter II].
Any endomorphism ψ of an elliptic curve E is given by multiplication by a complex
number ξ and this embeds EndE↪→C as an order in an imaginary quadratic number
field K∼=End(E)⊗Q.

Moreover, the degree of the endomorphism ψ coincides with the norm NK/Q(ξ).
Thus elements inducing an endomorphism of degree 2 are characterised as those
ξ∈C\R that are integral over Z with characteristic polynomial

pξ(t)= t2−traceK/Q(ξ)t+NK/Q(ξ)= t2−2Re(ξ)t+2∈Z[t].

This gives exactly the elements listed in Table 1 and each one of them is contained
in a unique maximal order by [Sil09, Example 11.3.1] (see also [Sil94, Proposi-
tion 2.3.1]).

It remains to compute the invariant m, which is in our case the intersection
of Γψ=¸F⊂E×E with the kernel of the addition map, that is, the anti-diagonal.
Thus m equals the number of fixed points of the endomorphism −ψ, which by the
Lefschetz fixed-point formula [GH78, Chapter 3.4] gives

m=
2∑

i=0
(−1)itrace

(
−ψ∗|Hi(E,Q)

)
=1−traceK/Q(−ξ)+NK/Q(−ξ)= pξ(−1),

because every fixed point of ψ is simple. �
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