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Uniformly local spaces and refinements of the
classical Sobolev embedding theorems

Patrick J. Rabier

Abstract. We prove that if f is a distribution on RN with N>1 and if ∂jf∈Lpj ,σj ∩LN,1
uloc

with 1≤pj≤N and σj=1 when pj=1 or N, then f is bounded, continuous and has a finite constant
radial limit at infinity. Here, Lp,σ is the classical Lorentz space and Lp,σ

uloc is a “uniformly local”
subspace of Lp,σ

loc larger than Lp,σ when p<∞.

We also show that f∈BUC if, in addition, ∂jf∈Lpj ,σj ∩Lq
uloc with q>N whenever pj<N

and that, if so, the limit of f at infinity is uniform if the pj are suitably distributed. Only a few
special cases have been considered in the literature, under much more restrictive assumptions that
do not involve uniformly local spaces (pj=N and f vanishing at infinity, or ∂jf∈Lp∩Lq with
p<N<q).

Various similar results hold under integrability conditions on the higher order derivatives
of f. All of them are applicable to g∗f with g∈L1 and f as above, or under weaker assumptions
on f and stronger ones on g. When g is a Bessel kernel, the results are provably optimal in some
cases.

1. Introduction

All the function spaces with unspecified domain are over R
N and differenti-

ations are understood in the sense of distributions. If f∈D′ (distributions) and
∇f∈(Lp)N , then f is uniformly continuous if p>N and f∈BUC (bounded uni-
formly continuous functions) if N=p=1, but no restriction on p implies that f is
bounded when N>1.

The general purpose of this paper is to discuss conditions on ∇f and, possibly,
on the higher order derivatives of f (but not on f) that imply f∈Cb (bounded
continuous functions) or f∈BUC when N>1. These conditions also imply that f
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has a finite constant limit at infinity, be that uniform or in a weaker radial sense.
This yields new Sobolev embedding theorems in cases when the classical ones do
not already ensure the continuity of f, for instance when ∇f∈(Lp)N with p≤N, but
also in the anisotropic setting when the partial derivatives of f belong to different
Lorentz spaces.

Throughout the paper, we assume without loss of generality that

the representatives of L1
loc functions are always chosen so that they(1.1)

coincide with the limit of their Lebesgue averages at every Lebesgue point.

In particular, if every point of f is a Lebesgue point, there is only one representative
of f complying with (1.1), which is identified with f. This will make it unnecessary
to qualify properties “after modifying f on a set of measure 0”.

The main result—insofar as everything else depends on it—is part (i) of the
following theorem, but part (ii) will be the starting point of the discussion. The
notation LN,1 refers to the classical Lorentz space.

Theorem 1.1. (i) If ∇f∈(L1
loc)N and |x|1−N ∗|∇f |∈L∞, then:

(i-1) (|x|1−N ∗|∇f |)(z)≤‖ |x|1−N ∗|∇f | ‖∞ for every z∈RN .

(i-2) f∈W 1,1
loc and every z∈RN is a Lebesgue point of f (hence, by (1.1), f is uniquely

determined).

(i-3) f∈L∞ and there is a constant C>0 independent of f such that

(1.2) sup |f |= ‖f‖∞ ≤ inf |f |+C‖ |x|1−N ∗|∇f | ‖∞.

(ii) If ∇f∈(LN,1)N , then f∈BUC and there is a constant C>0 independent of

f such that ‖f‖∞≤inf |f |+C‖∇f‖N,1.

As a result of (i-2), f is approximately continuous, that is, continuous when R
N

is equipped with the density topology (the open subsets are ∅ and the measurable
subsets with density 1 at each point), but this will not be used later.

Part (ii) of Theorem 1.1 is essentially a special case of part (i), but not the
only useful one. A related result by Cianchi and Pick [4, Theorem 3.5 (ii)] states
that if Ω⊂R

N is an open subset of finite measure satisfying a technical geometric
condition and if ∇f∈(LN,1(Ω))N , then f∈L∞(Ω). However, Ω must actually be
bounded, for otherwise f(x)=(1+|x|2)1/2, with gradient in L∞(Ω)⊂LN,1(Ω) when
Ω has finite measure, is a counter-example.

In turn, if Ω is bounded and functions with gradient in LN,1(Ω) have extensions
to R

N with gradient in LN,1 (for instance if Ω has a Lipschitz boundary), then f∈
C(Ω)⊂L∞(Ω) also follows from Stein’s remark in [26] that functions with gradient
in LN,1

loc are continuous (and a.e. differentiable). This does not prove that f is
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bounded or uniformly continuous when Ω=R
N , although this follows from Tartar

[28, Theorem 8 and Remark 9] under the additional assumption that f “vanishes at
infinity”, i.e., |{x∈RN :|f(x)|>a}|<∞ for every a>0 ([13]). By Theorem 1.1 (ii),
this additional assumption is not needed.

If 1≤p<N<q≤∞, then Lp∩Lq⊂LN,1 and so, by Theorem 1.1 (ii), f∈BUC if
∇f∈(Lp∩Lq)N . This is implicit in Galdi [9, p. 80], who shows that f (continuous
since q>N) has a uniform finite constant limit at infinity. As we shall see, this
remains true when N>1 and ∇f∈(LN,1)N (Theorem 3.7) and, in a weaker form,
even when it is only assumed that |x|1−N ∗|∇f |∈L∞ (Theorem 3.1).

An interesting by-product (see Theorem 3.10 for a fuller statement) is that if
N>1 and ∇Nf∈(L1)NN

, then f differs from a polynomial Pf of degree at most
N−1 by a BUC function tending uniformly to 0 at infinity. The proof shows how
Pf can be calculated. This is well-known, with Pf =0, when f∈WN,1 but trivially
false in general form when N=1 (if f ′∈L1, then lim|x|→∞ f(x) need not exist since
limx→±∞ f(x) need not be equal).

In Section 4, we turn our attention to the more general case when ∂jf∈Lpj ,σj

with 1≤pj≤N and σj=1 when pj=1 or N (and 1≤j≤N, which is always implicit in
the sequel). If so, f need not be bounded or continuous, even if σj=pj=p<N and
f∈W 1,p. Nevertheless, we prove the sharper form of Lusin’s theorem that f is con-
tinuous and bounded outside a set of arbitrarily small measure (Theorem 4.2 (i)) and,
later, that f is a finite sum of derivatives of bounded functions (Theorem 5.2 (i)).

A remark of greater consequence is that |x|1−N ∗|∇f |∈L∞ (so that Theo-
rem 1.1 (i) is applicable) if, in addition, ∂jf is locally in LN,1, albeit in a uniform
way. To clarify this statement, define the uniformly local Lorentz space

Lp,σ
uloc := {h∈Lp,σ

loc : sup
z∈RN

‖h‖p,σ,B1(z) <∞},

where B1(z) is the unit ball with center z. When σ=p, the spaces Lp
uloc=Lp,p

uloc were
first introduced by Kato [12] for different purposes.

A generalization of Theorem 1.1 (ii) asserts that if ∂jf∈Lpj ,σj∩LN,1
uloc with

1≤pj≤N and σj=1 if pj=1 or N, then f∈Cb and f has a constant radial limit at
infinity (Theorem 4.2 (ii)) and that f∈BUC if ∂jf∈Lpj ,σj ∩Lq

uloc for some q>N and
every j such that pj<N (Theorem 4.2 (iii)). Furthermore, the limit of f at infinity
is uniform if the pj are suitably distributed (Theorem 4.5). Both Theorem 1.1 (ii)
and Theorem 3.7 are recovered when pj=N. Anecdotally, the behavior at infinity of
Beppo-Levi functions (functions f with ∇kf∈(Lp)Nk for some k≥1 and variants)
has been discussed since the 1950s (Deny and Lions [5], Uspenskǐi [30], Fefferman
[8], Mizuta [16], Galdi [9], among others), but we are not aware of prior results for
the anisotropic case.
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Inasmuch as the UL spaces are linearly ordered by inclusion, it is fairly easy to
obtain generalizations when UL integrability conditions are now required of some
higher order partial derivatives of f instead of ∇f (Theorem 4.7). When these
conditions are expressed in terms of the Lebesgue spaces, direct proofs bypassing
UL spaces can only be given under very restrictive assumptions (Corollary 4.8 and
subsequent comments).

Lastly, in Section 5, we investigate the boundedness and continuity of g∗f
when g∈L1 or better and ∂jf∈Lpj ,σj , 1≤pj≤N and σj=1 if pj=1 or N, possibly
without UL integrability conditions (Theorem 5.2, Theorem 5.6, Theorem 5.7).
Since f need not belong to any Lp,σ, it is not obvious that g∗f is defined as a
distribution. This follows from results of Schwartz [24] and, rather unexpectedly,
Theorem 1.1. Theorem 5.6 also depends upon a partial generalization of Young’s
theorem, to the effect that g∗h∈Lp,σ

uloc if g∈L1 and h∈Lp,σ
uloc (Lemma 5.5). No such

generalization exists when g∈Lq with q>1.
When g=Gλ is a Bessel kernel (Example 5.3), the results can be corroborated

by the standard elliptic theory if λ=2k with k∈N and σj=pj=p>1 is independent
of j and, if so, they are provably optimal. To our best knowledge, they are new in
the other cases: p=1, or σj>p for some j, or pj distinct, or λ �=2k.

The assumption |x|1−N ∗|∇f |∈L∞ in Theorem 1.1 (i) may be viewed, albeit
not literally, as the “exponent 0” case of a condition introduced by the author in [22]
to discuss Hölder continuity beyond Morrey’s theorem. However, since the approach
of [22] breaks down when the Hölder exponent vanishes and since new issues arise,
key technicalities must be modified and other arguments must be developed.

Many results involve some Poincaré-Wirtinger inequality (classical, on the unit
sphere, in Lorentz spaces, in UL spaces, in anisotropic spaces). Proofs are given,
but stripped of the obvious recurrent details, when a convenient reference could not
be found.

It is notorious that distributions with locally integrable gradient are themselves
locally integrable ([15, p. 23]) and therefore functions in W 1,1

loc . This will henceforth
be used without further mention.

Throughout the paper, the notation is standard or defined as needed. The
euclidean open ball with radius r>0 centered at z∈RN is denoted Br(z) and ab-
breviated Br when z=0. The Lp norm on the (Lebesgue) measurable set E⊂RN

is denoted ‖·‖p,E and abbreviated ‖·‖p when E=R
N . Also, p′ always refers to

the Hölder conjugate of p (1/p′=1−1/p) and, if 1≤p<N, we set p∗ :=Np/(N−p).
Whether |·| refers to the euclidean norm or to the measure on R

N or S
N−1 will

always be obvious from the context.
Recall also that if E⊂R

N is measurable and h∈Lp,σ(E), the quasi-norm
‖h‖p,σ,E , abbreviated ‖h‖p,σ if E=R

N , is defined by
(∫∞

0 (t1/ph∗(t))σ dt/t
)1/σ if
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σ<∞ and by supt>0 t
1/ph∗(t) if σ=∞, where h∗ is the decreasing rearrangement

of h. The quasi-norm ‖·‖p,σ,E is a norm if σ≤p. As is customary, if F∈(Lp,σ(E))N ,

we set ‖F‖p,σ,E :=‖ |F | ‖p,σ,E . For all the pairs (p, σ) considered in this paper,
Lp,σ(E) is a Banach space for a norm equivalent to the quasi-norm ‖·‖p,σ,E , but
we shall not need its explicit definition. Further details can be found in [2], [3] and
many other standard texts.

Up to a constant multiple, the convolution with |x|λ−N , 0<λ<N is usually
referred to as the Riesz potential Iλ. Thus, the convolution with |x|1−N is essentially
the Riesz potential I1. This terminology will occasionally be used when making
reference to the literature.

2. Proof of Theorem 1.1

The starting point is the obvious remark that a function is bounded if (and
only if) its oscillation is bounded. The bulk of the proof consists in showing that
(a) on any subset S⊂R

N , the bounded oscillation property can be reduced to es-
timates for the averages |Bρ|−1 ∫

Bρ(z) |f(x)−f(z)| dx independent of z∈S and of
ρ>0 (Lemma 2.4) and that (b) these averages can be controlled, uniformly in ρ, by
a constant multiple of |x|1−N ∗|∇f | (Theorem 2.3). These features will be needed
in other proofs as well.

In what follows, L1
|x|1−N denotes the weighted Lebesgue space

(2.1) L1
|x|1−N := {h∈L1

loc : |x|1−Nh∈L1},

equipped with the natural norm ‖h‖1,|x|1−N :=‖ |x|1−Nh‖1. Since |x|1−N is an A1
weight (as is |x|δ when −N<δ≤0; the definition is unimportant here), the following
approximation lemma is a special case of Muckenhoupt and Wheeden [17, Lemma 8].
See also Turesson [29, Theorem 2.1.4].

Lemma 2.1. Suppose that η∈C∞
0 is a nonnegative and nonincreasing function

of |x| and that
∫
RN η=1. Set ηn(x):=nNη(nx). If h∈L1

|x|1−N , then ηn∗h∈L1
|x|1−N

and ηn∗h→h in L1
|x|1−N .

As is customary, we use the notation f(r, ω) for the expression of a function
f(x) in spherical coordinates, i.e., f(r, ω):=f(rω).

Lemma 2.2. If f∈L1
loc and ∇f∈(L1

|x|1−N )N , there is a constant c such that

(2.2) ‖f(r, ·)−c‖1,SN−1 ≤‖ |x|1−N |∇f | ‖1,Br ,

for every r>0.



414 Patrick J. Rabier

Proof. If N=1, then L1
|x|1−N =L1, so that f is absolutely continuous and (2.2)

holds with c=f(0). From now on, N>1.
Suppose first that f∈C∞. Then, f(r, ω)=f(0)+

∫ r

0 ∂rf(t, ω) dt, where ∂rf(x)=
∇f(x)·|x|−1x is the radial derivative of f. Since |∂rf(x)|≤|∇f(x)|, it follows that
‖f(r, ·)−f(0)‖1,SN−1≤

∫
SN−1 dω

∫ r

0 |∇f(r, ω)| dt=‖ |x|1−N |∇f | ‖1,Br . This proves
(2.2) with c=f(0).

In general, note that L1
|x|1−N ⊂L1

loc, so that f∈W 1,1
loc . As a result, the restriction

(trace) of f is defined in L1(rSN−1) for every r>0. Let ηn be the mollifying sequence
of Lemma 2.1. Then, fn :=ηn∗f∈C∞ tends to f in W 1,1

loc , so that fn tends to f in
L1(rSN−1). Equivalently, limn→∞ fn(r, ·)=f(r, ·) in L1(SN−1).

By Lemma 2.1, ∇fn=ηn∗∇f∈(L1
|x|1−N )N and so, from the above,

(2.3) ‖fn(r, ·)−fn(0)‖1,SN−1 ≤‖ |x|1−N |∇fn| ‖1,Br .

In particular,

|fn(0)‖SN−1| ≤ ‖fn(r, ·)‖1,SN−1 +‖ |x|1−N |∇fn| ‖1,Br .

The right-hand side is bounded since, as just noted, fn(r, ·)→f(r, ·) in L1(SN−1)
and since, by Lemma 2.1, ∇fn→∇f in (L1

|x|1−N )N (whence ‖ |x|1−N |∇fn| ‖1,Br→
‖ |x|1−N |∇f | ‖1,Br). Thus, the sequence fn(0) is bounded. After passing to a subse-
quence, we may assume limn→∞ fn(0)=c∈R and then (2.2) follows by letting n→∞
in (2.3). �

From the proof of Lemma 2.2, one should expect that 0 is a Lebesgue point of
f and that c=f(0). This is shown, in a more general form, in Theorem 2.3 below.

If f∈W 1,1
loc and z∈RN , the convolution (|x|1−N ∗|∇f |)(z)≥0 is unambiguously

defined (but possibly ∞) by
∫
RN |z−y|1−N |∇f(y)| dy=

∫
RN |y|1−N |∇f(z−y)| dy.

Theorem 2.3. If f∈W 1,1
loc and if z∈RN is such that (|x|1−N ∗|∇f |)(z)<∞,

then z is a Lebesgue point of f. Furthermore (recall (1.1)),

|Bρ|−1
∫
Bρ(z)

|f(x)−f(z)| dx ≤ |SN−1|−1‖ |x−z|1−N |∇f | ‖1,Bρ(z)(2.4)

≤ |SN−1|−1(|x|1−N ∗|∇f |)(z),

for every ρ>0.

Proof. After replacing f with fz :=f(·+z), we may and shall assume z=0. The
assumption (|x|1−N ∗|∇f |)(0)<∞ is exactly ∇f∈(L1

|x|1−N )N . Thus, by Lemma 2.2,
there is a constant c such that ‖f(r, ·)−c‖1,SN−1≤‖ |x|1−N∇f‖1,Br for every r>0.
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Fix ρ>0. Then, ‖f(r, ·)−c‖1,SN−1≤‖ |x|1−N∇f ‖1,Bρ when 0<r≤ρ, whence∫
Bρ

|f(x)−c| dx≤N−1ρN‖ |x|1−N∇f‖1,Bρ , that is

(2.5) |Bρ|−1
∫
Bρ

|f(x)−c| dx≤ |SN−1|−1‖ |x|1−N∇f‖1,Bρ .

Since the right-hand side tends to 0 as ρ→0, it follows that 0 is a Lebesgue point
of f and (by (1.1)) that c=f(0). Also, (2.4) (with z=0) follows from (2.5). �

By different arguments, it is shown in Ziemer [32, p. 115] that the Lebesgue av-
erages |Bρ|−1 ∫

Bρ(z) f(x) dx converge when (|x|1−N ∗|∇f |)(z)<∞, but this is weaker
than saying that z is a Lebesgue point of f.

The next main preliminary result is a simpler variant of [22, Theorem 2.1].

Lemma 2.4. Given f∈L1
loc, suppose that for some subset S⊂R

N there are

0<ρS≤∞ and a constant CS>0 such that

(2.6) |Bρ|−1
∫
Bρ(z)

|f(x)−f(z)| dx≤CS ,

for every z∈S and every 0<ρ<ρS . Then,

(2.7) |f(y)−f(z)| ≤ (1+2N )CS ,

for every y, z∈S with |y−z|<ρS/2.

Proof. Evidently, it suffices to prove (2.7) when y �=z. Let then y, z∈S be such
that 0<|y−z|<ρS/2. For every ρ>0,

|f(y)−f(z)| = |Bρ|−1
∫
Bρ(z)

|f(y)−f(z)| dx

≤ |Bρ|−1
∫
Bρ(z)

|f(x)−f(y)| dx+|Bρ|−1
∫
Bρ(z)

|f(x)−f(z)| dx.

Hence, by (2.6), |f(y)−f(z)|≤|Bρ|−1 ∫
Bρ(z) |f(x)−f(y)| dx+CS if 0<ρ<ρS . In par-

ticular, if ρ=|y−z|<ρS/2, then Bρ(z)⊂B2ρ(y) and so |Bρ|−1 ∫
Bρ(z) |f(x)−f(y)| dx≤

2N |B2ρ|−1 ∫
B2ρ(y) |f(x)−f(y)| dx, where |B2ρ|=2N |Bρ| was used. Since 2ρ<ρS ,

(2.6) yields |B2ρ|−1 ∫
B2ρ(y) |f(x)−f(y)| dx≤CS and so |f(y)−f(z)|≤(1+2N )CS . �

Proof of Theorem 1.1. (i) First, (|x|1−N ∗|∇f |)(z)≤‖ |x|1−N ∗|∇f | ‖∞ for every
z∈RN . Indeed, since this holds for a.e. z∈RN , any z∈RN can be approximated
by a sequence zn such that (|x|1−N ∗|∇f |)(zn)≤‖ |x|1−N ∗|∇f | ‖∞ and the result
follows from (|x|1−N ∗|∇f |)(zn)=

∫
RN |x−zn|1−N |∇f(x)| dx and Fatou’s lemma.
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Recall that ∇f∈(L1
loc)N if and only if f∈W 1,1

loc . Hence, by Theorem 2.3, every
z∈RN is a Lebesgue point of f and the inequality |Bρ|−1 ∫

Bρ(z) |f(x)−f(z)| dx≤
|SN−1|−1‖ |x|1−N ∗|∇f | ‖∞ holds for every ρ>0. Therefore, with S=R

N , ρS=∞ and
CS=|SN−1|−1‖ |x|1−N ∗|∇f | ‖∞ in Lemma 2.4, we get |f(y)−f(z)|≤C‖ |x|1−N ∗
|∇f | ‖∞ for every y, z∈RN , where C :=(1+2N )|SN−1|−1. Thus,

|f(y)| ≤ |f(z)|+C‖ |x|1−N ∗|∇f | ‖∞,

for every y, z∈RN and so sup |f |≤inf |f |+C‖ |x|1−N ∗|∇f | ‖∞. It is a simple exercise
to check that since every point is a Lebesgue point of f, hence also of |f |, ess sup
|f |=sup |f |. This proves (1.2).

(ii) It is well-known that the Riesz potential I1 is bounded from LN,1 into
L∞ ([2, p. 228]). Thus, part (i) is applicable and (1.2) yields sup |f |=‖f‖∞≤
inf |f |+C‖∇f‖N,1 with C>0 independent of f. To prove the uniform continuity
of f, recall first that |x|1−N∈LN/(N−1),∞, the associated space of LN,1. Thus, by
Hölder’s inequality ([2, p. 60]),

‖ |x−z|1−N∇f‖1,Bρ(z) ≤ ‖ |x−z|1−N‖N/(N−1),∞,Bρ(z)‖∇f‖|N,1,Bρ(z)

= ‖ |x|1−N‖N/(N−1),∞,Bρ
‖∇f‖N,1,Bρ(z)

≤ ‖ |x|1−N‖N/(N−1),∞‖∇f ‖N,1,Bρ(z),

for every z∈RN and every ρ>0.
Since |Bρ(z)|=|Bρ| is independent of z, it follows from the absolute conti-

nuity of the LN,1 norm ([2, p. 222]) that limρ→0 ‖∇f‖N,1,Bρ(z)=0 uniformly for
z∈RN . Accordingly, given ε>0, choose ρε>0 such that ‖∇f ‖N,1,Bρ(z)<ε for ev-
ery z∈RN and every ρ<ρε. From the above and from the first inequality in (2.4),
|Bρ|−1 ∫

Bρ(z) |f(x)−f(z)| dx≤Cε for every z∈RN and every ρ<ρε, where C :=
|SN−1|−1‖ |x|1−N‖N/(N−1),∞. Thus, with S=R

N , ρS=ρε and CS=Cε in Lemma 2.4,
it follows that |f(y)−f(z)|≤(1+2N )Cε whenever y, z∈RN and |y−z|<ρε/2. This
completes the proof.

Remark 2.5. The proof of the uniform continuity in Theorem 1.1 (ii) uses only
|x|1−N ∗|∇f |∈L∞ and limρ→0 ‖∇f‖N,1,Bρ(z)=0 uniformly for z∈RN . This will be
used in the proof of Theorem 4.2.

By a cut-off argument,(1) the uniform continuity of f when ∇f∈(LN,1)N proves
again its continuity when ∇f∈(LN,1

loc )N . In contrast, there are obstacles to tweaking
Stein’s proof in [26] to obtain the uniform continuity when ∇f∈(LN,1)N . The main
difficulty is to reduce the problem to the case when f=I1(

∑N
j=1 Rj∂jf) where the

(1) Justified by Lemma 3.4 later.
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Rj are the Riesz transforms. At best, this can only hold after modifying f by a
constant (for the local result, it may be assumed that Supp f is compact and then
the formula follows from its validity when f∈C∞

0 ). In spirit, the simpler proof
in DeVore and Sharpley [6] is close to the one given above and it could easily be
complemented to yield the uniform continuity. However, it is not complete because
a would-be routine passage to the limit cannot be justified without the nontrivial
Lemma 2.1.

3. Behavior at infinity

Both parts (i) and (ii) of Theorem 1.1 can be complemented by showing that,
in a sense to be specified, f has a finite constant limit at infinity. The first part of
the proof of Theorem 3.1 (i) below parallels that of [21, Theorem 3.2], with some
necessary technical differences.

Theorem 3.1. Assume N>1.
(i) If ∇f∈(L1

loc)N and |x|1−N ∗|∇f |∈L∞, there is a unique constant cf∈R such

that, for every z∈RN ,

(3.1) lim
r→∞

f(z+rω)= cf ,

for a.e. ω∈SN−1 (depending upon z). In particular, if f is radially symmetric, then

lim|x|→∞ f(x)=cf and, in addition, ‖f−cf‖∞≤|SN−1|−1‖ |x|1−N ∗|∇f | ‖∞.

(ii) If, in (i), f is uniformly continuous, then (3.1) holds for a.e. ω∈SN−1 and every

z∈RN (case in point: ω is now independent of z).

Proof. (i) The proof consists in showing that (3.1) holds with cf =cf,z possibly
depending upon z and, next, that cf,z is independent of z. We henceforth drop the
subscript f for simplicity, i.e., cf,z :=cz. By Theorem 1.1 (i), (|x|1−N ∗|∇f |)(z)<∞
i.e., ∇fz∈(L1

|x|1−N )N where fz :=f(·+z). Thus, it suffices to prove the existence
of cz when z=0. As before, we use the notation f(r, ω) for f(rω) when r≥0 and
ω∈SN−1.

As noted at the beginning of the proof of Lemma 2.2, f∈W 1,1
loc . In particular,

f is locally absolutely continuous on almost every line parallel to the coordinate axis
xj and, on such lines, the classical and weak derivatives ∂jf coincide. Since the
measures dr and rN−1dr are equivalent away from the origin, this implies that, after
passing to spherical coordinates, f∈W 1,1

loc ((0,∞)×S
N−1) and so f(·, ω) is locally

absolutely continuous on (0,∞) for a.e. ω∈SN−1, with classical radial derivative
∂rf(r, ω)=∇f(r, ω)·ω.
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By Fubini’s theorem in spherical coordinates (use |x|1−N |∇f |∈L1), |∇f(·, ω)|∈
L1(0,∞) for a.e. ω∈SN−1, whence ∂rf(·, ω)∈L1(0,∞) for a.e. ω∈SN−1. Therefore,

g(r, ω) :=
∫ r

∞
∂rf(t, ω) dt,

is a.e. defined and measurable on (0,∞)×S
N−1. For a.e. ω∈SN−1, the func-

tion g(·, ω) is locally absolutely continuous and a.e. differentiable on (0,∞) with
∂rg(·, ω)=∂rf(·, ω) and

(3.2) c0(ω) := f(·, ω)−g(·, ω),

is a function independent of r>0 since both f(·, ω) and g(·, ω) are locally absolutely
continuous with the same a.e. derivative. Also, limr→∞ g(r, ω)=0, which is (3.1)
when z=0, but with cf =c0(ω). The remainder of the proof (when z=0) consists in
showing that c0 is constant.

Observe that g(r, ·)∈L1(SN−1) for every r>0 and that limr→∞ ‖g(r, ·)‖1,SN−1≤
limr→∞

∫
RN\Br

|x|1−N |∇f |=0. Thus, by (3.2),

(3.3) lim
r→∞

‖f(r, ·)−c0‖1,SN−1 =0.

Next, we need the Poincaré-Wirtinger inequality on the sphere S
N−1 : Since

N>1, the unit sphere is connected and so

(3.4) ‖w−w‖1,SN−1 ≤C‖∇SN−1w‖1,SN−1 ,

for every w∈W 1,1(SN−1), where ∇SN−1 is the gradient of w for the natural Rie-
mannian structure of the unit sphere, C>0 is a constant independent of w and
w is the average of w on SN−1. The Poincaré-Wirtinger inequality on the sphere
is well documented mostly when W 1,1(SN−1) is replaced with W 1,2(SN−1) ([19])
but a proof valid in W 1,p(SN−1) for any 1≤p≤∞ follows, by the usual contradic-
tion argument, from the connectedness of SN−1 and from the compactness of the
embedding W 1,p(SN−1)↪→Lp(SN−1).

Assume f∈C∞. If r>0 is fixed, then ∇SN−1f(r, ω)=rPω∇f(r, ω), where Pω

is the orthogonal projection on the tangent space {ω}⊥ of SN−1 at ω, whence
|∇SN−1f(r, ω)|≤r|∇f(r, ω)|. Thus, with f(r) denoting the average of f(r, ·) on S

N−1,

it follows from (3.4) that ‖f(r, ·)−f(r)‖1,SN−1≤Cr‖∇f(r, ·)‖1,SN−1 and so∫ ∞

0
r−1‖f(r, ·)−f(r)‖1,SN−1 dr(3.5)

≤C

∫ ∞

0
‖∇f(r, ·)‖1,SN−1 dr=C

∫
RN

|x|1−N |∇f |<∞.
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The above inequality continues to hold without the extra assumption that f∈C∞.

Indeed, if fn :=ηn∗f∈C∞ with ηn the mollifying sequence of Lemma 2.1, then∫
RN |x|1−N |∇fn|→

∫
RN |x|1−N |∇f | and, since also fn→f in W 1,1

loc , it follows that
fn(r, ·)→f(r, ·) in L1(SN−1), so that fn(r)→f(r). Thus, r−1‖fn(r, ·)−fn(r)‖1,SN−1

→r−1‖f(r, ·)−f(r)‖1,SN−1 for every r>0 and (3.5) follows from the same inequality
for fn and from Fatou’s lemma.

Since the left-hand side of (3.5) is finite and r−1 is not integrable at infin-
ity, there is a sequence rn→∞ such that lim ‖f(rn, ·)−f(rn)‖1,SN−1 =0. By (3.3),
lim ‖f(rn, ·)−c0‖1,SN−1 =0. Thus, lim ‖f(rn)−c0‖1,SN−1 =0 and, since f(rn) is inde-
pendent of ω, it follows that c0 is constant. This proves (3.1) with cf =cz when z=0
and, hence, in general.

If (3.1) had been proved with cf =cz for every ω∈SN−1 and every z∈RN , the
limit along the ray from 0 to z would have to be both c0 and cz, thereby showing
that cz is independent of z. This elementary argument cannot be used with the
weaker “a.e. ω” property and the proof that cz=c0 is more subtle.

If R>ρ>0, let ΩR,ρ(z) denote the annulus

ΩR,ρ(z) := {x∈R
N :R−ρ< |x−z|<R+ρ}.

Note that if z and ρ are held fixed,

lim
R→∞

‖ |x−z|1−N (f−cz)‖1,ΩR,ρ(z) =0.

This follows from ‖ |x−z|1−N (f−cz)‖1,ΩR,ρ(z)=‖ |x|1−N (fz−cz)‖1,ΩR,ρ(0)≤
2ρ supr>R−ρ ‖fz(r, ·)−cz‖1,SN−1 and from supr>R−ρ ‖fz(r, ·)−cz‖1,SN−1→0 when
R→∞ since limr→∞ ‖fz(r, ·)−cz‖1,,SN−1 =0 by (3.3).

In particular, with z fixed and ρ=|z|+1,

(3.6) lim
R→∞

‖ |x−z|1−N (f−cz)‖1,ΩR,|z|+1(z) =0

and, with z=0 and ρ=1,

(3.7) lim
R→∞

‖ |x|1−N (f−c0)‖1,ΩR,1(0) =0.

Now, observe that ΩR,1(0)⊂ΩR,|z|+1(z). Hence, by (3.6), limR→∞ ‖ |x−z|1−N (f−
cz)‖1,ΩR,1(0)=0. Next, |x|1−N<2N−1|x−z|1−N if x∈ΩR,1(0) and R≥|z|+1 and so
limR→∞ ‖ |x|1−N (f−cz)‖1,ΩR,1(0)=0. Together with (3.7), it follows that
limR→∞ ‖ |x|1−N (cz−c0)‖1,ΩR,1(0)=0, which can only happen if cz=c0 because
‖ |x|1−N (cz−c0)‖1,ΩR,1(0)=2|SN−1‖cz−c0| is independent of R.

To complete the proof of (i), let f be radially symmetric. It is plain that (3.3)
(with c0=cf ) amounts to lim|x|→∞ f(x)−cf =0. Also, recall that, in general, (3.3)
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follows from ‖f(r, ·)−cf‖1,SN−1≤
∫
RN\Br

|x|1−N |∇f | for every r>0. The right-hand
side is majorized by

∫
RN\Br

|x|1−N |∇f |≤‖ |x|1−N ∗|∇f | ‖∞ and, under the radially
symmetric assumption, the left-hand side is |SN−1‖f(y)−cf | for every y such that
|y|=r>0. Therefore, |f(y)−cf |≤|SN−1|−1‖ |x|1−N ∗|∇f | ‖∞ for every y �=0 and so
‖f−cf‖∞≤|SN−1|−1‖ |x|1−N ∗|∇f | ‖∞.

(ii) Let (zn) be a countable dense subset of R
N . By (i), there is a subset

E⊂SN−1 with SN−1-measure 0 such that limr→∞ f(zn+rω)=cf for every n∈N and
every ω∈SN−1\E. Choose ω∈SN−1\E and z∈RN and, given ε>0, let δ>0 be such
that |f(x)−f(y)|<ε/2 whenever |x−y|<δ. Choose n such that |zn−z|<δ. If r>0
is large enough, then |f(zn+rω)−cf |<ε/2. Since |(zn+rω)−(z+rω)|=|zn−z|<δ,

it follows that |f(z+rω)−cf |<ε. Thus, limr→∞ f(z+rω)=cf . �

Remark 3.2. From the above proof, cf =limr→∞
∫
SN−1 f(r, ω) dω. By elemen-

tary arguments, this implies cf =limr→∞ |Br|−1 ∫
Br

f.

A function f∈BUC satisfying (3.1) for a.e. ω∈SN−1 and every z∈RN need not
tend uniformly to cf . An example with N=2 and cf =0 is f(x1, x2)=ϕ(x1) with
ϕ∈C∞

0 (R). More sophisticated examples can be found with |x|1−N ∗|∇f |∈L∞ and
even with (3.1) holding for every ω∈SN−1 and every z∈RN . Thus, in Theorem 3.1,
cf need not be the uniform limit of f at infinity.

If N=1, Theorem 3.1 is false because f may tend to two different limits as
x→±∞. A result closely related to Theorem 3.1 (i) is given in Mizuta [16, Theo-
rem 2] under the assumption ∇f∈(Lp)N with 1<p<N, neither weaker nor stronger
than |x|1−N ∗|∇f |∈L∞. Mizuta also proves |fz(r, ω)−cz|=o(r1−N/p) but does not
address the question whether cz is independent of z.

We now proceed to showing that lim|x|→∞ f(x)=cf if N>1 and ∇f∈(LN,1)N .

We were unable to deduce this from Theorem 3.1 and will give a direct proof. To
do this, we need several preliminary technical results which are all well-known in
classical Sobolev spaces, but harder to find in the Lorentz-Sobolev setting. We re-
frain from discussing anything significantly more general than needed in this paper.
If Ω is an open subset of RN and 1≤q<∞, we set

W 1Lq,1(Ω) := {h∈Lq,1(Ω) :∇h∈ (Lq,1(Ω))N},

a Banach space for the norm ‖f‖W 1Lq,1(Ω) :=‖f‖q,1,Ω+‖∇f‖q,1,Ω. When Ω=R
N ,

we simply use W 1Lq,1, with norm ‖f‖W 1Lq,1 .

Lemma 3.3. If Ω is bounded with a Lipschitz boundary, there is a bounded

linear extension operator E :W 1Lq,1(Ω)→W 1Lq,1.
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Proof. Such an extension operator exists that maps W 1,1(Ω) into W 1,1 and
W 1,∞(Ω) into W 1,∞ ([25, Theorem 5, p. 181]). By interpolation (see DeVore and
Scherer [7, Theorem 2]), E also maps W 1Lq,1(Ω) into W 1Lq,1 when 1<q<∞. �

Lemma 3.4. If Ω is bounded with Lipschitz boundary and ∇h∈(Lq,1(Ω))N ,

then h∈W 1Lq,1(Ω).

Proof. Since Lq,1(Ω)⊂Lq(Ω), it follows that ∇h∈(Lq(Ω))N , whence h∈W 1,q(Ω)
by [15, p. 23]. But W 1,q(Ω)⊂Lp(Ω) for some p>q and Lp(Ω)⊂Lq,1(Ω) since Ω is
bounded. Thus, h∈Lq,1(Ω) and so f∈W 1Lq,1(Ω). �

The next lemma is a Poincaré-Wirtinger inequality in W 1Lq,1(Ω).

Lemma 3.5. Suppose that Ω is bounded and connected with Lipschitz bound-

ary.

(i) There is a constant C>0 such that ‖h‖W 1Lq,1(Ω)≤C‖∇h‖q,1,Ω for every h∈
W 1Lq,1(Ω) such that

∫
Ω h=0.

(ii) If 1≤q<N and if ∇h∈(Lq,1(Ω))N , then h∈Lq∗,1(Ω) and there is a constant

C>0 independent of h such that ‖h−h‖q∗,1,Ω≤C‖∇h‖q,1,Ω, where h:=|Ω|−1 ∫
Ω h.

Proof. (i) The embedding W 1Lq,1(Ω)↪→Lq,1(Ω) is compact. Indeed, it is the
composite W 1Lq,1(Ω)↪→W 1,q(Ω) (continuous), followed by W 1,q(Ω)↪→Lp(Ω) with
p>q sufficiently close to q (compact), followed by Lp(Ω)↪→Lq,1(Ω) (continuous).
The result then follows by a standard contradiction argument.

(ii) Choose p∈(q,N). The identity operator is bounded from W 1,1(Ω) into
L1∗(Ω) and from W 1,p(Ω) into Lp∗(Ω). By [7, Theorem 2], it is therefore bounded
from W 1Lq,1(Ω) into Lq∗,1(Ω) if q>1. The same thing is true if q=1; see for in-
stance Talenti [27, Theorem 4.A]. Thus, by (i), there is a constant C>0 such that
‖h‖q∗,1,Ω≤C‖∇h‖q,1,Ω for every h∈W 1Lq,1(Ω) such that

∫
Ω h=0. By Lemma 3.4,

this inequality holds if it is only assumed that ∇h∈(Lq,1(Ω))N and the condition∫
Ω h=0 can be dropped after replacing h with h−h. �

Results in the spirit of Lemmas 3.4 and 3.5 go back to the early days of inter-
polation theory; see notably O’Neil [18] or Peetre [20]. For example, when Ω=RN

and 1<q<N, it follows from [20, Theorem 8.1] that infc∈R ‖h−c‖q∗,1≤C‖∇h‖q,1
where C>0 is independent of h with ∇h∈(Lq,1)N . This inequality is closely related
to Lemma 3.5 (ii).

The last preliminary lemma relies on a scaling property. For every ρ>0, we
denote Ωρ the annulus

(3.8) Ωρ := {x∈R
N : ρ< |x|< 2ρ}= ρΩ1.
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Lemma 3.6. If N>1, there is a constant C>0 independent of ρ>0 such that

(3.9) ‖f‖∞,Ωρ ≤C‖∇f‖N,1,Ωρ ,

for every f∈D′(Ωρ) with ∇f∈(LN,1(Ωρ))N and
∫
Ωρ

f=0 (this makes sense since,

by Lemma 3.4, f∈W 1LN,1(Ωρ)⊂L1(Ωρ)).

Proof. We begin with the case ρ=1. By Lemma 3.4, f∈W 1LN,1(Ω1) and
so, by Lemma 3.3, there is f̃∈W 1LN,1 such that f̃=f on Ω1 and ‖f̃‖W 1LN,1≤
K‖f‖W 1LN,1(Ω1) where K>0 is independent of f.

Next, by Theorem 1.1 (ii), f̃ (hence f) is continuous and ‖f‖∞,Ω1 =sup |f̃ |≤
inf |f̃ |+C‖∇f̃‖N,1 with C>0 independent of f̃ . Since

∫
Ω1

f=0 and f is continuous,
f (hence f̃) must vanish at some point of Ω1, whence inf |f̃ |=0. Furthermore, since
‖∇f̃‖N,1≤‖f̃‖W 1LN,1≤K‖f‖W 1LN,1(Ω1), we infer that ‖f‖∞,Ω1≤C‖f‖W 1LN,1(Ω1)
after changing CK into C. Then, by Lemma 3.5 (i) (since Ω1 is connected when
N>1)

(3.10) ‖f‖∞,Ω1 ≤C‖∇f‖N,1,Ω1 ,

after a final modification of C independent of f. This proves (3.9) when ρ=1.
The general case ρ>0 follows by scaling. If ∇f∈(LN,1(Ωρ)N and

∫
Ωρ

f=0,
set fρ(x):=f(ρx) for x∈Ω1, so that ∇fρ=ρ∇f(ρ·)∈(LN,1(Ω1)N and

∫
Ω1

fρ=0.
By (3.10), ‖fρ‖∞,Ω1≤C‖ρ∇f(ρ·)‖N,1,Ω1 =Cρ‖∇f(ρ·)‖N,1,Ω1 . Since it is plain that
‖fρ‖∞,Ω1 =‖f‖∞,Ωρ , this reads ‖f‖∞,Ωρ≤Cρ‖∇f(ρ·)‖N,1,Ω1 and so it suffices to
show that ‖∇f(ρ·)‖N,1,Ω1 =ρ−1‖∇f‖N,1,Ωρ or, more generally, that ‖h(ρ·)‖N,1,Ω1 =
ρ−1‖h‖N,1,Ωρ for every h∈LN,1(Ωρ). This follows at once from h(ρ·)∗(t)=h∗(ρN t)
and from the definition of the LN,1 norms. �

Theorem 3.7. If N>1 and ∇f∈(LN,1)N , there is a unique constant cf∈R
such that lim|x|→∞ f(x)=cf . Furthermore, there is a constant C>0 independent of

f such that ‖f−cf‖∞≤C‖∇f‖N,1.

Proof. The uniqueness of cf is obvious. We focus on its existence. If h∈L1
loc,

define the radial symmetrization hrad of h by

hrad(x) := |SN−1|−1
∫
SN−1

h(|x|ω) dω.

This definition makes sense since, by Fubini’s theorem in spherical coordinates,
h(r, ·)∈L1(SN−1) for a.e. r>0. Accordingly, hrad(x) is defined for x in almost every
sphere centered at the origin. Furthermore, it is readily checked that h �→hrad is
linear and continuous on Lp for every 1≤p≤∞. By interpolation, it remains linear
and continuous on LN,1.



Uniformly local spaces and refinements of the classical Sobolev embedding theorems 423

If f∈W 1,1
loc (in particular, if ∇f∈(LN,1)N ), it is shown in the proof of [21,

Lemma 4.1] that frad∈W 1,1
loc with ∇frad=|x|−1(∂rf)radx. Since ∇f∈(LN,1)N im-

plies ∂rf=|x|−1∇f ·x∈LN,1, it follows from the above with h=∂rf that ∇frad∈
(LN,1)N and that ‖∇frad‖N,1≤‖∇f‖N,1.

In particular, |x|1−N ∗|∇frad|∈L∞. Obviously, frad is radially symmetric, so
that, by Theorem 3.1 (i), frad(x) has a uniform finite constant limit cfrad

as |x|→
∞ and ‖frad−cfrad

‖∞≤|SN−1|−1‖ |x|1−N ∗|∇frad| ‖∞. Since ‖ |x|1−N ∗|∇frad| ‖∞≤
C‖∇frad‖N,1≤C‖∇f‖N,1, it follows that ‖frad−cfrad

‖∞≤C‖∇f‖N,1 after chang-
ing |SN−1|−1C into C.

We shall prove the theorem with cf =cfrad
. To do this, it suffices to show

that lim|x|→∞(f−frad)(x)=0 and that ‖f−frad‖∞≤C‖∇f‖N,1 for some other con-
stant C.

From the very definition of frad, it follows that
∫
SN−1(f−frad)(r, ω) dω=0 for

a.e. r>0. Hence,
∫
Ωρ

(f−frad)=0 for every ρ>0 (see (3.8)). Let R>0 be fixed.
It is plain that ‖f−frad‖∞,RN\BR

=supρ>R ‖f−frad‖∞,Ωρ . On the other hand, by
Lemma 3.6,

(3.11) ‖f−frad‖∞,Ωρ ≤C‖∇(f−frad)‖N,1,Ωρ ≤C‖∇(f−frad)‖N,1,RN\BR
,

for every ρ>R, where C>0 is independent of R and ρ. Altogether,
‖f−frad‖∞,RN\BR

≤C‖∇(f−frad)‖N,1,RN\BR
(same C). Since ∇(f−frad)∈

(LN,1)N , it follows that limR→∞ ‖∇(f−frad)‖N,1,RN\BR
=0. Consequently,

limR→∞ ‖f−frad‖∞,RN\BR
=0. By the continuity of f−frad, this amounts to

lim|x|→∞(f−frad)(x)=0.
To complete the proof, it remains to show that ‖f−frad‖∞≤C‖∇f‖N,1 for

some constant C>0. Recall that (3.11) holds for every ρ>R with C independent
of R and ρ (and f). Thus, ‖f−frad‖∞,Ωρ≤C‖∇(f−frad)‖N,1≤2C‖∇f‖N,1 for
every ρ>0. Since ‖f−frad‖∞=supρ>0 ‖f−frad‖∞,Ωρ , it follows that ‖f−frad‖∞≤
C‖∇f‖N,1 after changing 2C into C. �

Theorem 3.7 is a special case of a more general property (Theorem 3.10). To
prove it, we need

Lemma 3.8. If ∇h∈(Lq,1)N with 1≤q<N, there is a unique constant ch∈R
such that h−ch∈Lq∗,1 and there is a constant C>0 independent of h such that

‖h−ch‖q∗,1≤C‖∇h‖q,1.

Proof. With Ω=B1 in Lemma 3.5 (ii) and by an elementary scaling argument,
‖h−hr‖q∗,1,Br≤C‖∇h‖q,1,Br≤C‖∇h‖q,1 for every r>0, where hr :=|Br|−1 ∫

Br
h

and where C>0 is independent of r (and h). Let (rn) be a sequence tending
to ∞. Since ‖h−hrn‖q∗,1,B1≤ ‖h−hrn‖q∗,1,Brn

for n large enough, this shows that
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the sequence (hrn) is bounded. After passing to a subsequence, assume with no
loss of generality that limhrn =ch∈R. Since ‖h−hrn‖q∗,1,Brn

=‖(h−hrn)χBrn
‖q∗,1

and since (h−hrn)χBrn
→h−ch a.e., it follows from the general form of Fatou’s

lemma ([2, p. 5]) that ‖h−ch‖q∗,1≤lim inf ‖h−hrn‖q∗,1,Brn
≤C‖∇h‖q,1. Since Lq∗,1

contains no nonzero constant, ch is unique. �

Remark 3.9. A mild elaboration on the above proof shows that, by the unique-
ness of ch, every convergent subsequence of (hrn) converges to ch. Thus, limhrn =ch
irrespective of (rn) and so ch=limr→∞ |Br|−1 ∫

Br
h, as in Remark 3.2 when ch is

the radial limit of h.

With Lq,1 and Lq∗,1 replaced with Lq and Lq∗ , respectively, Lemma 3.8 is due
to Lizorkin [14], with a different proof (see also [9, Theorem 5.1, p. 64]). Another
variant will be proved in Lemma 4.4.

Theorem 3.10. If N>1 and if ∇kf∈(LN/k,1)Nk

for some 1≤k≤N (in par-

ticular, if ∇Nf∈(L1)NN

), there is a unique polynomial Pf of degree at most k−1
such that f−Pf∈BUC and that lim|x|→∞(f(x)−Pf (x))=0. Furthermore, there is a

constant C>0 independent of f such that ‖f−Pf‖∞≤C‖∇kf‖N/k,1.

Proof. If k>1, it follows from Lemma 3.8 with h any partial derivative of f
of order k that there is a unique symmetric covariant tensor Mk−1 of order k−1
such that ∇k−1f−Mk−1∈(L(N/k)∗,1)Nk−1 =(LN/(k−1),1)Nk−1 and that ‖∇k−1f−
Mk−1‖N/(k−1),1≤C‖∇kf‖N/k,1. Since Mk−1=∇k−1Hk−1 for a unique homogeneous
polynomial Hk−1 of degree k−1, this reads ∇k−1(f−Hk−1)∈(LN/(k−1),1)Nk−1 and
‖∇k−1(f−Hk−1)‖N/(k−1),1≤C‖∇kf‖N/k,1. Thus, by repeating the same argument,
we find a polynomial Pk−1 of degree at most k−1 such that ∇(f−Pk−1)∈(LN,1)N
and ‖∇(f−Pk−1)‖N,1≤C‖∇kf‖N/k,1 with another constant C. This remains triv-
ially true, with P0 =0, if k=1.

By Theorem 1.1 (ii) and Theorem 3.7, f−Pk−1∈BUC and f−Pk−1 has a uni-
form finite constant limit cf−Pk−1 at infinity and ‖f−Pk−1−cf−Pk−1‖∞≤C‖∇(f−
Pk−1)‖N,1. Since ‖∇(f−Pk−1)‖N,1≤C‖∇kf‖N/k,1 (with another constant C), the
result follows with Pf = Pk−1−cf−Pk−1 . The uniqueness of Pf is obvious. �

If Hi is the homogeneous part of Pf of degree 0≤i≤k−1 and Hk≡0, it follows
from Remark 3.2 and Remark 3.9 that the coefficients of Hi are the limits of the
averages of the partial derivatives of f−(Hk+...+Hi+1) of order i over balls of
radius tending to ∞.

Theorem 3.10 is a generalization of the well-known embedding WN,1 ↪→BUC.
Indeed, if ∇kf∈(LN/k,1)Nk with 1≤k≤N, any condition on f ensuring that Pf =0
yields that f is uniformly continuous and tends uniformly to 0 at infinity. For
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instance, Pf =0 if f vanishes at infinity as defined in the Introduction (in particular,
if f∈Lp,σ with 1≤p<∞ and σ=1 if p=1).

When k<N, Mizuta [16, Theorem 3 (ii)] has obtained a result weaker than
Theorem 3.10 under the weaker assumption ∇kf∈(LN/k)Nk

. His method yields an
integral formula for f−Pf but L1 is excluded, so that k=N is ruled out. Also, under
the additional assumption that f vanishes at infinity, Theorem 3.10 with k=1 and
Pf =0 follows from Tartar [28, Theorem 8 and Remark 9], where it is only assumed
that 1≤pj<∞ and

∑N
j=1 p

−1
j =1 (instead of just pj=N). We do not know whether

Theorem 3.10 with k=1 is still true in this case. See, however, Theorem 4.2 and
Theorem 4.5 for closely related results. See also Theorem 4.9 for a non-isotropic
variant of Theorem 3.10 when k=2.

4. The case ∂jf∈Lpj ,σj with 1≤pj≤N

If ∂jf∈Lpj ,σj with 1≤pj≤N and σj=1 when pj=1, then f need not be bounded
or continuous, but of course f is continuous if, in addition, ∂jf∈LN,1

loc . In this sec-
tion, we show that if this local integrability condition is replaced with a suitable
uniformly local one and if σj=1 when pj=N, the boundedness of f, its uniform
continuity and the existence of a limit at infinity are recovered as well (Theorem 4.2
and Theorem 4.5). More generally, this can be obtained under UL integrability
conditions on the higher order derivatives of f (Theorem 4.7).

Recall the definition of the uniformly local Lorentz space (see the Introduction)

Lp,σ
uloc := {h∈Lp,σ

loc : sup
z∈RN

‖h‖p,σ,B1(z) <∞},

where B1(z) is the unit ball with center z, with (quasi-) norm ‖h‖p,σ,uloc :=
supz∈RN ‖h‖p,σ,B1(z), where ‖·‖p,σ,B1(z) is the (quasi-) norm of Lp,σ(B1(z)). The
definition of Lp,σ

uloc is unchanged if B1(z) is replaced with Br(z) for some fixed r>0
and Lp

uloc=Lp,p
uloc. We shall always assume 1≤p, σ≤∞ and σ=p if p=1 or ∞, with

primary focus on p=N,σ=1 or σ=p, but other choices will also be relevant.
If p=σ=∞, then L∞,∞

uloc =L∞
uloc=L∞ but Lp,σ

uloc is larger than Lp,σ when p<∞.

Also, it is readily checked that L∞⊂Lp2,σ2
uloc ⊂Lp1,σ1

uloc if p2>p1 or if p2=p1 and σ2≤σ1
(just like the usual spaces on bounded domains). This turns out to be an important
property. In particular, Lp,σ

uloc⊂L1
uloc. Based on the loose principle that a local

condition cannot imply a global one, it is intuitively obvious that if h∈Lp,σ∩Lq,τ
uloc

and q<∞, then h need not belong to Lr,μ if r �=p or r=p and μ<σ. It is only mildly
technical to support this statement by explicit examples.

Lemma 4.1. (i) If h∈Lp,σ with 1≤p≤N and σ=1 when p=1 or N, then

|x|1−N ∗h∈L∞ if and only if |x|1−NχB1 ∗h∈L∞. If so, there is a constant C>0
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independent of h such that

(4.1) ‖ |x|1−N ∗h‖∞ ≤‖ |x|1−NχB1 ∗h‖∞+C‖h‖p,σ.

(ii) If h∈Lp,σ∩LN,1
uloc with 1≤p≤N and σ=1 when p=1 or N, then |x|1−N ∗h∈L∞.

Furthermore, there is a constant C>0 such that

(4.2) ‖ |x|1−N ∗h‖∞ ≤C(‖h‖p,σ+‖h‖N,1,uloc).

Proof. (i) The claim is that |x|1−NχRN\B1 ∗h∈L∞. With no loss of general-
ity, assume h≥0. Observe that |x|1−NχRN\B1∈Lp′,σ′ since 1≤p≤N and σ=1 when
p=1 or N and that ‖h(z−·)‖p,σ=‖h‖p,σ for every z∈RN . Thus, by Hölder’s in-
equality, (|x|1−NχRN\B1 ∗h)(z)≤‖ |x|1−NχRN\B1‖p′,σ′‖h‖p,σ and (4.1) follows with
C=‖ |x|1−NχRN\B1‖p′,σ′ .

(ii) Once again, assume h≥0 with no loss of generality. By (i), it suffices to
show that |x|1−NχB1 ∗h∈L∞. Since |x|1−N∈LN/(N−1),∞(B1) and since LN,1(B1) is
the associate space of LN/(N−1),∞(B1), it follows that

(|x|1−NχB1 ∗h)(z)≤‖ |x|1−N‖N/(N−1),∞,B1‖h(z−·)‖N,1,B1(4.3)
= ‖ |x|1−N‖N/(N−1),∞,B1‖h‖N,1,B1(z) ≤‖ |x|1−N‖N/(N−1),∞,B1‖h‖N,1,uloc,

for every z∈RN . Hence, |x|1−NχB1 ∗h∈L∞. To prove (4.2), use (4.1) and (4.3). �

The first part of Theorem 4.2 below is a strengthening of the Lusin property.
A smooth function f coinciding with log log |x| for large |x| is a counter-example
when pj≥N>1.

Theorem 4.2. Assume N>1.
(i) If ∂jf∈Lpj ,σj with 1≤pj≤N and σj=1 if pj=1 or N, there are a subset E⊂R

N

of arbitrarily small measure and a function fE∈Cb such that f(x)=fE(x) for x /∈E.

(ii) If ∂jf∈Lpj ,σj∩LN,1
uloc with 1≤pj≤N and σj=1 if pj=1 or N, then f∈Cb and

Theorem 3.1 (i) is applicable. Furthermore, there is a constant C>0 independent

of f such that ‖f‖∞≤inf |f |+C
∑N

j=1(‖∂jf‖pj ,σj +‖∂jf‖N,1,uloc).
(iii) If, in (ii), limρ→0 supz∈RN ‖ ∂jf‖N,1,Bρ(z)=0 for every j, then f∈BUC and The-

orem 3.1 (ii) is applicable. In particular, this holds if ∂jf∈Lpj ,σj∩Lq
uloc with q>N

for every j such that pj<N.

Proof. (i) The Riesz potential I1 is bounded from L1 into LN/(N−1),∞, from
LN,1 into L∞ and from Lpj ,σj into Lp∗

j ,σj if 1<pj<N ([2, Theorem 4.18, p. 228]).
Thus, irrespective of j, the set Fj,a :={z∈RN :(|x|1−N ∗|∂jf |)(z)>a} has arbitrar-
ily small measure if a>0 is large enough and so the set Fa :={z∈RN :(|x|1−N ∗
|∇f |)(z)>a}⊂∪N

j=1Fj,a/
√
N has arbitrarily small measure if a>0 is large enough. By
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Theorem 2.3 and Lemma 2.4 with S=R
N\Fa, ρS=∞ and CS=a|SN−1|−1, it follows

that |f(y)−f(z)| is uniformly bounded when y, z∈RN\Fa and so f∈L∞(RN\Fa),
say |f(x)|≤M with M<∞ when x /∈Fa. By Lusin’s theorem, there are a subset
F⊂R

N with arbitrarily small measure and a continuous function fF such that
f(x)=fF (x) when x /∈F. If E :=Fa∪F and fE :=max{−M,min{fF ,M}}, then fE∈
Cb and f(x)=fE(x) if x /∈E, a set of arbitrary small measure. This proves (i).

(ii) Use Lemma 4.1 (ii) with h=|∂jf | and Theorem 1.1 (i) for the boundedness
and [26] for the continuity.

(iii) For the uniform continuity, see Remark 2.5. If pj=N, then ∂jf∈LN,1

and limρ→0 supz∈RN ‖ ∂jf‖N,1,Bρ(z)=0 holds by the absolute continuity of the LN,1

norm, as in the proof of Theorem 1.1 (ii). Suppose now that ∂jf∈Lpj ,σj∩Lq
uloc with

q>N. Since Lq(B1)↪→LN,1(B1), there is a constant C>0 such that ‖h‖N,1,B1≤
C‖h‖q,B1 for every h∈Lq(B1) and, by scaling, ‖h‖N,1,Bρ≤Cρ1−N/q‖h‖q,Bρ with
the same constant C for every ρ>0 and every h∈Lq(Bρ). By translation invari-
ance, ‖h‖N,1,Bρ(z)≤Cρ1−N/q‖h‖q,Bρ(z) for every z∈RN , every ρ>0 and every h∈
Lq(Bρ(z)).

With h=∂jf, we get ‖∂jf‖N,1,Bρ(z)≤Cρ1−N/q‖∂jf‖q,uloc for every z∈RN and
every ρ≤1 and so limρ→0 supz∈RN ‖∂jf‖N,1,Bρ(z)=0. �

It is known (see [28, Remark 9]) that f∈BUC if f vanishes at infinity and∑N
j=1 p

−1
j <1. In contrast, in Theorem 4.2, there is no assumption on f itself and∑N

j=1 p
−1
j ≥1 (but ∇f∈(LN,1

uloc)N ). We do not know whether Theorem 4.2 remains
true if

∑N
j=1 p

−1
j ≥1 is assumed instead of just pj≤N, but without the assumption

that f vanishes at infinity, it is false if
∑N

j=1 p
−1
j <1. For example, if σj=pj=p>N,

then ∂jf∈Lp∩LN,1
uloc (because Lp⊂Lp

uloc⊂LN,1
uloc) and f is uniformly continuous (by

Morrey’s theorem) but generally unbounded (example: f(x)=(1+|x|)ε with 0<ε<

1−N/p).
When pj=p<N<q and ∂jf∈Lp∩Lq (but not Lp∩Lq

uloc), Theorem 4.2 (iii)
and Theorem 4.5 below follow from Galdi [9].

Example 4.3. Suppose that ∇f∈(Lp)N with 1≤p<N and that |∇f |≤h with
h(x):=C(1+|x|−β), where C>0 and 0<β<1. Then, h /∈Lq for any 1≤q≤∞, but
since |x|−β is bounded outside B1 and |x|−β∈Lq(B1) for some q>N (use β<1), it
follows that h∈L∞+Lq⊂Lq

uloc. Hence, Theorem 4.2 (iii) applies.

One may argue that, in this example, Theorem 4.2 allows for a quick proof but
that it is not indispensable. Indeed, h∈L∞+Lq implies ∇f∈(L∞+Lq)N , whence
∇f∈(Lp∩(L∞+Lq))N . Now, it is not hard to check that p<q<∞ implies Lp∩
(L∞+Lq)=Lp∩Lq (obviously, this is not an algebraic property). Consequently,
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∇f∈(Lp∩Lq)N⊂(LN,1)N since p<N<q and the result follows from an already
known special case of Theorem 1.1 (ii).

Far from downplaying the value of the UL spaces, this reveals that their use
may make it possible to bypass technical properties, possibly much harder to notice
than Lp∩(L∞+Lq)=Lp∩Lq, if they exist at all. This greatly simplifying feature
is directly related to the fact that the UL spaces are linearly ordered by inclusion.
See the comments after Corollary 4.8 for corroborative evidence.

Naturally, there are instances when there is clearly no substitute for Theo-
rem 4.2. For instance, when h in Example 4.3 is changed into a nonzero N -periodic
h∈LN,1

loc or h∈Lq
loc with N<q<∞ (so that h∈LN,1

uloc or Lq
uloc by periodicity).

We now show that depending upon the distribution of the pj in Theorem 4.2
(iii), the constant limit of f at infinity is uniform. Part (iii) of the next lemma is
the important ingredient but the other parts are needed for its proof.

Lemma 4.4. For j=1, ..., N with N>1, let 1≤pj<∞ and 1≤σj≤∞ be such

that
∑N

j=1 p
−1
j >1 and that σj=1 if pj=1. Set pmin :=minj pj<N, pmax :=

maxj pj<∞ and

(4.4) p
 :=N

⎛
⎝ N∑

j=1
p−1
j −1

⎞
⎠

−1

>pmin, σ :=N

⎛
⎝ N∑

j=1
σ−1
j

⎞
⎠

−1

.

Suppose further that pmax<p
 and let Q denote an open rectangle with edges parallel

to the coordinate axes. Then, the following properties hold:

(i) If h∈D′(Q) and ∂jh∈Lpj ,σj (Q), then h∈Lp�,σ(Q).
(ii) (Poincaré-Wirtinger inequality) There is a constant C>0 such that ‖h‖p�,σ,Q≤
C
∑N

j=1 ‖∂jh‖pj ,σj ,Q for every h∈D′(Q) such that ∂jh∈Lpj ,σj (Q) and
∫
Q
h=0 (un-

ambiguous since h∈L1(Q) by (i)).

(iii) If ∂jf∈Lpj ,σj , there is a unique constant cf∈R such that f−cf∈Lp�,σ.

Proof. (i) If σj=pj , i.e., ∂jh∈Lpj (Q), then ∇h∈(Lpmin(Q))N and, hence, h∈
Lpmin(Q). By Rákosník [23] (see also [10]), h∈Lp�(Q) (this does not use pmax<p
).

In general, if ∂jh∈Lpj ,σj (Q), then ∂jh∈Lqj (Q) with qj=1 if pj=1 and 1≤qj<

pj otherwise. If qj is close enough to pj for every j, then
∑N

j=1 q
−1
j >1 and so, from

the above, h∈Lq�(Q) with q
 is arbitrarily close to p
. Hence, h∈Lq(Q) for every
1≤q<p
. In particular, h∈Lpmax(Q).

The standard reflection procedure produces a rectangle Q̃ with edges parallel
to the coordinate axes such that Q�Q̃, along with an extension h̃ ∈Lpmax(Q̃) of
h such that ∂j h̃∈Lpj ,σj (Q̃). Now, let ϕ∈C∞

0 be such that Suppϕ⊂Q̃ and ϕ=1
on Q. Then, ∂j(ϕh̃)=(∂jϕ)h̃+ϕ(∂j h̃)∈Lpj ,σj since Lpmax⊂Lpj ,σj . Also, ϕh̃∈Lpmax

vanishes at infinity. By [28, Theorem 8], ϕh̃∈Lp�,σ and so h∈Lp�,σ(Q).
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(ii) The space W (Q):={h∈L1(Q):∂jh∈Lpj ,σj (Q)} is a Banach space for the
obvious norm and, by (i), W (Q)⊂Lp�,σ(Q). The closed graph theorem shows at once
that this embedding is continuous, for if hn∈W (Q) tends to h in W (Q) and tends
to g in Lp�,σ(Q), then hn tends to both h and g in L1(Q) and so h=g. On the other
hand, it is plain that W (Q)↪→W 1,1(Q) and, since the embedding W 1,1(Q)↪→L1(Q)
is compact, the embedding W (Q)↪→L1(Q) is compact.

By the usual contradiction argument, it follows that
∑N

j=1 ‖∂jh‖pj ,σj ,Q is a
norm equivalent to the W (Q) norm of h on the subspace W0(Q) of functions with
zero average. Hence, the continuity of the embedding W0(Q)↪→Lp�,σ(Q) is ac-
counted for by the inequality ‖h‖p�,σ,Q≤C

∑N
j=1 ‖∂jh‖pj ,σj ,Q for every h∈W0.

(iii) Set θj :=1/pj−1/p
 and, for ρ>0, let Qρ :=
∏N

j=1(−ρθj , ρθj ). For future
use, note that the assumption pmax<p
. is equivalent to θj>0 for every j. We claim
that there is a constant C>0 independent of ρ such that

(4.5) ‖h‖p�,σ,Qρ
≤C

N∑
j=1

‖∂jh‖pj ,σj ,Qρ ,

whenever ∂jh∈Lpj ,σj (Qρ) and
∫
Qρ

h=0.
By (ii), C exists when ρ=1. In general, set hρ(x):=h(ρθ1x1, ..., ρ

θNxN ) for
x∈Q1, so that ∂jhρ∈Lpj ,σj (Q1) and

∫
Q1

hρ=0. Then, with hρ substituted for h in
(4.5) with ρ=1, the left-hand side is ρ−1/p�‖h‖p�,σ,Qρ

and the right-hand side is
C
∑N

j=1 ρ
θj−1/pj‖∂jh‖pj ,σj ,Qρ (use

∑N
j=1 θj=1). From the definitions of θj and p
,

it follows that the powers of ρ cancel out and (4.5) holds with the same C as when
ρ=1.

Now, if ∂jf∈Lpj ,σj , then ∂jf∈Lpj ,σj (Qn) for every n∈N. With ρ=n, h=f−fn

and fn :=|Qn|−1 ∫
Qn

f, (4.5) reads

(4.6) ‖f−fn‖p�,σ,Qn
≤C

N∑
j=1

‖∂jf‖pj ,σj ,Qn ≤C
N∑
j=1

‖∂jf‖pj ,σj .

As noted earlier, θj>0 for every j, which in turn ensures that (Qn) is an in-
creasing sequence of rectangles whose union is R

N . In particular, from (4.6), ‖f−
fn‖p�,σ,Q1 (≤‖f−fn‖p�,σ,Qn

) is bounded, so that (fn) is bounded. After passing to
a subsequence, assume fn→cf∈R with no loss of generality. Then, (f−fn)χQn→
f−cf a.e. on R

N and so, by (4.6) and Fatou’s lemma, ‖f−cf‖p�,σ≤
C
∑N

j=1 ‖∂jf‖pj ,σj<∞. That cf is unique is obvious. �

There are counter-examples to (i) for non-rectangular domains with smooth
boundary ([10]). The condition pmax<p
 is also equivalent to

∑N
j=1 p

−1
j <1+Np−1

max.
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It holds if N=2 or if pmax<p∗min (e.g., pj=p or N/2≤pj<N), among other options
(e.g., pmax<(N−1)/(N−2)). It is probably not needed in (i) and (ii) but it is
crucial to the proof of (iii). If it fails, the sequence (Qn) does not cover R

N and it
is not even increasing if pmax>p
.

Theorem 4.5. If, in part (iii) of Theorem 4.2, pmax :=max pj<p
 (see (4.4)),

there is a constant cf∈R such that lim|x|→∞ f(x)=cf .

Proof. If pj=N (hence σj=1) for every j, the result follows from Theorem 3.7
(and pmax=N<∞=p
). If pj<N for at least one j, then

∑N
j=1 p

−1
j >1, as required

in Lemma 4.4. Since pmax<p
, part (iii) of that lemma yields a constant cf∈R such
that f−cf∈Lp�,σ. Since p
<∞, the function f−cf vanishes at infinity. On the
other hand, by Theorem 4.2 (iii), f−cf∈BUC and a uniformly continuous function
vanishing at infinity tends uniformly to 0 at infinity. �

The proof when pj<N for at least one j does not work when pj=N for every j

(Theorem 3.7) and vice-versa. In other words, Theorem 3.7 and Theorem 4.5 cannot
be proved in one stroke.

Our next goal is to generalize parts (ii) and (iii) of Theorem 4.2 as well as
Theorem 4.5 when UL integrability conditions are placed on the higher derivatives
of f instead of ∇f. This will be done in the simplest way possible, by showing
that such conditions exist that imply that Theorem 4.2 is applicable. We need the
following lemma.

Lemma 4.6. (i) If h∈L1
uloc and ∇h∈(Lq

uloc)N with 1≤q<N, then h∈Lq∗

uloc.

(ii) If h∈L1
uloc and ∇h∈(Lq,1

uloc)N with 1≤q<N, then h∈Lq∗,1
uloc.

Proof. (i) Since ∇h∈(Lq
uloc)N , it follows that ∇h∈(Lq(B1(z)))N and, hence,

that h∈W 1,q(B1(z)) for every z∈RN . By the classical Poincaré-Wirtinger inequal-
ity, ‖h−h‖q∗,B1(z)≤C‖∇h‖q,B1(z) where h:=|B1|−1 ∫

B1(z) h and C>0 is a constant
independent of h and z, the latter by the translation invariance of the Lebesgue mea-
sure. As a result, ‖h‖q∗,B1(z)≤|B1|−(1/N+1/q′)‖h‖1,B1(z)+C‖∇h‖q,B1(z). By taking
the supremum over z∈RN , it follows that h∈Lq∗

uloc with ‖h‖q∗,uloc≤
|B1|−(1/N+1/q′)‖h‖1,uloc+C‖∇h‖q,uloc.

(ii) The proof proceeds as above, starting with the Poincaré-Wirtinger inequal-
ity ‖h−h‖q∗,1,B1(z)≤C‖∇h‖q,1,B1(z) of Lemma 3.5 (ii) (once again, C is independent
of z by translation invariance). �

The example when h is a nonconstant affine polynomial shows that the as-
sumption h∈L1

uloc cannot be dropped.
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Theorem 4.7. Assume N>1, ∂jf∈Lpj ,σj with 1≤pj≤N and σj=1 if pj=1
or N and, for some integer 1≤k≤N :
(i) ∇if∈(L1

uloc)N
i

if 1≤i≤k−1 (always true when i=1),
(ii) ∇kf∈(LN/k,1

uloc )Nk

.

Then, f∈Cb and Theorem 3.1 (i) is applicable. Furthermore, if ∇kf∈(Lqk
uloc)N

k

with qk>N/k (in particular, if k=N and ∇N+1f∈(L1
uloc)N

N+1
), then f∈BUC and

Theorem 3.1 (ii) is applicable. If, in addition, maxj pj<p
 (see (4.4)), there is a

constant cf∈R such that lim|x|→∞ f(x)=cf .

Proof. If k=1, the hypotheses of Theorem 4.2 (ii) are satisfied, as are those of
Theorem 4.2 (iii) (with q=q1) if ∇f∈(Lq1

uloc)N with q1>N. Thus, everything follows
from Theorem 4.2 and Theorem 4.5.

If k>1, then by (i) and (ii) and Lemma 4.6 (ii) with 1≤q=N/k<N and h any
partial derivative of f of order k−1, it follows from the assumption ∇kf∈(LN/k,1

uloc )Nk

that ∇k−1f∈(LN/(k−1),1
uloc )Nk−1 (use (N/k)∗=N/(k−1)). This reduces the problem

to the case when k is replaced with k−1 and, by induction, to the case k=1 already
settled.

If ∇kf∈(Lqk
uloc)N

k with qk>N/k (and k>1), it is not restrictive to assume
qk<N and then ∇k−1f∈(Lq∗k

uloc)N
k−1 by Lemma 4.6 (i). Since q∗k>N/(k−1), the

problem is once again reduced to the case when k is replaced with k−1 (with
qk−1=q∗k) and, hence, by induction, to the case k=1 already settled.

In particular, if k=N and ∇N+1f∈(L1
uloc)N

N+1
, then ∇Nf∈(L1∗

uloc)N
N by

Lemma 4.6 (i) and qN :=1∗=N/(N−1)>1=N/N. �

We spell out the special case of Theorem 4.7 in the setting of classical Lebesgue
spaces. The proof follows at once from Theorem 4.7 and from Lp⊂Lp

uloc⊂Lq,1
uloc for

every q<p. Also, γ :=(γ1, ..., γN ) is a multi-index with nonnegative integer entries
and |γ|1 :=γ1+...+γN .

Corollary 4.8. Assume N>1, ∂jf∈Lpj with 1≤pj<N and, for some integer

1≤k≤N+1:
(i) ∂γf∈Lpγ for some 1≤pγ≤∞ when 1≤|γ|1≤k−1 (always true when |γ|1=1),
(ii) ∂γf∈Lpγ for some N/k< pγ≤∞ when |γ|1=k≤N, or ∂γf∈Lpγ for some 1≤
pγ≤∞ when |γ|1=k=N+1.
Then, f∈BUC and Theorem 3.1 (ii) is applicable. If , in addition, maxj pj<p
 (see

(4.4)), there is a constant cf∈R such that lim|x|→∞ f(x)=cf .

Without drastic limitations, Corollary 4.8 cannot be proved without using the
UL spaces. For example, it states that f∈BUC if ∂jf∈Lpj with 1≤pj<N and
∂γf∈Lpγ for any 1≤pγ≤∞ when 2≤|γ|1≤N+1. It should be clear that the known
embedding theorems, including anisotropic ones, do not come close to yielding an
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alternate direct proof of just the uniform continuity of f (its continuity follows from
f∈WN+1,1

loc ; the difficulty is with global properties).
There is a variant of Theorem 3.10 when assumptions are made only on the

derivatives of f of order k≥2, at least when k≤N−1, but the general hypotheses
are rather convoluted. Accordingly, we just give the statement when k=2 (when
k=1, see Theorem 4.2 (ii) and (iii) and Theorem 4.5).

Theorem 4.9. Assume N>2, ∂2
ijf∈Lpij ,σij∩LN/2

uloc with 1≤pij=pji<∞ and

σij=1 if pij=1 and
∑N

i=1 p
−1
ij >2 for 1≤j≤N (this cannot hold if N=2). Set p
j :=

N
(∑N

i=1 p
−1
ij −1

)−1
∈(1, N) and assume further maxi pij<p
j for 1≤j≤N. Then:

(i) There is an affine polynomial Pf such that f−Pf∈Cb and that limr→∞ f(z+
rω)−Pf (z+rω)=0 for every z∈RN and a.e. ω∈SN−1 (depending upon z).

(ii) If ∂2
ijf∈Lpij ,σij∩Lq

uloc with q>N/2, then f−Pf∈BUC and limr→∞ f(z+rω)−
Pf (z+rω)=0 for every z∈RN and a.e. ω∈SN−1 (independent of z).

(iii) If, in (ii), maxj p


j<p

 :=N

(∑N
j=1 p


−1
j −1

)−1
, then lim|x|→∞(f(x)−

Pf (x))=0.
Proof. (i) Fix 1≤j≤N. Then, ∂i(∂jf)∈Lpij ,σij for 1≤i≤N with

∑N
i=1 p

−1
ij >

2>1 and maxi pij<p
j . Thus, by Lemma 4.4 (iii) with h=∂jf, there is cj∈R such

that ∂jf−cj∈Lp�
j ,σj with σj :=N

(∑N
i=1 σ

−1
ij

)−1
.

In particular, ∂jf−cj∈L1
uloc and ∇(∂jf−cj)=∇∂jf∈(LN/2,1

uloc )N . Since
(N/2)∗=N, it follows from Lemma 4.6 (ii) that ∂jf−cj∈LN,1

uloc.

In summary, ∂jf−cj∈Lp�
j ,σj ∩LN,1

uloc with 1<p
j<N and ∂jf−cj=∂j(f−Qf )
where Qf (x):=

∑N
i=1 cixi. Thus, by Theorem 4.2 (ii), f−Qf∈Cb and Theorem 3.1 (i)

is applicable to f−Qf . This proves (i) with Pf :=Qf +c for some c∈R.
(ii) Since ∂2

ijf∈L
q
uloc with q>N/2, we may assume with no loss of generality

that q<N. Then, in the proof of (i) above, Lemma 4.6 (ii) yields ∂jf−cj∈Lq∗,1
uloc, so

that ∂j(f−Qf )∈Lp�
j ,σj ∩Lq∗,1

uloc. Since q∗>N, it follows from Theorem 4.2 (iii) that
f−Qf∈BUC and that Theorem 3.1 (ii) is applicable to f−Qf . Hence, f−Pf∈BUC
since Pf−Qf is constant.

(iii) This follows at once from Theorem 4.5 with f replaced with f−Qf . �
All the conditions on pij and p
j in Theorem 4.9 are satisfied when pij=p<N/2.

If so, p
j=p∗=Np/(N−p) and p

=(p∗)∗=Np/(N−2p).

5. Application to convolution
Assume ∂jf∈Lpj ,σj with 1≤pj≤N and σj=1 if pj=1 or N (no UL integrability

condition). We now discuss the boundedness and continuity of g∗f for suitable g.
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The first task is to verify that g∗f is defined. Since f need not belong to any Lp,σ,

this is not a routine matter unless g∈L1 has compact support, a case of limited
interest. However, as we shall see, g∗f is always defined when g∈L1 (or in a
more general class of distributions), even though this does not follow from Young’s
theorem or from its generalization to Lorentz spaces.

Rather unexpectedly, Theorem 1.1 (ii) plays a key role, along with results of
Schwartz ([24]), in the proof that g∗f is a well defined distribution when g∈L1. It
also implies, under additional assumptions on g, that g∗f is a BUC function having a
uniform finite constant limit at infinity (Theorem 5.2 (iii), Theorem 5.7). The same
result can be obtained when g∈L1 and f satisfies the conditions of Theorem 4.7 or
Corollary 4.8 (Theorem 5.6).

To begin with, we recall some properties of convolution in Lorentz spaces. We
only record what is needed later.

Lemma 5.1. (i) Assume 1≤p, σ≤∞ and σ=p if p=1 or ∞. If g∈L1 and

h∈Lp,σ, then g∗h∈Lp,σ.

(ii) Assume 1≤p, σ≤∞ and σ=p if p=1 or ∞. If g∈Lp′,σ′
and h∈Lp,σ, then g∗f∈

L∞.

(iii) Assume 1<p<N and 1≤σ≤∞. If g∈LNp′/(N+p′),σ′
and h∈Lp,σ, then g∗h∈

LN,1.

Proof. (i) By interpolation, since the convolution with g∈L1 is bounded on
L1 and on L∞.

(ii) By Hölder’s inequality since Lp′,σ′ is the associated space of Lp,σ.

(ii) In general, if 1<p1, p2, p3<∞ and 1≤σ1, σ2, σ3≤∞ and if g∈Lp1,σ1 and
h∈Lp2,σ2 , then g∗h∈Lp3,σ3 if 1+1/p3=1/p1+1/p2 and 1/σ1+1/σ2=1/σ3. This is
due to O’Neil [18] (as corrected by Yap [31]; see also Hunt [11]). To prove (ii),
choose p2=p∈(1, N), σ2=σ, p1=Np′/(N+p′)>1, σ1=σ′, p3=N,σ3=1. �

The proof of Theorem 5.2 below will also involve the Sobolev spaces of negative
infinite order W−∞,1 and W−∞,∞ (occasionally called D′

L1 and D′
L∞ , respectively).

For convenience, we briefly recall their definition and a few relevant properties and
refer to Schwartz [24, p. 199 ff] for details.

For 1≤p≤∞, define W∞,p
0 :=∩∞

m=0W
m,p
0 (=∩∞

m=0W
m,p if p<∞), equipped

with the Wm,p norms, m=0, 1, ... and W−∞,p :=(W∞,p′

0 )∗ equipped with the semi-
norms supu∈B |T (u)| where B is a bounded subset of W∞,p′

0 . It is readily checked
that W−∞,p=∪∞

m=0W
−m,p. In particular, every T∈W−∞,p is a distribution and

all the partial differentiations ∂γ (γ=:(γ1, ..., γN ) a multi-index) are continuous on
W−∞,p. Also, C∞

0 is dense in W−∞,p if p<∞.

Theorem 5.2. If N>1 and ∂jf∈Lpj ,σj with 1≤pj≤N and σj=1 if pj=1
or N, the following properties hold.
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(i) f∈W−∞,∞. Equivalently, f∈S ′ (tempered distributions) and f is a finite sum

of derivatives of L∞ functions.

(ii) If g∈W−∞,1, the convolution g∗f is defined in W−∞,∞ and ∂α+β(g∗f)=∂αg∗
∂βf∈W−∞,∞ for every multi-indices α and β.

(iii) Set p:=minj pj and σ :=maxpj=p σj and assume g∈L1 if p=N, or g∈L1∩
LNp′/(N+p′),σ′

if 1<p<N, or g∈L1∩LN,1 if p=1. Then, g∗f∈BUC and there is a

constant cg∗f∈R such that lim|x|→∞(g∗f)(x)=cg∗f .

Proof. (i) If ϕ∈C∞
0 , the convolution ϕ∗f is defined in L1

loc and ∂j(ϕ∗f)=ϕ∗
∂jf. Next, ϕ∈L1∩Lp′

j ,σ
′
j for 1≤j≤N, whence ϕ∗∂jf∈Lpj ,σj∩L∞⊂LN,1 by

Lemma 5.1 (i) and (ii). Thus, ∇(ϕ∗f)∈(LN,1)N and so, by Theorem 1.1 (ii),
ϕ∗f∈L∞. It follows from [24, Theorem XXV, p. 201] that f∈W−∞,∞ and that,
equivalently, f is a finite sum of derivatives of L∞ functions. In particular, f∈S ′

since L∞⊂S ′ and S ′ is invariant under differentiation.
(ii) That the convolution g∗f is defined in W−∞,∞ follows from (i) and from

[24, Theorem XXVI, p. 203], where it is also shown that (g, h)∈W−∞,1×W−∞,∞ �→
g∗h∈W−∞,∞ is continuous. In particular, g∈W−∞,1 �→g∗∂βf∈W−∞,∞ is contin-
uous. Hence, both g �→∂α+β(g∗f) and g �→∂αg∗∂βf are continuous linear mappings
from W−∞,1 to W−∞,∞ and they coincide when g=ϕ∈C∞

0 . Since C∞
0 is dense in

W−∞,1, they coincide when g∈W−∞,1.

(iii) Since (obviously) L1⊂W−∞,1, it follows from (ii) that g∗f∈W−∞,∞ and
that ∂j(g∗f)=g∗∂jf. In particular, ∂j(g∗f)∈Lpj ,σj by Lemma 5.1 (i). Thus, by
Theorem 1.1 (ii) and Theorem 3.7, it suffices to show that g∗∂jf∈LN,1 for every j

to prove that g∗f∈BUC and that lim|x|→∞(g∗f)(x)=cg∗f∈R.
Assume p=N, so that g∈L1 and ∂jf∈LN,1 for every j. Hence, g∗∂jf∈ LN,1

by Lemma 5.1 (i).
Assume 1<p<N, so that g∈L1∩LNp′/(N+p′),σ′

. Then, 1<Np′j/(N+p′j)≤Np′/

(N+p′) and σ′≤σ′
j when equality holds (use p≤pj and σ≥σj when pj=p). There-

fore, g∈LNp′
j/(N+p′

j),σ
′
j . In particular, g∗∂jf∈LN,1 by Lemma 5.1 (iii) if pj<N. If

pj=N, then ∂jf∈LN,1 and so g∗∂jf∈ LN,1 by Lemma 5.1 (i).
Assume p=1, so that g∈L1∩LN,1. By Lemma 5.1 (i), g∗∂jf∈LN,1 if pj=1

or N since, in the latter case, ∂jf∈LN,1. If 1<pj<N, then 1<Np′j/(N+p′j)<N,

whence g∈LNp′
j/(N+p′

j),σ
′
j and g∗∂jf∈LN,1 by Lemma 5.1 (iii). �

Part (i) is false if pj>N for every j. Indeed, this condition holds if f(x)=log(1+
|x|). If f is a finite sum of derivatives of L∞ functions, then ϕ∗f∈L∞ for every ϕ∈
C∞
0 . However, if ϕ≥χB1 , then, ϕ∗f≥χB1 ∗f, whence ϕ∗f /∈L∞ since lim|x|→∞(χB1 ∗

f)(x)=∞.

We illustrate Theorem 5.2 when g is a Bessel kernel:
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Example 5.3. Assume N>1 and ∂jf∈Lpj ,σj with 1≤pj≤N and σj=1 if pj=1
or N. By Theorem 5.2 (i), f∈S ′ and so there is a unique solution uλ∈S ′ of (I−
Δ)λ/2uλ=f for every λ>0, given by uλ=(I−Δ)−λ/2f=Gλ∗f where Gλ∈L1 is the
Bessel kernel of order λ.

Based on the behavior of Gλ near the origin ([1, p. 416]) and near infinity
(exponential decay), Gλ∈LNp′/(N+p′),σ′ with p:=minj pj>1 and σ :=maxpj=p σj if
and only if λ≥N or λ<N and Np′/(N+p′)<N/(N−λ), that is, if and only if λ>
N/p−1. On the other hand, Gλ∈LN,1, needed if p=1, holds if and only if α>N−1.
Thus, the condition in Theorem 5.2 (iii) amounts to λ>N/p−1 irrespective of p

and, if so, uλ∈BUC has a uniform finite constant limit at infinity.
If λ=2k with k∈N and if ∇f∈(Lp)N with 1<p<N (i.e., pj=σj=p<N for every j),
this also follows from the classical elliptic theory (see Remark 5.4 below), but there
is no such theory if p=1 or if the pj are distinct, etc. Also, if 1≤p<N, the above
shows that u2k=(I−Δ)−kf∈S ′ is bounded if ∇f∈(Lp)N with N/(2k+1)<p<N.

This is optimal, except perhaps when p=1 and N=2k+1 (notably, N=3 and k=1).
Indeed, if p≥N>1, a smooth function u that coincides with log log |x| for large |x|
is a counter-example. It is a little more demanding to produce a counter-example
when 1≤p≤N/(2k+1); see the Appendix. In particular, it is noteworthy that if
N>2k+1, there is a window for the boundedness of u2k, which is generally false if
p is too small or too large.

Remark 5.4. If λ=2k with k∈N and if ∇f∈(Lp)N with 1<p<N, the condition
λ>−1+N/p in Example 5.3 is p>N/(2k+1) and, with u:=u2k for simplicity, (I−
Δ)k∂ju=∂jf∈Lp, so that ∂ju∈W 2k,p. Thus, ∂ju∈W 1,p∩W 2k−1,p∗ and so u−cu∈
Lp∗ for some cu∈R. Hence, u−cu∈W 2k,p∗⊂BUC (i.e., u∈BUC) and lim|x|→∞(u(x)−
cu)=0 since p>N/(2k+1) is exactly 2kp∗>N.

By Lemma 5.1 (i), Theorem 1.1 (ii) and Theorem 3.7 are simultaneously ap-
plicable to f and g∗f if g∈L1. That the same thing is true of Theorem 4.7 is an
immediate by-product of the following partial generalization of Young’s theorem.

Lemma 5.5. Assume 1≤p, σ≤∞ and σ=p if p=1 or ∞. If g∈L1 and h∈
Lp,σ
uloc, then g∗h∈Lp,σ

uloc.

Proof. Since L∞
uloc=L∞, there is nothing to prove when p=∞. From now on,

1≤p<∞. We shall also assume g≥0 and h≥0 with no loss of generality. We proceed
in three steps.

(a) Assume p=1 (hence σ=1), so that h∈L1
uloc and the claim is that g∗h∈L1

uloc.

If z∈RN , then
∫
B1(z)(g∗h)(x) dx=

∫
RN g(y) dy

∫
B1(z) h(x−y) dx by Tonelli’s the-

orem. Now,
∫
B1(z) h(x−y) dx=

∫
B1(z−y) h≤‖h‖1,uloc and so ‖g∗h‖1,B1(z)≤

‖g‖1‖h‖1,uloc<∞. Since z is arbitrary, this shows that g∗h∈L1
uloc, as claimed.
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(b) Assume 1<σ≤∞ (hence 1<p<∞). We begin with the proof that g∗h∈
Lp,σ(B1(z)) for every z∈RN .

The space Lp,σ(B1(z)) is the topological dual of Lp′,σ′(B1(z)) for every z∈RN .

Thus, to show that g∗h∈Lp,σ(B1(z)), it suffices to show that u(g∗h)∈L1(B1(z)) for
every u∈Lp′,σ′(B1(z)) and that u∈Lp′,σ′(B1(z)) �→

∫
B1(z) u(g∗h)∈R is (linear and)

continuous. To show u(g∗h)∈L1(B1(z)), it is not restrictive to assume u≥0. If so,
once again by Tonelli’s theorem,

(5.1)
∫
B1(z)

u(g∗h)=
∫
RN

g(y) dy
∫
B1(z)

u(x)h(x−y) dx.

Since h∈Lp,σ
uloc, it follows that h∈Lp,σ(B1(z−y)) for every y∈RN , so that h(·−y)∈

Lp,σ(B1(z)). In addition, ‖h(·−y)‖p,σ,B1(z)=‖h‖p,σ,B1(z−y)≤‖h‖p,σ,uloc. Thus, by
Hölder’s inequality,

∫
B1(z) u(x)h(x−y) dx≤‖u‖p′,σ′,B1(z)‖h‖p,σ,B1(z−y)≤

‖u‖p′,σ′,B1(z)‖h‖p,σ,uloc and then
∫
B1(z) u(g∗h)≤‖u‖p′,σ′,B1(z)‖g‖1‖h‖p,σ,uloc<∞ by

(5.1).
This shows that u(g∗h)∈L1(B1(z)) when u≥0 and, hence, in general. Fur-

thermore, since u and |u| have the same Lp′,σ′(B1(z)) norm,
∣∣∣∫B1(z) u(g∗h)

∣∣∣≤∫
B1(z) |u|(g∗h)≤‖u‖p′,σ′,B1(z)‖g‖1‖h‖p,σ,uloc for every u∈Lp′,σ′(B1(z)). Thus, u∈
Lp′,σ′(B1(z)) �→

∫
B1(z) u(g∗h)∈R is continuous. Consequently, g∗h∈Lp,σ(B1(z)) and

the dual norm ‖g∗h‖′p,σ,B1(z) is majorized by ‖g‖1‖h‖p,σ,uloc.
The norm ‖·‖′p,σ,B1(z) is equivalent to the (quasi-)norm ‖·‖p,σ,B1(z) ([2, p. 221]),

with constants independent of z (by translation invariance). As a result, ‖g∗
h‖p,σ,B1(z)≤C‖g‖1‖h‖p,σ,uloc with C>0 independent of z. This completes the proof
that g∗h∈Lp,σ

uloc.

(c) Assume σ=1. Since the case p=1 was settled in (a), we also assume
1<p<∞. By arguing as in (b), we obtain

(5.2)
∫
B1(z)

|u|(g∗h)≤‖u‖p′,∞,B1(z)‖g‖1‖h‖p,1,uloc,

for every u∈Lp′,∞(B1(z)) and every z∈RN , but the end of the proof must be
modified since Lp,1(B1(z)) is not the dual of Lp′,∞(B1(z)).

For simplicity, set v :=(g∗h)|B1(z)≥0, so that (5.2) reads
∫
B1(z) |uv|≤

‖u‖p′,∞,B1(z)‖g‖1‖h‖p,1,uloc for every u∈Lp′,∞(B1(z)). If ũ is a function on B1(z)
equimeasurable with u, that is, ũ∗=u∗ (decreasing rearrangements), then ũ∈
Lp′,∞(B1(z)) and ‖ũ‖p′,∞,B1(z)=‖u‖p′,∞,B1(z). Thus, from the above,

∫
B1(z) |ũv|≤

‖u‖p′,∞,B1(z)‖g‖1‖h‖p,1,uloc. On the other hand, since B1(z) has finite measure,
ũ can be found such that

∫
B1(z) |ũv|=

∫∞
0 u∗(t)v∗(t) dt ([2, Theorem 2.6, p. 49]).
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Altogether, this yields

(5.3)
∫ ∞

0
u∗(t)v∗(t) dt≤‖u‖p′,∞,B1(z)‖g‖1‖h‖p,1,uloc,

for every u∈Lp′,∞(B1(z)).
Choose u(x):=|x−z|−N/p′

|B1(z) , so that u∗(t)=|B1|1/p
′
t−1/p′ if t<|B1| and u∗(t)=0

if t≥|B1|. In particular, ‖u‖p′,∞,B1(z)=|B1|1/p
′
. Likewise, v∗(t)=0 if t≥|B1|. Hence,∫∞

0 u∗(t)v∗(t) dt=|B1|1/p
′ ∫∞

0 t−1/p′
v∗(t) dt and so, by substitution into (5.3),∫∞

0 t−1/p′
v∗(t) dt≤‖g‖1‖h‖p,1,uloc, i.e., ‖v‖p,1,B1(z)≤‖g‖1‖h‖p,1,uloc. Since v :=(g∗

h)|B1(z) and z is arbitrary, it follows that g∗h∈Lp,1
uloc. �

Irrespective of (p, σ) and of q>1, the convolution g∗h cannot be defined for
all h∈Lp,σ

uloc and all g∈Lq. To see this, choose h=1∈Lp,σ
uloc and g∈Lq such that

g±∈Lq\L1. Then, g±∗1=
∫
RN g±=∞ and g∗1 does not make sense.

Theorem 5.6. If g∈L1, every statement in Theorem 4.7 (Corollary 4.8) which

is true for f is true for g∗f.

Proof. By Theorem 5.2 (ii), ∇i(g∗f)=g∗∇if for every i≥1. Thus, by
Lemma 5.1 (i) and Lemma 5.5, every assumption satisfied by f in Theorem 4.7
is satisfied by g∗f. Likewise, ∂γ(g∗f)=g∗∂γf for every multi-index γ. Thus, by
Young’s theorem, every assumption satisfied by f in Corollary 4.8 is satisfied by
g∗f. �

The converse of Theorem 5.6 is false. In fact, there are so many ways for
Theorem 4.7 or Corollary 4.8 to be applicable to g∗f but not necessarily to f that
a full classification is out of reach. For that reason, we only spell out a case when
integrability conditions are placed only on the partial derivatives of g∈L1 and, for
simplicity, we confine attention to the Lebesgue space setting. For a more general
statement, see Remark 5.8.

Theorem 5.7. Suppose that ∂jf∈Lpj with 1≤pj<N and set pmin :=minj pj
and pmax :=maxj pj . Let k∈[2, N+1] denote the smallest integer such that pmin>

N/k and suppose also that g∈L1 and that ∂αg∈Lqα with 1≤qα≤p′max when 1≤
|α|1≤k−1.
Then, g∗f∈BUC and Theorem 3.1 (ii) is applicable to g∗f. If also pmax<p
 (see

(4.4)), there is a constant cg∗f∈R such that lim|x|→∞(g∗f)(x)=cg∗f .

Proof. The proof consists in showing that Corollary 4.8 is applicable to g∗f.
We shall use the fact that, by Theorem 5.2 (ii), ∂γ(g∗f) with |γ|1≥1 has the form
∂αg∗∂jf with |α|1=|γ|1−1 and 1≤j≤N.
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First, ∂j(g∗f)=g∗∂jf∈Lpj and condition (i) of Corollary 4.8 for g∗f is ∂γ(g∗
f)∈Lpγ for some 1≤pγ≤∞ if 1≤|γ|1≤k−1. From the above, this is equivalent to
∂αg∗∂jf∈Lpα,j for some 1≤pα,j≤∞ when 1≤j≤N and 0≤|α|1≤k−2. This holds
when α=0; in particular, when k=2. If k≥3, it follows from Young’s theorem that
pα,j exists if ∂αg∈Lqα with 1/qα+1/pj≥1. This holds for every 1≤|α|1≤k−2 and
every 1≤j≤N if and only if max1≤|α|1≤k−2 qα≤p′max, (assumed)

Next, condition (ii) of Corollary 4.8 for g∗f is ∂γ(g∗f)∈Lpγ for some N/k<

pγ≤∞ if |γ|1=k≤N, or ∂γ(g∗f)∈Lpγ for some 1≤ pγ≤∞ if k=N+1 and |γ|1=
N+1. Equivalently, ∂αg∗∂jf∈Lpα,j for some N/k< pα,j≤∞ if k≤N, |α|1=k−1 and
1≤j≤N, or ∂αg∗∂jf∈Lpα,j for some 1≤pα,j≤∞ if k=N+1, |α|1=N and 1≤j≤N.

The first condition (when k≤N) amounts to 1≤1/qα+1/pj<1+k/N. This
holds for every |α|1=k−1 and every 1≤j≤N if and only if max1≤|α|1=k−1 qα≤
p′max (assumed) and min|α|1=k−1 qα>Npmin/[(N+k)pmin−N ]. This is not a restric-
tion because pmin>N/k implies Npmin/[(N+k)pmin−N ]<1. The second condition
(when k=N+1) is equivalent to max1≤|α|1=N qα≤p′max (assumed). �

Remark 5.8. The proof shows that Theorem 5.7 remains true if 2≤k≤N+1 is
any given integer, provided that min|α|1=k−1 qα>Npmin/[(N+k)pmin−N ] if k≤N

and pmin≤N/k. This may or may not be compatible with qα≤p′max.

As we already pointed out, Corollary 4.8 cannot be proved without the help
of UL spaces. Therefore, it seems safe to say that no proof of Theorem 5.7 can be
given based only on the properties of convolution and existing embedding theorems.

A. Appendix
Suppose N>2k+1 with k∈N and let 1≤p≤N/(2k+1). In this appendix, we

exhibit a function f such that ∇f∈(Lp)N and that the unique solution u∈S ′ of
(I−Δ)ku=f is unbounded. This proves the optimality of the boundedness criterion
in Example 5.3, except perhaps when p=1 and N=2k+1.

If h is a function on R
N , we denote h0 its restriction to R

N\{0}. On the other
hand, functions on R

N\{0} are also viewed as functions on R
N with no specified

value at 0. We need the following elementary lemma.
Lemma A.1. Let h∈L1

loc be smooth on R
N\{0}. If limε→0+ εN−1h0(εω)=0

uniformly for ω∈SN−1 and if ∂jh0∈L1
loc, then ∂jh=∂jh0 where ∂jh is the derivative

of h as a distribution on R
N and ∂jh0 is the classical derivative of the smooth

function h0.

Proof. If ϕ∈C∞
0 , 〈∂jh, ϕ〉=limε→0+

∫
RN\Bε

∂jh0ϕ−
∫
SN−1 ε

N−1h0(εω)ϕ(εω)ωjdω.

From the assumptions limε→0+ εN−1h0(εω)=0 uniformly for ω∈SN−1 and ∂jh0∈
L1
loc, the right-hand side is

∫
RN ∂jh0ϕ. �
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Now, let ψ∈C∞
0 (B1) be nonnegative and equal to 1 on a neighborhood of 0, so

that the function f(x):=ψ(x)|x|−2k(log |x|−1)−1 is smooth away from 0 and f(x)=
|x|−2k(log |x|−1)−1 on a neighborhood of 0. It is readily checked that f∈L1 (recall
N>2k+1) satisfies the hypotheses of Lemma A1, so that ∇f=∇f0. Furthermore,
a straightforward verification reveals that ∇f0∈(Lp)N when 1≤p≤N/(2k+1) (this
fails if p=1 and N=2k+1).

Let u(x)=
∫
B1

G2k(x−y)ψ(y)|y|−2k(log |y|−1)−1 dy be the unique solution of
(I−Δ)ku=f in S ′. By local elliptic regularity, u is continuous on R

N\{0} (even C∞)
and, by Fatou’s lemma, u(0)≤lim infx→0 u(x). On the other hand,
u(0)=∞ since G2k(−y)ψ(y)|y|−2k(log |y|−1)−1�|y|−N (log |y|−1)−1 near y=0 and∫
B1

|y|−N (log |y|−1)−1 dy=∞. Thus, limx→0 u(x)=∞ and so u is unbounded.
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