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Salem sets in vector spaces over finite fields

Changhao Chen

Abstract. We prove that almost all random subsets of a finite vector space are weak Salem
sets (small Fourier coefficient), which extend a result of Hayes to a different probability model.

1. Introduction

Let Fp denote the finite field with p elements where p is prime, and F
d
p be the

d-dimensional vector space over this field. Let E⊂F
d
p. We use the same notation as

in Babai [3], Hayes [4] to define that

(1) Φ(E)=max
ξ �=0

|Ê(ξ)|.

Here and in what follows, we simply write E(x) for the characteristic function of
E, Ê its discrete Fourier transform which we will define in Section 2. For ξ �=0, we
mean that ξ is a non-zero vector of Fd

p. Applying the Plancherel identity, we have
that for any E⊂Fd

p with #E≤pd/2,

(2)
√

#E/2≤Φ(E)≤#E.

See Babai [3, Proposition 2.6] for more details. The notation #E stands for the car-
dinality of a set E. Observe that the optimal decay of Ê(ξ) for all ξ �=0 are controlled
by O(

√
#E). We write X=O(Y ), which means that there is a positive constant C

such that X≤CY , and X=Θ(Y ) if X=O(Y ) and Y =O(X). Iosevich and Rudnev
[6] called these sets Salem sets. To be precise, we show the definition here.

Definition 1.1. ([6]) A subset E⊂F
d
p is called a Salem set if for all non-zero ξ

of Fd
p,

(3) |Ê(ξ)|=O(
√

#E).
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Note that this is a finite fields version of Salem sets in Euclidean spaces.
Roughly speaking, a set in Euclidean space is called a Salem set if measures ex-
ist on this set, and the Fourier transform of these measures have optimal decay; see
[2] and [9, Chapter 3] for more details on Salem sets in Euclidean spaces.

It is well known that the sets with small Fourier coefficient play an important
role in many topics, e.g., see [3], [9] and [12]. For some applications of Salem sets
in vector spaces over finite fields, see [5], [6] and [7].

In [4, Theorem 1.13] Hayes proved that almost all m-subset of Fd
p are (weak)

Salem sets which answers a question of Babai. To be precise, let E=Eω be selected
uniformly at random from the collection of all subsets of Fd

p which have m vectors.
Let Ω(Fd

p,m) denotes the probability space.

Theorem 1.2. (Hayes) Let ε>0. Let m≤pd/2. For all but an O(p−dε) prob-

ability E∈Ω(Fd
p,m),

(4) Φ(E)< 2
√

2(1+ε)m log pd =O
(√

m log pd
)
.

For convenience we call this kind of subset of Fd
p weak Salem set.

1.1. Percolation on F
d
p

There is an another random model which is closely related to the random
model Ω(Fd

p,m). First, we show this random model in the following. Let 0<δ<1.
We choose each point of Fd

p with probability δ and remove it with probability 1−δ,
all choices being independent of each other. Let E=Eω be the collection of these
chosen points, and Ω=Ω(Fd

p, δ) be the probability space. Note that both random
models Ω(Fd

p,m) and Ω(Fd
p, δ) are related to the well known Erdös-Rényi-Gilbert

random graph models.
Note that the random model Ω(Fd

p, δ) has more independence than the random
model Ω(Fd

p,m). The independence of different vectors in the model Ω(Fd
p, δ) often

make the analysis easier. For example, let F⊂F
d
p then (under the model Ω(Fd

p, δ))

P(F ⊂E)= δ#F .

On the other hand for the random model Ω(Fd
p,m),m≥#F , we have

(5) P(F ⊂E)= m(m−1)...(m−#F+1)
pd(pd−1)...(pd−#F+1) .

We also show roughly that the model Ω(Fd
p, δ) is closely related to the model

Ω(Fd
p,m) with m=pdδ. Observe that if #F is uniformly bounded, i.e. #F≤C
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where C is a positive constant and m→∞, then the identity (5) becomes (the
dependence become weaker)

P(F ⊂E)−→
(
m

pd

)#F

.

Meanwhile, the law of large numbers implies that with high probability each element
of Ω(Fd

p, δ) has roughly pdδ=m amount of vectors.
We note that Hayes [4] proved a similar result to Theorem 1.2 for the random

model Ω(Fd
p, 1/2). However, the martingale argument for Ω(Fd

p, 1/2) and Ω(Fd
p,m)

of [4] do not apply easily to the random model Ω(Fd
p, δ) for other values of δ �=1/2.

Babai [3, Theorem 5.2] used the Chernoff bounds for the model Ω(Fd
p, 1/2), but it

seems that the method also can not be easily extended to general δ. We note that
Babai [3], Hayes [4] proved their results in general finite Abelian group, see [3] and
[4] for more details. For the finite vector space Fd

p (special Abelian group) we extend
their result to general δ.

Theorem 1.3. Let ε>0. Let δ∈(pε0−d, 1) with fixed small ε0>0. For all but

an O(p−dε) probability E∈Ω(Fd
p, δ),

(6) Φ(E)< 2
√

(1+ε)δpd log pd =O
(√

δpd log pd
)
.

We know that almost all set E∈Ω(Fd
p, δ) has size roughly δpd. This follows by

Chebyshev’s inequality,

(7) P(|#E−pdδ| ≥ 1
2p

dδ)≤ 4pdδ(1−δ)
(pdδ)2 =O

(
1
δpd

)
.

We immediately have the following corollary, which says that almost all E∈
Ω(Fd

p, δ) is a weak Salem set.

Corollary 1.4. Let ε>0. Let δ∈(pε0−d, 1) with fixed small ε0>0. For all but

an O(max{p−dε, 1
δpd }) probability E∈Ω(Fd

p, δ),

(8) |Ê(ξ)|=O
(√

#E log pd
)
.

In F
d
p, it seems that the only known examples of Salem sets are discrete

paraboloid and discrete sphere. We note that both the size of the discrete paraboloid
and the discrete sphere are roughly pd−1, see [6] for more details. It is natural to
ask that does there exist Salem set with any given size m≤pn. The above results
and [8, Problem 20] suggest the following conjecture.
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Conjecture 1.5. Let s∈(0, d) be a non-integer number and C be a positive
constant. Then

min
E

Φ(E)√
#E

−→∞ as p−→∞,

where the minimal taking over all subsets E⊂F
d
p with ps/C≤#E≤Cps.

2. Preliminaries

In this section we show the definition of the finite field Fourier transform, and
some easy facts about the random model Ω(Fd

p, δ). Let f :Fd
p−→C be a complex

value function. Then for ξ∈Fd
p we define the Fourier transform

(9) f̂(ξ)=
∑
x∈Fd

p

f(x)e−
2πix·ξ

p ,

where the dot product x·ξ is defined as x1ξ1+...+xpξp. Recall the following Plancherel
identity, ∑

ξ∈Fd
p

|f̂(ξ)|2 = pd
∑
x∈Fd

p

|f(x)|2.

Specially for the subset of E⊂Fd
p, we have

(10)
∑
ξ∈Fd

p

|Ê(ξ)|2 = pd#E.

For more details on discrete Fourier analysis, see Stein and Shakarchi [11].
We show some easy facts about the random model Ω(Fd

p, δ) in the following.
Let ξ �=0, then the expectation of Ê(ξ) is

E(Ê(ξ))= δ
∑
x∈Fd

p

e−
2πix·ξ

p =0.

Since
|Ê(ξ)|2 =

∑
x,y∈Fd

p

E(x)E(y)e−
2πi(x−y)·ξ

p

=
∑
x∈Fd

p

E(x)+
∑

x�=y∈Fd
p

E(x)E(y)e−
2πi(x−y)·ξ

p ,

we have
E

(
|Ê(ξ)|2

)
= δpd+δ2

∑
x�=y∈Fd

p

e−
2πi(x−y)·ξ

p

= pdδ (1−δ) .
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We may read this identity as (for small δ)

|Ê(ξ)|=Θ
(√

pdδ
)

=Θ
(√

#E
)
.

3. Proof of Theorem 1.3

For the convenience of use, we formulate a special large deviations estimate in
the following. For more background and details on large deviations estimate, see
Alon and Spencer [1, Appendix A].

Lemma 3.1. Let {Xj}Nj=1 be a sequence independent random variables with

|Xj |≤1, μ1 :=
∑N

j=1 E(Xi), and μ2 :=
∑N

j=1 E(X2
j ). Then for any α>0, 0<λ<1,

(11) P(
∣∣ N∑
j=1

Xj

∣∣≥α)≤ e−λα+λ2μ2(eλμ1 +e−λμ1).

Proof. Applying Markov’s inequality to the random variable eλ
∑N

j=1 Xj . This
gives

(12)

P(
N∑
j=1

Xj ≥α) =P(eλ
∑N

j=1 Xj >eλα)

≤ e−λα
E(eλ

∑N
j=1 Xj )

= eλα
N∏
j=1

E(eλXj ),

the last equality holds since {Xj}j is a sequence independent random variables.
For any |x|≤1 we have

ex ≤ 1+x+x2.

Since |λXj |≤1, we have
eλXj ≤ 1+λXj+λ2X2

j ,

and hence
E(eλXj )≤ 1+E(λXi)+E(λ2X2

j )

≤ eE(λXi)+E(λ2X2
j ).

Combining this with (12), we have

P(
N∑
j=1

Xj ≥α)≤ e−λα+λμ1+λ2μ2 .
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Applying the similar way to the above for P(
∑N

j=1 Xj≥−α), we obtain

P(−
N∑
j=1

Xj ≥α)≤ e−λα−λμ1+λ2μ2 .

Thus we finish the proof. �

The following two easy identities are also useful for us.

(13)

∑
x∈Fd

p

cos 2πx·ξ
p

=Re

⎛
⎝∑

x∈Fd
p

e−
2πix·ξ

p

⎞
⎠=0

∑
x∈Fd

p

cos2 2πx·ξ
p

=
∑
x∈Fd

p

1+cos 4πx·ξ
p

2 = 1
2p

d

Proof of Theorem 1.3. Let ξ �=0 and E∈Ω(Fd
p, δ). Let

Ê(ξ)=
∑
x∈Fd

p

E(x)e−
2πix·ξ

p =R+iI

where R and is the real part of Ê(ξ), and I is the imagine part of Ê(ξ). First we
provide the estimate to the real part R. By the Euler identity, we have

R=
∑
x∈Fd

p

E(x) cos(2πx·ξ
p

).

Note that
E(x) cos

(
2πx·ξ

p

)
, x∈F

d
p

is a sequence of independent random variables. Furthermore, applying the identities
(13), we have

(14) μ1 =0 and μ2 = 1
2p

dδ.

Here μ1, μ2 are defined as the same way as in Lemma 3.1. Let

(15) α :=
√

2(1+ε)pdδ log pd, and λ := α

pdδ
.

Note that 0<λ<1 for large p. Applying Lemma 3.1, we have

(16)
P(|R|≥α)≤ 2e−λα+λ2μ2

=2e−
α2

2pdδ = 2
pd(1+ε) .
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Now we turn to the imagine part I. Applying the similar argument to the
real part R, note that the identities (13) also hold if we take sin instead of cos, we
obtain

P(|I|≥α)≤ 2
pd(1+ε) .

Combining this with the estimate (16), we obtain

(17) P(|Ê(ξ)| ≥
√

2α)≤P(|R|≥α)+P(|I|≥α)≤ 4
pd(1+ε)

Observe that the above argument works to any non-zero vector ξ. Therefore,
we obtain

(18) P(∃ ξ �=0, s.t |Ê(ξ)| ≥
√

2α)≤ 4
pdε

.

Recall the value of α in (15),

α=
√

2(1+ε)pdδ log pd,

this completes the proof. �

Remark 3.2. Let E⊂F
d
p with #E=ps. By Mockenhaupt and Tao [10, p.47],

we define the Fourier transform of E at ξ as

Ê(ξ) := 1
#E

∑
x∈Fd

p

E(x)e−
2πix·ξ

p .

Then the estimate (3) in the definition of Salem sets becomes (for ξ �=0)

|Ê(ξ)|=O(p− s
2 ).

We note that this form is the ‘same’ as the definition of Salem sets in Euclidean
spaces, see [9, Chapter 3].
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