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Torsion classes generated by silting modules

Simion Breaz and Jan Žemlička

Abstract. We study the classes of modules which are generated by a silting module. In
the case of either hereditary or perfect rings, it is proved that these are exactly the torsion T such
that the regular module has a special T -preenvelope. In particular, every torsion-enveloping class
in Mod-R are of the form Gen(T ) for a minimal silting module T . For the dual case, we obtain for
general rings that the covering torsion-free classes of modules are exactly the classes of the form
Cogen(T ), where T is a cosilting module.

1. Introduction

The study of torsion theories which are (co)generated by some special modules
is useful since in many cases these torsion theories can be characterized by some
intrinsic properties. For instance, it was proved in [1, Proposition 1.1 and Section 2]
that in the case of finitely-generated modules over artin algebras the classes of the
form gen(T ) (i.e. epimorphic images of finite direct sums of copies of T ) induced
by a τ -tilting module T coincide with the torsion classes which are enveloping. We
refer to [7, Section 5] for similar characterizations in the (co)tilting cases.

The notion of a silting module was introduced in [4] in order to extend the
τ -tilting theory, developed in [1] and [15] for finitely generated modules over artin
algebras, to infinitely generated modules. The dual notion, i.e. cosilting modules,
was studied in [10]. As in the case of tilting modules, see [6], a natural question is to
ask for characterizations of torsion classes which are generated by silting modules.

We recall that silting modules are in correspondence with silting objects in the
derived category of Mod-R, which can be represented by complexes of the form
0→P−1→P0→0 with P−1 and P0 projective modules. Therefore, they are also
in correspondence with important concepts as (co-)t-structures or, in the compact
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case, with simple-minded collections of objects (see [4] and [16]). It was proved
recently that some classes of rings (e.g. hereditary or commutative rings), can be
parametrized by universal localizations, [18], Gabriel topologies of finite type, [3], or
wide subcategories of finitely presented modules [5]. For other correspondences and
constructions, we refer to [19] and [22]. For various correspondences in the cosilting
case, we refer to [24] and [25]. Moreover, the 0-th homologies of compact silting
complexes of the above form appear naturally as generators for torsion theories
(T ,F) in Mod-R such that the heart of the associated t-structure is equivalent to
a module category, [14] and [17]. For some more general discussions, we refer to
[20]. The complexity of the transfer from the finitely-generated case to infinitely-
generated modules is described in [8].

In this paper we provide a general characterization (Proposition 2.1) for silting
classes (i.e. classes of the form Gen(T ) for a silting module T ), as torsion classes
which are generated via some special pushout constructions. In the case when R

is right perfect (Theorem 2.4), respectively right hereditary (Theorem 2.6) it leads
to characterizations which can be viewed as extensions of the corresponding result
for tilting classes, [6, Theorem 2.1]. In particular, every enveloping torsion class of
modules over a perfect ring or over a hereditary ring is generated by a silting module
(Corollary 2.12). The case of perfect rings extends the corresponding results proved
for finitely-generated modules over an artin algebra in [23] and [1, Theorem 2.7].

The last section of the paper is devoted to the dual setting; namely, we consider
torsion-free classes which are of the form Cogen(T ), where T is a cosilting module.
Since injective modules form an enveloping class over a general ring, we obtain using
dual tools that for every ring R torsion-free covering classes in Mod-R are exactly
the classes which are cogenerated by cosilting modules (Theorem 3.5).

In this paper R is a unital ring, and Mod-R will denote the category of all right
R-modules. If T is an R-module then Gen(T ) (respectively Cogen(T )) denotes the
closure to isomorphisms of the class of all quotients (submodules) of direct sums
(products) of copies of T .

2. Silting classes

If P is the class of all projective modules in Mod-R and P→ will denote the
class of all homomorphisms σ :P−1→P0 with P−1, P0∈P.

For every homomorphism σ :P−1→P0 from P→ we can associate to σ the class

Dσ = {X ∈Mod-R |HomR(σ,X) is an epimorphism}.

If T is a right R-module then Gen(T ) denotes the class of all epimorphic images of
direct sums of copies of T .
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If T is a class of modules, we will use the following classes:
• ¨T ={X∈Mod-R|Hom(X,T )=0 for all T∈T },
• T ¨={X∈Mod-R|Hom(T,X)=0 for all T∈T },
• ⊥T ={X∈Mod-R|Ext1(X,T )=0 for all T∈T },
• T ⊥={X∈Mod-R|Ext1(T,X)=0 for all T∈T },
• �T ={α∈P→ |T ⊆Dα}, and
• �T ={Coker(α)|α∈�T }.

Recall from [4] that a module T is partial silting if there exists a projective presen-
tation

P−1
σ−→P0 −→T −→ 0

such that Dσ is a torsion class and T∈Dσ. Then Gen(T )⊆Dσ⊆T⊥ and (Gen(T ), T ¨)
is a torsion pair. If Dσ=Gen(T ) then T is called a silting module.

Let T be a class of modules. Then a homomorphism ε:X→T with T∈T is
a T -preenvelope if Hom(ε, T ′) is surjective for all T ′∈T , i.e. all homomorphisms
X→T ′ with T ′∈T factorize through ε. The T -preenvelope ε is a T -envelope if
every homomorphism α:T→T with the property ε=αε has to be an isomorphism.
If all modules X∈Mod-R have a T -preenvelope (envelope) then T is preenveloping
(resp. enveloping). A preenveloping class T is special if for every X∈Mod-R we can
find a T -preenvelope ε which is monic and Coker(ε)∈⊥T . The corresponding dual
notions are that of (special) precover/precovering and cover/covering, respectively.

Tilting classes, i.e. the torsion classes of the form Gen(T ) with T a tilting mod-
ule, can be characterized by the fact that they are exactly the special preenveloping
torsion classes in Mod-R (cf. [7, Section 5] and [6, Theorem 2.1]). We refer to
[11] for a recent study of this kind of special preenveloping situation which involves
homomorphisms instead of objects. Even the orthogonality used in this paper does
not cover the (co)silting case (cf. [9, Remark 3.2.2]), we can characterize torsion
classes of the form Gen(T ) with T a silting module by the existence of preenvelopes
with some special properties.

Proposition 2.1. The following are equivalent for a torsion class T of

R-modules:

(1) there exists a silting module T such that T =Gen(T );
(2) there exists a T -preenvelope ε:R→M which can be obtained as a pushout

L−1
ρ

��

δ

��

L0 ��

��

K �� 0

R
ε �� M

��
�� K �� 0

such that ρ∈�T ;
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(3) for every R-module X there exists an T -preenvelope ε:X→T0 which can be

obtained as a pushout

L−1
ρ

��

��

L0 ��

��

T1 �� 0

X
ε �� T0

��
�� T1 �� 0

such that ρ∈�T .

If we have a diagram as in (2) then T=M⊕K is a silting module and T =
Gen(T )=Dρ.

Proof. (1)⇒(3) Let σ :P−1→P0 be a homomorphism from P→ such that T=
Coker(σ), and T is silting with respect to σ. Hence T =Dσ.

For every module X we consider the canonical homomorphism δ :P (I)
−1 →X,

where I=HomR(P−1, X), and we construct the pushout diagram

P
(I)
−1

σ(I)
��

δ

��

P
(I)
0

��

δ0

��

T (I) �� 0

X
ε �� T0

��
ν �� T (I) �� 0

Then, as in the proof of [4, Theorem 3.12] we obtain that T0∈Dσ=T .
Moreover, for every Y ∈T and every homomorphism α:X→Y there exists β :

P
(I)
0 →Y such that δα=βσ(I). By the pushout universal property there exists γ :

T0→Y such that α=γε, hence ε is a T -preenveloping map. Since σ(I)∈�T , the
proof is complete.

(3)⇒(2) is obvious.
(2)⇒(1) If X∈Dρ then every homomorphism R→X can be lifted to a homo-

morphism M→X. Therefore, every element of X is in the image of a homomor-
phism M→X, hence X∈Gen(M). It follows that Dρ⊆Gen(M)=T . But T ⊆Dρ

since ρ∈�T , and it follows that Dρ=T is a torsion class. Moreover, K∈T =Dρ,
hence K is partial silting with respect to ρ. By the proof of [4, Theorem 3.12] it
follows that T=M⊕K is a silting module with respect to the projective resolution

γ⊕ρ :L−1⊕L−1 −→ (L0⊕R)⊕L0,

where L−1
γ→L0⊕R→M is the canonical exact sequence induced by δ and ρ, and

that Gen(T )=Dρ=T . �

In order to apply the above proposition we will use the following characteriza-
tion for pushout diagrams.
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Lemma 2.2. In a commutative diagram

0 �� V
ι ��

α

��

L−1
ρ

��

δ

��

L0 ��

��

T1 �� 0

0 �� U
υ �� X

ξ
�� T0 �� T1 �� 0

the middle square is a pushout if and only if α is an epimorphism.

Proof. Suppose that the middle square is a pushout. We consider π :U→
U/Im(α) the canonical epimorphism, and μ:U/Im(α)→E is the embedding of
U/Im(α) into its injective envelope. There exists a homomorphism ν :X→E such
that νυ=μπ, hence νδι=0. Then νδ factorizes through Coker(ι). Since E is injec-
tive and the top horizontal line is an exact sequence, it follows that νδ factorizes
through ρ. Moreover, the middle square is a pushout, and we obtain that ν factor-
izes through ξ. It follows that μπ=νυ=0. Since μ is monic, we obtain π=0, hence
α is an epimorphism.

Conversely, if α is an epimorphism and we have two homomorphisms β1 :X→Y

and β2 :L0→Y such that β1δ=β2ρ then β1υα=0, hence β1υ=0. It follows that there
exists a unique homomorphism β :Im(ξ)→Y such that β1=β ξ, where ξ :X→Im(ξ)
is the homomorphism induced by ξ.

Let δ :Im(ρ)→Im(ξ) be the homomorphism induced by δ. If ιρ :Im(ρ)→L0 and
ιξ :Im(ξ)→T0 are the canonical inclusions, then β δ=β2ιρ. Since the first square in
the commutative diagram

0 �� Im(ρ)
ιρ

��

δ
��

L0 ��

��

T1 �� 0

0 �� Im(ξ)
ιξ

�� T0 �� T1 �� 0

is a pushout, there exists a unique homomorphism β∗ :T0→Y such that β (hence
β1) and β2 factorize through β∗, and the proof is complete. �

Let Y be a submodule of a module P , and consider a canonical projection
π :P→P/Y . Recall that Y �P means that Y is a superfluous submodule of a
module P , i.e. that ϕ is an epimorphism for every ϕ∈Hom(M,P ) such that πϕ is
an epimorphism.

We will need the following easy observation:

Lemma 2.3. Let X,P, T be modules over a ring R such that X�P and α∈
Hom(P, T ). Then α(X)�α(P ). If, furthermore, α(X)=α(P ) then α=0.
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Now we are ready to characterize torsion classes generated by silting modules
over right perfect rings.

Theorem 2.4. Let R be a right perfect ring and T ⊆Mod-R a torsion class.

The following are equivalent:

(1) T =Gen(T ) for a silting module T ;

(2) There exists a T -preenvelope ε:R→M such that M∈T ∩⊥T .

In these conditions, if K=Coker(ε) then M⊕K is a silting module, and T =
Gen(M⊕K).

Proof. (1)⇒(2) This is a consequence of Proposition 2.1 (see also [4, Proposi-
tion 3.11]).

(2)⇒(1) We consider the exact sequence 0→U
ιU→R

ε→M
ρ→K→0 where U=

Ker(ε) and ιU is the inclusion map, and we will construct a commutative diagram

(1) 0 �� P⊕X
1P⊕ιX��

(π,υ)
��

P⊕P−1
(0,σ)

��

(ιUπ,δ)
��

P0 ��

γ

��

K �� 0

0 �� U
ιU �� R

ε �� M �� K �� 0

such that its horizontal lines are exact sequences, and
(1) P , P−1, and P0 are projective modules;
(2) (0, σ)∈�T ;
(3) (π, υ) is surjective.
If such a diagram is constructed then it remains to apply Lemma 2.2 and

Proposition 2.1 to conclude that T is generated by a silting module.

Step 1. We will construct a commutative diagram

(2) 0 �� X
ιX ��

υ

��

P−1
σ ��

δ

��

P0 ��

γ

��

K �� 0

0 �� U
ιU �� R

ε �� M �� K �� 0

such that the horizontal lines are exact sequences, P−1 and P0 are projective mod-
ules, and X=Ker(σ) is superfluous in P−1.

If ε:R/U→M is the homomorphism induced by ε then for every T∈T the
homomorphism Hom(ε, T ) is an epimorphism. Since M∈⊥T we obtain K∈⊥T .
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For an epimorphism γ :P0→M with P0 projective, we have a commutative
diagram whose horizontal lines are exact sequences

0 �� Z
σ ��

δ
��

P0 ��

γ

��

K �� 0

0 �� R/U
ε �� M �� K �� 0,

where σ and ε are the canonical homomorphisms induced by σ and ε, respectively.
Since R is right perfect, we can take a projective cover πσ :P−1→Z of Z, and we
use it to complete the above diagram to the commutative diagram

P−1
σ ��

πσ

��

P0 �� K �� 0

0 �� Z
σ ��

δ
��

P0 ��

γ

��

K �� 0

0 �� R/U
ε �� M �� K �� 0.

Note that πσ is onto, so the horizontal lines in this diagram are exact sequences.
Since P−1 is projective we can construct a commutative diagram (2) such that

the horizontal lines are exact sequences, and πUδ=δπσ, where πU :R→R/U is the
canonical projection and ιX is the inclusion map. Moreover, since X=kerσ=kerπσ,
we observe that X�P−1.

Claim 1. For every T∈T the homomorphism Hom(σ, T ) is onto.

In order to prove this claim we will use techniques which are similar to those
used in [8]. Let us consider the short exact sequence

0−→Z
σ−→P0 −→K −→ 0,

and note that for every T∈T we have a short exact sequence

(3) 0−→Hom(K,T )−→Hom(P0, T ) Hom(σ,T )−→ Hom(Z, T )−→ 0

since Ext1(K,T )=0. Fix an arbitrary T∈T and an arbitrary ϕ∈Hom(P−1, T ).
Let us denote by πX :P−1→P−1/X and πT :T→T/ϕ(X) the canonical projections.
Then we can find a homomorphism ϕ∈Hom(P−1/X, T/ϕ(X)) which satisfies ϕπX=
πTϕ. As T/ϕ(X)∈T , there exists ψ∈Hom(P0, T/ϕ(X)) for which ψσ=ϕπX by the
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exactness of (3). Since P0 is projective and πT is an epimorphism, ψ factorizes
through πT , i.e. there exists ψ∈Hom(P0, T ) such that πTψ=ψ. Hence

πTψσ=ψσ=ϕπX =πTϕ.

Put α:=ϕ−ψσ∈Hom(P−1, T ). From πTα=0 we have α(P−1)⊆ϕ(X). Furthermore,
α|X=ϕ|X since ψσ(X)=0, which implies that α(P−1)⊆α(X). By Lemma 2.3 we
obtain α=0, so T∈Dσ, and the claim is proved.

Since υ is not necessarily surjective, we have to modify diagram (2). In order
to do this we will pass to the second step of the proof:

Step 2. We will study the properties of the homomorphisms involved in dia-
gram (2).

Using the pushout of σ and δ we obtain a commutative diagram

(4) 0 �� X ��

υ′

��

P−1
σ ��

δ

��

P0 ��

γ′

��

K �� 0

0 �� V ��

υ

��

R
ε′ �� L

��
ρ′

��

γ

��

K �� 0

0 �� U �� R
ε �� M

ρ
�� K �� 0,

such that the horizontal lines are exact sequences, υυ′=υ, and γ=γγ′. In order to
simplify the presentation, let us remark that υ′ is surjective (by Lemma 2.2) and υ

is injective, hence V can be identified with the image of υ. In this case the equality
υυ′=υ represents the canonical decomposition of υ through its image.

Claim 2. Hom(Ker(γ), T )=0.

In order to prove this we will prove that γ is a T -preenvelope for L. For every
T∈T and every homomorphism α:L→T there exists α:M→T such that αε′=αε.
Then (αγ−α)ε′=0, hence there exists β :K→T such that αγ−α=βρ′=βργ. Then
α=(α−βρ)γ, hence γ is a T -preenvelope for L.

Therefore, since M∈⊥T , applying the functors Hom(−, T ) with T∈T to the
exact sequence 0→Ker(γ)→L→M→0 it follows that Hom(Ker(γ), T )=0 for all
T∈T , and the claim is proved.

Claim 3. Coker(υ)∼=Ker(γ).

In order to prove this, we split the bottom rectangle in the diagram (4) in two
commutative diagrams with short exact sequences,
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0 �� V ��

υ

��

R
ε′ �� Im(ε′) ��

ζ

��

0

0 �� U �� R
ε �� Im(ε) �� 0,

and

0 �� Im(ε′)

ζ

��

�� L
ρ′

��

γ

��

K �� 0

0 �� Im(ε) �� M
ρ

�� K �� 0,

where ζ can be identified to the canonical surjection R/V →R/U . Applying Ker-
Coker Lemma, we observe that Coker(υ)∼=Ker(γ).

Step 3. The construction of diagram (1).

Since R is right perfect, there exists π :P→Coker(υ) is a projective cover for
Coker(υ). Moreover, Coker(υ) is an epimorphic image of U , hence we can lift π

to a homomorphism π :P→U . Now it is easy to see that we have obtained the
commutative diagram (1).

Claim 4. (0, σ)∈�T .

Let α:P→T be a homomorphism with T∈T . It induces a homomorphism
α:P/Ker(π)→T/α(Ker(π)) defined by the rule

α(x+Ker(π))=α(x)+α(Ker(π)).

Using the isomorphisms P/Ker(π)∼=Coker(υ)∼=Ker(γ) and Claim 2, it follows that
α=0. Therefore α(P )=α(Ker(π)). Since Ker(π) is superfluous, it follows that α=0,
hence Hom(P, T )=0. Using Claim 1, we obtain that T ⊆D(0,σ) and the proof of the
claim is complete.

Therefore, in order to complete the proof, it is enough to prove

Claim 5. (π, υ) is an epimorphism.

By Lemma 2.2, υ′ is an epimorphism, and it is easy to see that Im(υ)+Im(π)=
Im(υ)+Im(π)=U , and the claim is proved. �

The following class of examples, used in commutative case also in [3, Example
5.4], shows that the implication (2)⇒(1) does not hold in general. For the general
theory of semiperfect rings we refer to [2].
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Example 2.5. Let R be a semiperfect ring with non-zero idempotent Jacob-
son radical J , i.e. J2=J 	=0. An example of such a ring is constructed in [21,
Exercise 10.2]. Denote by Si the simple modules and by Pi the corresponding
indecomposable projectives such that ⊕i≤nSi=R/J and Si

∼=Pi/PiJ [2, Proposi-
tion 27.10 and Theorem 27.11]. Since idempotency of J implies that extensions
of semisimple modules by semisimple modules are semisimple as well, we can see
that T =Gen(R/J)={⊕iS

(ˇi)
i | ˇi, i≤n} is a torsion class and Ext1(T,U)=0 for

each T,U∈T , hence R/J∈T ∩⊥T . Furthermore, it is easy to verify that the natu-
ral projection R→R/J forms a T -envelope of R. We will show that no generator
G=⊕iS

(ˇi)
i of T is silting.

Consider an exact sequence P−1
σ→P0

ρ→⊕iS
(ˇi)
i →0. Since ρ factorizes through

the canonical projection π :⊕iP
(ˇi)
i →⊕iS

(ˇi)
i we may suppose that P0=⊕iP

(ˇi)
i and

that ρ=π. Note that Im(σ)=⊕iP
(ˇi)
i J 	=0 because ⊕iS

(ˇi)
i generates T , which

implies that P−1 	=0. Since for every T∈T and every homomorphism ϕ∈Hom(P0, T )
we have Im(σ)=P0J⊆ker(ϕ), the composition ϕσ is zero. As Hom(σ, T )=0 while
Hom(P−1, T ) 	=0 for all nonzero T∈T , we can conclude that G is not silting.

Finally note that the class of semiperfect rings with non-zero idempotent Ja-
cobson radical contains for example all valuation domains with infinitely generated
maximal ideals.

A similar result is valid for hereditary (which are not necessarily right perfect)
rings. In this case silting torsion classes can be characterized by the existence
of a special long exact sequence. We note that the equivalence of (1) and (2) in
the next result can be deduced from [5, Lemma 5.1 and Proposition 5.2] by using
the characterization of tilting classes as special preenveloping torsion classes, [6,
Theorem 2.1].

Theorem 2.6. Let R be a right hereditary ring and T ⊆Mod-R a torsion class.

The following are equivalent:

(1) T =Gen(T ) for a silting module T ;

(2) there exists a T -preenvelope ε:R→M such that M∈T ∩⊥T ;

(3) there exists an exact sequence 0→U→R→M→K→0 such that M∈T , U∈
¨T and K∈⊥T .

Proof. (1)⇒(2) The argument is the same as in the proof of Theorem 2.4, i.e.
we apply Proposition 2.1.

(2)⇒(3) As in the proof of Theorem 2.4 we obtain K∈⊥T .
Since ε is a T -preenvelope, every homomorphism R→T with T∈T factorizes

through R/U . Therefore, for every T∈T we have that Hom(π, T ) is an isomorphism,
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where π :R→R/U is the canonical epimorphism. Then first natural homomorphism
from the exact sequence

0−→Hom(R/U, T )−→Hom(R, T )−→Hom(U, T )−→Ext1(R/U, T )

is an isomorphism. Moreover, using the exact sequence 0→R/U→M→K→0, we
obtain Ext1(R/U, T )=0 for all T∈T . Therefore Hom(U, T )=0 for all T∈T .

(3)⇒(1) Since R is hereditary, there exists a projective resolution

0−→P−1
σ−→P0 −→K −→ 0.

Using the hypothesis K∈⊥T , it follows that σ∈�T . If U=Ker(ε) we can construct,
as in the proof of Theorem 2.4, using the projectivity of P0, a commutative diagram

0 �� U �� U⊕P−1
(0,σ)

��

(ι,δ)
��

P0 ��

γ

��

K �� 0

0 �� U �� R
ε �� M �� K �� 0,

where ι:U→R is the inclusion map. Since U is projective, by U∈¨T it follows
that (0, σ)∈�T . From Proposition 2.1 we conclude that Gen(T )=T is a silting
class. �

The following example shows that the condition U∈¨T is essential in the proof
of (3)⇒(1). We refer to [12] for the general theory of injective abelian groups.

Example 2.7. Let T =Gen(Z(p∞)) in the category Mod-Z for a prime number
p, where Z(p∞) is the p-component of the abelian group Q/Z. It is easy to see that
T is the class of all injective abelian p-groups, so it is a torsion class and for every
K∈T we have K∈⊥T . Therefore, for every homomorphism ε:Z→M with M∈T we
have Coker(ε)∈⊥T and Ker(ε)∼=Z /∈¨T . By [4, Corollary 3.5 and Proposition 3.10]
every torsion class generated by a silting module is closed under direct products.
Since Z(p∞)ℵ0 is not a torsion group, it follows that T is not closed under direct
products, hence T is not generated by a silting module.

On the other side, in the case of perfect rings there exists a torsion class T
generated by a silting module such that U /∈¨T .

Example 2.8. We consider, as in [4, Example 4.1] the k-algebra

R= kQ/(αβα, βαβ),
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where Q is the quiver

1
α

��
��

β

2 .

If S1 and S2 are the simple R-modules, respectively P1 and P2 are the corresponding
projectives, then M=S1⊕P1⊕P1 is a silting module. A Gen(M)-preenvelope for R
is given by

0−→U −→P1⊕P2
1P1⊕ϕ−→ P1⊕P1 −→S1 −→ 0,

where P2
ϕ→P1→S1→0 is the minimal projective presentation for S1. It is not hard

to see that Hom(U, S1)∼=Ext1(S2, S1) 	=0.

Let us recall that a module T (not necessarily finitely generated) is tilting if
Gen(T )=T⊥. The module T is quasi-tilting if Pres(T )=Gen(T )⊆T⊥, and T is
finendo if it is finitely generated as a left module over its endomorphism ring. By
[4, Proposition 3.10], the class of silting modules is an intermediate class between
the class of tilting modules and that of finendo quasi-tilting modules. Using a
theorem of Wei, [26], it is proved in [4, Proposition 3.15] that in the case of finitely
generated modules over finitely dimensional algebras the silting finitely generated
modules coincide to (finendo) quasi-tilting modules. In the case of hereditary or
right perfect rings, we obtain a similar result. We note that the hereditary case in
the following corollary was also proved in [5, Proposition 5.2 and Example 5.5].

Corollary 2.9. Let R be a right hereditary or right perfect ring. If Q is a

finendo quasi-tilting module then there exists a silting module T such that Add(Q)=
Add(T ).

Consequently, the following are equivalent for a torsion class T ⊆Mod-R:

(1) T =Gen(T ) for a silting module T ;

(2) T =Gen(T ) for a finendo quasi-tilting module T .

Proof. Let us recall from [4, Proposition 3.2 and Theorem 3.4] that Q is finendo
quasi-tilting if and only if there exists an exact sequence

R
α−→Q0 −→Q1 −→ 0

such that α is a Gen(Q)-preenvelope, Q0, Q1∈Add(Q) and Q1∈⊥Gen(Q). From
the proof of Theorem 2.4 and Theorem 2.6 it follows that T=Q0⊕Q1 is a silting
module. Not it is easy to see that Add(Q)=Add(T ) and Gen(Q)=Gen(T ). �

Using [3, Example 5.4] we observe that the equivalence from the above corollary
is not true for general rings.
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Example 2.10. Let R be a commutative local ring such that its maximal ideal
is idempotent. Then the simple module S is Mod-R is finendo quasi-tilting. But,
we proved in Example 2.5 that Gen(S) is not generated by a silting module.

We recall from [5] that a silting module T is minimal if there exists a
Gen(T )-envelope for the regular module R. In order to apply the above results
to minimal silting modules we need a lemma whose proof is included for reader’s
convenience.

Lemma 2.11. Let T be a class of modules. If ε:R→M is an T -envelope then

every epimorphism α:N→M with N∈T splits. Consequently, if T is a class closed

under extensions and ε:R→M is a T -envelope then M∈⊥T .

Proof. Since α is an epimorphism, there exists γ :R→N such that ε=αγ.
Then there exists β :M→N such that βε=γ. It follows that αβε=ε. Since ε is
a T -envelope, it follows that αβ is an automorphism, hence α splits.

The last statement is now obvious since in every short exact sequence 0→T→
N→M→0, with T∈T , we have N∈T . �

Corollary 2.12. The following are equivalent for a torsion class T of modules

over a right hereditary or right perfect ring R:

(1) T =Gen(T ) for a minimal silting module T ;

(2) There exists a T -envelope ε:R→M .

In particular, all enveloping torsion classes over hereditary or right perfect rings

are generated by silting modules.

Moreover, a half of Salce’s Lemma [13, Lemma 5.20] is valid for silting modules:

Proposition 2.13. Let T be a silting module. If T =Gen(T ) then for every

R-module X there exists a short exact sequence

0−→L−→U
υ−→X −→ 0

such that υ is a �T -precover for X and L∈T .

Consequently, ⊥T is a special precovering class.

Proof. If X is an R-module, we consider a pushout diagram

0 �� Y
υ ��

α

��

P ��

β

��

X �� 0

0 �� L
γ

�� U �� X �� 0,

where P is a projective module, L∈T , and α:Y →L is a T -preenvelope for Y ob-
tained as a pushout
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P−1
ζ

��

υ′

��

P0 ��

��

Z �� 0

Y
α �� L

��
�� Z �� 0

for some ζ∈�T . Then we have a pushout square

P−1
υυ′

��

ζ

��

P

β

��

P0
γγ′

�� U,

��

hence U is the cokernel of the homomorphism δ :P−1→P0⊕P induced by υυ′ and
ζ. Since every homomorphism f :P−1→T with T∈T can be written as f=gζ for
some g :P0→T , it follows that f=g′δ, where g′ :P0⊕P→T is defined by g′|P0

=g and
g′|P =0. Then δ∈�T , so U∈�T .

Now, for every V ∈�T we have T ⊆V ⊥, and it follows that γ is a �T -precover
for X.

The last statement follows from the inclusion �T ⊆⊥T . �

3. Cosilting classes

For the dual results, let us recall from [10] that we can associate to every
homomorphism σ :Q0→Q1 between injective modules the class

Bσ = {X ∈Mod-R |HomR(X,σ) is an epimorphism},

and a module T is partial cosilting if there exists an injective presentation

0−→T −→Q0
σ−→Q1

such that Bσ is a torsion-free class and T∈Bσ. Then Cogen(T )⊆Bσ⊆⊥T . If Bσ=
Cogen(T ) then T is called cosilting.

Let I be the class of all injective modules, and I→ the class of all homo-
morphisms between injective modules. If F is a class of right R-modules then we
associate to F the following classes

• F�={σ :S0→S1 |σ∈I→, and F⊆Bσ}, and
• F�={Ker(σ)|σ∈F�}.

In order to dualize Theorem 2.4 and Corollary 2.12 let us formulate dual versions
of Propositions 2.1.
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Proposition 3.1. The following are equivalent for a torsion-free class F of

R-modules:

(1) There exists a cosilting module T such that F=Cogen(T );
(2) If E is a fixed injective cogenerator for Mod-R then there exists an F-pre-

cover ε:M→E which can be obtained as a pullback

0 �� K �� M
��

ε ��

��

E

ν

��

0 �� K �� Q′
0

ζ′
�� Q′

1

such that ζ ′∈F�;
(3) For every R-module X there exists an F-precover α:M→X which can be

obtained as a pullback

0 �� S �� M
��

α ��

��

X

��

0 �� S �� S0
σ �� S1

such that σ∈F�.
If we have a diagram as in (2) then K⊕M is a cosilting module and F=

Cogen(K⊕M).

If Y is a submodule of a module P with the canonical embedding ν :Y →P ,
then Y is an essential submodule of P , Y �P , if an arbitrary homomorphism ϕ∈
Hom(P,N) is a monomorphism whenever ϕν is a monomorphism.

Lemma 3.2. Let Y,Q, F be modules over a ring R such that Y �Q and α∈
Hom(F,Q). Then β(F )∩Y �β(F ). If, furthermore, β(F )∩Y =0, then β=0.

We will also use the dual of Lemma 2.11.

Lemma 3.3. Suppose that F is a class of modules and ε:M→E is an F-cover

of an injective module E. Then every monomorphism α:M→N with N∈F splits.

Therefore, if F is a class closed under extensions and ε:M→E is an F-cover

of an injective module E then M∈F⊥.

As in the (co)tilting theory, we obtain the following:

Lemma 3.4. If T is a cosilting module then Cogen(T ) is a covering class.

Proof. It is proved in [10, Corollary 4.8] that Cogen(T ) is closed under direct
limits. Using [13, Theorem 5.31] we conclude that Cogen(T ) is a covering class. �
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Since every module has an injective envelope over an arbitrary ring, application
of dual techniques to that applied in the silting case gives us the dual of Theorem
2.4. Moreover the dual of Corollary 2.12, i.e. cosilting classes are exactly the
torsion-free classes which are covering, is valid for arbitrarily rings.

Theorem 3.5. Let R be a ring and E a fixed injective cogenerator for Mod-R.

If F is a torsion-free class in Mod-R, the following are equivalent:

(1) F=Cogen(T ) for a cosilting module T ;

(2) F is a covering class;

(3) there exists an F-cover ε:M→E;

(4) There exists an F-precover ε:M→E such that M∈F∩F⊥.

Moreover, if R is hereditary, then the above conditions are equivalent to:

(5) There exists an exact sequence 0→K→M→E→V →0 such that M∈F ,

V ∈F ¨ and K∈F⊥.

In these conditions, if K=Ker(ε) then M⊕K is a cosilting module and F=
Cogen(M⊕K).

Proof. The implication (1)⇒(2) follows from Lemma 3.4 and (2)⇒(3) is trivial.
The implication (3)⇒(4) follows from the dual of Lemma 3.3, and (4)⇒(1) is the
dual of (2)⇒(1) from Theorem 2.4.

In the hereditary case the equivalence (1)⇔(5) is the dual of the equivalence
(1)⇔(3) stated in Theorem 2.6. �

Let us note that the equivalence (1)⇔(2) was proved independently by Zhang
and Wei, cf. [24, Theorem 3.5] and [25, Theorem 4.18].

In the following example we will see that the property V ∈F ¨ cannot be deduced
if R is not hereditary.

Example 3.6. Let R be the ring used in Example 2.8. If (−)d is the standard
duality between right and left finitely presented modules, and M is the silting
module used in Example 2.8 then we can use the proof of [10, Corollary 3.7] to see
that Md is a cosilting module and

0−→Sd
1 −→P d

1 ⊕P d
1

1
Pd
1
⊕ϕd

−→ Rd −→Ud −→ 0

is the exact sequence induced by the Cogen(Md)-cover 1Pd
1
⊕ϕd for Rd such that

Coker(1Pd
1
⊕ϕd)=Ud is not in Cogen(Md)¨.

We have also the dual of Proposition 2.13.

Proposition 3.7. Let T be a cosilting module. If F=Cogen(T ) then for every

R-module X there exists a short exact sequence
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0−→X
υ−→U −→F −→ 0

such that υ is a F�-preenveloping for X and F∈F .

Corollary 3.8. Let F=Cogen(T ) for a cosilting module T . Then the class

F⊥ = {X ∈Mod-R |Ext1R(F,X)= 0 for all F ∈F}

is an enveloping class.

Proof. Since F�⊆F⊥, it follows that every F�-preenvelope constructed in the
previous proposition is a special F⊥-preenvelope. Therefore, it is enough to apply
[13, Theorem 5.27] and [10, Corollary 4.8] to obtain the conclusion. �
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