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Infinite transitivity and special automorphisms

Ivan Arzhantsev

Abstract. It is known that if the special automorphism group SAut(X) of a quasiaffine
variety X of dimension at least 2 acts transitively on X, then this action is infinitely transitive. In
this paper we question whether this is the only possibility for the automorphism group Aut(X) to
act infinitely transitively on X. We show that this is the case, provided X admits a nontrivial Ga-
or Gm-action. Moreover, 2-transitivity of the automorphism group implies infinite transitivity.

1. Introduction

Consider a set X, a group G and a positive integer m. An action G×X→X

is said to be m-transitive if it is transitive on ordered m-tuples of pairwise distinct
points in X, and is infinitely transitive if it is m-transitive for all positive integers m.

It is easy to see that the symmetric group Sn acts n-transitively on a set of
order n, while the action of the alternating group An is (n−2)-transitive. A gen-
eralization of a classical result of Jordan [21] based on the classification of finite
simple groups claims that there are no other m-transitive finite permutation groups
with m>5.

Clearly, the group S(X) of all permutations of an infinite set X acts infinitely
transitively on X. The first explicit example of an infinitely transitive and faithful
action of the free group Fn with the number of generators n≥2 was constructed
in [33]; see [16], [24] and references therein for recent results in this direction.

Infinite transitivity on real algebraic varieties was studied in [9], [22], [23]
and [30]. For multiple transitive actions of real Lie groups on real manifolds, see [10]
and [29].
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A classification of multiple transitive actions of algebraic groups on algebraic
varieties over an algebraically closed field is obtained in [27]. It is shown there that
the only 3-transitive action is the action of PGL(2) on the projective line P

1. More-
over, for reductive groups the only 2-transitive action is the action of PGL(m+1)
on P

m.
In this paper we consider highly transitive actions in the category of algebraic

varieties over an algebraically closed field K of characteristic zero. By analogy with
the full permutation group S(X) it is natural to ask about transitivity properties for
the full automorphism group Aut(X) of an algebraic variety X. The phenomenon
of infinite transitivity for Aut(X) in affine and quasiaffine settings was studied in
many works, see [2], [3], [6], [7], [17], [26] and [37]. The key role here plays the
special automorphism group SAut(X).

More precisely, let Ga (resp. Gm) be the additive (resp. multiplicative) group
of the ground field K. We let SAut(X) denote the subgroup of Aut(X) generated
by all algebraic one-parameter unipotent subgroups of Aut(X), that is, subgroups
in Aut(X) coming from all regular actions Ga×X→X.

Let X be an irreducible affine variety of dimension at least 2 and assume
that the group SAut(X) acts transitively on the smooth locus Xreg. Then [2,
Theorem 0.1] claims that the action is infinitely transitive. This result can be
extended to quasiaffine varieties; see [7, Theorem 2] and [17, Theorem 1.11].

We address the question whether transitivity of SAut(X) is the only possibil-
ity for the automorphism group Aut(X) of an irreducible quasiaffine variety X to
act infinitely transitively on X. We show that 2-transitivity of the group Aut(X)
implies transitivity of the group SAut(X) provided X admits a nontrivial Ga- or
Gm-action; see Theorem 11 and Corollary 13. We conjecture that the assumption
on existence of a nontrivial Ga- or Gm-action on X is not essential and 2-transitivity
of Aut(X) always implies transitivity of SAut(X) and thus infinite transitivity of
Aut(X) (Conjecture 16).

The quasiaffine case differs from the affine one at least by two properties: the
algebra of regular functions K[X] need not be finitely generated and not every
locally nilpotent derivation on K[X] gives rise to a Ga-action on X. These circum-
stances require new ideas when transferring the proofs obtained in the affine case.
Our interest in the quasiaffine case, especially when the algebra K[X] is not finitely
generated, is motivated by several reasons. Homogeneous quasiaffine varieties ap-
pear naturally as homogeneous spaces X=G/H of an affine algebraic group G. By
Grosshans’ Theorem, the question whether the algebra K[G/H] is finitely generated
is crucial for the Hilbert’s fourteenth problem, see [20] and [35, Section 3.7]. The
group Aut(X) acts infinitely transitively on X provided the group G is semisimple
[2, Proposition 5.4]. On the other hand, quasiaffine varieties, including the ones
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with not finitely generated algebra of regular functions, appear as universal torsors
X̂→X over smooth rational varieties X in the framework of the Cox ring theory,
see e.g. [1, Propositions 1.6.1.6, 4.3.4.5]. By [7, Theorem 3], for a wide class of
varieties X̂ arising in this construction, the special automorphism group SAut(X̂)
acts infinitely transitively on X̂.

Let us give a short overview of the content of the paper. In Section 2, we
recall basic facts on the correspondence between Ga-actions on an affine variety X

and locally nilpotent derivations of the algebra K[X]. Proposition 1 extends this
correspondence to the case when X is quasiaffine.

In Section 3, we generalize the result of [4] on the automorphism group of
a rigid affine variety to the quasiaffine case. Recall that an irreducible algebraic
variety X is called rigid if X admits no nontrivial Ga-action. Theorem 5 states that
the automorphism group of a rigid quasiaffine variety contains a unique maximal
torus; the proof is an adaptation of the method of [18, Section 3] to our setting.

Also, we describe all affine algebraic groups, which can be realized as a full
automorphism group of a quasiaffine variety (Proposition 8); the list of such groups
turns out to be surprisingly short.

Section 4 contains our main results, Theorem 11 and Corollary 13. In Corol-
lary 14 we observe that if an irreducible quasiaffine variety X admits a nontrivial
Ga- or Gm-action, the group Aut(X) acts on X with an open orbit O, and the
action of Aut(X) is 2-transitive on O, then X is unirational. This result follows
also from [34, Corollary 3].

In the last section, we discuss some questions related to Conjecture 16. We
pose a problem on transitivity properties for the automorphism group on a quasi-
affine variety with few locally finite automorphisms (Problem 20) and ask about
classification of homogeneous algebraic varieties (Problem 21).

The author would like to thank Sergey Gaifullin, Alexander Perepechko, Andriy
Regeta and Mikhail Zaidenberg for helpful comments and remarks. Also he is
grateful to the anonymous referee for valuable suggestions.

2. Locally nilpotent derivations and Ga-actions

In this section we discuss basic facts on locally nilpotent derivations and Ga-ac-
tions on quasiaffine varieties; see [17, Section 1.1], [7, Section 2], and [15] for related
results.

Let A be a K-domain and ∂ : A→A a derivation, i.e., a linear map satisfying the
Liebniz rule ∂(ab)=∂(a)b+a∂(b) for all a, b∈A. The derivation ∂ is called locally
nilpotent if for any a∈A there exists a positive integer m such that ∂m(a)=0. Let
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us denote the set of all locally nilpotent derivations of A by LND(A). Clearly, if
∂∈LND(A) and f∈Ker(∂), then f∂∈LND(A).

Every locally nilpotent derivation defines a one-parameter subgroup {exp(s∂),
s∈K} of automorphisms of the algebra A. This subgroup gives rise to an algebraic
action of the group Ga on the algebra A. The latter means that every element
a∈A is contained in a finite dimensional Ga-invariant subspace U of A, and the
Ga-module U is rational. Conversely, the differential of an algebraic Ga-action on
A is a locally nilpotent derivation; see [19, Section 1.5] for details.

Assume that the domain A is finitely generated and X=Spec(A) is the corre-
sponding irreducible affine variety. The results mentioned above establish a bijection
between locally nilpotent derivations on A and algebraic actions Ga×X→X. More-
over, the algebra of invariants AGa coincides with the kernel of the corresponding
locally nilpotent derivation.

If X is an irreducible quasiaffine variety, then again every action Ga×X→X

defines a locally nilpotent derivation of A:=K[X]. Since regular functions separate
points on X, such a derivation determines a Ga-action uniquely. At the same time,
not every locally nilpotent derivation of A corresponds to a Ga-action on X. For
example, the derivation ∂

∂x2
of the polynomial algebra K[x1, x2] does not correspond

to a Ga-action on X :=A
2\{(0, 0)}, while the derivation x1

∂
∂x2

does.
The following result seems to be known, but for lack of a precise reference we

give it with a complete proof.

Proposition 1. Let X be an irreducible quasiaffine variety and A=K[X].
Then

(i) for every ∂∈LND(A) there exists a nonzero f∈Ker(∂) such that the locally

nilpotent derivation f∂ corresponds to a Ga-action on X;

(ii) if ∂∈LND(A) corresponds to a Ga-action on X, then for every f∈Ker(∂)
the derivation f∂ corresponds to a Ga-action on X.

Proof. We begin with (i). Fix a derivation ∂∈LND(A) and the corresponding
Ga-action on A. Consider an open embedding X↪→Z into an irreducible affine
variety Z. Fix a finite dimensional Ga-invariant subspace U in A containing a set
of generators of K[Z]. Let B be the subalgebra in A generated by U and Y be
the affine variety Spec(B). Since B is Ga-invariant, we have the induced Ga-action
on Y . The inclusion B⊆A defines an open embedding X↪→Y .

Claim 2. Every divisor D⊆Y contained in Y \X is Ga-invariant.

Proof. Assume that the variety Y is normal and take a function f∈K(Y ) which
has a pole along the divisor D. Multiplying f by a suitable function from B we may
suppose that f has no pole outside D. Then f is contained in A. If the divisor D
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is not Ga-invariant, there is an element g∈Ga such that g ·D intersects X. It shows
that the function g ·f has a pole on X and thus is not in A, a contradiction.

If Y is not normal, we lift the Ga-action to the normalization of Y and apply
the same arguments to integral closures of A and B. �

Claim 3. There is an open Ga-invariant subset W⊆Y which is contained

in X.

Proof. Let F be the union of irreducible components of Y \X of codimension
at least 2. Then the closure Ga ·F is a proper closed Ga-invariant subset whose
complement intersected with X is the desired subset W . �

Let Y0 :=Y \W . This is a closed Ga-invariant subvariety in Y and its ideal
I(Y0) in B is a Ga-invariant subspace. Applying the Lie-Kolchin Theorem, we find
a nonzero Ga-invariant function f∈I(Y0). Then f∈Ker(∂) and the Ga-action on Y

corresponding to the derivation f∂ fixes all points outside W . In particular, this
action induces a Ga-action on X. This proves (i).

Now we come to (ii). Consider the action Ga×X→X corresponding to ∂.
By [35, Theorem 1.6], there is an open equivariant embedding X↪→Y into an affine
variety Y . For any f∈Ker(∂), the orbits of the Ga-action on Y corresponding to
f∂ coincide with the orbits of the original actions on Y \{f=0}, while all points of
the set {f=0} become fixed. In particular, this action leaves the set X invariant.
This completes the proof of Proposition 1. �

Corollary 4. Let X be an irreducible quasiaffine variety and A=K[X]. The

variety X admits a nontrivial Ga-action if and only if there is a nonzero locally

nilpotent derivation on A.

3. Torus actions on rigid quasiaffine varieties

In this section we generalize the results of [18, Section 3] and [4, Theorem 1] to
the case of a quasiaffine variety. Let us recall that an irreducible algebraic variety
X is called rigid, if it admits no nontrivial Ga-action.

Theorem 5. Let X be a rigid quasiaffine variety. There is a subtorus T⊆
Aut(X) such that for every torus action T×X→X the image of T in Aut(X) is

contained in T. In other words, T is a unique maximal torus in Aut(X).

Let us begin with some preliminary results.

Lemma 6. Let X be an irreducible quasiaffine variety and T×X→X be an ac-

tion of a torus. Then there is a T -semi-invariant f∈K[X] such that the localization

K[X]f is finitely generated.
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Proof. By [35, Theorem 1.6], there exists an open equivariant embedding
X↪→Z into an irreducible affine T -variety Z. Let I be the ideal of the subvari-
ety Z\X in K[Z]. Since I is T -invariant, there is a non-constant T -semi-invariant
f∈I. The principal open subset Zf is contained in X. Since the algebra K[Zf ] is
the localization K[Z]f and K[X] is contained in K[Zf ], we conclude that the algebra
K[X]f =K[Z]f is finitely generated. �

Let A=⊕i∈ZAi be a graded K-algebra and ∂ : A→A a derivation. We de-
fine a linear map ∂k : A→A by setting ∂k(a) to be the homogeneous component
∂(a)deg(a)+k of the element ∂(a) for every homogeneous element a∈A. It is easy to
check that ∂k is a derivation for all k∈Z. We call it the kth homogeneous component
of the derivation ∂.

Proof of Theorem 5. Assume that there are two torus actions Ti×X→X, i=
1, 2, such that the images of Ti in Aut(X) are not contained in some torus T. The
latter means that the actions do not commute. We may assume that T1 and T2 are
one-dimensional. Let A:=K[X] and

A=
⊕
u∈Z

Au and A=
⊕
u∈Z

A′
u

be gradings corresponding to the actions of T1 and T2, respectively. Consider
semisimple derivations ∂ and ∂′ on A defined by ∂(a)=ua for every a∈Au and
∂′(b)=ub for every b∈A′

u.
Let ∂′

k be the kth homogeneous component of ∂′ with respect to the first grad-
ing. We claim that there are only finitely many nonzero homogeneous components
and thus the sum

∂′ =
∑
k∈Z

∂′
k

has only finite number of nonzero terms.
Consider a localization K[X]f from Lemma 6, where f is homogeneous with

respect to the first grading. The algebra K[X]f is generated by some elements
f1, ..., fk∈K[X], which are homogeneous with respect to the first grading, and the
element 1

f .
Since K[X] is contained in K[X]f , every element h∈K[X] is a linear combina-

tion of elements of the form
fa1
1 ...fak

k

fa

and the image ∂′(h) is a linear combination of the elements
∑
s

as∂
′(fs)fa1

1 ...fas−1
s ...fak

k

fa
− a∂′(f)fa1

1 ...fak

k

fa+1 .
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It shows that the shift of degree with respect to the first grading from h to ∂′(h) does
not exceed the maximal shift of degree for f1, ..., fk, f . Hence the shift is bounded
and we obtain the claim.

Let ∂′
m be a nonzero homogeneous component of ∂′ with maximal absolute

value of the weight m. Since the derivations ∂ and ∂′ do not commute, we have
m �=0. Then (∂′

m)r(a) is the highest (or the lowest) homogeneous component of
the element (∂′)r(a) for every homogeneous a∈A. Since a is contained in a finite
dimensional ∂′-invariant subspace in A, the elements (∂′)r(a) cannot have nonzero
projections to infinitely many components Au. Thus (∂′

m)r(a)=0 for r�0. We
conclude that ∂′

m is a nonzero locally nilpotent derivation of the algebra A. By
Corollary 4, we obtain a contradiction with the condition that X is rigid. �

Corollary 7. In the setting of Theorem 5, the maximal torus T is a normal

subgroup of Aut(X).

Let us finish this section with a description of affine algebraic groups which
can be realized as automorphism groups of quasiaffine varieties. When this paper
was already written, I found the same result in [28, Theorem 1.3], cf. also [32,
Theorem 4.10 (a)].

Proposition 8. Let X be an irreducible quasiaffine variety. Assume that the

automorphism group Aut(X) admits a structure of an affine algebraic group such

that the action Aut(X)×X→X is a morphism of algebraic varieties. Then either

Aut(X) is finite, or isomorphic to a finite extension of a torus, or isomorphic to

the linear group

G=
{(

1 0
a t

)
, a∈K, t∈K

×
}
.

Proof. We assume first that X is a rational curve. If X=A
1 then Aut(X) is

isomorphic to the group G. If X is A
1 with one point removed, then Aut(X) is an

extension of 1-torus. If we remove more than one point from A
1, the group Aut(X)

becomes finite. For a singular rational curve X, the automorphism group Aut(X)
lifts to normalization and preserves the preimage of the singular locus. Thus Aut(X)
is contained in an extension of 1-torus.

It follows from the description of the automorphism group of an elliptic curve
and from Hurwitz’s Theorem that the automorphism group of an affine curve X of
positive genus is finite.

Now let us assume that dimX≥2. If X is rigid then the affine algebraic group
Aut(X) contains no one-parameter unipotent subgroup. It means that the unipotent
radical and the semisimple part of Aut(X) are trivial. Hence Aut(X) is either finite
or a finite extension of a torus.
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Finally, let Ga×X→X be a non-trivial action and ∂∈LND(K[X]) the cor-
responding locally nilpotent derivation. By [19, Principle 11], the transcendence
degree of the algebra Ker(∂) equals dim(X)−1≥1. Let U be a subspace in Ker(∂).
Proposition 1, (ii) implies that the automorphisms exp(f∂), f∈U , form a com-
mutative unipotent subgroup in Aut(X) of dimension dim(U). Since dim(U) may
be arbitrary, the group Aut(X) does not admit a structure of an affine algebraic
group. �

Remark 9. Many examples of affine algebraic varieties whose automorphism
group is a finite extension of a torus are provided by trinomial hypersurfaces, see [4,
Theorem 3].

Remark 10. The class of affine algebraic groups which can be realized as the
automorphism groups of complete varieties is much wider. For example, the auto-
morphism group of a complete toric variety is always an affine algebraic group of
type A. A description of such groups is given in [13] and [14]. Some other affine
algebraic groups appear as the automorphism groups of Mori Dream Spaces; see e.g.
[5, Theorem 7.2]. It is shown in [11, Theorem 1] that any connected algebraic group
over a perfect field is the neutral component of the automorphism group scheme of
some normal projective variety.

4. Main results

We come to a characterization of transitivity properties for the automorphism
group Aut(X) in terms of the special automorphism group SAut(X).

Theorem 11. Let X be an irreducible quasiaffine variety of dimension at

least 2. Assume that X admits a nontrivial Ga- or Gm-action and the group Aut(X)
acts on X with an open orbit O. Then the following conditions are equivalent.

(1) The group Aut(X) acts 2-transitively on O.

(2) The group Aut(X) acts infinitely transitively on O.

(3) The group SAut(X) acts transitively on O.

(4) The group SAut(X) acts infinitely transitively on O.

Proof. Let us prove implications (1)⇒(3)⇒(4)⇒(2)⇒(1). Implications (4)⇒
(2)⇒(1) are obvious. Implication (3)⇒(4) is proved in [2, Theorem 2.2] for X affine
and in [7, Theorem 2], [17, Theorem 1.11] for X quasiaffine.

It remains to prove (1)⇒(3).(1) Assume first that there is a nontrivial Ga-action
on X. Let us take two distinct points x1 and x2 in O on one Ga-orbit. By assump-
tion, for every distinct points y1, y2∈O there exists an automorphism ϕ∈Aut(X)

(1) This is the only implication where we use the condition on Ga- or Gm-action.
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with ϕ(xi)=yi, i=1, 2. Then the points y1 and y2 lie in the same orbit for the
Ga-action obtained from the initial one by conjugation with ϕ. It means that the
group SAut(X) acts transitively on O.

Now assume that X is rigid and admits a nontrivial Gm-action. If the maximal
torus T from Theorem 5 acts transitively on O, then O is isomorphic to the torus
T and Aut(X) acts on O transitively, but not 2-transitively. Indeed, let us fix an
isomorphism between O and (K×)n. The group Aut(O) is isomorphic to a semidi-
rect product of T and the group GLn(Z). It shows that the stabilizer in Aut(O)
of the unit in (K×)n preserves the set of points with rational coordinates. Conse-
quently, the group Aut(O), and thus the group Aut(X), cannot act 2-transitively
on O.

Now assume that the action of T is not transitive on O. Let us take points
x1, x2, x3∈O such that x1 �=x2 lie in the same T-orbit and x3 belongs to other
T-orbit. By Corollary 4, every automorphism of X permutes T-orbits on X and
thus there is no automorphism preserving x1 and sending x2 to x3, a contradiction
with 2-transitivity.

This completes the proof of Theorem 11. �

Remark 12. Implication (1)⇒(3) for an affine variety X admitting a nontrivial
Ga-action was observed earlier in [12].

Corollary 13. Let X be an irreducible quasiaffine variety of dimension at

least 2. Assume that X admits a nontrivial Ga- or Gm-action. Then the following

conditions are equivalent.

(1) The group Aut(X) acts 2-transitively on X.

(2) The group Aut(X) acts infinitely transitively on X.

(3) The group SAut(X) acts transitively on X.

(4) The group SAut(X) acts infinitely transitively on X.

We recall that the Makar-Limanov invariant ML(A) of an algebra A is the
intersection of kernels of all locally nilpotent derivations on A. Using Proposition 1,
one can easily show that the Makar-Limanov invariant ML(K[X]) of the algebra of
regular functions on an irreducible quasiaffine variety X coincides with the algebra
of invariants K[X]SAut(X) of the special automorphism group. We denote ML(K[X])
just by ML(X). Note that a quasiaffine variety X is rigid if and only if ML(X)=
K[X].

In [31], a field version of the Makar-Limanov invariant is introduced. Namely,
the field Makar-Limanov invariant FML(X) of an irreducible quasiaffine variety X

is the subfield of K(X) consisting of all rational SAut(X)-invariants. The condition
FML(X)=K implies ML(X)=K, but the converse is not true in general. By [2,
Corollary 1.14], we have FML(X)=K if and only if the group SAut(X) acts on X
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with an open orbit. In this case the variety X is unirational [2, Proposition 5.1].
Together with Theorem 11 this yields the following result.

Corollary 14. Let X be an irreducible quasiaffine variety. Assume that X

admits a nontrivial Ga- or Gm-action and the group Aut(X) acts on X with an

open orbit O. If the group Aut(X) is 2-transitive on O, then X is unirational.

Remark 15. Corollary 14 is a particular case of [34, Theorem 5]. The latter
theorem claims that if X is an irreducible variety, the group Aut(X) acts generically
2-transitive on X, and Aut(X) contains a non-trivial connected algebraic subgroup,
then X is unirational. Moreover, if X is irreducible, complete, and the group
Aut(X) acts generically 2-transitive on X, then X is unirational [34, Corollary 3].

Let us finish this section with the following conjecture.

Conjecture 16. Conditions (1)–(4) of Theorem 11 are equivalent for any ir-

reducible quasiaffine variety X of dimension at least 2.

Remark 17. Jelonek [25] has proved that every quasiaffine variety X with an
infinite automorphism group is uniruled, i.e., for a generic point in X there exists
a rational curve in X through this point.

5. Concluding remarks and questions

In this section we discuss some results and questions related to Conjecture 16.
Let φ be an automorphism of a quasiaffine variety X and φ∗ be the induced auto-
morphism of the algebra K[X]. We say that φ is locally finite if every element of
K[X] is contained in a finite dimensional φ∗-invariant subspace.

The following fact is well known to experts, but for the convenience of the
reader we give it with a short proof.

Proposition 18. Let X be an irreducible quasiaffine variety and φ an auto-

morphism of X. The following conditions are equivalent.

(1) There exists a regular action G×X→X of an affine algebraic group G on

X such that φ is contained in the image of G in the group Aut(X).
(2) The automorphism φ is locally finite.

Proof. For implication (1)⇒(2), see e.g. [35, Lemma 1.4]. Conversely, assume
that φ is locally finite and let U be a finite-dimensional φ∗-invariant subspace in
K[X] which generates a subalgebra A in K[X] such that the morphism X→Z :=
Spec(A) is an open embedding. Let G be the subgroup of all automorphisms of
X that preserve the subspace U . Since U generates the field K(X), the group G
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is a subgroup of the general linear group GL(U). Moreover, every element of G

induces an automorphism of Z. The subgroup G′ of all elements of GL(U) which
induce an automorphism of Z is closed in GL(U). The subgroup G of G′ consists
of automorphisms of Z which preserve the (closed) subvariety Z\X. This proves
that G is an affine algebraic group. �

Remark 19. For further characterizations of automorphisms belonging to alge-
braic subgroups of Aut(X), see [36].

Clearly, every automorphism of finite order is locally finite. The condition that
a quasiaffine variety X admits no nontrivial actions of the groups Ga and Gm means
that every locally finite automorphism of X has finite order.

Problem 20. Let X be an irreducible quasiaffine variety such that every locally

finite automorphism of X has finite order. Can the group Aut(X) act transitively

(2-transitively, infinitely transitively) on X?

Let us give examples of automorphisms which are not locally finite. Let X be a
2-torus with the algebra of regular functions K[X]=K[T1, T

−1
1 , T2, T

−1
2 ]. Then the

map
φ : (t1, t2) 	−→ (t1t2, t2)

is an automorphism of X and the function T1 is not contained in a finite dimensional
φ∗-invariant subspace of K[X].

An automorphism of the affine plane A2 which is not locally finite may be given
as

(x, y) 	−→ (x+y2, x+y+y2).

More examples of automorphisms which are not locally finite can be found
in [8]. The authors describe a family of rational affine surfaces S such that the nor-
mal subgroup Aut(S)alg of Aut(S) generated by all algebraic subgroups of Aut(S)
is not generated by any countable family of such subgroups, and the quotient
Aut(S)/Aut(S)alg contains a free group over an uncountable set of generators. A de-
scription of automorphisms in [8] is given in a purely geometric terms. It seems to
be an important problem to find more methods for constructing automorphisms of
quasiaffine varieties which are not locally finite.

Working with Conjecture 16, one may wish to replace an arbitrary quasiaffine
variety by a quasiaffine variety admitting a nontrivial Ga- or Gm-action. For ex-
ample, let X be an irreducible quasiaffine variety such that the group Aut(X) is
2-transitive on X. Is it true that the group Aut(X×A

1) is 2-transitive on X×A
1?

This question is related to algebraic families of automorphisms in the sense of [36].
Let us finish this section with a general problem on transitivity for algebraic

varieties. We say that an algebraic variety X is homogeneous if the group Aut(X)
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acts transitively on X. A wide class of homogeneous varieties form homogeneous
spaces of algebraic groups. At the same time, not every homogeneous variety is
homogeneous with respect to an algebraic group; an example of a homogeneous
quasiaffine toric surface which is not a homogeneous space of an algebraic group is
given in [6, Example 2.2]. More generally, it follows from [6, Theorem 2.1] that
every smooth quasiaffine toric variety is homogeneous. We plan to describe all
homogeneous toric varieties in a forthcoming publication.

Problem 21. Describe all homogeneous algebraic varieties.

Conjecture 16 can be considered as a first step towards the solution of this
problem.
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