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A note on approximation of plurisubharmonic
functions

Håkan Persson and Jan Wiegerinck

Dedicated to John Erik Fornæss on occasion of his 70th birthday

Abstract. We extend a recent result of Avelin, Hed, and Persson about approximation of
functions f that are plurisubharmonic on a domain Ω and continuous on ˙Ω, with functions that are
plurisubharmonic on (shrinking) neighborhoods of ˙Ω. We show that such approximation is possible
if the boundary of Ω is C0 outside a countable exceptional set E⊂∂Ω. In particular, approximation
is possible on the Hartogs triangle. For Hölder continuous u, approximation is possible under less
restrictive conditions on E. We next give examples of domains where this kind of approximation
is not possible, even when approximation in the Hölder continuous case is possible.

1. Introduction

In [Sib] Sibony showed that any bounded C∞-smooth pseudoconvex domain Ω
in C

n has the P(luri)S(ub)H(armonic) Mergelyan property, cf. [Hed]. That is, every
function u that is plurisubharmonic on Ω and continuous on Ω can be approximated
uniformly on Ω by continuous plurisubharmonic functions vj that are defined on
(shrinking) domains Ωj that contain Ω. Fornæss and the second author extended
this result in [FW] to arbitrary domains with C1-boundary. Recently, see [AHP] and
[Hed], it was shown that the result remains valid if one only assumes C0-boundary.

Recall that a domain G in R
n has C0-boundary if (G)¨=G and the boundary is

locally the graph of a continuous function over an (n−1)-dimensional hyperplane.
This is equivalent to saying that G has the Segment Property for every z in ∂G,
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cf. [AHP], [Fra] and [Hed], i.e., there exists a neighborhood U of z and a vector
w∈Rn such that

U∩G+tw⊂G, for all 0<t< 1.

For an arbitrary domain in G we will call z∈∂G a C0-boundary point if G has
the Segment Property at z. The C0-boundary points form a relative open subset
of ∂G.

Let Δ be the unit disc in C. In [Hed] it is observed that the domain Δ\
[−1/2, 1/2] does not have the PSH-Mergelyan property. The natural setting to study
this kind of approximation problem, however, is the case where Ω is a fat domain,
i.e. Ω=(Ω)o. For domains in C (and in fact R

n) results from classical potential
theory give precise criteria for “Mergelyan type” approximation with harmonic and
subharmonic functions. For harmonic functions, this goes already back to Keldysh,
[Kel], and Deny, [Den], see also [ArGa], [Gar] and [Hedb]. We recall the result in
Section 4, where we give several examples of domains where the PSH-Mergelyan
property does not hold.

There is a big gap between the counterexamples in C and domains with
C0-boundary. It is a natural question whether the Hartogs triangle, R={(z, w):
0<|z|<|w|<1} has the PSH-Mergelyan property, as it is known that R does not
have the Mergelyan property for holomorphic functions. As the main result of this
note, however, we will prove the following theorem.

Theorem 2.3. Bounded domains in C
n of which the boundary is C0 with the

possible exception of a countable set of boundary points, have the PSH-Mergelyan
property.

In particular this shows that the Hartogs triangle has the PSH-Mergelyan prop-
erty.

In Section 3, we study uncountable exceptional sets and show that when extra
assumptions are made on the modulus of continuity of the approximand, the result
of Theorem 2.3 can be extended to certain uncountable sets. In Section 4, we give
several examples showing the difficulty of characterising the PSH-Mergelyan prop-
erty. We also make some comparisons to the classical problem of (sub-) harmonic
approximation and to approximation involving Hölder continuous functions.

2. Approximation of plurisubharmonic functions

Let PSH(Ω) denote the plurisubharmonic functions on Ω and PSH(Ω) the func-
tions that are uniform limits of plurisubharmonic functions defined on (shrinking)
neighborhoods of Ω. Let B(a, r)⊂C

n denote the ball with center a and radius r.
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For the reader’s convenience, we recall the familiar definition of modulus of
continuity.

Definition 2.1. Suppose that u is a function defined on the set X. A function
ω :[0,∞]→[0,∞] is called a modulus of continuity for u if

|u(z)−u(w)| ≤ω
(
|z−w|

)
, ∀z, w∈X.

Lemma 2.2. Let D be a bounded domain in C
n and let u be in PSH(D)∩C(¸D)

with modulus of continuity ω. Let a∈∂D. For every small ε>0 there exists a

function v∈PSH(D)∪B(a, ε) that is continuous on D∪B(a, ε) and satisfies

sup
¸D

|u−v| ≤ 4ω
(
diam(D)2/3ε1/3

)
.

Proof. Without loss of generality, assume that a is the origin and that u(0)=0.
Let η=diam(D)2/3ε1/3, and

α=6ω(η)
(

log
(
diam(D)/ε

))−1
.

For z∈¸D, define

v(z)=
{

max{u(z)+α log
∣∣z/η∣∣,−2ω(η)}, if |z|≤η;

u(z)+α log
∣∣z/η∣∣, if |z|>η.

Since u(z)+α log
∣∣z/η∣∣≥−ω(η) for |z|=η it is obvious that v∈PSH(D)∩C(¸D). Fur-

thermore, when |z|≤ε,

u(z)+α log
∣∣z/η∣∣≤ω(ε)+α log

(
ε/η

)
=ω(ε)+ 6ω(η)

log
(
diam(D)/ε

) log
(
ε/η

)
=ω(ε)+ 6ω(η)

log
(
diam(D)/ε

) log
((

ε/ diam(D)
)2/3)

≤ω(ε)−4ω(η)
≤−3ω(η),

and hence v≡−2ω(η) on D∩B(a, ε). Thus setting v≡−2ω(η) extends v as a
plurisubharmonic function to B(a, ε). Furthermore, if ε is small and v(z)=u(z)+



232 Håkan Persson and Jan Wiegerinck

α log
∣∣z/η∣∣, it follows that

|u(z)−v(z)| ≤α
∣∣∣log

∣∣z/η∣∣∣∣∣
=α

∣∣∣log |z|− 2
3 log(diam(D))− log(ε)

3

∣∣∣
≤ 2α

3

∣∣∣log(diam(D))−log(ε)
∣∣∣

=4ω(η)= 4ω
(
diam(D)2/3ε1/3

)
and if v(z)=−2ω(η), it follows that

|u(z)−v(z)| ≤ω(η)+2ω(η)

= 3ω
(
diam(D)2/3ε1/3

)
. �

Theorem 2.3. Let Ω be a bounded domain in C
n. Suppose that Ω has C0

boundary except at a countable set of boundary points K. Then Ω has the PSH-

Mergelyan property.

Proof. Because the set of C0-boundary points is open, K is compact. Let
u∈PSH(Ω)∩C(Ω) and let K={a1, a2, ...}. Let ε>0. We apply Lemma 2.2 on
a subsequence (anj ) of K as follows. Applying the lemma to an1 =a1 we find a
ball B1=B(an1 , r1) and a continuous function v1 defined on the closure of Ω1=
Ω∪B1 that is plurisubharmonic on Ω1 such that |v1−u|�ε/2 on Ω and such that
K∩∂B1=∅.

Let an2 be the first element of K that is not in B1. Then an2 /∈B1 and applying
the lemma gives us a ball B2 about an2 and a continuous function v2 defined on the
closure of Ω2=Ω1∪B2 that is plurisubharmonic on Ω2 and satisfies |v1−v2|�2−2ε

on Ω1 and such that B2∩B1=∅ and K∩∂B2=∅.
We continue in this fashion and obtain a sequence of balls Bj , and continu-

ous functions vj , which are defined on the closure of Ωj=Ω∪
⋃j

1 Bi and plurisub-
harmonic on Ωj , such that |vj−1−vj |<2−jε on Ωj , K⊂∪jBj and Bi∩Bj=∅ for
i �=j. Because K is compact, this sequence is finite, K⊂∪N

j=1Bj for some N>0. The
function vN is defined and plurisubharmonic on ΩN and |vN−u|<ε on Ω. We will
use Gauthier’s Localization Theorem, see [Gau], also cf. [Hed], Chapter 5, which
states that f∈C(Ω)∩PSH(Ω) if and only if for every z0∈Ω there is an open set
U containing z0 such that f∈C(Ω∩U)∩PSH(Ω∩U). We apply this to vN . For
z0∈Ω∩B(aj , rj) or z0∈Ω this is immediate. If z0∈∂Ω\∪jB(aj , rj) then Ω has by
assumption the segment property at z0. Then there exists a neighborhood U of z0
and a vector w∈Cn such that

U∩Ω+tw⊂Ω, for all 0<t< 1.
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Fix a ball B(z, r) that is compactly contained in U . Then the functions vt defined by
vt(z)=vN (z+tw), which are defined on neighborhoods of Ω∩B(z0, r), approximate
vN uniformly on Ω∩B(z, r) when t↓0. The conclusion is that vN , and hence also u,
belongs to C(Ω)∩PSH(Ω). �

Remark 2.4. Note that this proof also gives a proof of the PSH-Mergelyan prop-
erty for C0-domains. It is shorter, because of Gauthier’s theorem, but essentially
not different from the proof in [AHP].

3. Approximation of Hölder continuous PSH functions

In many practical cases when working with plurisubharmonic functions, one
has some extra quantitative information about the modulus of continuity (see for
example [DF] and [Sic]). In such cases we can extend the results of Theorem 2.3 to
certain uncountable exceptional sets. In order to describe those sets, we need the
following definition.

Definition 3.1. Let C>1 and ϕ:R+→R
+. The set K satisfies PS(C,ϕ) (K is

said to be C-proportionally well separated of negligible ϕ-measure), if for each ε>0
there exists a set of balls F={B(zj , rj)} satisfying the following properties:

(1) F covers K;
(2) F is proportionally C-separated in the sense that

B(zj , rj)∩B
(
zk, Crk

)
=∅, for all j �=k;

(3)
∞∑
j=1

ϕ(rj)<ε.

Remark 3.2. Note that if K satisfies PS(C,ϕ), then its generalized Hausdorff
measure equals zero, Λϕ(K)=0.

Example 3.3. Let s={s1, s2, ...} be a sequence of positive numbers 0<sj<1.
Let I0 be a closed interval in R and C(s1) be I0\J1 where J1 is an open interval
about the center of I0 of length (1−s1)|I0|. Proceeding by induction, C(s1, ..., sn) is
obtained by removing from each closed interval I in C(s1, ..., sn−1) an open interval
of length (1−sn)|I| about the center of I. The generalized Cantor set C(s) is now
defined as follows.

C(s)=
⋂
n�1

C(s1, ....sn).
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It is well known that C(s) is homeomorphic to the standard Cantor set, and
that its capacity is positive if and only if

(3.1)
∞∑

n=1

log sn
2n <∞,

cf. [Nev] and [Ran].
Now take s={2−n}∞n=1. Then since (3.1) is satisfied, C(s) has positive capacity.

We claim that for every δ>0 the set C(s) satisfies PS(ϕ,C) for every C and ϕ(s)=sδ.
Indeed, note that C(2−1, ...2−N ) consists of 2N intervals of length LN =∏N

1 (sj/2)=2−N(N+3)/2. Each of these intervals can be covered by an interval with
the same midpoint and radius rN =LN . Thus C(s)⊂C(2−1, ...2−N ) is covered by
2N intervals Ij of radius rN . The distance between Ij and CIk is smallest when Ij
and Ik belong to the same interval in C(2−1, ...2−(N−1)). This distance then equals

LN−1−(2+C)rN =LN−1−(2+C)2−N−1LN−1,

which is positive if C<2N+1−2.
For fixed δ>0

∞∑
j=1

rδj =2N
(
2(−N(N+3))/2

)δ

≤ 2N−δ(N2+3N)/2,

which tends to 0 if N→∞.

The following example shows that it might be hard to give sufficient criteria
for sets to be proportionally separated.

Example 3.4. The set X⊂R defined by X={1/j :j∈N} satisfies Property
PS(C,ϕ) with C=2 and ϕ(t)=tα for all α>0. On the other hand the set Y =X∪{0}
does not satisfy Property PS(C, tα) for any C>1 and α.

We are now ready to state and prove the main result of this section.

Theorem 3.5. Suppose that D⊂C
n is a bounded domain and that u∈

PSH(D)∩C(¸D), with a concave modulus of continuity ω. Suppose also that there

is a set E⊂∂D such that each z∈∂Ω\E has a neighborhood U⊂Cn such that

u∈PSH(U∩D).
If E satisfies PS(C,ϕ) with ϕ(t)=ω(t) log(1/t), then u∈PSH(D).

Remark 3.6. Since Ω is compact and u is continuous, u admits at least one
concave modulus of continuity.
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Remark 3.7. One might wonder if the assumption on the modulus of continuity
is necessary, or just a consequence of our method of proof. Although we don’t know
that this condition is sharp, Example 4.3 of the subsequent section shows that some
condition on the modulus of continuity is necessary for the theorem to hold.

Proof. Without loss of generality, assume that diam(D)=1. For a fixed ε>0,
let {B(zj , rj)}Nj=1 be a covering of K satisfying

N∑
j=1

ω(rj) log(1/rj)≤ ε,

such that B(zj , rj)∩B(zk, Crk)=∅ for all j �=k and some 1<C<2.
Now let

vj(z)=
{

max{u(z)+ 2
log(C)ω(Crj) log

∣∣ z−zj
Crj

∣∣, u(zj)−ω(Crj)}, if |z−zj |≤Crj ;
u(z)+ 2

log(C)ω(Crj) log
∣∣ z−zj
Crj

∣∣, if |z−zj |>Crj .

If |z−zj |=Crj , it follows that

u(z)+2ω(Crj) log
∣∣z−zj
Crj

∣∣≥u(zj)−ω(Crj),

and therefore it follows by the usual gluing argument that v∈PSH(D)∩C(¸D). Fur-
thermore, when |z−zj |≤rj ,

u(z)+ 2
log(C)ω(Crj) log

∣∣z−zj
Crj

∣∣≤u(zj)+ω(rj)+
2

log(C)ω(Crj) log
(
rj/(Crj)

)
=u(zj)+ω(rj)−

2
log(C)ω(Crj) log(C)

≤u(zj)−ω(Crj),

and hence vj is constant on D∩B(zj , rj). Thus vj can be trivially plurisubharmon-
ically extended to D∪B(zj , rj).

Now let
ṽj(z)= vj(z)+

2
log(C)

∑
k �=j

ω(Crk) log
∣∣z−zk
Crk

∣∣,
and define

v(z)=max{ṽj(z) : 1≤ j≤N}.

We now want to show that v(z)=ṽj(z) when |z−zj |<Crj , which will imply that v

admits a plurisubharmonic extension to D∪B(zj , rj). For this, suppose that |z−
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zj |<Crj and let k �=j be arbitrary. Then it follows from the fact that B(zj , Crj)∩
B(zk, Crk)=∅, that

ṽk(z) =u(z)+ 2
log(C)

N∑
k=1

ω(Crk) log
∣∣z−zk
Crk

∣∣
≤ vj(z)+

2
log(C)

∑
k �=j

ω(Crk) log
∣∣z−zk
Crk

∣∣
= ṽj(z).

To see that v approximates u, we consider two different cases.

Case 1.

z ∈Ω∩
N⋃
j=1

B(zj , Crj).

Suppose that z∈B(zj , Crj) for some j=1...N . Then it was earlier demonstrated
that

v(z)= vj(z)+
2

log(C)
∑
k �=j

ω(Crk) log
∣∣z−zk
Crk

∣∣.
There are now two possibilities.

Case 1.1. If
vj(z)=u(z)+ 2

log(C)ω(Crj) log
∣∣z−zj
Crj

∣∣,
then rj�|z−zj |�Crj and hence log

∣∣ z−z�
Cr�

∣∣ is negative for 	=j and positive for all
other 	. Keeping this in mind and that diam(D)<1, we see that

ṽj(z)−u(z) = 2
log(C)

N∑
k=1

ω(Crk) log
∣∣z−zk
Crk

∣∣
≤ 2

log(C)
∑
k �=j

ω(Crk) log
(

1
Crk

)

≤ 2
log(C)

∑
k �=j

ω(Crk) log
(

1
rk

)

≤ 2C
log(C)

∑
k �=j

ω(rk) log
(

1
rk

)

≤ 2C
log(C)ε,

where we in the second to last inequality have used the fact that ω is concave.
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On the other hand, it also holds that

ṽj(z)−u(z) = 2
log(C)

N∑
k=1

ω(Crk) log
∣∣∣∣z−zk
Crk

∣∣∣∣
≥ 2

log(C)ω(Crj) log
∣∣∣∣z−zj
Crj

∣∣∣∣
≥ 2

log(C)ω(Crj) log
(

1
C

)
=−2ω(Crj)≥−2Cω(rj)≥−4ε.

Case 1.2. If vj(z)=u(zj)−ω(Crj), it similarly follows that

u(z)−ṽj(z)≤u(z)−u(zj)+ω(Crj)−
2

log(C)
∑
k �=j

ω(Crk) log
∣∣z−zk
Crk

∣∣
≤ 2ω(Crj)≤ 2Cε,

and

ṽj(z)−u(z)≤u(zj)−u(z)−ω(Crj)+
2

log(C)
∑
k �=j

ω(Crk) log
∣∣z−zk
Crk

∣∣
≤ω(Crj)−ω(Crj)+

2
log(C)

∑
k �=j

ω(Crk) log(1/Crk)

≤ 2C
log(C)

∑
k �=j

ω(rk) log(1/rk)

≤ 2C
log(C)ε.

Case 2.
z ∈Ω\

⋃
B(zj , Crj).

In this case note that now for all j it holds that vj(z)=u(z)+ 2
log(C)ω(Crj) log

∣∣ z−zj
Crj

∣∣.
It follows similarly as above that

|u(z)−ṽj(z)|=
2

log(C)

N∑
k=1

ω(Crk) log
∣∣z−zk
Crk

∣∣
≤ 2C

log(C)

N∑
k=1

ω(rk) log
(

1
rk

)
≤ 2C

log(C)ε.
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We have thus shown that on Ω, u is a uniform limit of functions like v. To
show that u∈PSH(¸D), it therefore suffices to show that v∈PSH(¸D). It follows from
Gauthier’s localization lemma, that it is enough to show that every z∈∂D has a
neighborhood Uz such that v∈PSH(Uz∩D). For z∈∂D\K, this follows from the
assumptions of the theorem and for z∈K, it follows by the construction that there is
a neighborhood Uz of z where v is constant and hence trivially in PSH(Uz∩D). �

4. Domains without the Mergelyan property

The following result, which was mentioned in the introduction, goes back to
Keldysh and Deny in case of harmonic functions and is in full generality a con-
sequence of results by Bliedtner and Hansen, [BlHa], and cf. [Gar]. It reads as
follows.

Theorem 4.1. Let K be a compact subset of Rn. The following are equivalent

(1) Every function u that is continuous on K and (sub)harmonic on Ko can be

uniformly approximated on K by functions that are (sub)harmonic on (shrinking)

neighborhoods of K.

(2) The sets R
n\K and R

n\Ko are thin at the same points.

With this result, examples like the following have been constructed.

Example 4.2. Let {aj} be a sequence in Δ\[−1/2, 1/2], such that {aj}={aj}∪
[−1/2, 1/2]. Define cj>0 sequentially such that h(z)=

∑
j cj log |z−aj |>−1 on

[−1/2, 1/2], and next rj in such a way that h<−2 if |z−aj |<rj and, moreover
the discs {|z−aj |�rj} are disjoint. Then

D=Δ\(∪j{|z−aj |<rj}) = Δ\

⎛⎝[−1/2, 1/2]∪
⋃
j

{|z−aj |� rj}

⎞⎠
is a fat domain in C, K=D, and Ko=D do not satisfy condition (2). In fact
C\K=

⋃
j{|z−aj |<rj} is thin at all points in [−1/2, 1/2], but C\Ko is not. Hence

K does not have the approximation property (1).
For completeness, and because Theorem 4.1 was misunderstood in [HP] see also

[Hed, chapter 6], we show directly that D is hyperconvex, but not P -hyperconvex,
that is, D admits a bounded subharmonic exhaustion function g, but no such func-
tion belongs to PSH(D). This corrects Remark 4.10 in [HP].

Observe that the domain D is regular for the Dirichlet problem, since it has
no isolated boundary points. Denote by F the solution of the Dirichlet problem on
D with boundary values |z|2 on ∂D. Then the function z �→|z|2−F (z) is a bounded
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subharmonic exhaustion function. To see that no bounded subharmonic exhaustion
function g can be in PSH(K), notice that [−1/2, 1/2] is contained in the fine interior
of K, because [−1/2, 1/2]⊂{h>−3/2}, a finely open subset of K. Now if g were in
PSH(K), g would be finely subharmonic on the fine interior of K as a uniform limit
of subharmonic functions. But g=0 on [−1/2, 1/2] and �0 on a fine neighborhood
of K, which would contradict the fine maximum principle, cf. [Fug, Theorem 12.6].

Observe that this also shows that D does not have the PSH-Mergelyan property
either.

The example in [Hed], mentioned in the introduction, can be adapted to show
that even if the exceptional set K in the boundary is very small, the domain will in
general not have the PSH-Mergelyan property.

Example 4.3. (1) Let C=C(s) (s={2−k
k�1}) in the interval [−1/2, 1/2] be the

Cantor set of Example 3.3. We have seen that C has Hausdorff dimension 0 and
positive capacity. Let Δ be the open disc with radius 2 in C, and let D=Δ\C.
Then D is regular for the Dirichlet problem, and hence there exists a continuous
function u on Δ that is harmonic on D satisfying u|{|z|=2}=0 and u|C=1. Observe
that u /∈PSH(D)∩C(D) because of the maximum principle.

As D is a regular domain for the Dirichlet problem, it admits a bounded
continuous subharmonic exhaustion function ψ with −1�ψ�0. We set

Ω = {(z, w)∈D×C : |w|+ψ(z)< 0}.

By its definition Ω is hyperconvex and fat. It is C0 at all boundary points of the
form (z, ψ(z)eiθ), z∈D, θ∈[0, 2π). The function u, now viewed as a function on Ω,
is not in PSH(Ω)∩C(Ω), again because of the maximum principle.

In fact, the functions u and ψ in the example cannot even be approximated by
subharmonic functions that are Hölder continuous on Δ. Indeed, by a theorem of
Sadullaev and Yarmetov, [SaYa], such Hölder continuous functions would in fact be
subharmonic on Δ, again violating the maximum principle.

Similarly, we find that with Ω and u as above, u is not a uniform limit on
Ω of plurisubharmonic functions on Ω that are Hölder continuous on Ω. On the
other hand, by Theorem 3.5, every Hölder continuous function in PSH(Ω) belongs
to PSH(Ω).

In view of Theorem 4.1 and Example 4.2 one might hope that e.g. conditions
like: the sets Cn\K and C

n\Ko are (pluri-) thin at the same points, or perhaps that
K∩L has the PSH-Mergelyan property for all complex lines L, would be equivalent
with the PSH-Mergelyan property. This is not the case.
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Example 4.4. Let K={(z, w):z∈Δ, |w|�d(z, [−1/2, 1/2])} then C
2\K and C

2\
Ko are both thin and pluri-thin at points of Ko and not thin or pluri-thin at other
points of C2. For points in K\Ko this follows from the Poincaré Zaremba Criterion:
in such points p there exists an open solid cone of revolution with vertex p in C

2\K,
hence for a (pluri-) subharmonic function h defined in a neighborhood of p we have
lim supz→p,z /∈K h(z)=h(p). However, K does not have the PSH-Mergelyan property.

Example 4.5. Let Ω be the domain of Example 4.3, we will write w=u+iv,
and let Ω̃=(Ω∪{v>0})∩{|z|2+|w|2<3/2}. Then ∂Ω̃ has C0 boundary. This is
clear at boundary points (z, w) with w �=0 and at boundary points belonging to
{|z|2+|w|2=3/2}. Define for z∈Δ and |u|+ϕ(z)�0 the continuous function ψ :
(z, u) �→−

√
ϕ2(z)−u2. Then the part of the boundary where |z|2<3/2 and v�0

is the graph (z, u+iψ(z, u)) over a suitable domain in D×R. Hence Ω̃ has the
PSH-Mergelyan property, but its intersection with the line w=0 has not.

Question 4.6. With an eye to Example 4.3 we ask the following. Suppose
a domain Ω has C0-boundary, except for a compact set K in ∂Ω. Suppose also
that K is a polar subset of a 1-dimensional analytic variety J . Does Ω have the
PSH-Mergelyan property?

Question 4.7. Suppose that Ω is a fat, bounded, contractible domain. Does Ω
have the PSH-Mergelyan property?
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