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Abstract Shape invariance condition in the framework of second-order supersymmetric quantum mechanics is
studied. Two classes of solvable shape invariant potentials are consequently constructed, in which the parameters
a0 and a1 of partner potentials are related to each other by translation a1 = a0 + α. In each class, general
properties of the obtained shape invariant potentials are systematically investigated. The energy eigenvalues are
algebraically determined and the corresponding eigenfunctions are expressed in terms of generalized associated
Laguerre polynomials. It is found that these shape invariant potentials are inherently singular, characterized by the
1/x2 singularity at the origin.
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1 Introduction

The concept of supersymmetric quantum mechanics (SUSY QM) was initially proposed as a toy model to illustrate
the problem of dynamical supersymmetry breaking in quantum field theory [19,73,74]. Soon after the formulation,
it was realized that the mathematical skeleton of SUSY QM is very attractive, since it is closely related to the method
of factorization [49,67,66] and to the intertwining Darboux transformations [29,31]. For a review of SUSY QM,
please refer to [12,22,51] and references therein.

The basic property of one-dimensional SUSY QM is described by two supercharges Q+ and Q−, accompanied
with a supersymmetric Hamiltonian H . The supercharges are first-order differential operators and generate the fol-
lowing linear superalgebra: (

Q±)2 = 0,
[
H,Q±] = 0,

{
Q+, Q−} = H, (1.1)

where [·, ·] is the commutator and {·, ·} is the anticommutator. In (1.1), the super-Hamiltonian H consists of two
isospectral partner Hamiltonians, differing at most in the ground-state energy level. The eigenfunctions of the two
partner Hamiltonians are related to each other by means of supercharges Q+ and Q−.

It is known that in SUSY QM supersymmetry may or may not be broken. The situation is characterized by the
Witten index ΔF , defined by the difference between the number of zero-energy states of the partner Hamiltonians.
Alternatively, it can be defined by the asymptotic behavior of the superpotential [51]. In a nonperiodic quantum
system, the energy spectrum, that contains a nondegenerate zero-energy ground state and two-fold degenerate
positive energy states, signifies unbroken supersymmetry (ΔF �= 0). If there is no such zero-energy ground state so
that all energy states are two-fold degenerate, supersymmetry is then spontaneously broken (ΔF = 0). However,
certain supersymmetric periodic quantum systems may produce a zero-energy doublet of the ground states, resulting
in a completely isospectral pair of partner Hamiltonians [16,33]. If this happens, we will have ΔF = 0 even in the
case of unbroken supersymmetry. Such a peculiar property is named as self-isospectral in the literature. Additionally,
the statement that all positive energy levels are two-fold degenerate is valid only in the case of discrete spectrum. If
the spectra of the partner Hamiltonians allow continuous eigenstates, the corresponding energy levels will become
four-fold degenerate.

The linear superalgebraic structure described in (1.1) admits the nonlinear generalization. In a nonlinear gener-
alization of SUSY QM, two supercharges are higher-order (n > 1) differential operators, which satisfy the nonlinear
superalgebra1 [3,5,6,7,9,10]

(
Q±)2 = 0,

[
H,Q±] = 0,

{
Q+, Q−} = Pn(H), (1.2)

1 In the literature of SUSY, there are several synonyms for the nonlinear SUSY: the higher-order SUSY, the polynomial SUSY or the N -fold
SUSY. In what follows, we will use the nonlinear SUSY and higher-order SUSY interchangeably.
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where Pn(H) is a polynomial of the super-Hamiltonian H of order n. The number of singlet states in nonlinear
SUSY QM can take values from 0 to n. The Witten index ΔF thus cannot be used to characterize spontaneous
supersymmetry breaking. Nevertheless, the formalism of nonlinear SUSY QM is very instructive. In some periodic
quantum systems, the property of self-isospectrality can be realized based on the nonlinear SUSY algebra [23,24]. In
particular, it can be shown that quantum periodic systems with a parity-even finite-gap potential exhibit an unusual
tri-supersymmetric structure, which originates from higher-order differential operators [27,59]. Various aspects of
nonlinear SUSY QM have been elaborated, including, for instance, the works on the classification of differential
realizations of the nonlinear SUSY QM algebra [2] and on the intrinsic links between supersymmetric isospectrality
and hidden symmetries in certain quantum systems [25,26,28,55]. In fact, the nth order nonlinear SUSY QM is
closely related to the parasupersymmetric QM of order n [6,48,54,60]. It is known that the former quantum theory
can be deduced from the latter one if the redundant information, namely the intermediate Hamiltonians, of the latter
theory is completely truncated.

Among various super-extensions of nonlinear SUSY QM, the second-order supersymmetric quantum mechanics
(2-SUSY QM) is the simplest, the best known and well-studied one [3,5,6], [8,32,37,38,61,62,64]. The original
motivation of introducing 2-SUSY QM is to overcome the limitations that occur in the standard SUSY QM. It is
because that the standard SUSY QM only allows us to modify the ground-state energy level of the initial Hamiltonian
if no new singularity in the transformed partner potential is permitted. For the purpose of spectral design, the standard
SUSY QM definitely is not a satisfactory theory. The easiest way to surpass this difficulty is to generalize the SUSY
QM to the 2-SUSY QM, which involves the second-order differential operators, instead of the first-order ones. The
formalism of 2-SUSY QM has been shown to be a very powerful technique to build a new family of isospectral
quantum systems with desired spectral information, that is, the pre-planned energy spectra and scattering data or
the potential profiles. It can be shown that either one or two more energy levels can be created above the ground-
state energy level of the initial Hamiltonian [39,40,41,42,43,58,63,65]. Moreover, the 2-SUSY QM also leads to
the possibility of generating the standard SUSY complex potentials which render real energy eigenvalues [4,11,15,
17]. We note that the use of a pair of SUSY transformations to modify the bound spectrum arbitrarily, effectively
generating the 2-SUSY transformation, was discussed in [14,68].

The purpose of the present article is to study shape invariance condition in the formulation of 2-SUSY QM,
which has not been fully addressed until today.2 The general solution to this problem remains unsolved. Yet, we
will show, upon imposing an extra relation to the 2-SUSY shape invariance condition, that two translation classes
of solvable potentials can be constructed, in which the parameters of partner potentials are related to each other by
translation a1 = a0 + α. In each class, we find that the eigenfunctions of the obtained shape invariant potentials are
expressible in terms of generalized associated Laguerre polynomials, and that the energy eigenvalues are determined
algebraically. One important aspect regarding these 2-SUSY shape invariant potentials is that discontinuity of the
form 1/x at the origin is characteristic of the superpotentials, and thus leads to 1/x2 singularity to the corresponding
partner potentials.

The article is organized as follows. In Section 2, we briefly review the relevant formulations of 2-SUSY QM
and then present the shape invariance condition in 2-SUSY QM. In Section 3, we explicitly work out two translation
classes of solvable shape invariant potentials in 2-SUSY QM. The general properties of the obtained potentials are
investigated. Finally, we discuss the concept of hidden shape invariance and then conclude the article in Section 4.

2 Shape invariance condition in 2-SUSY QM

This section contains two parts. In the first part, we make a quick review on the 2-SUSY intertwining relations for
the partner Hamiltonians. The purpose is to reproduce the relevant properties of 2-SUSY QM. Some of the results
are quoted without proof for brevity. In the second part, the shape invariance condition is introduced within the
framework of 2-SUSY QM. A special form of trial solution will be used to solve the equation derived from the
2-SUSY shape invariance condition.

The 2-SUSY QM is a particular realization of the standard SUSY algebra. It is generated by the supercharge
operators Q+ and Q− = (Q+)†, together with the quasi-Hamiltonian H2 susy of the quantum system, fulfilling the
following nonlinear superalgebra [3,5,6,37,38,61,62,64]:

(
Q±)2 = 0,

[H2 susy, Q
±] = 0,

{
Q+, Q−} = H2 susy. (2.1)

The 2-SUSY algebra defined above can be readily realized by the 2× 2 matrices

Q− =

(
0 A

0 0

)
, Q+ =

(
0 0

A† 0

)
, (2.2)

2 A simplified version of 2-SUSY shape invariance was introduced in [1].
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H2 susy =

(
AA† 0

0 A†A

)
=

((
H̃ − ε1

)(
H̃ − ε2

)
0

0
(
H − ε1

)(
H − ε2

)

)

, (2.3)

where H̃ and H are two partner Hamiltonians of Schrödinger type, denoted respectively by

H̃ = − d2

dx2
+ Ṽ (x), H = − d2

dx2
+ V (x), (2.4)

and A is a second-order differential shift operator defined formally by

A ≡ d2

dx2
+ η(x)

d

dx
+ γ(x). (2.5)

It then follows, from (2.1), that the partner Hamiltonians H̃ and H are linked to each other by the intertwining
relations of Darboux transformation with the operators A and A† as

H̃A = AH, A†H̃ = HA†. (2.6)

Furthermore, the function γ(x) and the partner potentials Ṽ (x) and V (x) can be expressed solely in terms of η(x)
and its derivatives as

γ = d− V +
η2

2
− η′

2
, (2.7)

Ṽ = V + 2η′, (2.8)

V =
η′′

2η
− η′2

4η2
+

c

η2
+
η2

4
− η′ + d, (2.9)

where η′ = dη
dx , η′′ = d2η

dx2 and c, d are two real constants of integration. In terms of c and d, the factorization
energies of the quasi-Hamiltonian (2.3) are given by ε1 ≡ d−√

c and ε2 ≡ d+
√
c, respectively.

The formalism of 2-SUSY QM is a very useful tool for generating new solvable potentials which admit pre-
planned spectral properties. To explain this point, let us suppose that V (x) is an initially solvable potential and c
and d are two fixed but arbitrary constants. The transformed partner potential Ṽ (x) defined in (2.8) can then be
completely determined if the solution η(x) of the nonlinear second-order differential equation (2.9) is established.
The spectrum of the partner potential Ṽ (x) will depend on the chosen constant c. We consequently classify the
general solution η(x) into three cases as follows. (i) The real case with c > 0. In this case, we have two real non-
degenerate factorization energies ε1 �= ε2. The spectrum of Ṽ (x) is obtained from that of V (x) by deleting two
adjacent energy levels, shifting the position of an energy level, adding two more energy levels between two adjacent
ones, or adding two more levels below the ground-state energy level [39,40,65]. (ii) The confluent case with c = 0.
We have degenerate factorization energies ε1 = ε2. To obtain the spectrum of Ṽ (x), we may either add or delete an
energy level to that of the initial potential V (x) [42,43,58]. (iii) The complex case with c < 0. We have a pair of
complex conjugate factorization energies ε2 = ε̄1. In such a case, the transformed potential Ṽ (x) is a real potential
isospectral to V (x). Nevertheless, the intermediate SUSY potentials are complex, but having real energy spectra [41,
63].

The concept of shape invariance can be incorporated with the structure of 2-SUSY QM. Before doing so,
let us review some important properties of shape invariance in the standard SUSY QM. In the standard SUSY
QM, the shape invariance condition is known to provide a key ingredient for exploring exactly solvable potentials
for Schrödinger equation, since it leads immediately to an integrability condition [47]. With the help of shape
invariance condition, the entire energy spectra of the partner Hamiltonians can be obtained algebraically, when
SUSY is unbroken. In SUSY QM, many interesting classes of solvable shape invariant potentials that retain SUSY
have been constructed and discussed [13,18,20,21,30,35,36,52,53,57,72], including all the analytically solvable
potentials known in the context of nonrelativistic quantum mechanics. We mention here that the shape invariance
condition is not the most general integrability condition, because certain exactly solvable potentials are shown not
to be shape invariant [20].

To start with the discussion on the shape invariance condition within the framework of 2-SUSY QM, we first
introduce an x-independent parameter, denoted by a0. Then, we assume that all the functions appearing in the
present section not only depend on x but also on the parameter a0. Similarly, the constants c and d are assumed to be
functions of a0. In what follows, we will consider the case where c(a0) ≥ 0, so that two real factorization energies
of the initial potential V (x, a0) are given by d(a0) − ξ(a0) and d(a0) + ξ(a0), respectively. Here, the notation
ξ(a0) =

√
c(a0) is used.
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To be more explicitly, we take (2.8) and, according to the rule, write it as

Ṽ
(
x, a0

)
= V

(
x, a0

)
+ 2η′

(
x, a0

)
, (2.10)

where η′(x, a0) ≡ dη
dx is understood. What we mean by shape invariance is that the pair of partner potentials Ṽ (x, a0)

and V (x, a0) in (2.10) are similar in shape but differ only up to a change of the parameter a0 and an additive constant.
Mathematically, it is of the form

Ṽ
(
x, a0

)
= V

(
x, a1

)
+ e

(
a0
)
, (2.11)

where a1 = f(a0) is a function of a0 and the remainder e(a0) is independent of x.
Now if we combine (2.10) and (2.11), we immediately obtain an equation that is essential for the construction

of shape invariant potentials within the formalism of 2-SUSY QM. The equation reads

V
(
x, a1

)
= V

(
x, a0

)
+ 2η′

(
x, a0

)− e
(
a0
)
. (2.12)

Note that the potential V (x, ai) (for i = 0, 1) is expressible in terms of η(x, ai) using (2.9).
Based on (2.9) and (2.12), we can readily determine energy eigenvalues for the initial potential V (x, a0) alge-

braically. They are found to be (n = 0, 1, 2, . . .)

E2n = d
(
an

)− ξ
(
an

)
+

n−1∑

i=0

e
(
ai
)
, E2n+1 = d

(
an

)
+ ξ

(
an

)
+

n−1∑

i=0

e
(
ai
)
, (2.13)

where the convention for the summation
∑−1

i=0 = 0 is used. A point is worth mentioning. For eigenenergies (2.13)
to be a consistent energy spectrum of the initial potential V (x, a0), we must require that the energy gap between
two adjacent eigenstates be greater than zero in order to prevent these energy levels from crossing. That is to say,
the following relations must hold

Rn = E2n+1 − E2n = 2ξ
(
an

)
> 0, (2.14)

R̃n = E2n+2 − E2n+1 =
(
d
(
an+1

)− d
(
an

)
+ e

(
an

))− (
ξ
(
an

)
+ ξ

(
an+1

))
> 0. (2.15)

If either one ofRn and R̃n becomes negative for a given quantum number, say n = n0, it then means that the number
of bound states will be finite, resulting in the corresponding 2-SUSY shape invariant potential of finite depth.

Further, the unnormalized eigenfunctions corresponding to the eigenvalue spectrum in (2.13) are given by

ψ2n

(
x, a0

) ∝ A†(a0
)
A†(a1

) · · ·A†(an−1

)
ψ+

(
x, an

)
, (2.16)

ψ2n+1

(
x, a0

) ∝ A†(a0
)
A†(a1

) · · ·A†(an−1

)
η
(
x, an

)
ψ−

(
x, an

)
, (2.17)

where the shift operator A†(a0) can be deduced from (2.5) and ψ+(x, a0) and η(x, a0)ψ−(x, a0) denote the eigen-
states of energy E0 and E1 for the initial potential V (x, a0), respectively. More explicitly, both ψ± functions are
written by

ψ±
(
x, a0

) ∝ exp

[
−
∫ x

W±
(
x′, a0

)
dx′

]
, (2.18)

with the corresponding superpotentials [6]

W±
(
x, a0

)
=

1

2

[

η
(
x, a0

)± 2ξ
(
a0
)− η

(
x, a0

)′

η
(
x, a0

)

]

. (2.19)

Normalizability of ψ+(x, a0) and ψ−(x, a0) will therefore be determined by the asymptotic behavior of the corre-
sponding superpotential near its singularities and at infinity. Moreover, in terms of the superpotentialW+(x, a0), the
initial potential V (x, a0) in (2.9) is reformulated into

V
(
x, a0

)
=W+

(
x, a0

)2 −W ′
+

(
x, a0

)
+
(
d
(
a0
)− ξ

(
a0
))
, (2.20)

where W ′
+(x, a0) ≡ dW+

dx .
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At this stage, it is still too difficult to construct the general solution for (2.12), since the function η(x, ai) depends
arbitrarily on both x and a0. To solve the problem, we search for a particular form of η(x, ai) such that (2.12) can be
simplified. So, let us examine the trial solution for η-function of the form η(x, a0) ≡ a0η̄(x), in which η̄(x) is any
function of x.3 Then, by substituting this trial solution into (2.12) that is established from 2-SUSY shape invariance
condition, we arrive at

(
a1 + a0

)
η̄′ =

(
c
(
a1
)

a21
− c

(
a0
)

a20

)
1

η̄2
+
(
a21 − a20

) η̄2

4
+
(
d
(
a1
)− d

(
a0
)
+ e

(
a0
))
. (2.21)

Equation (2.21) represents a nonlinear first-order differential equation satisfied by η̄(x) that is required to be inde-
pendent of the parameter a0. Hence, the detailed form of η̄(x) will depend on the specially chosen relations among
the coefficients: e(a0), c(ai) and d(ai) (i = 0, 1).

3 Shape invariant potentials in 2-SUSY QM

In this section, we look for solvable shape invariant potentials in 2-SUSY QM by solving the nonlinear first-order
differential equation (2.21). We mention here that we have restricted our analysis of (2.21) on the condition c(ai) >
0, which is known to render the associated 2-SUSY transformation real. There are two important classes to be
discussed as follows.

Class 1. We choose the set of relations (for i = 0, 1, 2, . . . )

a1 = a0 + α, c
(
ai
)
=

(
m̃ai

)2
, d

(
ai
)
= β + ñai, e

(
ai
)
= 2ñai, (3.1)

where α, β and ñ are arbitrary constants, and the product ξ(ai) = m̃ai > 0 is taken to be positive. Without loss of
generality, we further choose the case that is ñ > 0, since the result of the case ñ < 0 can be easily deduced by the
simple transformations η̄ → −η̄ and α→ −α.

With such a choice, (2.21) is simplified to

η̄′ = α

4
η̄2 + ñ. (3.2)

The analytical solutions of (3.2) will depend on the sign of the constant α. Before going to details, let us analyze the
general structure of the shape invariant potentials in this class. From (3.2), we can readily build η(x, a0) = a0η̄(x)

and consequently construct the superpotentials W±(x, a0) and the initial potential V (x, a0) by using (2.19) and
(2.20). They are, respectively,

W±
(
x, a0

)
=

1

2

[
a∓ 1

4
η̄(x)± 2m̃− ñ

η̄(x)

]
, (3.3)

V
(
x, a0

)
=

1

4

[
a− 3

4
a− 1

4
η̄(x)2 +

4m̃2 − ñ2

η̄(x)2
+ 4β +

αñ

2

]
, (3.4)

where an = a0+nα is understood. Eigenvalues for the initial potential V (x, a0) above can be obtained algebraically
from (2.13) as

E2n = β + (ñ− m̃)an + 2ñ

n−1∑

i=0

ai, E2n+1 = β + (ñ+ m̃)an + 2ñ

n−1∑

i=0

ai. (3.5)

In addition, the positivity condition of the energy gap between two adjacent eigenstates presented in (2.14) and
(2.15) becomes

Rn = 2m̃an > 0, R̃n = 2(ñ− m̃)an+ 1
2
0 > 0. (3.6)

It is clear that, to avoid level crossing, we must have ñ > m̃ > 0 in addition to m̃an > 0.

3 We could have written the trial solution as η(x, a0) = A(a0)η̄(x), in which A(a0) is an arbitrary function of a0. The choice leads to
the result: A(a0) = a0 + kα, where α is the translation parameter (3.1). For simplicity, we take k = 0 in the present study.
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The eigenfunctions can be explicitly constructed using (2.16) and (2.17). After some computational algebra, the
first few even-number eigenstates are found,

ψ2

(
x, a0

) ∝
[
a0
η̄2

2ñ
−
(
1− m̃

ñ

)]
ψ+

(
x, a1

)
, (3.7)

ψ4

(
x, a0

) ∝
[
a0a 1

2

η̄4

(2ñ)2
− 2a 1

2

(
2− m̃

ñ

)
η̄2

2ñ
+
(
1− m̃

ñ

)(
2− m̃

ñ

)]
ψ+

(
x, a2

)
, (3.8)

ψ6

(
x, a0

) ∝
[
a0a 1

2
a1

η̄6

(2ñ)3
− 3a 1

2
a1

(
3− m̃

ñ

)
η̄4

(2ñ)2
+ 3a1

(
2− m̃

ñ

)(
3− m̃

ñ

)
η̄2

2ñ

−
(
1− m̃

ñ

)(
2− m̃

ñ

)(
3− m̃

ñ

)]
ψ+

(
x, a3

)
,

(3.9)

where ψ+(x, an) is the ground-state eigenfunction, expressible in terms of W+(x, an) via (2.18). As for the odd-
number eigenstates, that is, ψ2n+1(x, a0), they can be constructed directly from the corresponding even-number
states ψ2n(x, a0) by the replacement: − m̃

ñ → + m̃
ñ and ψ+(x, an) → η̄(x)ψ−(x, an).

General expression for these eigenfunctions can be established in the forms

ψ2n

(
x, a0

) ∝ L− m̃
ñ

n

(
η̄2

2ñ
, a 1

2 (n−1)

)
ψ+

(
x, an

)
, (3.10)

ψ2n+1

(
x, a0

) ∝ L
m̃
ñ
n

(
η̄2

2ñ
, a 1

2 (n−1)

)
η̄(x)ψ−

(
x, an

)
, (3.11)

where Lk
n(x

2, a 1
2m

) is the generalized associated Laguerre polynomials defined by

Lk
n

(
x2, a 1

2m

)
=

n∑

s=0

(−1)s
1

s!(n− s)!

(n+ k)!

(s+ k)!

[
a 1

2m

]
!

[
a 1

2 (m−s)

]
!
x2s. (3.12)

Here, the notations [a 1
2m

]! =
∏m

k=0 a 1
2k

and [a− 1
2
]! = 1 are used. To be more explicitly, we have in (3.10) that

[a 1
2 (n−1)]! = a 1

2 (n−1)a 1
2 (n−2) · · · a 1

2
a0. It is interesting to note that when α = 0, an = a0 and [a 1

2n
]! = (a0)

n+1,
for n ≥ 0. As a result, for α = 0, the generalized associated Laguerre polynomials reduce to

L− m̃
ñ

n

(
η̄2

2ñ
, a0(α = 0)

)
= L

− m̃
ñ

n

(
a0η̄

2

2ñ

)
, (3.13)

where Lk
n(x

2) is the standard associated Laguerre polynomials.
Having established the general properties for the shape invariant potentials in this class, now let us go back

to (3.2). By solving the equation, we are able to construct three different kinds of solution [34,46] as follows.

(1) If we take α > 0, (3.2) yields this solution: η̄(x) = 2

√
ñ
α tan

√
ñα
2 x. A direct computation on both superpoten-

tials W±(x, a0) shows that they are singular, characterized by the 1/x singularity near the origin. Explicitly, we
have

W±
(
x, a0

)
= ± 1

2x

(
2m̃

ñ
− 1

)
+

x

12

(
6ña∓ 1

6
∓ m̃α

)
+O(

x3
)
. (3.14)

In the same vein, the singularity of the initial potential V (x, a0) around the origin behaves like 1
x2 (

m̃2

ñ2 − 1
4 ).

Since α > 0, neither Rn nor R̃n in (3.6) will become negative for the choice ñ > m̃. It implies that the potential
accommodates infinite many numbers of bound states. This potential is known as the singular Pöschl-Teller I
potential.

(2) If α < 0 is taken, then we have from (3.2) the following: η̄(x) = 2

√
− ñ

α tanh
√−ñα

2 x. A similar computation

shows that both superpotentialsW±(x, a0) are singular at the origin, which behave as ± 1
2x (

2m̃
ñ −1), respectively.

It results in the singularity of V (x, a0) like 1
x2 (

m̃2

ñ2 − 1
4 ) at x = 0. Because of α < 0, either Rn or R̃n will

become negative for large enough values of n. This singular potential therefore consists of a finite number of
bound states, which is named as the singular Pöschl-Teller II potential.
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(3) If we take α = 0, (3.2) gives η̄(x) = ñx. The singularity of the superpotentials is found to be ± 1
2x (

2m̃
ñ − 1). As

a result, the initial potentials V (x, a0) in all three kinds of solution have the same singular behavior at the origin.
The present potential is called the singular harmonic potential that allows an infinite number of two shifted sets
of equally energy-spaced eigenstates.

A remark is in order. As mentioned, the superpotentials in all three different solutions have the same 1/x singular
property at the origin. In order for the wave functions in both x > 0 and x < 0 halves can have a chance to
communicate to each other, we have to restrict the strength of the associated singularity to be in the domain −1 <

( 2m̃ñ −1) < 1 [50,56]. Interesting, we have the same constraint that was imposed before to avoid energy levels from
crossing. Besides the singularity, all three superpotentials have an infinite discontinuity at x = 0. A regularization
that preserves SUSY and shape invariance needs to be introduced. In effect, the corresponding regularized potentials
will exhibit an extra Dirac delta-function like singularity at the origin over the unregularized ones [34,46].

Class 2. In this class, we choose another set of relations: (i = 0, 1, 2, . . . )

a1 = a0 + α, c
(
ai
)
=

(
m̃a2i

)2
, d

(
ai
)
= β + ñai, e

(
ai
)
= 2ñai, (3.15)

where α, β and m̃ > 0 are arbitrary constants. In addition, we set ñ > 0, since the situation of ñ < 0 can be easily
obtained by the defining transformations η̄ → −η̄ and α→ −α. At this time, (2.21) becomes

η̄′ = α

(
m̃2

η̄2
+
η̄2

4

)
+ ñ. (3.16)

Before presenting the detailed results for this equation, let us investigate some general properties of the shape
invariant potentials in the second class. Equation (3.16) enables us to construct the superpotentials W±(x, a0) (2.19)
and the initial potential V (x, a0) (2.20) as follows:

W±
(
x, a0

)
=

1

2

[
a∓ 1

4
η̄(x)± 2m̃a0 − ñ

η̄(x)
∓ αm̃2

η̄(x)3

]
, (3.17)

V
(
x, a0

)
=

1

4

[
a− 3

4
a− 1

4
η̄(x)2 − 5α2m̃4

η̄(x)6
− 6αñm̃2

η̄(x)4
+

4m̃2a−1a0 − ñ2 − 1
2α

2m̃2

η̄(x)2
+ 4β +

αñ

2

]
. (3.18)

We will show later that both superpotentials given in (3.17) exhibit a 1/x singularity at the origin. It implies that the
series expansion of the η̄(x) function near the origin will be of the form η̄(x) ∼ x1/3 + · · · .

Eigenvalues for the initial potential V (x, a0) are constructed algebraically as

E2n = β +
(
ñ− m̃an

)
an + 2ñ

n−1∑

i=0

ai, E2n+1 = β +
(
ñ+ m̃an

)
an + 2ñ

n−1∑

i=0

ai. (3.19)

The energy gap between two adjacent eigenstates in (2.14) and (2.15) becomes

Rn = 2m̃a2n, R̃n = 2
(
ñ− m̃an+ 1

2

)
an+ 1

2
− α2m̃

2
. (3.20)

From the expression of R̃n, we notice that no matter how large the constant ñ is, the energy gap R̃n (for α �= 0)
will eventually become negative for a large enough quantum number n = n0. That is, the 2-SUSY shape invariant
potentials in this second class allow only a finite number of bound states, and thus they must be of finite depth.

The associated eigenfunctions can be explicitly constructed using (2.16) and (2.17). The first few even-number
eigenstates are obtained below, expressed in linear combinations of the generalized associated Laguerre polynomials
(3.12), as

ψ2

(
x, a0

) ∝ L− m̃
ñ a1

1

(
η̄2

2ñ
, a0

)
ψ+

(
x, a1

)
, (3.21)

ψ4

(
x, a0

) ∝
[
L− m̃

ñ a2

2

(
η̄2

2ñ
, a 1

2

)
− 2αm̃2a0

]
ψ+

(
x, a2

)
, (3.22)

ψ6

(
x, a0

) ∝
[
L− m̃

ñ a3

3

(
η̄2

2ñ
, a1

)
− 2αm̃2

[
3a0L− m̃

ñ a2

1

(
η̄2

2ñ
, a1

)
− 8(ñ− αm̃)a 3

4

]]
ψ+

(
x, a3

)
, (3.23)
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where ψ+(x, an) is the ground-state eigenfunction of V (x, an) given in (2.18). As before, the odd-number eigen-
states ψ2n+1(x, a0) can be deduced from the corresponding even-number states ψ2n(x, a0) by the simple replace-
ment: − m̃

ñ → + m̃
ñ and ψ+(x, an) → η̄(x)ψ−(x, an).

In a similar fashion, the general expression for these eigenfunctions can be written in the series expansion of the
generalized associated Laguerre polynomials as

ψ2n

(
x, a0

) ∝
[

n∑

s=0

C(n, s)L− m̃
ñ a(n+s)/2

s

(
η̄2

2ñ
, a 1

2 (n−1)

)]

ψ+

(
x, an

)
, (3.24)

ψ2n+1

(
x, a0

) ∝
[

n∑

s=0

C(n, s)L
m̃
ñ a(n+s)/2
s

(
η̄2

2ñ
, a 1

2 (n−1)

)]

η̄(x)ψ−
(
x, an

)
, (3.25)

where the convention Lk
0(x

2, a 1
2 (n−1)) = 1 is used. Some of the calculated expansion coefficients C(n, s) defined

in (3.24) and (3.25) are listed below:

C(n, n) = 1, C(n, n− 1) = 0, C(n, n− 2) = −2

(
n

2

)

αm̃2,

C(n, n− 3) = 16

(
n

3

)

a 1
4n

(ñ− αm̃)αm̃2, C(n, n− 4) = 12

(
n

4

)
(
αm̃2a0a1 − 12(ñ− αm̃)2a 1

3n

)
αm̃2,

C(n, n− 5) = 64

(
n

5

)
((

24ñ2 − 50αm̃ñ+ 28α2m̃2)a 3
8n

− 5αm̃2a 3
2
a 1

4n

)
(ñ− αm̃)αm̃2,

C(n, n− 6) = 40

(
n

6

)

αm̃2

[
− 3α2m̃4a0a1a2 + (ñ− αm̃)2

(
2αm̃2(86a1 + (n+ 2)(2n− 1)α

)
a2

− 10
(
48(ñ− αm̃)2 − 12αm̃(ñ− αm̃) + (14− n)α2m̃2

)
a 2

5n

)]
,

where C(n, s) = 0, for n < s, and the symbol
(
n
m

)
denotes the binomial coefficient. In principle, the expansion

coefficients C(n, s) can be calculated term by term, for all s. However, a general expression for all the expansion
coefficients C(n, s) is not obtainable.

Now, let us turn back to solve (3.16). To obtain the solvable shape invariant potentials in this class, it is convenient
to introduce the function

g(x) ≡ m̃

η̄(x)
+
η̄(x)

2
. (3.26)

Therefore, η̄(x) has two possibilities, depending on the asymptotic property of the corresponding superpotential near
x = 0 and at large x,

η̄(x) = g(x)±
√
g(x)2 − 2m̃. (3.27)

It is then not difficult to show that, when expressed in terms of g(x), the first-order differential equation (3.16)
becomes

[
1± g√

g2 − 2m̃

]
g′ = (ñ− αm̃) + αg2, (3.28)

and the superpotential W+(x, a0) in (2.19) is reformulated into

W+

(
x, a0

)
= a0g(x)− ñ− αm̃+ αg2(x)

2
(
g(x)±

√
g(x)2 − 2m̃

) . (3.29)

In fact, the particular form of superpotential shown in (3.29), expressed in terms of the function g(x) that satisfies
the first-order differential equation (3.28), is not strange to us. Recently, both equations (3.28) and (3.29) have been
developed in the study of shape invariance condition in two steps in the context of standard SUSY QM [70]. There,
based on these two equations, new solvable shape invariant potentials in two steps are able to construct. Having
identified the origin of both equations, we will briefly report the main results of 2-SUSY shape invariant potentials
in this class, and leave the detailed discussion to the cited article.
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Without loss of generality, we further choose ñ > αm̃. The possible 2-SUSY solvable shape invariant potentials
are as follows.

(1) If we take α = 0, then we can directly solve (3.16), which yields η̄(x) = ñx. When substituting this result into

the initial potential V (x, a0) (2.20), we find that it is the singular harmonic potential, presenting 1
x2 (

m̃2a2
0

ñ2 − 1
4 )

singularity at the origin.
(2) If α > 0 is taken, on solving equation (3.28), we find that the g(x) function can be given by patching two

portions of solution. The solution in the first portion, defined in the region 0 < x < x1 = k
α tan−1[k

√
2m̃], is

given by

α

k
x =

1√
1 + 2m̃k2

cot−1

[
k

√
g(x)2 − 2m̃

1 + 2m̃k2

]
− cot−1 [kg(x)

]
, (3.30)

where the constant k =

√
|α|

ñ−m̃α . The solution in the second portion, defined in the region x1 < x < x2 =

π
2

k
α [1 + (1 + 2m̃k2)−1/2], is

α

k
x =

1√
1 + 2m̃k2

tan−1

[
k

√
g(x)2 − 2m̃

1 + 2m̃k2

]
+ tan−1 [kg(x)

]
. (3.31)

The g(x) function constructed above only covers the x > 0 region. To further extend the function g(x) to cover
the x < 0 region, we use antisymmetric property of the superpotentials.
From (3.30), we can invert this equation to obtain a series expansion in x for the function g(x) as

g(x) = +

(
m̃

3αx

)1/3[
1− 2− 3m̃k2

10k2

(
3αx

m̃

)2/3

+O(
x4/3

)
]
. (3.32)

Hence, the g(x) function exhibits the x−1/3 singularity. The singular behavior near x = 0 for other relevant
quantities can be similarly derived. For instance, the function η̄(x) ≡ g(x) −

√
g(x)2 − 2m̃ behaves like

(3αm̃2x)1/3 at the origin, as expected. Additionally, the superpotentials W±(x, a0) have a ∓ 1
6x singularity and

the initial potential V (x, a0) has a − 5
36x2 singularity. Unfortunately, the potential V (x, a0) constructed from the

large x region, that is, from (3.31), can be shown to be of infinite depth. According to the general structure of
energy spectrum (3.20), the shape invariant potentials must be of finite depth, allowing only a finite number of
bound states. In short, the 2-SUSY shape invariant potentials in the second class cannot exist, for α > 0.

(3) The case of α < 0 results in a new solvable potential of 2-SUSY shape invariance. To see this, let us solve (3.28)
for the g(x) function, which can again be given by two portions of solution. The solution in the first portion,
defined in the region 0 < x < xc = k

|α| tanh
−1[k

√
2m̃], is of the form

|α|
k
x =

1√
1− 2m̃k2

coth−1

[
k

√
g(x)2 − 2m̃

1− 2m̃k2

]
+ coth−1 [kg(x)

]
, (3.33)

where k is defined after (3.31). The solution in second portion, defined in the region xc < x <∞, is

|α|
k
x =

1√
1− 2m̃k2

tanh−1

[
k

√
g(x)2 − 2m̃

1− 2m̃k2

]
+ tanh−1 [kg(x)

]
. (3.34)

The g(x) function above is defined for the x > 0 region, and can be extended to the x < 0 region by
antisymmetrization.
Using (3.33), we obtain a series expansion in x for the function g(x). The first few terms in the expansion looks
like

g(x) = −
(

m̃

3|α|x
)1/3[

1 +
2 + 3m̃k2

10k2

(
6|α|x
2m̃

)2/3

+O(
x4/3

)
]
. (3.35)

In the same vein, the singularity for the function η̄(x) ≡ g(x) +
√
g(x)2 − 2m̃ behaves like −(3|α|m̃2x)1/3

at the origin. In addition, the superpotentials W±(x, a0) have a ∓ 1
6x singularity and the corresponding initial

potential V (x, a0) has a − 5
36x2 singularity. Having established both portions of g(x) in (3.33) and (3.34), we

can readily build the complete initial potential V (x, a0). At the end, we arrive at the new solvable 2-SUSY
shape invariant potential in the second class, which is not expressible in terms of elementary functions, but only
in implicit forms via the function g(x). As can be seen, the construction of such shape invariant potential is
nontrivial, since it involves patching and adjusting different portions of the g(x) function.
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We mention here that the 2-SUSY solvable potentials that we have constructed in both classes possess explicit
shape invariance symmetry, in which the parameters a0 and a1 are related to each other by a1 = a0 + α. In the
modern SUSY terminology [2], the corresponding 2-SUSY algebra for these shape invariant potentials is called
reducible, because the corresponding algebra admits a chain of the standard SUSY realization. It means that we can
gradually add or remove the two lowest energy levels of the initial Hamiltonian without breaking the positivity of the
intermediate SUSY algebra. However, there is the so-called irreducible 2-SUSY algebra, in that case, the standard
SUSY chain decomposition may be impossible.

4 Discussion and conclusion

In this article, the concept of shape invariance is incorporated with the formulation of 2-SUSY QM. Using a
trial solution for η(x, a0) function, we derive the first-order differential equation (2.21) that is essential for the
construction of 2-SUSY shape invariant potentials. Then, based on this equation, we establish two classes of
solvable shape invariant potentials. In each class, the general properties of the obtained potentials are analyzed
in detail. For instance, the eigenfunctions of these 2-SUSY shape invariant potentials are found expressible in terms
of the generalized associated Laguerre polynomials and the corresponding eigenvalues are determined algebraically.
Additionally, the shape invariant potentials constructed in the framework of 2-SUSY QM are similar to those shape
invariant potentials in two steps discussed in the context of standard SUSY QM. That is, there must be an analogous
potential algebra underlying the 2-SUSY shape invariant potentials, thus providing an alternative way of getting the
energy eigenvalues by algebraic methods [34,46,69,71].

As in the case of the standard SUSY QM, some solvable potentials in 2-SUSY QM may as well possess the
property of hidden shape invariance, which is seen after a special choice of parameter that produces the required
transformation is introduced [44]. To this purpose, let us consider the example of a free particle confined in a box
(0 < x < π) of infinite walls. The initial Hamiltonian is given by H = − d2

dx2 − 1. Clearly, this Hamiltonian
does not present the property of shape invariance, since we have no adjustable parameter. Therefore, we consider
the related potential instead: VIH(x, a0) = a0(a0 − 1) csc2 x − a20, where the energy eigenvalues are given by
En = (a0 + n)2 − a20. When setting a0 = 1, we as required recover the original potential of infinite walls. Indeed,
the related potential VIH(x, a0) is one of the Infeld-Hull type E potentials [49], that are known to be shape invariant
in the standard SUSY QM [45].

Now, we examine the property of 2-SUSY shape invariance for the initial potential VIH(x, a0). We first identify
the factorization energies of the quasi-Hamiltonian (2.3) to be ε1 = E0 and ε2 = E1. This is equivalent to set the
coefficients d =

√
c = a0 + 1

2 . Given the expressions for c and d, we readily solve the nonlinear second-order
differential equation (2.9) for the η-function. It is not hard to show that the solution is η(x, a0) = −(1 + 2a0) cotx

[61,62]. Then, via equation (2.8), the 2-SUSY partner potential ṼIH(x, a0) is found to be ṼIH(x, a0) = a1(a1 −
1) csc2 x− a20, where a1 = a0 + α and α = 2 in this particular example. The eigenenergies of the partner potential
ṼIH(x, a0) is Ẽn = (a1 + n)2 − a20, which is isospectral to VIH(x, a0), except for the two lowest energy levels.
Furthermore, when substituting both potentials VIH(x, a0) and ṼIH(x, a0) into 2-SUSY shape invariance condition
(2.11), we obtain the remainder as e(a0) = 4(a0 + 1). In sum, the partner potentials ṼIH(x, a0) and VIH(x, a0) are
shown to relate to each other by 2-SUSY shape invariance symmetry.

We have discussed in the present article the solvable potentials in 2-SUSY QM that possess either explicit
or hidden shape invariance symmetry. Actually, these solvable potentials belong to the translation class of shape
invariance, in which the parameter of partner potentials is related to each other by translation a1 = a0+α. However,
it is known that there are other classes of shape invariance. For instance, there is the so-called scaling class in the
standard SUSY QM, where the parameters a1 and a0 are related to each other by scaling a1 = qa0, for 0 < q < 1.
The problem of scaling shape invariant potentials in 2-SUSY QM is currently under investigation.
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Lamé equation, J. Phys. A, 40 (2007), 14403–14412.
[29] M. M. Crum, Associated Sturm-Liouville systems, Quart. J. Math. Oxford Ser. (2), 6 (1955), 121–127.
[30] J. W. Dabrowska, A. Khare, and U. P. Sukhatme, Explicit wavefunctions for shape-invariant potentials by operator techniques, J.

Phys. A, 21 (1988), L195–L200.
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