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Abstract

This paper shows how a gravitational field generated by a given energy-momentum
distribution (for all realistic cases) can be represented by distinct geometrical structures
(Lorentzian, teleparallel, and nonnull nonmetricity spacetimes) or that we even can dis-
pense all those geometrical structures and simply represent the gravitational field as a
field in Faraday’s sense living in Minkowski spacetime. The explicit Lagrangian density
for this theory is given, and the field equations (which are Maxwell’s like equations) are
shown to be equivalent to Einstein’s equations. Some examples are worked in detail in
order to convince the reader that the geometrical structure of a manifold (modulus some
topological constraints) is conventional as already emphasized by Poincaré long ago, and
thus the realization that there are distinct geometrical representations (and a physical
model related to a deformation of the continuum supporting Minkowski spacetime) for
any realistic gravitational field strongly suggests that we must investigate the origin of
its physical nature. We hope that this paper will convince readers that this is indeed the
case.

2000 MSC: 51P05, 83D05

1 Introduction

Physics students learn general relativity (GR) as the modern theory of gravitation. In that
theory, each gravitational field generated by a given energy-momentum tensor is represented
by a Lorentzian spacetime, that is, a structure (M,D,g, τg, ↑), where M is a noncompact
(locally compact) 4-dimensional Hausdorff manifold, g is a Lorentzian metric on M , and D
is its Levi-Civita connection. Moreover, M is supposed oriented by the volume form τg and
the symbol ↑ means that the spacetime is time orientable1. From the geometrical objects in
the structure (M,D,g, τg, ↑), we can calculate the Riemann curvature tensor R of D and a
nontrivial GR model is one in which R 6= 0. In that way, textbooks often say that in GR
spacetime is curved. Unfortunately, many people mislead the curvature of a connection D
on M with the fact that M can eventually be a bent surface in an (pseudo) Euclidean space

1For details, please consult, for example, [36, 39].
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with a sufficient number of dimensions2. This confusion leads to all sorts of wishful thinking
because many forget that GR does not fix the topology3 of M that often must be put in
“by hand” when solving a problem and thus think that they can bend spacetime if they
have an appropriate kind of some exotic matter. Worse, the insistence in supposing that the
gravitational field is geometry leads the majority of physicists to relegate the search for the
real physical nature of the gravitational field as unimportant at all (see a discussion of this
issue in [24]). Instead, students are advertised that GR is considered by may physicists as
the most beautiful physical theory [23]. However, textbooks with a few exceptions (see, e.g.,
the excellent book by Sachs and Wu [39]) forget to say to their readers that in GR, there are
no genuine conservation laws of energy-momentum and angular momentum unless spacetime
has some additional structure which is not present in a general Lorentzian spacetime [27].
Only a few people tried to develop consistently theories, where the gravitational field (at least
from the classical point of view) is a field in Faraday’s sense living in Minkowski spacetime
(see below).

In this paper, we want to recall two important results that hopefully will lead people
to realize that eventually it is time to disclose the real nature of the gravitational field4.
The first result is that the representation of gravitational fields by Lorentzian spacetimes is
eventually no more than a consequence of the differential geometry knowledge of Einstein
and Grossmann when they where struggling to find a consistent way to describe the grav-
itational field5. Indeed, there are some geometrical structures different from (M,D,g, τg, ↑)
that can equivalently represent such a field. The second result is that the gravitational field
(in all known situations) can also be nicely represented as a field in Faraday’s sense [26]
living in a fixed background spacetime6. Concerning the alternative geometrical models, the
particular cases where the connection is teleparallel (i.e., it is metrical compatible, has null
Riemann curvature tensor and nonnull torsion tensor) and the one where the connection
is not metrical compatible (i.e., its nonmetricity tensor Aη 6= 0) will be addressed below.
However, to understand how those alternative geometrical models (and the physical model)
can be constructed, and why the Lorentzian spacetime model was Einstein’s first choice, it is
eventually worth to recall some historical facts concerning attempts by Einstein (and others)
to build a geometrical unified theory of the gravitational and electromagnetic fields.

We start with the word torsion. Although such a word seems to have been introduced by
Cartan [2] in 1922 the fact is that the concept behind the name already appeared in Ricci’s
paper [31] from 1895 and was also used in [32]. In those papers, Ricci introduced what is
now called Cartan’s moving frames and the teleparallel geometry7.

2Any manifold M,dimM = n according to the Whitney theorem can be realized as a submanifold of Rm
with m = 2n. However, if M carries additional structure the number m in general must be greater than
2n. Indeed, it has been shown by Eddington [9] that if dim M = 4 and if M carries a Lorentzian metric g,
which moreover satisfies Einstein’s equations, then M can be locally embedded in a (pseudo)Euclidean space
R1,9. Also, isometric embeddings of general Lorentzian spacetimes would require a lot of extra dimensions [4].
Indeed, a compact Lorentzian manifold can be embedded isometrically in R2,46 and a noncompact one can
be embedded isometrically in R2,87!

3In particular, the topology of the universe that we live in is unknown, as yet [53].
4Of course, the authors know that one of the claims of string theory is that it nicely describes gravitation.

In that theory, GR is only an approximated theory valid for distances much greater than the Planck length.
5See some details below.
6The preferred one is, of course, Minkowski spacetime, the simple choice, but, the true background space-

time may be eventually a more complicated one, since that manifold must represent the global topological
structure of the universe, something that is not known at the time of this writing [53].

7Also known as Weintzböck geometry [55].



Some thoughts on geometries and on the nature of the gravitational field 3

Moreover, in 1901, Ricci and Levi-Civita8 published a joy [33], which has become the bible
of tensor calculus and which has been extensively studied by Einstein and Grossmann in their
search for the theory of the gravitational field9. However, Einstein and Grossmann seem to
have studied only the first part of reference 4 and so missed “Cartan’s moving method”
and the concept of torsion. It seems also that only after 1922, Einstein became interested
in the second chapter of the joy, titled La Géométrie Intrinseque Comme Instrument de
Calcul and discovered torsion and the teleparallel geometry10. As it is well known, he tried
to identify a certain contraction of the torsion tensor of a teleparallel geometry with the
electromagnetic potential, but after sometime, he discovered that the idea did not work.
Einstein’s first papers on the subject11 are [11, 12, 13]. Also, in a paper which Einstein wrote
in 1925 [10], the torsion tensor concept already appeared, since he considered it as one of his
field variables, the antisymmetric part of a nonsymmetric connection. All those papers by
Einstein have been translated into English by Unzicker and Case [44] and can be downloaded
from the arXiv. We also can learn in [7, 18] that Cartan tried to explain the teleparallel
geometry to Einstein when he visited Paris in 1922 using the example of what we call the
Nunes connection (or navigator connection) on the punctured sphere. Since this example
illustrates in a crystal clear way the fact that one must not confound the Riemann curvature
of a given connection defined on a manifold M with the fact that M may be viewed as a bent
hypersurface embedded in an Euclidean space (with appropriate number of dimensions), it
will be presented in Appendix A. A comparison of the parallel transport according to the
Nunes connection and according to the usual Levi-Civita connection is done12, and it is
shown that the Nunes connection the Riemann curvature of the punctured sphere is null. In
this sense, the geometry of the punctured sphere is conventional as emphasized by Poincaré
[30] long ago.

As we already said that the main objective of the present paper is to clarify the fact
that there are different ways of geometrically representing a gravitational field, such that
the field equations in each representation result equivalent to Einstein’s field equations.
Explicitly, we mean by this statement the following: any model of a gravitational field in
GR represented by a Lorentzian spacetime (with nonnull Riemann curvature tensor and null
torsion tensor which is also parallelizable13) is equivalent to a teleparallel spacetime (i.e.,
a spacetime structure equipped with a metrical compatible teleparallel connection, which
has null Riemann curvature tensor and nonnull torsion tensor)14 or equivalent to a special
spacetime structure, where the manifold M is equipped with a Minkowski metric, and where
there is also defined a connection such that its nonmetricity tensor is not null. The teleparallel
possibility is described in detail in Section 2 using the modern theory of differential forms
and we claim that our presentation leaves also clear that we can even dispense with the
concept of a connection in the description of a gravitational field15, it is only necessary for
such a representation to exist that the manifold M representing the set of all possible events

8A Ricci student at that time.
9An English translation of the joy with very useful comments has been done by the mathematical physicist

Robert Hermann [21] in 1975 and that text (and many others books by Hermann) can be downloaded from
http://books.google.com.br/books?q=robert+hermann.

10Some interesting historical details may be found in [18, 40].
11For a complete list of Einstein’s papers on the subject see [18].
12The material of Appendix A follows the presentation in [36, Section 4.7.7].
13A manifold M is said to be parallelizable if it admits four global linearly independent vector fields.
14There are hundreds of papers (as e.g., [6]) on the subject.
15Explicitly, we mean that the gravitational field may be interpreted as a field in the sense of Faraday, as

it is the case of the electromagnetic field.
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be parallelizable, admitting four global (not all exact) 1-form fields coupled in a specific way
(see below). The second possibility is illustrated with an example in Section 3. In Section 4,
we present the conclusions.

2 Torsion as a description of gravity

2.1 Some notation

Suppose that a 4-dimensional M manifold is parallelizable, thus admitting a set of four global
linearly independent vector ea ∈ secTM , a = 0, 1, 2, 3 fields16 such that {ea} is a basis for
TM and let {θa}, θa ∈ secT ∗M be the corresponding dual basis (θa(eb) = δab). Suppose
also that not all the θa are closed:

dθa 6= 0 (2.1)

for a least some a = 0, 1, 2, 3. The 4-form field θ0∧θ1∧θ2∧θ3 defines a (positive) orientation
for M .

Now, the {θa} can be used to define a Lorentzian metric field in M by defining g ∈
secT 0

2M by

g := ηabθ
a ⊗ θb (2.2)

with the matrix with entries ηab being the diagonal matrix (1,−1,−1,−1). Then, according
to g, the {ea} are orthonormal:

ea ·
g
eb := g

(
ea, eb

)
= ηab. (2.3)

Remark 2.1. Since according to (2.3), e0 is a global time like vector field it follows that it
defines a time orientation in M which we denote by ↑. It follows that the 4-tuple (M,g, τg, ↑)
is part of a structure defining a Lorentzian spacetime and can serve as a substructure to
model a gravitational field in GR.

For future, use we also introduce g ∈ secT 2
0M by

g = ηabea ⊗ eb, (2.4)

and we write

θa ·
g
θb = g(θa, θb) = ηab. (2.5)

Due to the hypothesis given by (2.1), the vector fields ea, a = 0, 1, 2, 3 will in general
satisfy[

ea, eb

]
= ckabek, (2.6)

where the ckab are the structure coefficients of the basis {ea}. It can be easily shown that17

dθa = −1
2
caklθ

k ∧ θl. (2.7)

16We recall that secTM means section of the tangent bundle and secT ∗M means section of the cotangent
bundle. Also T rsM means the bundle of tensors of type (r, s) and sec

∧r T ∗M means a section of the bundle
of r-forms fields.

17See, for example, [36].
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Now, we introduce two different metric compatible connections on M , namely, D (the
Levi-Civita connection of g) and a teleparallel connection ∇, such that

Deaeb = ωc
abec, Deaθ

b = −ωb
acθ

c,

∇eaeb = 0, ∇eaθ
b = 0.

(2.8)

The objects ωc
ab are called the connection coefficients of the connection D in the {ea}

basis and the objects ωa
b ∈ secT ∗M defined by

ωa
b := ωa

kbθ
k (2.9)

are called the connection 1-forms in the {ea} basis.

Remark 2.2. The connection coefficients $b
ac of ∇ and the connection 1-forms of ∇ in the

basis {ea} are null according to the second line of (2.8) and thus the basis {ea} is called
teleparallel. So, the connection ∇ defines an absolute parallelism on M . We recall that as
said in the introduction that idea has been introduced by Ricci.

Remark 2.3. Of course, as it is well known, the Riemann curvature tensor of D is in general
nonnull in all points of M , but the torsion tensor of D is zero in all points of M . Moreover,
the Riemann curvature tensor of ∇ is null in all points of M , whereas the torsion tensor of
∇ is nonnull in all points of M .

We recall also in order to fix notation that for a general connection, say D on M (not
necessarily metric compatible) the torsion and curvature operations and the torsion and
curvature tensors of a given general connection, say D, are, respectively, the mappings:

τ(u,v) = Duv −Dvu− [u,v], (2.10)
ρ(u,v) = DuDv −DvDu −D[u,v], (2.11)

T (α,u,v) = α
(
τ(u, v)

)
, (2.12)

R(w, α,u,v) = α
(
ρ(u,v)w

)
(2.13)

for every u,v,w ∈ secTM and α ∈ sec
∧1 T ∗M . In particular, we write

T a
bc := T

(
θa, eb, ec

)
, Rb

a cd := R
(
ea, θ

b, ec, ed

)
, (2.14)

and define the Ricci tensor by

Ricci := Racθ
a ⊗ θc, Rac := Rb

a cb. (2.15)

Remark 2.4. Keep in mind that the Ricci tensor of a general connection is in general not
symmetric18.

We shall need also in order to fix our conventions to briefly recall the definitions of the
scalar product and left and right contractions on the so-called Hodge bundle (

∧
T ∗M,g),

where
∧
T ∗M =

⊕4
r=0

∧r T ∗M is the bundle of nonhomogenous multiforms.

18See, for example, [36, Section 4.5.8].
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So, if A,B ∈ sec
∧r T ∗M , A = 1

r!Ai1...irθ
i1 ∧ · · · ∧ θir , B = 1

r!Bj1...jrθ
j1 ∧ · · · ∧ θjr , their

scalar product ·
g

(induced by g) is the linear mapping:

A ·
g
B =

(
1
r!

)
Ai1...irBj1...jr


θi1 ·

g
θj1 · · · · · · θi1 ·

g
θjr

· · · · · · · · · · · ·
· · · · · · · · · · · ·

θir ·
g
θj1 · · · · · · θir ·

g
θjr

 . (2.16)

Also, for A ∈ sec
∧r T ∗M , C ∈ sec

∧s T ∗M , it is A ·
g
C = 0. The left and right contractions of

X ,Y ∈ sec
∧
T ∗M are defined for arbitrary (nonhomogeneous) multiforms as the mappings

y
g

:
∧
T ∗M ×

∧
T ∗M →

∧
T ∗M and x

g
:
∧
T ∗M ×

∧
T ∗M →

∧
T ∗M such that for all Z

∈ sec
∧
T ∗M :(
Xy
g
Y
)
·
g
Z = Y ·

g
(X̃ ∧ Z),

(
Xx
g
Y
)
·
g
Z = X ·

g
(Z ∧ Ỹ), (2.17)

where the tilde means the operation of reversion, for example, if B = 1
r!Bi1...irθ

i1 ∧ · · · ∧ θir ,
then B̃ = 1

r!Bi1...irθ
ir ∧ · · · ∧ θi1 .

The Hodge star operator (or Hodge dual) is the linear mapping ?
g

:
∧r T ∗M →

∧n−r T ∗M ,

A ∧ ?
g
B =

(
A ·

g
B
)
τg (2.18)

for every A,B ∈
∧r T ∗M . The inverse ?

g

−1 :
∧n−r T ∗M →

∧r T ∗M of the Hodge star

operator is given by

?
g

−1 = (−1)r(n−r) sgn
.
g?
g
, (2.19)

where sgn g = det g/|det g| denotes the sign of the determinant of the matrix with entries
gij = g(ei, ej). The Hodge coderivative operator δ

g
(associated to g) is defined for A ∈

sec
∧r T ∗M by

δ
g
A = (−1)r ?

g

−1 d ?
g
A. (2.20)

2.2 Cartan’s structure equations

Given that we introduced two different connections D and ∇ defined in the manifold M , we
can write two different pairs of Cartan’s structure equations, each one of the pairs describing,
respectively, the geometry of the structures (M,D,g, τg, ↑) and (M,∇,g, τg, ↑) which will be
called, respectively, a Lorentzian spacetime and a teleparallel spacetime.

2.2.1 Cartan’s structure equations for D

In this case, we write

Θa := dθa + ωa
b ∧ θb = 0, Ra

b := dωa
b + ωa

c ∧ ωc
b, (2.21)

where the Θa ∈ sec
∧2 T ∗M , a = 0, 1, 2, 3 and the Ra

b ∈ sec
∧2 T ∗M , a, b = 0, 1, 2, 3 are,

respectively, the torsion and the curvature 2-forms of D with

Θa =
1
2
T a
bcθ

b ∧ θc, Ra
b =

1
2
Ra

b cdθ
c ∧ θd. (2.22)



Some thoughts on geometries and on the nature of the gravitational field 7

2.2.2 Cartan’s structure equations for ∇

In this case, since $a
b = 0, we have

Θ̄a := dθa +$a
b ∧ θb = dθa, R̄a

b := d$a
b +$a

c ∧$c
b = 0, (2.23)

where the Θ̄a ∈ sec
∧2 T ∗M , a = 0, 1, 2, 3 and the R̄a

b ∈ sec
∧2 T ∗M , a,b = 0, 1, 2, 3 are,

respectively, the torsion and the curvature 2-forms of ∇ given by formulas analogous to the
ones in (2.22).

We next suppose that the {θa} are the basic variables representing a gravitation field. We
postulate that the {θa} interacts with the matter fields through the following Lagrangian
density19:

L = Lg + Lm, (2.24)

where Lm is the matter Lagrangian density and

Lg = −1
2
dθa ∧ ?

g
dθa +

1
2
δ
g
θa ∧ ?

g
δ
g
θa +

1
4
(
dθa ∧ θa

)
∧ ?
g

(
dθb ∧ θb

)
. (2.25)

Remark 2.5. This Lagrangian is not invariant under arbitrary point dependent Lorentz
rotations of the basic cotetrad fields. In fact, if θa 7→ θ′a = Λa

bθ
b, where for each x ∈ M ,

Λa
b(x) ∈ L↑+ (the homogenous and orthochronous Lorentz group), we get that

L′g = −1
2
dθ′a ∧ ?

g
dθ′a +

1
2
δ
g
θ′a ∧ ?

g
δ
g
θ′a +

1
4
(
dθ′a ∧ θ′a

)
∧ ?
g

(
dθ′b ∧ θ′b

)
, (2.26)

which differs from Lg by an exact differential. So, the field equations derived by the variational
principle results invariant under a change of gauge20.

Now, to derive the field equations directly from (2.25) is a nontrivial and laborious exer-
cise, whose details the interested reader may find in [14, 36]. The result is

d ?
g
Sd + ?

g
td = − ?

g
Td, (2.27)

where

?
g
td :=

∂Lg
∂θd

=
1
2

[(
θdy

g
dθa
)
∧ ?
g
dθa − dθa ∧

(
θdy

g
?
g
dθa

)]
+

1
2
d
(
θdy

g
?
g
θa
)
∧ ?

g
d ?

g
θa +

1
2
d
(
θdy

g
?
g
θa
)
∧ ?
g
d ?
g
θa +

1
2
dθd ∧ ?

g

(
dθa ∧ θa

)
− 1

4
dθa ∧ θa ∧

[
θdy

g
?
g

(
dθc ∧ θc

)]
− 1

4

[
θdy

g

(
dθc ∧ θc

)]
∧ ?
g

(
dθa ∧ θa

)
,

?
g
Sd :=

∂Lg
∂dθd

= − ?
g
dθd −

(
θdy

g
?
g
θa
)
∧ ?
g
d ?
g
θa +

1
2
θd ∧ ?

g

(
dθa ∧ θa

)
,

(2.28)

and the21

?
g
Td :=

∂Lm
∂θd

= − ?
g
Td (2.29)

are the energy-momentum 3-forms of the matter fields22.
19We observe that the first term in (2.25) is just the Lagrangian density used by Einstein in [13].
20See details in [36].
21We suppose that Lm does not depend explicitly on the dθa.
22In reality, due the conventions used in this paper, the true energy-momentum 3-forms are ?

g
Td = − ?

g
Td.
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Recalling that from (2.23), it is Θ̄a := dθa, the field equations (2.27) can be written as
follows:

d ?
g
Fd = − ?

g
Td − ?

g
td − ?

g
hd, (2.30)

where

hd = d
[(
θdy

g
?
g
θa
)
∧ ?
g
d ?
g
θa −

1
2
θd ∧ ?

g

(
dθa ∧ θa

)]
. (2.31)

Finally, recalling the definition of the Hodge coderivative operator (Equation (2.20)), we
can write (2.30) as follows:

δ
g
Fd = −

(
T d + td

)
(2.32)

with the td ∈ sec
∧1 T ∗M given by

td := td + hd, (2.33)

legitimate energy-momenta23 1-form fields for the gravitational field. Note that the total
energy-momentum tensor of matter plus the gravitational field is trivially conserved in our
theory:

δ
g

(
T d + td

)
= 0, (2.34)

since δ
g

2Fd = 0.

Remark 2.6. In [26], a theory of the gravitational field in Minkowski spacetime (M '
R4,

◦
g, D, τ◦

g
, ↑) has been presented, where a nontrivial gravitational field configuration was

interpreted as generating an effective Lorentzian spacetime (M ' R4,g, D, τg, ↑), where g
satisfies Einstein equations and where probe particles and/or fields move. It was assumed
there that the gravitational field g = ηabθ

a⊗θb is a field in Faraday sense24, that is, the fields
θa have their dynamics described by a (postulated) Lagrangian density like the one in (2.25).
Moreover, it was postulated that the θa couple universally with the matter fields and that the
presence of energy-momentum due to matter fields in some region of Minkowski spacetime
distort the Lorentz vacuum in much the same way that stresses in an elastic body distorts it.
Now, distortions (or deformations) in the theory of dislocations according to [56] can be of the
elastic or plastic type. An elastic distortion is described by a diffeomorphism h : M → M .
In this case, the induced metric is g = h∗η (analogous to the Cauchy-Green tensor [16]
of elasticity theory) and according to [36, Remark 250], its Levi-Civita connection is h∗Ḋ.
This implies that the structure (hM ' R4,g, h∗D̊, τg, ↑) is again Minkowski spacetime. In
the original versions of [26, 36], this was the type of deformation considered, but this has
been corrected in improved versions of those manuscripts, respectively, at the arXiv and at
http://ime.unicamp.br/walrod/recentes, where an errata to [36, Chapter 10] may be found.
In the quoted errata, the deformation is taken to be of the plastic type and represented by
a distortion extensor field M , that is, a linear mapping h :

∧1 T ∗M →
∧1 T ∗M such that

23Indeed, for each index d, the first member of (2.32) is a 1-from field and also T d is an 1-form field, so
δFd + T d = −td is a 1-form field.

24This means that it is interpreted as a field with an ontology analogous to the electromagnetic field.
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g = h†h, where g is the extensor field associated with g (see below)25. A book describing
a detailed theory of gravitation as a plastic deformation of the Lorentz vacuum will appear
soon [14].

Remark 2.7. In electromagnetic theory on a Lorentzian spacetime, we have only one po-
tential A ∈ sec

∧1 T ∗M and the field equations are

dF = 0, δ
g
F = −J, (2.35)

where F ∈ sec
∧2 T ∗M is the electromagnetic field and J ∈ sec

∧1 T ∗M is the electric
current. The two Maxwell equations in (2.35) can be written as a single equation using the
Clifford bundle formalism [36]. In this formalism,

∧
T ∗M ↪→ C`(M, g). Then it can be shown

that in this case ∂ = d − δ
g

= θaDea is the Dirac operator (acting on sections of C`(M, g))

and we can write Maxwell equation as follows:

∂F = J. (2.36)

Now, if you fell uncomfortable in needing four distinct potentials θa for describing the grav-
itational field, you can put then together defining a vector valued differential form:

θ = θa ⊗ ea, (2.37)

and in this case, the gravitational field equations are

dΘ̄ = 0,
δ
g
Θ̄ = −(T + t), (2.38)

where Θ̄ = Θ̄a ⊗ ea, T = T a ⊗ ea, t = ta ⊗ ea. By considering the bundle C`(M, g)⊗ TM ,
we can even write the two equations in (2.38) as a single equation:

∂Θ̄ = T + t. (2.39)

2.3 Relation with Einstein’s theory

At this point, the reader may be asking which is the relation of the theory just presented
with Einstein’s GR theory? The answer is that recalling that the connection 1-forms ωcd of
D are given by

ωcd =
1
2

[
θdy

g
dθc − θcy

g
dθd + θcy

g

(
θdy

g
dθa

)
θa
]
. (2.40)

We can show through a laborious (but standard) exercise (see [36] for details) that the first
member of (2.27) is exactly − ?

g
Gd (the Einstein 3-forms). So, we have

?
g
Gd := ?

g

(
Rd − 1

2
Rθd

)
(2.41)

25Recently, we take knowledge that Coll [5] found that any Lorentzian metric can be written as a deformation
of the Minkowski metric involving a 2-form field. We will investigate in another publication the relationship
of ours and Coll’s ideas.
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with Rd = Rd
aθ

a the Ricci 1-forms and R the scalar curvature. Then, (2.27) results are
equivalent to

Rd − 1
2
Rθd = −Td, (2.42)

and taking the dot product of both members with θa, we get

Rd
a −

1
2
Rδda = −Td

a , (2.43)

which is the usual tensorial form of Einstein’s equations.

Remark 2.8. When the θa and the dθa are packed in the form of the connection 1-forms,
the Lagrangian density Lg becomes

Lg = LEH + d
(
θa ∧ ?

g
dθa

)
, (2.44)

where

LEH =
1
2
Rcd ∧ ?

g

(
θc ∧ θd

)
(2.45)

(with Rcd given by (2.21)) is the Einstein-Hilbert Lagrangian density.

3 A comment on Einstein most happy though

The exercises presented above indicate that a geometrical interpretation for the gravitational
field is no more than an option among many ones. Indeed, it is not necessary to introduce
any connection D or ∇ on M to have a perfectly well-defined theory of the gravitational
field whose field equations are (in the sense described above) equivalent to the Einstein field
equations. Note that we have not give until now any details on the global topology of the
world manifold M . However, since we admitted that M carries four global (not all closed)
1-form fields θa which defines the object g, it follows that (M,g, τg, ↑) is a spin manifold
[17, 36], that is, admits spinor fields. This, of course, is necessary if the theory is to be useful
in the real world since fundamental matter fields are spinor fields. The most simple spin
manifold is clearly Minkowski spacetime which is represented by a structure (M, D̊, η, τη, ↑),
where M ' R4, and D̊ is the Levi-Civita connection of the Minkowski metric η. In that case,
it is possible to interpret g as a field in the Faraday sense living in (M, D̊, η, τη, ↑) or to work
directly with the θa which has a well-defined dynamics and coupling to the matter fields.

At last, we want to comment that as well known in Einstein’s GR, one can easily dis-
tinguish in any real physical laboratory [28] (despite some claims on the contrary) a true
gravitational field from an acceleration field of a given reference frame in Minkowski space-
time. This is because in GR, the mark of a real gravitational field is the nonnull Riemann
curvature tensor of D, and the Riemann curvature tensor of the Levi-Civita connection of D̊
(present in the definition of Minkowski spacetime) is null. However, if we interpret a gravi-
tational field as the torsion 2-forms on the structure (M,∇,g, τg, ↑) viewed as a deformation
of Minkowski spacetime, then one can also interpret an acceleration field of an accelerated
reference frame in Minkowski spacetime as generating an effective teleparallel spacetime

(M,
e
∇, η, τη, ↑). This can be done as follows. Let Z ∈ secTU , U ⊂ M with η(Z,Z) = 1 an
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accelerated reference frame on Minkowski spacetime. This means (see, e.g., [36] for details)
that

a = D̊ZZ = 0. (3.1)

Put e0 = Z and define an accelerated frame as non trivial if ϑ0 = η(e0, ) is not an exact
differential. Next, recall that in U ⊂M there always exist three other η-orthonormal vector
fields ei, i = 1, 2, 3 such that {ea} is an η-orthonormal basis for TU :

η = ηabϑ
a ⊗ ϑb,

where {ϑa} is the dual basis26 of {ea}. We then have

D̊eaeb = ω̊c
abec, D̊eaϑ

b = −ω̊b
acϑ

c. (3.2)

What remains in order to be possible to interpret an acceleration field as a kind of “grav-

itational field” is to introduce on M a η-metrical compatible connection
e
∇ such that the

{ea} is teleparallel according to it. We have

e
∇eaeb = 0,

e
∇eaϑb = 0. (3.3)

With this connection the structure (M ' R4,
e
∇, η, τη, ↑) has null Riemann curvature

tensor but a nonnull torsion tensor, whose components are related with the components of
the acceleration a and with the other coefficients ω̊c

ab of the connection D̊, which describe
the motion on Minkowski spacetime of a grid represented by the orthonormal frame {ea}.
Schücking [40] thinks that such a description of the gravitational field makes Einstein has
most happy though, that is, the equivalence principle (understood as equivalence between
acceleration and gravitational field) a legitimate mathematical idea. However, a true grav-
itational field must satisfy (at least with good approximation) (2.30), whereas there is no
single reason for an acceleration field to satisfy that equation.

4 A model for the gravitational field represented by the non-
metricity of a connection

In this section, we suppose that the world manifold M is a 4-dimensional manifold diffeo-
morphic to R4. Let, moreover, (t, x, y, z) = (x0, x1, x2, x3) be global Cartesian coordinates
for M .

Next, introduce on M two metric fields:

η = dt⊗ dt− dx1 ⊗ dx1 − dx2 ⊗ dx2 − dx3 ⊗ dx3, (4.1)

g =
(

1− 2m
r

)
dt⊗ dt

−
{(

1− 2m
r

)−1

− 1
}
r−2
[(
x1
)2
dx1 ⊗ dx1 +

(
x2
)2
dx2 ⊗ dx2 +

(
x3
)2
dx3 ⊗ dx3

]
− dx1 ⊗ dx1 +

(
1− 2m

r

)−1(
dx2 ⊗ dx2 − dx3 ⊗ dx3

)
.

(4.2)

26In general, we will also have that dϑi 6= 0, i = 1, 2, 3.
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In (4.2),

r =
√

(x1)2 + (x2)2 + (x3)2. (4.3)

Now, introduce (t, r, ϑ, ϕ) = (x0, x′1, x′2, x′3) as the usual spherical coordinates for M .
Recall that

x1 = r sinϑ cosϕ, x2 = r sinϑ sinϕ, x3 = r cosϑ, (4.4)

and the range of these coordinates in η are r > 0, 0 < ϑ < π, 0 < ϕ < 2π. For g, the range
of the r variable must be (0, 2m) ∪ (2m,∞).

As can be easily verified, the metric g in spherical coordinates is

g =
(

1− 2m
r

)
dt⊗ dt−

(
1− 2m

r

)−1

dr ⊗ dr − r2
(
dϑ⊗ dϑ+ sin2 ϑdϕ⊗ dϕ

)
, (4.5)

which we immediately recognize as the Schwarzschild metric of GR. Of course, η is a
Minkowski metric on M .

As next step, we introduce two distinct connections, D̊ and D on M . We assume that
D̊ is the Levi-Civita connection of η in M , and D is the Levi-Civita connection of g in M .
Then, by definition (see, e.g., [36] for more details), the nonmetricities tensors of D̊ relative
to η and of D relative to g are null:

D̊η = 0, Dg = 0. (4.6)

However, the nonmetricity tensor Aη ∈ secT 0
3M of D̊ relative to g is nonnull:

D̊g = Aη 6= 0, (4.7)

and also the nonmetricity tensor Ag ∈ secT 0
3M of D relative to η is nonnull:

Dη = Ag 6= 0. (4.8)

We now calculate the components of Aη in the coordinated bases {∂µ} for TM and {dxν}
for T ∗M associated with the coordinates (x0, x1, x2, x3) of M . Since D̊ is the Levi-Civita
connection of the Minkowski metric η, we have

D̊∂µ∂ν = Lρµν∂ρ = 0, D̊∂µdx
α = −Lαµνdxν = 0, (4.9)

that is, the connection coefficients Lρµν of D̊ in this basis are null. Then, Aη = Qµαβdx
α ⊗

dxβ ⊗ dxµ is given by

Aη = D̊g = D̊∂µ

(
gαβdx

α ⊗ dxβ
)
⊗ dxµ =

(
∂gαβ
∂xµ

)
dxα ⊗ dxβ ⊗ dxµ. (4.10)

To fix ideas, recall that for Q100 it is,

Q100 =
∂

∂x1

(
1− 2m√(

x1
)2 +

(
x2
)2 +

(
x3
)2
)

= −2m
∂

∂x1

(
1√(

x1
)2 +

(
x2
)2 +

(
x3
)2
)

=
2mx1[(

x1
)2 +

(
x2
)2 +

(
x3
)2] 3

2

=
2mx1

r3
,

(4.11)

which is nonnull for x1 6= 0. Note also that Q010 = Q001 = 0.
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4.1 (M, η, D̊), (M, η,D), (M,g, D), and (M,g, D̊)

From what has been said, it is obvious that since (M,η) and (M,g) are both orientable and
time orientable, then (M,η, D̊), (M,g, D) are part of the structures representing, respec-
tively, Minkowski spacetime and Schwarzschild spacetime. More precisely, (M,g, D, τg, ↑)
represents in GR the gravitational field of a point mass with world line given by (t, 0, 0, 0).
As usual in GR, this world line is left out of the effective manifold27.

We claim that (M,g, D̊) or (M,η,D) are legitimate equivalent representations for the
gravitational field described in GR by the substructure (M,g, D). To find, for example, the
relation between the models (M,g, D̊) and (M,g, D), it is necessary to recall that if in the
bases {∂µ} for TM and {dxν} for T ∗M , we have

D∂µ∂ν = Γρµν∂ρ, D∂µdx
α = −Γαµνdx

ν , (4.12)

and the Christoffel symbols are not all null. Moreover, in the spherical coordinates introduced
above,

D̊∂′µ
∂ ′ν = L′ρµν∂

′
ρ, D̊∂′µdx

′α = −L′αµνdx′ν ,

D∂′µ
∂ ′ν = Γ′ρµν∂

′
ρ, D∂′µdx

′α = −Γ′αµνdx
′ν ,

(4.13)

and the L′ρµν and Γ′ρµν are not all null. Now, L′ρµν and Γ′ρµν are related by28

L′ραβ = Γ′ραβ +
1
2
S′ραβ, (4.14)

where S′ραβ are the components of the so-called strain tensor of the connection D̊ relative to
the connection D. For the present case, it is

S′ραβ = g′ρσ
(
Q′αβσ +Q′βσα −Q′σαβ

)
. (4.15)

Now, since in the Cartesian coordinates Lραβ = 0, but not all Γραβ are null, we get

Γραβ = −1
2
Sραβ, (4.16)

and thus, for example,

g1ρΓ
ρ
00 = −1

2
S100 =

1
2
Q100 =

mx1

r3
. (4.17)

4.2 Aη as the gravitational field

Note that using coordinates (Riemann normal coordinates {ξµ} covering V ⊂ U ⊂ M)
naturally adapted to a reference frame Z∈ secTV 29 in free fall according to GR (DZZ = 0,
dα ∧ α = 0, α = g(Z, )), it is possible to put the connection coefficients of the Levi-Civita

27The manifold where Schwarzschild solution is obtained is one with boundary, that is, it is R× [0,∞)×S2.
The reason for that is that almost all mathematical physicists use manifolds with boundary in order to avoid
the use of distributions (generalized functions). Indeed, for a rigorous point of view, taking into account that
Einstein’s equations are nonlinear we cannot solve it using Schwartz distributions. To solve problems involving
singular distributions in GR in a rigorous way, it is necessary to use Colombeau theory of generalized functions
as described, for example, in [20].

28See, for example, [36, Section 4.5.8].
29For the mathematical definitions of reference frames, naturally adapted coordinates to a reference frame

and observers, see, for example, [36, Chapter 5].
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connection D of g equal to zero in all points of the world line of a free fall observer (an
observer is here modeled as an integral line σ of a reference frame Z, where Z is a time like
vector field pointing to the future such that Z|σ = σ∗).

In the Riemann normal coordinates system covering U ⊂M , it is obvious that not all the
connection coefficients of the connection D̊ (that relative to g is a nonmetrical one) are null.
Moreover, the nonmetricity tensor Aη is not null and it represents in our model the true
gravitational field. Indeed, an observer following σ does not fell any force along its world line
because the gravitational force represented by the nonmetricity field Aη is compensated by
an inertial force represented by the nonnull connection coefficients30 L′′ρµν of D̊ in the basis
{ ∂
∂ξν }.

The situation is somewhat analogous to what happens in any noninertial reference frame
which, of course, may be conveniently used in any special relativity problem (as, e.g., in a
rotating disc [37]), where the connection coefficients of the Levi-Civita connection of η are
not all null.

Remark 4.1. The theoretical definition of standard clocks of GR is reasonably well realized
by atomic clocks, that is, under certain limits atomic clocks behave as theoretically predicted
(see however [35]). Note however that atomic clocks are not the standard clocks of the model
proposed here. We would say that the gravitational field distorts the period of the atomic
clocks relative to the standard clocks of the proposed model, where gravity is represented
by a nonmetricity tensor31, but, who are the devices that now materialize those concepts?
Well, they are paper concepts, like the notion of time in some Newtonian theories. They
are defined and calculated in order to make correct predictions. However, given the status
of present technology, we can easily imagine how to build devices for directly realizing the
standard clocks (and rulers) of the proposed model.

5 Conclusions

In this paper, we recalled two important results. The first is that a gravitational field gen-
erated by a given energy-momentum distribution can be represented by distinct geometrical
structures (Lorentzian, teleparallel, and nonnull nonmetricity spacetimes). The second im-
portant result is that we can even dispense all those geometrical structures and simply
represent the gravitational field as a field in Faraday’s sense living in Minkowski spacetime.
The explicit Lagrangian density for this theory has been discussed, and the field equations
have been shown to be equivalent to Einstein’s equations. We hope that our study clarifies
the real difference between mathematical models and physical reality and leads people to
think about the real physical nature of the gravitational field (and also of the electromagnetic
field32)

As a final remark, we want to leave clear that after studying Einstein’s papers (and also
papers by many others authors) on the use of Riemann-Cartan33 to describe a classical unified

30The explicit form of the coefficients L′′ρµν may be found in [36, Chapter 5].
31Schwinger [41] showed with very simple arguments how the gravitational field distorts the period of

atomic clocks making then to register the proper time predicted by GR. His arguments can be easily adapted
for the alternative models studied in this paper because once g is known experimentally, we can determine η
with the mathematical techniques described in [36].

32As suggested, for example, by the works of Laughlin [24] and Volikov [52]. Of course, it may be necessary
to explore also other ideas, like, for example, existence of branes in string theory, but this is a subject for
another publication.

33The teleparallel spaces are particular cases of the Riemann-Cartan ones. More on the classification of
spacetime geometries may be found in [36].
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theory of gravitation and electromagnetism, we became convinced that it seems impossible
to represent the electromagnetic field using a contraction of the torsion tensor (or the torsion
tensor) without introducing ad hoc hypothesis. Having said that, we recall that from time to
time some authors return to the embryo of Einstein’s original idea claiming to have obtained
a unified theory of gravitation and electromagnetism using that tool. Among those theories
that appeared in the last few years, some are completely worthless, since based in a very
bad use of mathematical concepts, but some look at least at a first sight interesting enough
(at least from the mathematical point of view) to deserve some comments, which will be
discussed elsewhere34.

A The Levi-Civita and the Nunes connections on S̊2

Consider S2, an sphere of radius R = 1 embedded in R3. Let (x1, x2) = (ϑ, ϕ) 0 < ϑ < π,
0 < ϕ < 2π, be the standard spherical coordinates of S2, which covers all the open set U
which is S2 with the exclusion of a semi-circle uniting the north and south poles.

Introduce the coordinate bases:{
∂µ
}
,
{
θµ = dxµ

}
(A.1)

for TU and T ∗U . Next, introduce the orthonormal bases {ea}, {θa} for TU and T ∗U with

e1 = ∂1, e2 =
1

sinx1
∂2, (A.2a)

θ1 = dx1, θ2 = sinx1dx2. (A.2b)

Then,[
ei, ej

]
= ckijek, c212 = −c221 = − cotx1. (A.3)

Moreover, the metric g ∈ secT 0
2 S

2 inherited form the ambient Euclidean metric is

g = dx1 ⊗ dx1 + sin2 x1dx2 ⊗ dx2 = θ1 ⊗ θ1 + θ2 ⊗ θ2. (A.4)

The Levi-Civita connection D of g has the following nonnull connections coefficients Γρµν
in the coordinate basis (just introduced):

D∂µ∂ν = Γρµν∂ρ, Γ2
21 = Γϕθϕ = Γ2

12 = Γϕϕθ = cotϑ,

Γ1
22 = Γϑϕϕ = − cosϑ sinϑ.

(A.5)

Also, in the basis {ea}, Dei
ej = ωk

ijek and the nonnull coefficients are

ω2
21 = cotϑ, ω1

22 = − cotϑ. (A.6)

34We have in mind here: (a) some papers by Vargas and Vargas and Torr, [47, 48, 49, 50], where they
claim that by using the torsion tensor of some special Finsler connections it is possible to obtain a unified
theory of gravitation and electromagnetism (for related papers on the subject by those authors, please consult
http://cartan-einstein-unification.com/published-papers.html); (b) a paper by Unzicker, where he claims to
have found a description of electromagnetism including the existence of quantized charges using teleparallel
spacetimes with defects [45, 46].
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The torsion and the (Riemann) curvature tensors of D (recall (2.12) and (2.13)) are

T
(
θk, ei, ej

)
= θk

(
τ
(
ei, ej

))
= θk

(
Dej

ei −Dei
ej −

[
ei, ej

])
,

R
(
ek, θ

a, ei, ej

)
= θa

([
Dei

Dej
−Dej

Dei
−D[ei,ej]

]
ek

)
,

(A.7)

which result in T = 0 and that the nonnull components of R are R1
1 21 = −R1

1 12 = R2
1 12 =

−R2
1 12 = −1.
Since the Riemann curvature tensor is nonnull, the parallel transport of a given vector

depends on the path to be followed. We say that a vector (say v0) is parallel transported
along a generic path R ⊃I 7→ γ(s) ∈ R3 (say, from A = γ(0) to B = γ(1)) with tangent
vector γ∗(s) (at γ(s)) if it determines a vector field V along γ satisfying

Dγ∗V = 0, (A.8)

and such that V(γ(0)) = v0. When the path is a geodesic35 of the connection D, that is, a
curve R ⊃I 7→ c(s) ∈ R3 with tangent vector c∗(s) (at c(s)) satisfying

Dc∗c∗ = 0, (A.9)

the parallel transported vector along a c forms a constant angle with c∗. Indeed, from (A.8),
it is γ∗ ·

g
Dγ∗V = 0. Then taking into account (A.9), it follows that

Dγ∗(γ∗ ·
g
V) = 0,

that is, γ∗ ·
g
V = constant. This is clearly illustrated in Figure 1 (from [1]).

Figure 1. Levi-Civita and Nunes transport of a vector v0 starting at p through the paths psr and
pqr. Levi-Civita transport through psr leads to v1, whereas Nunes transport leads to v2. Along pqr,
both Levi-Civita and Nunes transport agree and lead to v2.

Consider next the manifold S̊2 = {S2\north pole + south pole} ⊂ R3, which is our sphere
of radius R = 1 but this time excluding the north and south poles. Let again g ∈ secT 0

2 S̊
2 be

35We recall that a geodesic of D also determines the minimal distance (as given by the metric g) between
any two points on S2.
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Figure 2. Characterization of the Nunes connection.

the metric field on S̊2 inherited from the ambient space R3 and introduce on S̊2 the Nunes
(or navigator) connection36 ∇ defined by the following parallel transport rule: a vector at an
arbitrary point of S̊2 is parallel transported along a curve γ, if it determines a vector field
on γ such that at any point of γ the angle between the transported vector and the vector
tangent to the latitude line passing through that point is constant during the transport. This
is clearly illustrated in Figure 2. and to distinguish the Nunes transport from the Levi-Civita
transport, we ask also for the reader to study with attention the caption of Figure 1.

We recall that from the calculation of the Riemann tensor R, it follows that the structures
(S̊2,g, D, τg) and also (S2,g, D, τg) are Riemann spaces of constant curvature. We now show
that the structure (S̊2,g,∇, τg) is a teleparallel space37 with zero Riemann curvature tensor,
but nonzero torsion tensor.

Indeed, from Figure 2, it is clear that (a) if a vector is transported along the infinitesimal
quadrilateral pqrs composed of latitudes and longitudes, first starting from p along pqr and
then starting from p along psr, the parallel transported vectors that result in both cases will
coincide (study also the caption of Figure 1).

36Pedro Salacience Nunes (1502–1578) was one of the leading mathematicians and cosmographers of Por-
tugal during the Age of Discoveries. He is well known for his studies in cosmography, spherical geometry,
astronomic navigation, and algebra, and particularly known for his discovery of loxodromic curves and the
nonius. Loxodromic curves, also called rhumb lines, are spirals that converge to the poles. They are lines that
maintain a fixed angle with the meridians. In other words, loxodromic curves directly related to the construc-
tion of the Nunes connection. A ship following a fixed compass direction travels along a loxodromic, this being
the reason why Nunes connection is also known as navigator connection. Nunes discovered the loxodromic
lines and advocated the drawing of maps in which loxodromic spirals would appear as straight lines. This
led to the celebrated Mercator projection, constructed along these recommendations. Nunes invented also the
Nonius scales which allow a more precise reading of the height of stars on a quadrant. The device was used
and perfected at the time by several people, including Tycho Brahe, Jacob Kurtz, Christopher Clavius, and
further by Pierre Vernier who in 1630 constructed a practical device for navigation. For some centuries, this
device was called nonius. During the 19th century, many countries, most notably France, started to call it
vernier. More details in http://www.mlahanas.de/Stamps/Data/Mathematician/N.htm.

37As recalled in Section 1, a teleparallel manifold M is characterized by the existence of global vector fields
which is a basis for TxM for any x ∈M . The reason for considering S̊2 for introducing the Nunes connection
is that as well known (see, e.g., [8]) S2 does not admit a continuous vector field that is nonnull at on points
of it.
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Now, the vector fields e1 and e2 in (A.2a) define a basis for each point p of TpS̊2, and ∇
is clearly characterized by

∇ej
ei = 0. (A.10)

The components of curvature operator are

R̄
(
ek, θ

a, ei, ej

)
= θa

([
∇ei
∇ej
−∇ej

∇ei
−∇[ei,ej]

]
ek

)
= 0, (A.11)

and the torsion operation (recall (2.10)) τ̄ is

τ̄
(
ei, ej

)
= ∇ej

ei −∇ei
ej −

[
ei, ej

]
=
[
ei, ej

]
, (A.12)

which gives for the components of the torsion tensor, T̄ 2
12 = −T̄ 2

12 = cotϑ. It follows that
S̊2, considered as part of the structure (S̊2,g,∇, τg), is flat (but has torsion).

If you still need more details to grasp this last result, consider Figure 2(b) which shows
the standard parametrization of the points p, q, r, s in terms of the spherical coordinates
introduced above. According to the geometrical meaning of torsion, its value at a given point
is determined by calculating the difference between the (infinitesimal)38 vectors pr1and pr2.
If the vector pq is transported along ps, one gets (recalling that R = 1) the vector v = sr1
such that |g(v,v)|

1
2 = sinϑ4ϕ. Moreover, if the vector ps is transported along pq, one gets

the vector qr2 = qr. Let w = sr. Then,∣∣g(w,w)
∣∣ = sin(ϑ−4ϑ)4ϕ ' sinϑ4ϕ− cosϑ4ϑ4ϕ, (A.13)

also,

u = r1r2 = −u
(

1
sinϑ

∂

∂ϕ

)
, u =

∣∣g(u,u)
∣∣ = cosϑ4ϑ4ϕ. (A.14)

Then, the connection ∇ of the structure (S̊2,g,∇, τg) has a nonnull torsion tensor T̄ . Indeed,
the component of u = r1r2 in the direction ∂/∂ϕ is precisely T̄ϕϑϕ4ϑ4ϕ. So, one gets
(recalling that ∇∂j∂i = Γkji∂k)

T̄ϕϑϕ =
(

Γϕϑϕ − Γϕϕϑ
)

= − cot θ. (A.15)

To end this appendix, it is worth to show that ∇ is metrical compatible, that is ∇g = 0.
Indeed, we have

0=∇ecg
(
ei, ej

)
=
(
∇ecg

)(
ei, ej

)
+g
(
∇ecei, ej

)
+g
(
ei,∇ecej

)
=
(
∇ecg

)(
ei, ej

)
. (A.16)

Remark A.1. This appendix shows clearly that we cannot mislead the Riemann curvature
tensor of a connection with the fact that the manifold where that connection is defined may
be bend39 as a surface in an Euclidean manifold where it is embedded. Neglecting this fact
may generate a lot of wishful thinking when one comes to the interpretation of curvature
(and torsion) in gravitational theories.

38This wording, of course, means that those vectors are identified as elements of the appropriate tangent
spaces.

39Bending of surfaces embedded in R3 is adequately characterized by the so called shape operator discussed,
e.g., in[29]. For the case of hypersurfaces (vector manifolds) embedded in Rn see [22].
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