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Hidden structures in quantum mechanics
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Abstract

It is shown that some operators in quantum mechanics have hidden structures that are
unobservable in principle. These structures are based on a supersymmetric decomposition
of the momentum operator, and a nonassociative decomposition of the spin operator.
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1 Introduction

A majority of physicists these days believes that quantum mechanics does not have a hidden
structure: Experiments have shown that a vast class of hidden variable theories is incompatible
with observations. In essence, these theories assume existence of some hidden variables behind
quantum mechanics, which could be measured in principle. In this paper we would like to show
that in quantum mechanics there exist hidden structures based on a supersymmetric decompo-
sition of the momentum operator, and a nonassociative decomposition of the spin operator. The
constituents of this nonassociative decomposition are inaccessible to the experiment, because
nonassociative parts of operators are unobservable.

In Ref. [1] the attempt is made to introduce a nonassociative structure in quantum chromo-
dynamics. As a consequence, not all states in the corresponding octonionic Hilbert space will be
observable, because the propositional calculus of observable states as developed by Birkhoff and
von Neumann [2] can only have realizations as projective geometries corresponding to Hilbert
spaces over associative composition algebras, whereas octonions are nonassociative. An ob-
servable subspace arises in the following way: Within Fock space there will be states that are
observable (longitudinal, in the notation of Ref. [1]), which are the linear combinations of u0

and u∗0. Conversely, the states in transversal direction (spanned by ui and u∗i ) are unobservables
(u0, u

∗
0, ui and u∗i are split octonions).

A hidden structure in supersymmetric quantum mechanics is found in Ref. [3]. There, the
Hamiltonian in supersymmetric quantum mechanics is decomposed as a bilinear combination of
operators built from octonions, a nonassociative generalization of real numbers.

In some sense, the Maxwell and Dirac equations have hidden nonassociative structures as
well. In Ref’s [4] and [5] it is shown that: (a) classical Maxwell equations can be written as the
single continuity equation in the algebra of split octonions, and (b) the algebra of split octonions
suffices to formulate a system of differential equations equivalent to the standard Dirac equation.

In this paper we present hidden structures in traditional quantum mechanics. These struc-
tures are based on a supersymmetric decomposition of the momentum operator, and a nonasso-
ciative decomposition of the spin operator. We would like to emphasize that a ”hidden nonas-
sociative structure” presented here is not the same as a ”hidden variable theory”, because the

1Senior Associate of the Abdus Salam ICTP



34 V. Dzhunushaliev

nonassociative constituents of a hidden structure can not be measured in principle, in contrast
to hidden variables which can be measured in principle.

Througout the paper we use notions from the textbooks for nonassociative algebras [8, 9],
the physical applications of nonassociative algebras in physics can be found in [10] and [11, 12].

2 A supersymmetric decomposition of the momentum operator

The Poincaré algebra is defined with the generators Mµν , Pµ and the following commutator
relations

[Pµ, P ν ] = 0 (2.1)

[Mµν , P λ] = ı(ηνλPµ − ηµλP ν)
[Mµν ,Mρσ] = ı(ηνρMµσ + ηµσMνρ − ηµρMνσ − ηνσMµρ)

where ı2 = −1, ηµν = diag (+,−,−,−) is the Minkowski metric, Pµ are generators of the
translation group, and Mµν = xµP ν − xνPµ are generators of the Lorentz group.

The simplest supersymmetric algebra is defined as follows

[Pµ, Qa] = σµaȧQ̄
ȧ

[Pµ, Q̄ȧ] = −σµȧaQa
[Mµν , Qa] = −i(σµν) ḃ

a Q̄ḃ

[Mµν , Q̄ȧ] = −i(σµν)ȧbQ
b

{Qa, Qȧ} = 2σµaȧPµ (2.2)
{Qa, Qb} = {Q̄ȧ, Q̄ḃ} = 0

where

σµ =
1
4

(I2, ~σ) , σ̄µ =
1
4

(I2,−~σ) = σµ

having indices (σµ)aȧ and (σ̄µ)aȧ; ~σ =
(
σ1, σ2, σ3

)
are the Pauli matrices. The relation (2.2) can

be inverted as follows:

Pµ =
1
4
σaȧµ {Qa, Qȧ} (2.3)

Equation (2.3) can be interpreted as a “square root” of the quantum mechanical momentum
operator Pµ. It allows us to bring forward the question: Is it possible to decompose other oper-
ators in quantum mechanics in a similar manner, for example, spin ŝi and angular momentum
Mµν?

The undotted indices are raised with

εab = iσ2 =
(

0 −1
1 0

)
The dotted indices are lowered with

εȧḃ = −iσ2 =
(

0 1
−1 0

)
, εab = εȧḃ, εab = εȧḃ
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3 A nonassociative decomposition of the spin operator

Let us consider the split-octonion numbers, designated as qi (i = 1, 2, · · · 7). Table 1 represents
the chosen multiplication rules for the qi.

q1 q2 q3 q4 q5 q6 q7
q1 −1 q3 −q2 −q7 q6 −q5 q4
q2 −q3 −1 q1 −q6 −q7 q4 q5
q3 q2 −q1 −1 q5 −q4 −q7 q6
q4 q7 q6 −q5 1 −q3 q2 q1
q5 −q6 q7 q4 q3 1 −q1 q2
q6 q5 −q4 q7 −q2 q1 1 q3
q7 −q4 −q5 −q6 −q1 −q2 −q3 1

Table 1. The split-octonion multiplication table.

The split-octonions have the following commutators and associators

[qi+3, qj+3] = −2εijkqk (3.1)
[qi, qj ] = 2εijkqk (3.2)
(qi+3, qj+3, qk+3) = (qi+3qj+3) qk+3 − qi+3 (qj+3qk+3) = 2εijkq7

here i, j, k = 1, 2, 3. The commutator (3.2) shows that qi, i = 1, 2, 3 form a subalgabra. This
subalgebra is called quaternion algebra H; qi are quaternions.

The commutator (3.2) can be rewritten in the form[ ı
2
qi,

ı

2
qj

]
= εijk

ı

2
qk

which is similar to the commutator relationship for spin operators ŝi = σi/2 (σi are the Pauli
matrices). It allows us to say that nonrelativistic spin operators have a hidden nonassociative
structure (3.1). The multiplication table 1 shows that the nonrelativistic spin operator can be
decomposed as the product of two nonassociative numbers

ı

2
qi = − ı

4
εijkqj+3qk+3 (3.3)

In order to see it more concisely, let us represent the split-octonions via the Zorn vector matrices(
a ~x
~y b

)
where a, b are real numbers and ~x, ~y are 3-vectors, with the product defined as(

a ~x
~y b

)(
c ~u
~v d

)
=
(

ac+ ~x · ~v a~u+ d~x− ~y × ~v
c~y + b~v + ~x× ~u bd+ ~y · ~u

)
(3.4)

Here, (·) and [×] denote the usual scalar and vector products.
If the basis vectors of 3D Euclidean space are ~ei, i = 1, 2, 3 with ~ei×~ej = εijk~ek and ~ei ·~ej = δij ,

then we can rewrite the split-octonions as matrices

1 =
(

1 ~0
~0 1

)
, q7 = −

(
1 ~0
~0 −1

)
, qi =

(
0 −~ei
~ei 0

)
, qi+3 =

(
0 ~ei
~ei 0

)
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here i = 1, 2, 3. Thus, the nonrelativistic spin operators have two representations: The first
one is as Pauli matrices ŝi = σi

2 with the usual matrix product, and the second one is as Zorn
matrices ŝi = ı

2qi with nonassociative product (3.4). In the second case, the spin is decomposed
into a product (3.3) of two unobservables qj+3, qk+3.

4 Quantum mechanical applications

In the supersymmetric approach, the operators Pµ with commutator relations (2.1) are genera-
tors of the Poincaré group. We interpret these as quantum mechanical operators, and consider
nonrelativistic quantum mechanics. Taking the decomposition (2.3) and (3.3) into account, we
have

P̂i =
1
4
σaȧi {Qa, Qȧ} ŝi = −1

4
εijk [qj+3, qk+3] (4.1)

We offer the following interpretation of Eq’s (4.1): Quantum mechanics has hidden supersym-
metric and nonassociative structures, which can be expressed through decomposition of classical
momentum and spin operators, into bilinear combinations of some operators that are either
supersymmetric or nonassociative.

Probably, such nonassociative hidden structure can not be found experimentally in principle,
because the nonassociative parts q5,6,7 generate unobservables (for details of unobservability, see
Ref. [6]).

5 Discussion and conclusions

We have shown that some quantum mechanical operators can be decomposed into supersym-
metric and nonassociative constituents. The following questions outline further investigation in
this direction:

1. Does a 4D generalization of relations (4.1) exist?
2. Do Qa, Qȧ have dynamical equations?
3. Is a similar nonassociative decomposition of quantum field theory possible?

The first question can be formulated mathematically as follows: Find a nonassociative algebra
R, with commutators and associators[

Rµ, R̃ν
]

= 2Mµν

[Mµν ,Mρσ] = ı (ηνρMµσ + ηµσMνρ − ηµρMνσ − ηνσMµρ)
(Pµ, P ν , P ρ) = (PµP ν)P ρ − Pµ (P νP ρ) = 2εµνρσPσ

where Pµ = either Rµ or R̃µ. Also, ask whether a linear representation for Rµ, R̃ν exists. This
question arises, because supersymmetric operators Qa, Qȧ have a linear representation

iQa =
∂

∂θa
− iσµaȧθ̄

ȧ∂µ, iQ̄ȧ = − ∂

∂θȧ
+ iθaσµaȧ∂µ

These operators are generators of translation, in a superspace with coordinates zM = (xµ, θa, θȧ),
where θa, θȧ are Grassmanian numbers obeying

{θa, θb} =
{
θ̄ȧ, θ̄ḃ

}
=
{
θa, θ̄ȧ

}
= 0
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The second question from above is important, because for any classical quantum mechanical
operator L we can write the Hamilton equation

dL

dt
=
∂L

∂t
+ i [H,L] (5.1)

where H is a Hamiltonian. For nonassociative parts of operators, however, there is an obstacle
for such equation: Because H is generated from a product of two or more constituents, their
nonassociativity demands to define the order of brackets in the product of HL and LH.

In Ref. [10] the question is considered: What is the most general nonassociative algebra A
which is compatible with Eq. (5.1). Let us consider the consistency condition

d(xy)
dt

=
dx

dt
y + x

dy

dt
,

which requires validity of

[H,xy] = x [H, y] + [H,x] y. (5.2)

The validity of Eq. (5.2) is not obvious for a general algebra. There exists the following

Theorem (Myung [7]). The necessary and sufficient condition for

[z, xy] = x [z, y] + [z, x] y, ∀x, y, z ∈ A

is that A is flexible and Lie-admissible, i.e.

(x, y, z) = −(z, y, x), [[x, y] z] + [[z, x] , y] + [[y, z] , x] = 0

Finally, a few notes about the third question. In Ref. [1] the idea is offered that by quanti-
zation of strongly interacting fields (in particular in quantum chromodynamics), nonassociative
properties of quantum field operators may arise. In [1] it is proposed that a quark spinor field
ψ can be presented as a bilinear combination of usual spinor fields ψi and nonassociative num-
bers (split octonions) qi. Both ideas, in Ref. [1] and here, are qualitatively similar: Quantum
operators can be decomposed into nonassociative constituents.

An unsolved problem exists in quantum chromodynamics: the confinement. The challenging
property is that a quark-antiquark pair cannot be separated. Physically speaking, this means
that a single quark cannot be observed. Mathematically, the problem is that we do not know
the algebra yet, which models field operators for strongly interacting fields (gluons for quantum
chromodynamics). One can suppose that the unobservability of quarks can be connected with
a non-associative structure of the algebra of gluon operators.
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