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Abstract Extending the definition of Lie algebroid from one base manifold to a pair of diffeomorphic base man-
ifolds, we obtain the generalized Lie algebroid. When the diffeomorphisms used are identities, then we obtain the
definition of Lie algebroid. We extend the concept of tangent bundle, and the Lie algebroid generalized tangent
bundle is obtained. In the particular case of Lie algebroids, a similar Lie algebroid with the prolongation Lie
algebroid is obtained. A new point of view over (linear) connections theory of Ehresmann type on a fiber bundle is
presented. These connections are characterized by a horizontal distribution of the Lie algebroid generalized tangent
bundle. Some basic properties of these generalized connections are investigated. Special attention to the class of
linear connections is paid. The recently studied Lie algebroids connections can be recovered as special cases within
this more general framework. In particular, all results are similar with the classical results. Formulas of Ricci and
Bianchi type and linear connections of Levi-Civita type are presented.

MSC 2010: 00A69, 58B34, 53B05

1 Introduction

In general, if C is a category, then we denote |C| the class of objects. For any A,B ∈ |C|, we denote C(A,B) the
set of morphisms of A source and B target, and IsoC(A,B) the set of C-isomorphisms of A source and B target.
Let Liealg, Mod, Man, B, and Bv be the category of Lie algebras, modules, manifolds, fiber bundles, and vector
bundles, respectively.

We know that if (E,π,M) ∈ |Bv|, Γ(E,π,M) = {u ∈ Man(M,E) : u ◦π = IdM} and F(M) = Man(M,R),
then (Γ(E,π,M),+, ·) is a F(M)-module. If (ϕ,ϕ0) ∈ Bv((E,π,M),(E′,π′,M ′)) such that ϕ0 ∈ IsoMan(M,M ′),
then, using the operation,

F(M)×Γ(E′,π′,M ′) · �� Γ(E′,π′,M ′)

(f,u′) � �� f ◦ϕ−1
0 ·u′

it results that (Γ(E′,π′,M ′),+, ·) is a F(M)-module and we obtain the Mod-morphism:

Γ(E,π,M)
Γ(ϕ,ϕ0) �� Γ(E′,π′,M ′)

u
� �� Γ

(
ϕ,ϕ0

)
u

defined by:

Γ
(
ϕ,ϕ0

)
u(y) = ϕ

(
uϕ−1

0 (y)

)
=
(
ϕ◦u◦ϕ−1

0

)
(y),

for any y ∈M ′.
The theory of connections constitutes one of the most important chapter of differential geometry, which has been

explored in the literature (see [2,3,4,5,6,9,12,13,20,21]). Connections theory has become an indispensable tool in
various branches of theoretical and mathematical physics.
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If (E,π,M) is a fiber bundle with paracompact base, then, using the pull-back action, we obtain the Bv-
morphisms:

π∗TM � � ��

π∗τM
��

TM

τM

��
E

π �� M

and

π∗(T ∗M
) � � ��

π∗(∗τM )

��

T ∗M
∗
τM

��
E

π �� M

If (V TE,τE ,E) is the kernel vector bundle of the tangent Bv-morphism (Tπ,π), then we obtain the short exact
sequence:

0
� � �� V TE

� � ��

τE

��

TE
π! ��

τE

��

π∗TM ��

π∗τM
��

0

E
IdE �� E

IdE �� E

(1.1)

where π! is the projection of TE onto π∗TM .
We know that a split to the right in the previous short exact sequence—i.e., a smooth map Γ∈ Man(π∗TM,TE)

so that π!◦Γ= Idπ∗TM—is a connection in the Ehresmann sense.
If (HTE,τE ,E) is the image vector bundle of the Bv-morphism (Γ, IdE), then the tangent vector bundle

(TE,τE ,E) is a Whitney sum between the horizontal vector bundle (HTE,τE ,E) and the vertical vector bundle
(V TE,τE ,E).

From the above notion of connection, one can easily derive more specific types of connections by imposing
additional conditions. In the literature, one can find several generalizations of the concept of Ehresmann connection
obtained by relaxing the conditions on the horizontal vector bundle.

• First of all, we are thinking here of the so-called partial connections, where (HTE,τE ,E) does not determine a
full complement of (V TE,τE ,E). More precisely, Γ(HTE,τE ,E) has zero intersection with Γ(V TE,τE ,E),
but (HTE,τE ,E) projects onto a vector subbundle of (TM,τM ,M) (see [3]).

• Second, there also exists a notion of pseudo-connection, introduced under the name of quasi-connection in a
paper by Wong [21]. Linear pseudo-connections and generalization of it have been studied by many authors
(see [5]).

Popescu built the relative tangent space, and using that, he obtained a new generalized connection on a vector
bundle [12] (see also [13]).

In the paper [6] by Fernandes, a contravariant connection in the framework of Poisson geometry is presented.
Given a Poisson manifold M with tensor Λ, which does not have to be of constant rank, a covariant connection
on the principal bundle (P,π,M) is a G-invariant bundle map Γ ∈ Man(π∗(T ∗M),TP ) so that the diagram is
commutative:

π∗(T ∗M
) Γ ��

π∗(∗τM )

��

TP

Tπ

��
T ∗M

�Λ �� TM

where (�Λ, IdM ) is the natural vector bundle morphism induced by the Poisson tensor. In the paper [6], Fernandez has
extended this theory by replacing the cotangent bundle of a Poisson manifold by a Lie algebroid over an arbitrary
manifold and the map �Λ by the anchor map of the Lie algebroid. This resulted into a notion of Lie algebroid
connection, which, in particular, turns out to be appropriate for studying the geometry of singular distributions.

Langerock and Cantrijn [2] proposed a general notion of connection on a fiber bundle (E,π,M) as being a
smooth linear bundle map Γ ∈ Man(π∗(F ),TE) so that the diagram is commutative:

π∗(F )
Γ ��

��

TE

Tπ

��
F

ρ �� TM

where (F,ν,M) is an arbitrary vector bundle and (ρ, IdM ) is a vector bundle morphism of (F,ν,M) source and
(TM,τM ,M) target.
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Different equivalent definitions of a (linear) connection on a vector bundle are known, and there are in current
usage. We know the following:

Theorem 1. If we have a short exact sequence of vector bundles over a paracompact manifold M

0
� � �� E′ f ��

π′
��

E
g ��

π

��

E′′ ��

π′′
��

0

M
IdM �� M

IdM �� M

then there exists a right split if and only if there exists a left split.

So a split to the left in the short exact sequence (1.1)—i.e. a smooth map Γ ∈ Man(TE,V TE) so that Γ ◦ i =
IdTE—is an equivalent definition with the Ehresmann connection.

We know that a Lie algebroid is a vector bundle (F,ν,N) ∈ |Bv| such that there exists:
(
ρ, IdN

) ∈ Bv((F,ν,N),
(
TN,τN ,N

))

and an operation:

Γ(F,ν,N)×Γ(F,ν,N)
[ , ]F �� Γ(F,ν,N)

(u,v)
� �� [u,v]F

with the following properties:

LA1 the equality holds good

[u,f ·v]F = f [u,v]F +Γ(ρ, IdN )(u)f ·v,
for all u,v ∈ Γ(F,ν,N) and f ∈ F(N),

LA2 the 4-tuple (Γ(F,ν,N),+, ·, [ , ]F ) is a Lie F(N)-algebra,
LA3 the Mod-morphism Γ(ρ, IdN ) is a LieAlg-morphism of

(
Γ(F,ν,N),+, ·, [ , ]F

)

source and
(
Γ
(
TN,τN ,N

)
,+, ·, [ , ]TN

)

target.

The triple
(
(F,ν,N), [ , ]F ,

(
ρ, IdN

))

is called Lie algebroid, and the couple ([ , ]F ,(ρ, IdN )) is called Lie algebroid structure.
We remark that the secret of the Ehresmann connection is given by the following diagrams:

E

π

��

(
TM, [ , ]TM

) IdTM ��

τM

��

(
TM, [ , ]TM

)

τM

��
M

IdM �� M
IdM �� M

where (E,π,M) is a fiber bundle and ((TM,τM ,M), [ , ]TM ,(IdTM , IdM )) is the standard Lie algebroid.
It was the first time that there appeared an idea to change the standard Lie algebroid with an arbitrary Lie

algebroid as in the following diagrams:

E

π

��

(
F, [ , ]F

) ρ ��

ν

��

(
TM, [ , ]TM

)

τM

��
M

IdM �� M
IdM �� M
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For the second time there appeared an idea to change in the previous diagrams the identities morphisms with
arbitrary Man-isomorphisms h and η as in the following diagrams:

E

π

��

(
F, [ , ]F,h

) ρ ��

ν

��

(
TM, [ , ]TM

) Th ��

τM

��

(
TN, [ , ]TN

)

τN

��
M

h �� N
η �� M

h �� N

where

(ρ,η) ∈ Bv((F,ν,M),
(
TM,τM ,M

))

and

Γ(F,ν,N)×Γ(F,ν,N)
[ , ]F,h �� Γ(F,ν,N)

(u,v)
� �� [u,v]F,h

is an operation with the following properties:

GLA1 the equality holds good

[u,f ·v]F,h = f [u,v]F,h+Γ(Th◦ρ,h◦η)(u)f ·v,

for all u,v ∈ Γ(F,ν,N) and f ∈ F(N).
GLA2 the 4-tuple (Γ(F,ν,N),+, ·, [ , ]F,h) is a Lie F(N)-algebra,
GLA3 the Mod-morphism Γ(Th◦ρ,h◦η) is a LieAlg-morphism of

(
Γ(F,ν,N),+, ·, [ , ]F,h

)

source and

(
Γ
(
TN,τN ,N

)
,+, ·, [ , ]TN

)

target.

We will say that the triple

(
(F,ν,N), [ , ]F,h,(ρ,η)

)

is a generalized Lie algebroid. The couple ([ , ]F,h,(ρ,η)) will be called generalized Lie algebroid structure.
So we extend the notion of Lie algebroid from one base manifold to a pair of diffeomorphic base manifolds, and

we obtain the notion of generalized Lie algebroid.

Remark 2. In the particular case, (η,h) = (IdM , IdM ), we obtain the definition of Lie algebroid.

We can define the set of morphisms of

(
(F,ν,N), [ , ]F,h,(ρ,η)

)

source and

(
(F ′,ν ′,N ′), [ , ]F ′,h′ ,(ρ′,η′)

)

target as being the set

{(
ϕ,ϕ0

) ∈ Bv((F,ν,N),(F ′,ν ′,N ′)
)}

such that ϕ0 ∈ IsoMan(N,N ′) and the Mod-morphism Γ(ϕ,ϕ0) is a LieAlg-morphism of

(
Γ(F,ν,N),+, ·, [ , ]F,h

)
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source and
(
Γ(F ′,ν ′,N ′),+, ·, [ , ]F ′,h′

)

target.
So we can discuss about the category GLA of generalized Lie algebroids. Examples of objects of this category

are presented in Section 2. We remark that GLA is a subcategory of the category Bv.
Using this new notion, we build the Lie algebroid generalized tangent bundle in Theorems 7 and 10. Particularly,

if ((F,ν,N), [ , ]F ,(ρ, IdN )) is a Lie algebroid, (E,π,M) = (F,ν,N) and h = IdM , then we obtain a similar Lie
algebroid with the prolongation Lie algebroid (see [7]). New and important results are presented in [8,10,11,17,19].
See also [14,15,16,18]. Using this general framework, in Section 4, we propose and develop a (linear) connections
theory of Ehresmann type for fiber bundles in general and for vector bundles in particular. It covers all types of
connections mentioned. In this general framework, we can define the covariant derivatives of sections of a fiber
bundle (E,π,M) with respect to sections of a generalized Lie algebroid

(
(F,ν,N), [ , ]F,h,(ρ,η)

)
.

In particular, if we use the generalized Lie algebroid structure:
(
[ , ]TM,IdM ,

(
IdTM , IdM

))

for the tangent bundle (TM,τM ,M) in our theory, then the linear connections obtained are similar with the classical
linear connections.

It is known that in Yang-Mills theory, the set

Cov0
(E,π,M)

of covariant derivatives for the vector bundle (E,π,M) such that

X
(〈u,v〉E

)
=
〈
DX(u),v

〉
E
+
〈
u,DX(v)

〉
E
,

for any X ∈ X (M) and u,v ∈ Γ(E,π,M), is very important, because the Yang-Mills theory is a variational theory
that use (see [1]) the Yang-Mills functional:

Cov0
(E,π,M)

YM �� R

DX
� �� 1

2

∫

M

∥
∥RDX

∥
∥2

vg

where R
DX is the curvature.

Using our linear connections theory, we succeed to extend the set Cov0
(E,π,M) of Yang-Mills theory, because

using all generalized Lie algebroid structures for the tangent bundle (TM,τM ,M), we obtain all possible linear
connections for the vector bundle (E,π,M).

More importantly, it may bring within the reach of connection theory certain geometric structures that have not
yet been considered from such a point of view. Finally, using our theory of linear connections, the formulas of Ricci
and Bianchi type and linear connections of Levi-Civita type are presented.

2 Preliminaries

Let ((F,ν,N), [ , ]F,h,(ρ,η)) ∈ |GLA| be.

• Locally, for any α,β ∈ 1,p, we set [tα, tβ ]F,h =L
γ
αβtγ . We easily obtain that Lγ

αβ =−L
γ
βα, for any α,β,γ ∈ 1,p.

The real local functions Lγ
αβ , α,β,γ ∈ 1,p will be called the structure functions of the generalized Lie algebroid

((F,ν,N), [ , ]F,h,(ρ,η)).

• We assume the following diagrams:

F
ρ ��

ν
��

TM
Th ��

τM
��

TN

τN
��

N
η �� M

h �� N

(χı̃, zα) (xi,yi) (χı̃, zı̃)

where i, ı̃ ∈ 1,m and α ∈ 1,p.
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If

(χı̃, zα)−→ (χı̃′(χı̃), zα
′
(χı̃, zα)), (xi,yi)−→ (xi

′
(xi),yi

′
(xi,yi))

and

(χı̃, zı̃)−→ (χı̃′(χı̃), zı̃′(χı̃, zı̃)),

then

zα
′
= Λα′

α zα, yi
′
=

∂xi
′

∂xi
yi

and

zı̃
′
=

∂χı̃′

∂χı̃
zı̃.

We assume that (θ,μ)
put
= (Th◦ρ,h◦η). If zαtα ∈ Γ(F,ν,N) is arbitrary, then

Γ(Th◦ρ,h◦η)(zαtα)f(h◦η(κ)) =
(
θı̃αz

α ∂f

∂κı̃

)
(h◦η(κ)) =

(
(ρiα ◦h)(zα ◦h)∂f ◦h

∂xi

)
(η(κ)),

for any f ∈ F(N) and κ ∈N .
The coefficients ρiα and θı̃α change to ρi

′
α′ and θı̃

′
α′ , respectively, according to the rule:

ρi
′
α′ = Λα

α′ρiα
∂xi

′

∂xi
,

and

θı̃
′
α′ = Λα

α′θı̃α
∂κı̃′

∂κı̃
,

where
∥
∥Λα

α′
∥
∥=

∥
∥Λα′

α

∥
∥−1

.

Remark 3. The following equalities hold good:

ρiα ◦h∂f ◦h
∂xi

=

(
θı̃α

∂f

∂κı̃

)
◦h, ∀f ∈ F(N).

and

(
L
γ
αβ ◦h

)(
ρkγ ◦h

)
=
(
ρiα ◦h)∂

(
ρkβ ◦h

)

∂xi
− (

ρ
j
β ◦h

)∂
(
ρkα ◦h)

∂xj
.

Theorem 4. Let M,N ∈ |Man |, h ∈ IsoMan(M,N) and η ∈ IsoMan(N,M) be. Using the tangent Bv-morphism
(Tη,η) and the operation

Γ(TN,τN ,N)×Γ(TN,τN ,N)
[ , ]TN,h �� Γ(TN,τN ,N)

(u,v)
� �� [u,v]TN,h

where

[u,v]TN,h = Γ
(
T (h◦η)−1,(h◦η)−1)

([
Γ
(
T (h◦η),h◦η)u,Γ(T (h◦η),h◦η)v]

TN

)
,

for any u,v ∈ Γ(TN,τN ,N), we obtain that
((
TN,τN ,N

)
,(Tη,η), [ , ]TN,h

)

is a generalized Lie algebroid.
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For any Man-isomorphisms η and h, new and interesting generalized Lie algebroid structures for the tangent vec-
tor bundle (TN,τN ,N) are obtained. For any base {tα, α ∈ 1,m} of the module of sections (Γ(TN,τN ,N),+, ·),
we obtain the structure functions

L
γ
αβ =

(
θiα

∂θ
j
β

∂xi
− θiβ

∂θ
j
α

∂xi

)
θ̃
γ
j , α,β,γ ∈ 1,m

where

θiα, i,α ∈ 1,m

are real local functions so that

Γ
(
T (h◦η),h◦η)(tα

)
= θiα

∂

∂xi

and

θ̃
γ
j , i,γ ∈ 1,m

are real local functions so that

Γ
(
T (h◦η)−1,(h◦η)−1)

(
∂

∂xj

)
= θ̃

γ
j tγ .

In particular, using arbitrary isometries (symmetries, translations, rotations, etc.) for the Euclidean three-
dimensional space Σ, and arbitrary basis for the module of sections, we obtain a lot of generalized Lie algebroid
structures for the tangent vector bundle (TΣ, τΣ,Σ).

Remark 5. If (E,π,M) ∈ |B|, then we obtain the Bv-morphism

π∗(h∗F )
� � ��

π∗(h∗ν)
��

F

ν

��
E

h◦π �� N

(2.1)

In particular, if (E,π,M) ∈ |Bv| and (
∗
E,

∗
π,M) is its dual, then we obtain the Bv-morphism:

∗
π
∗
(h∗F )

� � ��

∗
π
∗
(h∗ν)

��

F

ν

��∗
E

h◦ ∗
π �� N

(2.2)

3 The Lie algebroid generalized tangent bundle

We consider the following diagram:

E

π

��

(F, [ , ]F,h,(ρ,η))

ν

��
M

h �� N

where (E,π,M) ∈ |B| and ((F,ν,N), [ , ]F,h,(ρ,η)) ∈ |GLA|.
We take (xi,ya) as canonical local coordinates on (E,π,M), where i ∈ 1,m and a ∈ 1, r. Let

(xi,ya)−→ (xi
′
(xi),ya

′
(xi,ya))

be a change of coordinates on (E,π,M). Then the coordinates ya change to ya
′

according to the rule:

ya
′
=

∂ya
′

∂ya
ya.
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In particular, if (E,π,M) is vector bundle, then the coordinates ya change to ya
′

according to the rule:

ya
′
=Ma′

a ya.

Easily, we obtain the following

Theorem 6. Let (
π∗(h∗F )

ρ , IdE) be the Bv-morphism of (π∗(h∗F ),π∗(h∗ν),E) source and (TE,τE ,E) target, where

π∗(h∗F )

π∗(h∗F )
ρ �� TE

ZαTα(ux)
� �� (Zα ·ρiα ◦h◦π) ∂

∂xi
(ux)

Using the operation

Γ(π∗ (h∗F ),π∗(h∗ν),E)2 [ , ]π∗(h∗F )−−−−−−−→ Γ(π∗(h∗F ),π∗(h∗ν),E)

defined by

[
Tα,Tβ

]
π∗(h∗F )

= L
γ
αβ ◦h◦π ·Tγ ,

[
Tα, fTβ

]
π∗(h∗F )

= fL
γ
αβ ◦h◦πTγ +ρiα ◦h◦π ∂f

∂xi
Tβ ,

[
fTα,Tβ

]
π∗(h∗F )

=−[
Tβ , fTα

]
π∗(h∗F )

,

for any f ∈ F(E), it results that

((
π∗(h∗F ),π∗(h∗ν

)
,E

)
, [ , ]π∗(h∗F ),

(
π∗(h∗F )

ρ , IdE
))

is a Lie algebroid that is called the pull-back Lie algebroid of the generalized Lie algebroid

(
(F,ν,N), [ , ]F,h,(ρ,η)

)
.

If z = zαtα ∈ Γ(F,ν,N), then we obtain the section

Z = (zα ◦h◦π)Tα ∈ Γ(π∗(h∗F ),π∗(h∗ν),E)

so that Z(ux) = z(h(x)), for any ux ∈ π−1(U ∩h−1V ).
Let

(∂i, ∂̇a)
put
=

(
∂

∂xi
,

∂

∂ya

)

be the base sections for the Lie F(E)-algebra

(Γ(TE,τE ,E),+, ·, [ , ]TE).

For any sections

ZαTα ∈ Γ
(
π∗(h∗F ),π∗(h∗F ),E

)

and

Y a∂̇a ∈ Γ
(
V TE,τE ,E

)

we obtain the section

Zα∂̃α+Y a
·
∂̃a =: Zα(Tα⊕ (ρiα ◦h◦π)∂i)+Y a(0π∗(h∗F )⊕ ∂̇a)

= ZαTα⊕ (Zα(ρiα ◦h◦π)∂i+Y a∂̇a) ∈ Γ(π∗(h∗F )⊕TE,
⊕
π,E).
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Since we have

Zα∂̃α+Y a
·
∂̃a = 0

�
ZαTα = 0 ∧Zα(ρiα ◦h◦π)∂i+Y a∂̇a = 0,

it implies Zα = 0, α ∈ 1,p and Y a = 0, a ∈ 1, r.

Therefore, the sections ∂̃1, . . . , ∂̃p,
·
∂̃1, . . . ,

·
∂̃r are linearly independent.

We consider the vector subbundle ((ρ,η)TE,(ρ,η)τE ,E) of the vector bundle (π∗(h∗F )⊕TE,
⊕
π,E), for which

the F(E)-module of sections is the F(E)-submodule of (Γ(π∗(h∗F )⊕ TE,
⊕
π,E),+, ·), generated by the set of

sections (∂̃α,
·
∂̃a).

The base sections (∂̃α,
·
∂̃a) will be called the natural (ρ,η)-base.

The matrix of coordinate transformation on ((ρ,η)TE,(ρ,η)τE ,E) at a change of fibred charts is
∥
∥
∥
∥
∥
∥

Λα′
α ◦h◦π 0

(ρiα ◦h◦π)∂y
a′

∂xi
∂ya

′

∂ya

∥
∥
∥
∥
∥
∥
.

In particular, if (E,π,M) is a vector bundle, then the matrix of coordinate transformation on ((ρ,η)TE,

(ρ,η)τE ,E) at a change of fibred charts is
∥
∥
∥
∥
∥

Λα′
α ◦h◦π 0

(ρia ◦h◦π)
∂Ma′

b ◦π
∂xi

yb Ma′
a ◦π

∥
∥
∥
∥
∥
.

Easily, we obtain

Theorem 7. Let (ρ̃, IdE) be the Bv-morphism of ((ρ,η)TE,(ρ,η)τE ,E) source and (TE,τE ,E) target, where

(ρ,η)TE
ρ̃ �� TE

(Zα∂̃α+Y a
·
∂̃a)(ux)

� �� (Zα(ρiα ◦h◦π)∂i+Y a∂̇a)(ux).

Using the operation

Γ
(
(ρ,η)TE,(ρ,η)τE ,E

)2 [ , ](ρ,η)TE−−−−−−−→ Γ
(
(ρ,η)TE,(ρ,η)τE ,E

)

defined by

[Zα
1 ∂̃α+Y a

1

·
∂̃a,Z

β
2 ∂̃β +Y b

2

·
∂̃b](ρ,η)TE

= [Zα
1 Tα,Z

β
2 Tβ ]π∗(h∗F )⊕ [Zα

1 (ρ
i
α ◦h◦π)∂i+Y a

1 ∂̇a,Z
β
2 (ρ

j
β ◦h◦π)∂j +Y b

2 ∂̇b]TE ,

for any Zα
1 ∂̃α+Y a

1

·
∂̃a and Z

β
2 ∂̃β+Y b

2

·
∂̃b, we obtain that the couple ([ , ](ρ,η)TE ,(ρ̃, IdE)) is a Lie algebroid structure

for the vector bundle ((ρ,η)TE,(ρ,η)τE ,E).

Remark 8. In particular, if h= IdM , then the Lie algebroid

(((IdTM , IdM )TE,(IdTM , IdM )τE ,E), [ , ](IdTM ,IdM )TE ,(ĨdTM , IdE))

is isomorphic with the usual Lie algebroid

((TE,τE ,E), [ , ]TE ,(IdTE , IdE)).

This is a reason for which the Lie algebroid

(((ρ,η)TE,(ρ,η)τE ,E), [ , ](ρ,η)TE ,(ρ̃, IdE)),

will be called the Lie algebroid generalized tangent bundle.
The vector bundle ((ρ,η)TE,(ρ,η)τE ,E) will be called the generalized tangent bundle.
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3.1 The Lie algebroid generalized tangent bundle of dual vector bundle

Let (E,π,M)∈ |Bv| be. We build the generalized tangent bundle of dual vector bundle (
∗
E,

∗
π,M) using the diagram:

∗
E

∗
π

��

(F, [ , ]F,h,(ρ,η))

ν

��
M

h �� N,

where ((F,ν,N), [ , ]F,h,(ρ,η)) ∈ |GLA|.
We take (xi,pa) as canonical local coordinates on (

∗
E,

∗
π,M), where i ∈ 1,m and a ∈ 1, r.

Consider

(xi,pa)−→ (xi
′
(xi),pa′(x

i,pa))

a change of coordinates on (
∗
E,

∗
π,M). Then the coordinates pa change to pa′ according to the rule:

pa′ =Ma
a′pa.

Easily, we obtain the following

Theorem 9. Let
( ∗
π
∗
(h∗F )
ρ , Id ∗

E

)
be the Bv-morphism of (

∗
π
∗
(h∗F ),

∗
π
∗
(h∗ν),

∗
E) source and (T

∗
E,τ ∗

E
,
∗
E) target, where

∗
π
∗
(h∗F )

∗
π
∗
(h∗F )
ρ �� T

∗
E

ZαTα(
∗
ux)

� �� (Zα ·ρiα ◦h◦ ∗
π)

∂

∂xi
(
∗
ux)

Using the operation

Γ(
∗
π
∗
(h∗F ),

∗
π
∗
(h∗ν),

∗
E)2

[ , ] ∗
π
∗
(h∗F )−−−−−−−→ Γ(

∗
π
∗
(h∗F ),

∗
π
∗
(h∗ν),

∗
E)

defined by

[Tα,Tβ ] ∗
π
∗
(h∗F )

= L
γ
αβ ◦h◦

∗
π ·Tγ , [Tα, fTβ ] ∗

π
∗
(h∗F )

= f ·Lγ
αβ ◦h◦

∗
π ·Tγ +ρiα ◦h◦ ∗

π · ∂f
∂xi

·Tβ ,
[fTα,Tβ ] ∗

π
∗
(h∗F )

=−[Tβ , fTα] ∗
π
∗
(h∗F )

,

for any f ∈ F(
∗
E), it results that

(
(
∗
π
∗
(h∗F ),

∗
π
∗
(h∗ν),

∗
E), [ , ] ∗

π
∗
(h∗F )

,
( ∗
π
∗
(h∗F )
ρ , Id ∗

E

))

is a Lie algebroid that is called the pull-back Lie algebroid of the generalized Lie algebroid
(
(F,ν,N), [ , ]F,h,(ρ,η)

)
.

If z = zαtα ∈ Γ(F,ν,N), then we obtain the section

Z = (zα ◦h◦ ∗
π)Tα ∈ Γ(

∗
π
∗
(h∗F ),

∗
π
∗
(h∗ν),

∗
E)

so that Z(
∗
ux) = z(h(x)), for any

∗
ux ∈ ∗

π
−1
(U∩h−1V ).

Let

(
∗
∂i, ∂̇

a)
put
=

(
∂

∂xi
,

∂

∂pa

)
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be the base sections for the Lie F(
∗
E)-algebra

(
Γ(T

∗
E,τ ∗

E
,
∗
E),+, ·, [ , ]

T
∗
E

)
.

For any sections

ZαTα ∈ Γ(
∗
π
∗
(h∗F ),

∗
π
∗
(h∗ν),

∗
E)

and

Ya∂̇
a ∈ Γ

(
V T

∗
E,τ ∗

E
,
∗
E
)
,

we obtain the section

Zα
∗
∂̃α+Ya

·
∂̃
a

=: Zα(Tα⊕ (ρiα ◦h◦ ∗
π)

∗
∂i)+Ya(0 ∗

π
∗
(h∗F )

⊕ ∂̇a)

= ZαTα⊕ (Zα(ρiα ◦h◦ ∗
π)

∗
∂i+Ya∂̇

a) ∈ Γ(
∗
π
∗
(h∗F )⊕T

∗
E,

⊕
∗
π,

∗
E).

Since we have

Zα
∗
∂̃α+Ya

·
∂̃
a

= 0 ∗
π
∗
(h∗F )⊕T

∗
E

�
ZαTα = 0 ∗

π
∗
(h∗F )

∧Zα(ρiα ◦h◦ ∗
π)

∗
∂i+Ya∂̇

a = 0
T

∗
E
,

it implies Zα = 0, α ∈ 1,p and Ya = 0, a ∈ 1, r.
Therefore, the sections

∗
∂̃1, . . . ,

∗
∂̃p,

·
∂̃

1

, . . . ,
·
∂̃
r

are linearly independent.
We consider the vector subbundle

((ρ,η)T
∗
E,(ρ,η)τ ∗

E
,
∗
E)

of vector bundle

(
∗
π
∗
(h∗F )⊕T

∗
E,

⊕
∗
π,

∗
E),

for which the F(
∗
E) module of sections is the F(

∗
E)-submodule of

(
Γ
(∗
π
∗
(h∗F )⊕T

∗
E,

⊕
∗
π,

∗
E
)
,+, ·

)
,

generated by the family of sections (
∗
∂̃α,

·
∂̃
a

), which is called the natural (ρ,η)-base.

The matrix of coordinate transformation on ((ρ,η)T
∗
E,(ρ,η)τ ∗

E
,
∗
E) at a change of fibred charts is

∥
∥
∥
∥
∥
∥
∥

Λα′
α ◦h◦ ∗

π 0

(ρiα ◦h◦ ∗
π)

∂Mb
a′ ◦

∗
π

∂xi
pb Ma

a′ ◦
∗
π

∥
∥
∥
∥
∥
∥
∥
.

Easily, we obtain
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Theorem 10. Let (
∗
ρ̃, Id ∗

E
) be the Bv-morphism of ((ρ,η)T

∗
E,(ρ,η)τ ∗

E
,
∗
E) source and (T

∗
E,τ ∗

E
,
∗
E) target, where

(ρ,η)T
∗
E

∗
ρ̃ �� T

∗
E

(Zα
∗
∂̃α+Ya

·
∂̃
a

)(
∗
ux)

� �� (Zα(ρiα ◦h◦ ∗
π)

∗
∂i+Ya∂̇

a)(
∗
ux).

Using the operation

Γ((ρ,η)T
∗
E,(ρ,η)τ ∗

E
,
∗
E)2

[ , ]
(ρ,η)T

∗
E−−−−−−−→ Γ((ρ,η)T

∗
E,(ρ,η)τ ∗

E
,
∗
E)

defined by

[Zα
1

∗
∂̃α+Y 1

a

·
∂̃
a

,Z
β
2

∗
∂̃β +Y 2

b

·
∂̃
b

]
(ρ,η)T

∗
E

= [Zα
1 Tα,Z

β
2 Tβ ] ∗π

∗
(h∗F )

⊕ [Zα
1 (ρ

i
α ◦h◦ ∗

π)
∗
∂i+Y 1

a ∂̇
a,Z

β
2 (ρ

j
β ◦h◦

∗
π)

∗
∂j +Y 2

b ∂̇
b]
T

∗
E
,

for any Zα
1

∗
∂̃α+Y 1

a

·
∂̃
a

and Z
β
2

∗
∂̃β+Y 2

b

·
∂̃
b

, we obtain that the couple ([ , ]
(ρ,η)T

∗
E
,(

∗
ρ̃, Id ∗

E
)) is a Lie algebroid structure

for the vector bundle ((ρ,η)T
∗
E,(ρ,η)τ ∗

E
,
∗
E).

The Lie algebroid generalized tangent bundle of the dual vector bundle (
∗
E,

∗
π,M) will be denoted:

((
(ρ,η)T

∗
E,(ρ,η)τ ∗

E
,
∗
E
)
, [ , ]

(ρ,η)T
∗
E
,
(∗
ρ̃, Id ∗

E

))
.

4 (Linear) (ρ,η)-connections

We consider the diagram:

E

π

��

(F, [ , ]F,h,(ρ,η))

ν

��
M

h �� N

where (E,π,M) ∈ |B| and ((F,ν,N), [ , ]F,h,(ρ,η)) ∈ |GLA|.
Let

(((ρ,η)TE,(ρ,η)τE ,E), [ , ](ρ,η)TE ,(ρ̃, IdE))

be the Lie algebroid generalized tangent bundle of the fiber bundle (E,π,M).
We consider the Bv-morphism ((ρ,η)π!, IdE) given by the commutative diagram:

(ρ,η)TE
(ρ,η)π! ��

(ρ,η)τE
��

π∗(h∗F )

π∗(h∗ν)
��

E
IdE �� E

This is defined as:

(ρ,η)π!((Zα∂̃α+Y a
·
∂̃a)(ux)) = (ZαTα)(ux),

for any Zα∂̃α+Y a
·
∂̃a ∈ Γ((ρ,η)TE,(ρ,η)τE ,E).

Using the Bv-morphism ((ρ,η)π!, IdE), and the Bv-morphism (2.1), we obtain the tangent (ρ,η)-application
((ρ,η)Tπ,h◦π) of ((ρ,η)TE,(ρ,η)τE ,E) source and (F,ν,N) target.
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Definition 11. The kernel of the tangent (ρ,η)-application is written:

(V (ρ,η)TE,(ρ,η)τE ,E)

and it is called the vertical subbundle.

We remark that the set {
·
∂̃a, a ∈ 1, r} is a base of the F(E)-module:

(Γ(V (ρ,η)TE,(ρ,η)τE ,E),+, ·).
Proposition 12. The short sequence of vector bundles

0
� � ��

��

V (ρ,η)TE
� � ��

��

(ρ,η)TE
(ρ,η)π! ��

��

π∗(h∗F ) ��

��

0

��
E

IdE �� E
IdE �� E

IdE �� E
IdE �� E

is exact.

Definition 13. A Man-morphism (ρ,η)Γ of (ρ,η)TE source and V (ρ,η)TE target defined by:

(ρ,η)Γ
(
Zγ

∗
∂̃γ +Y a

·
∂̃a

)
(ux) =

(
Y a+(ρ,η)Γa

γZ
γ
) ·
∂̃a(ux),

so that the Bv morphism ((ρ,η)Γ, IdE) is a split to the left in the previous exact sequence, will be called (ρ,η)-
connection for the fiber bundle (E,π,M).

The (ρ, IdM )-connection will be called ρ-connection and will be denoted ρΓ and the (IdTM , IdM )-connection
will be called connection and will be denoted Γ.

Definition 14. If (ρ,η)Γ is a (ρ,η)-connection for the fiber bundle (E,π,M), then the kernel of the Bv-morphism
((ρ,η)Γ, IdE) is written (H(ρ,η)TE,(ρ,η)τE ,E) and will be called the horizontal vector subbundle.

Definition 15. If (E,π,M) ∈ |B|, then the B-morphism (Π,π) defined by the commutative diagram

V (ρ,η)TE
Π ��

(ρ,η)τE
��

E

π

��
E

π �� M

so that the components of the image of the vector Y a
·
∂̃a(ux) are the real numbers Y 1(ux), . . . ,Y

r(ux) will be called
the canonical projection B-morphism.

In particular, if (E,π,M) ∈ |Bv| and {sa,a ∈ 1, r} is a base of the F(M)-module of sections (Γ(E,π,M),+, ·),
then Π is defined by:

Π(Y a
·
∂̃a(ux)) = Y a(ux)sa(x).

Theorem 16. If (ρ,η)Γ is a (ρ,η)-connection for the fiber bundle (E,π,M), then its components satisfy the law of
transformation:

(ρ,η)Γa′
γ′ =

∂ya
′

∂ya

[
ρkγ ◦h◦π

∂ya

∂xk
+(ρ,η)Γa

γ

]
Λ
γ
γ′ ◦h◦π. (4.1)

If (ρ,η)Γ is a (ρ,η)-connection for the vector bundle (E,π,M), then its components satisfy the law of transfor-
mation:

(ρ,η)Γa′
γ′ =Ma′

a ◦π
[
ρkγ ◦h◦π

∂Ma
b′ ◦π

∂xk
yb

′
+(ρ,η)Γa

γ

]
Λ
γ
γ′ ◦h◦π. (4.1′)

In the particular case of Lie algebroids, (η,h) = (IdM , IdM ), the relations (4.1′) become:

ρΓa′
γ′ =Ma′

a ◦π
[
ρkγ ◦π

∂Ma
b′ ◦π

∂xk
yb

′
+ρΓa

γ

]
Λ
γ
γ′ ◦π. (4.1′′)

In the classical case, (ρ,η,h) = (IdTM , IdM , IdM ), the relations (4.1′′) become:

Γi′
k′ =

∂xi
′

∂xi
◦ τM

[
∂

∂xk

(
∂xi

∂xj
′ ◦ τM

)
yj

′
+Γi

k

]
∂xk

∂xk
′ ◦ τM . (4.1′′′)
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Proof. Let (Π,π) be the canonical projection B-morphism.
Obviously, the components of

Π◦ (ρ,η)Γ(Zγ′ ∗
∂̃γ′ +Y a′

·
∂̃a′)(ux)

are the real numbers

(Y a′ +(ρ,η)Γa′
γ′Zγ′

)(ux).

Since

(
Zγ′ ∗

∂̃γ′ +Y a′
·
∂̃a′

)(
ux

)
= Zγ′

Λ
γ
γ′ ◦h◦π

∗
∂̃γ

(
ux

)
+

(
Zγ′

ρi
′
γ′ ◦h◦π ∂ya

∂xi
′ +

∂ya

∂ya
′ Y

a′
) ·
∂̃a

(
ux

)
,

it results that the components of

Π◦ (ρ,η)Γ(Zγ′ ∗
∂̃γ′ +Y a′

·
∂̃a′)(ux)

are the real numbers

(Zγ′
ρi

′
γ′ ◦h◦π ∂ya

∂xi
′ +

∂ya

∂ya
′ Y

a′ +(ρ,η)Γa
γZ

γ′
Λ
γ
γ′ ◦h◦π)(ux)∂y

a′

∂ya
,

where

∥
∥
∥
∥
∂ya

∂ya
′

∥
∥
∥
∥=

∥
∥
∥
∥
∂ya

′

∂ya

∥
∥
∥
∥

−1

.

Therefore, we have:

(
Zγ′

ρi
′
γ′ ◦h◦π ∂ya

∂xi
′ +

∂ya

∂ya
′ Y

a′ +(ρ,η)Γa
γZ

γ′
Λ
γ
v′ ◦h◦π

)
∂ya

′

∂ya
= Y a′ +(ρ,η)Γa′

γ′Zγ′
.

After some calculations, we obtain:

(ρ,η)Γa′
γ′ =

∂ya
′

∂ya

(
ρiγ ◦ (h◦π)

∂ya

∂xi
+(ρ,η)Γa

γ

)
Λ
γ
γ′ ◦h◦π.

Remark 17. If we have a set of real local functions (ρ,η)Γa
γ that satisfies the relations of passing (4.1), then we have

a (ρ,η)-connection (ρ,η)Γ for the fiber bundle (E,π,M)

Example 18. If Γ is an Ehresmann connection for the vector bundle (E,π,M) on components Γa
k, then the

differentiable real local functions (ρ,η)Γa
γ = (ρkγ ◦h◦π)Γa

k are the components of a (ρ,η)-connection (ρ,η)Γ for the
vector bundle (E,π,M). This (ρ,η)-connection will be called the (ρ,η)-connection associated to the connection Γ.

Definition 19. If (ρ,η)Γ is a (ρ,η)-connection for the vector bundle (E,π,M) and z = zγtγ ∈ Γ(F,ν,M), then the
application

Γ(E,π,M)
(ρ,η)Dz �� Γ(E,π,M)

u= uasa
� �� (ρ,η)Dzu

where

(ρ,η)Dzu= zγ ◦h
(
ρkγ ◦h

∂ua

∂xk
+(ρ,η)Γa

γ ◦u
)
sa (4.2)

will be called the covariant (ρ,η)-derivative associated to (ρ,η)-connection (ρ,η)Γ with respect to the section z.
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Remark 20. In the particular case of Lie algebroids, (η,h) = (IdM , IdM ), the relations (4.2) become:

ρDzu= zγ
(
ρkγ

∂ua

∂xk
+ρΓa

γ ◦u
)
sa. (4.2′)

In the classical case, (ρ,η,h) = (IdTM , IdM , IdM ), the relations (4.2′) become:

DXY =Xk

(
∂Y i

∂xk
+Γi

k ◦Y
)
∂i. (4.2′′)

Definition 21. Let (ρ,η)Γ be a (ρ,η)-connection for the fiber bundle (E,π,M). If for each local vector (m+ r)-
chart (U,sU ) and for each local vector (n+p)-chart (V,tV ) so that U ∩h−1(V ) �= φ, it exists the differentiable real
functions (ρ,η)Γa

bγ defined on U ∩h−1(V ) such that

(ρ,η)Γa
γ ◦u= (ρ,η)Γa

bγ ·ub, ∀u= ubsb ∈ Γ(E,π,M),

then we say that (ρ,η)Γ is linear.
The differentiable real local functions (ρ,η)Γa

bγ will be called the Christoffel coefficients of linear (ρ,η)-
connection (ρ,η)Γ.

Theorem 22. If (ρ,η)Γ is a linear (ρ,η)-connection for the fiber bundle (E,π,M), then its components satisfy the
law of transformation

(ρ,η)Γa′
b′γ′ =

∂ya
′

∂ya

[
ρkγ ◦h

∂

∂xk

(
∂ya

∂yb
′

)
+(ρ,η)Γa

bγ

∂yb

∂yb
′

]
Λ
γ
γ′ ◦h. (4.3)

If (ρ,η)Γ is a linear (ρ,η)-connection for the vector bundle (E,π,M), then its components satisfy the law of
transformation

(ρ,η)Γa′
b′γ′ =Ma′

a

[
ρkγ ◦h

∂Ma
b′

∂xk
+(ρ,η)Γa

bγM
b
b′

]
Λ
γ
γ′ ◦h. (4.3′)

In the particular case of Lie algebroids, (η,h) = (IdM , IdM ), the relations (4.3′) become:

ρΓa′
b′γ′ =Ma′

a

[
ρkγ

∂Ma
b′

∂xk
+ρΓa

bγM
b
b′

]
Λ
γ
γ′ . (4.3′′)

In the classical case, (ρ,η,h) = (IdTM , IdM , IdM ), the relations (4.3′′) become:

Γi′
j′k′ =

∂xi
′

∂xi

[
∂

∂xk

(
∂xi

∂xj
′

)
+Γi

jk

∂xj

∂xj
′

]
∂xk

∂xk
′ . (4.3′′′)

Theorem 23. If (ρ,η)Γ is a linear (ρ,η)-connection for the vector bundle (E,π,M), then, for any z = zγtγ ∈
Γ(F,ν,M), we obtain the covariant (ρ,η)-derivative associated to the linear (ρ,η)-connection (ρ,η)Γ with respect
to the section z

Γ(E,π,M)
(ρ,η)Dz �� Γ(E,π,M)

u= uasa
� �� (ρ,η)Dzu

defined by

(ρ,η)Dzu= zγ ◦h
(
ρkγ ◦h

∂ua

∂xk
+(ρ,η)Γa

bγ ·ub
)
sa. (4.4)

In the particular case of Lie algebroids, (η,h) = (IdM , IdM ), the relations (4.4) become:

ρDzu= zγ
(
ρkγ

∂ua

∂xk
+ρΓa

bγ ·ub
)
sa. (4.4′)

In the classical case, (ρ,η,h) = (IdTM , IdM , IdM ), the relations (4.4′) become:

DXY =Xk

(
∂Y i

∂xk
+Γi

jk ·Y j

)
∂i. (4.4′′)
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4.1 (Linear) (ρ,η)-connections for dual vector bundle

Let (E,π,M) ∈ |Bv| be. We consider the following diagram:

∗
E

∗
π

��

(F, [ , ]F,h,(ρ,η))

ν

��
M

h �� N,

where ((F,ν,N), [ , ]F,h,(ρ,η)) ∈ |GLA|.
Let

((
(ρ,η)T

∗
E,(ρ,η)τ ∗

E
,
∗
E
)
, [ , ]

(ρ,η)T
∗
E
,
(∗
ρ̃, Id ∗

E

))

be the Lie algebroid generalized tangent bundle of the vector bundle (
∗
E,

∗
π,M).

We consider the Bv-morphism ((ρ,η)
∗
π!, Id ∗

E
) given by the commutative diagram:

(ρ,η)T
∗
E

(ρ,η)
∗
π! ��

(ρ,η)τ ∗
E

��

∗
π
∗
(h∗F )

∗
π
∗
(h∗ν)

��
∗
E

Id ∗
E �� ∗

E

Using the components, this is defined as:

(ρ,η)
∗
π!
(
Zα

∗
∂̃α+Ya

·
∂̃
a)(∗

ux
)
=
(
ZαTα

)(∗
ux

)
,

for any Zα
∗
∂̃α+Ya

·
∂̃
a

∈ ((ρ,η)T
∗
E,(ρ,η)τ ∗

E
,
∗
E).

Using the Bv-morphism ((ρ,η)
∗
π!, Id ∗

E
) and the Bv-morphism (2.2), we obtain the tangent (ρ,η)-application

((ρ,η)T
∗
π,h◦ ∗

π) of ((ρ,η)T
∗
E,(ρ,η)τ ∗

E
,
∗
E) source and (F,ν,N) target.

Definition 24. The kernel of the tangent (ρ,η)-application

(
(ρ,η)T

∗
π,h◦ ∗

π
)

is written as
(
V (ρ,η)T

∗
E,(ρ,η)τ ∗

E
,
∗
E
)

and will be called the vertical subbundle.

The set {
·
∂̃
a

, a ∈ 1, r} is a base for the F(
∗
E)-module

(
Γ(V (ρ,η)T

∗
E,(ρ,η)τ ∗

E
,
∗
E),+, ·

)
.

Proposition 25. The short sequence of vector bundles

0
� � ��

��

V (ρ,η)T
∗
E

� � ��

��

(ρ,η)T
∗
E

(ρ,η)
∗
π! ��

��

∗
π
∗
(h∗F ) ��

��

0

��
∗
E

Id ∗
E �� ∗

E

Id ∗
E �� ∗

E

Id ∗
E �� ∗

E

Id ∗
E �� ∗

E

is exact.
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Definition 26. A Man-morphism (ρ,η)Γ of (ρ,η)T
∗
E source and V (ρ,η)T

∗
E target defined by:

(ρ,η)Γ
(
Zγ

∗
∂̃γ +Ya

·
∂̃
a)(∗

ux
)
=
(
Yb− (ρ,η)ΓbγZ

γ
) ·
∂̃
b(∗
ux

)
,

such that the Bv-morphism ((ρ,η)Γ, Id ∗
E
) is a split to the left in the previous exact sequence, will be called (ρ,η)-

connection for the dual vector bundle (
∗
E,

∗
π,M).

The differentiable real local functions (ρ,η)Γbγ will be called the components of (ρ,η)-connection (ρ,η)Γ.

The (ρ, IdM )-connection for the dual vector bundle (
∗
E,

∗
π,M) will be called ρ-connection for the dual vector

bundle (
∗
E,

∗
π,M) and will be denoted ρΓ.

The (IdTM , IdM )-connection for the dual vector bundle (
∗
E,

∗
π,M) will be called connection for the dual vector

bundle (
∗
E,

∗
π,M) and will be denoted Γ.

Let {sa, a ∈ 1, r} be the dual base of the base {sa, a ∈ 1, r}.

The Bv-morphism (
∗
Π,

∗
π) defined by the commutative diagram

V (ρ,η)T
∗
E

∗
Π ��

(ρ,η)τ ∗
E

��

∗
E

∗
π

��∗
E

∗
π �� M,

where,
∗
Π is defined by

∗
Π
(
Ya

·
∂̃
a(∗

ux
))

= Ya
(∗
ux

)
sa(x),

is canonical projection Bv-morphism.

Theorem 27. If (ρ,η)Γ is a (ρ,η)-connection for the vector bundle (
∗
E,

∗
π,M), then its components satisfy the law

of transformation

(ρ,η)Γb′γ′ =Mb
b′ ◦

∗
π

[
−ρkγ ◦h◦ ∗

π · ∂M
a′
b ◦∗

π

∂xk
pa′ +(ρ,η)Γbγ

]
Λ
γ
γ′ ◦ (h◦ ∗

π). (4.5)

In the particular case of Lie algebroids, (η,h) = (IdM , IdM ), the relations (4.5) become:

ρΓb′γ′ =Mb
b′ ◦

∗
π

[
−ρkγ ◦ ∗

π · ∂M
a′
b ◦∗

π

∂xk
pa′ +ρΓbγ

]
Λ
γ
γ′ ◦ ∗

π. (4.5′)

In the classical case, (ρ,η,h) = (IdTM , IdM , IdM ), the relations (4.5′) become:

Γj′k′ =
∂xj

∂xj
′ ◦ ∗

τM

[
− ∂

∂xk

(
∂xi

′

∂xj
◦ ∗
τM

)
pi′ +Γjk

]
∂xk

∂xk
′ ◦ ∗

τM . (4.5′′)

Proof. Let (
∗
Π,

∗
π) be the canonical projection Bv-morphism.

Obviously, the components of

∗
Π◦ (ρ,η)Γ

(
Zγ

∗
∂̃γ +Ya

·
∂̃
a)(∗

ux
)

are the real numbers
(
Yb′ − (ρ,η)Γb′γ′Zγ′)(∗

ux
)
.

Since

(
Zγ′ ∗

∂̃γ′ +Yb′
·
∂̃
b′)(∗

ux
)
= Zγ′

Λ
γ
γ′ ◦h◦ ∗

π ·
∗
∂̃α

(∗
ux

)
+

(
Zγ′

ρi
′
γ′ ◦h◦ ∗

π
∂Ma′

b ◦π
∂xi

′ pa′ +Mb′
b Yb′

) ·
∂̃
b(∗
ux

)
,
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it results that the components of:

∗
Π◦ (ρ,η)Γ

(
Zγ′ ∗

∂̃γ′ +Yb′
·
∂̃
b′)(∗

ux
)

are the real numbers:

(
Zγ′

ρk
′

γ′ ◦h◦ ∗
π
∂Ma′

b ◦∗
π

∂xk
′ pa′ +Mb′

b ◦ ∗
πYb′ − (ρ,η)ΓbγZ

γ′
Λ
γ
γ′ ◦h◦ ∗

π

)
Mb

b′ ◦
∗
π
(∗
ux

)
,

where ‖Mb
b′ ‖= ‖Mb′

b ‖−1.
Therefore, we have:

(
Zγ′

ρk
′

γ′ ◦h◦ ∗
π
∂Ma′

b ◦∗
π

∂xk
′ pa′ +Mb′

b ◦ ∗
πYb′ − (ρ,η)ΓbγZ

γ′
Λ
γ
γ′ ◦h◦ ∗

π

)
Mb

b′ ◦
∗
π = Yb′ − (ρ,η)Γb′γ′Zγ′

.

After some calculations we obtain:

(ρ,η)Γb′γ′ =Mb
b′ ◦

∗
π

(
−ρkγ ◦h◦ ∗

π · ∂M
a′
b ◦∗

π

∂xk
pa′ +(ρ,η)Γbγ

)
Λ
γ
γ′ ◦h◦ ∗

π.

Remark 28. If we have a set of real local functions (ρ,η)Γbγ that satisfies the relations of passing (4.5), then we

have a (ρ,η)-connection (ρ,η)Γ for the dual vector bundle (
∗
E,

∗
π,M).

Example 29. If Γ is an Ehresmann connection for the vector bundle (
∗
E,

∗
π,M) on components Γbk, then the

differentiable real local functions

(ρ,η)Γbγ = (ρkγ ◦h◦ ∗
π)Γbk

are the components of a (ρ,η)-connection (ρ,η)Γ for the vector bundle (
∗
E,

∗
π,M), which will be called the (ρ,η)-

connection associated to the connection Γ.

Definition 30. If (ρ,η)Γ is a (ρ,η)-connection for the vector bundle (
∗
E,

∗
π,M), then for any

z = zγtγ ∈ Γ(F,ν,N)

the application

Γ(
∗
E,

∗
π,M)

(ρ,η)Dz �� Γ(
∗
E,

∗
π,M)

∗
u= uas

a � �� (ρ,η)Dz
∗
u

defined by

(ρ,η)Dz
∗
u= zγ ◦h(ρkγ ◦h

∂ub

∂xk
− (ρ,η)Γbγ ◦ ∗

u)sb, (4.6)

will be called the covariant (ρ,η)-derivative associated to (ρ,η)-connection (ρ,η)Γ with respect to section z.

Remark 31. In the particular case of Lie algebroids, (η,h) = (IdM , IdM ), the relations (4.6) become:

ρDz
∗
u= zγ

(
ρkγ

∂ub

∂xk
−ρΓbγ ◦ ∗

u

)
sb. (4.6′)

In the classical case, (ρ,η,h) = (IdTM , IdM , IdM ), the relations (4.6′) become:

DXω =Xk

(
∂ωj

∂xk
−Γjk ◦ω

)
dxj . (4.6′′)
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Definition 32. Let (ρ,η)Γ be a linear (ρ,η)-connection for the vector bundle (
∗
E,

∗
π,M). If for each local vector

(m+ r)-chart (U,
∗
sU ) and for each local vector (n+ p)-chart (V,tV ) such that U ∩ h−1(V ) �= φ, there exists the

differentiable real functions ρΓa
bγ defined on U ∩h−1(V ) such that

(ρ,η)Γbγ ◦ ∗
u= (ρ,η)Γa

bγ ·ua, ∀∗
u= uas

a ∈ Γ(
∗
E,

∗
π,M)

then we say that (ρ,η)Γ is linear.
The differentiable real local functions (ρ,η)Γa

bγ will be called the Christoffel coefficients of linear (ρ,η)-
connection (ρ,η)Γ.

Theorem 33. If (ρ,η)Γ is a linear (ρ,η)-connection for the vector bundle (
∗
E,

∗
π,M), then its components satisfy the

law of transformation

(ρ,η)Γa′
b′γ′ =Mb

b′

[
−ρkγ ◦h

∂Ma′
b

∂xk
+(ρ,η)Γa

bγM
a′
a

]
Λ
γ
γ′ ◦h. (4.7)

In the particular case of Lie algebroids, (η,h) = (IdM , IdM ), the relations (4.7) become:

ρΓa′
b′γ′ =Mb

b′

[
−ρkγ

∂Ma′
b

∂xk
+ρΓa

bγM
a′
a

]
Λ
γ
γ′ . (4.7′)

In the classical case, (ρ,η,h) = (IdTM , IdM , IdM ), the relations (4.7′) become:

Γi′
j′k′ =

∂xj

∂xj
′

[
− ∂

∂xk

(
∂xi

′

∂xj

)
+Γi

jk

∂xi
′

∂xi

]
∂xk

∂xk
′ . (4.7′′)

Remark 34. Since

∂Ma′
b

∂xi
Mb

b′ +
∂Mb

b′
∂xi

Ma′
b = 0,

it results that the relations (4.7) are equivalent with the relations (4.3′).

Theorem 35. If (ρ,η)Γ is a linear (ρ,η)-connection for the dual vector bundle (
∗
E,

∗
π,M), then, for any z = zγtγ ∈

Γ(F,ν,M), we obtain the covariant (ρ,η)-derivative associated to the linear (ρ,η)-connection (ρ,η)Γ with respect
to the section z

Γ(
∗
E,

∗
π,M)

(ρ,η)Dz �� Γ(
∗
E,

∗
π,M)

∗
u= uas

a � �� (ρ,η)Dz
∗
u

defined by

(ρ,η)Dz
∗
u= zγ ◦h

(
ρkγ ◦h

∂ub

∂xk
− (ρ,η)Γa

bγ ·ua
)
sb. (4.8)

In the particular case of Lie algebroids, (η,h) = (IdM , IdM ), the relations (4.8) become:

ρDz
∗
u= zγ

(
ρkγ

∂ub

∂xk
−ρΓa

bγ ·ua
)
sb. (4.8′)

In the classical case, (ρ,η,h) = (IdTM , IdM , IdM ), the relations (4.8′) become:

DXω =Xk

(
∂ωj

∂xk
−Γi

jk ·ωi

)
dxj . (4.8′′)

In the next section, we use the same notation (ρ,η)Γ for the linear (ρ,η)-connection for the vector bundle

(E,π,M) or for its dual (
∗
E,

∗
π,M).
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Remark 36. If (ρ,η)Γ is a linear (ρ,η)-connection for the vector bundle (E,π,M) or for its dual (
∗
E,

∗
π,M) then, the

tensor fields algebra:

(T (E,π,M),+, ·,⊗)

is endowed with the (ρ,η)-derivative:

Γ(F,ν,N)×T (E,π,M)
(ρ,η)D �� T (E,π,M)

(z,T )
� �� (ρ,η)DzT

defined for a tensor field T ∈ T p
q (E,π,M) by the relation:

(ρ,η)DzT (
∗
u1, . . . ,

∗
up,u1, . . . ,uq)

= Γ(ρ,η)(z)(T (
∗
u1, . . . ,

∗
up,u1, . . . ,uq))−T ((ρ,η)Dz

∗
u1, . . . ,

∗
up,u1, . . . ,uq)−·· ·

−T (
∗
u1, . . . ,(ρ,η)Dz

∗
up,u1, . . . ,uq)−T (

∗
u1, . . . ,

∗
up,(ρ,η)Dzu1, . . . ,uq)−·· ·

−T (
∗
u1, . . . ,

∗
up,u1, . . . ,(ρ,η)Dzuq).

(4.9)

Moreover, it satisfies the condition

(ρ,η)Df1z1+f2z2T = f1(ρ,η)Dz1T +f2(ρ,η)Dz2T. (4.10)

Consequently, if the tensor algebra (T (E,π,M),+, ·,⊗) is endowed with a (ρ,η)-derivative defined for a tensor
field T ∈ T p

q (E,π,M) by (4.9), which satisfies the condition (4.10), then we can endowed (E,π,M) with a linear
(ρ,η)-connection (ρ,η)Γ such that its components are defined by the equality:

(ρ,η)Dtγ sb = (ρ,η)Γa
bγsa

or

(ρ,η)Dtγ s
a =−(ρ,η)Γa

bγs
b.

The (ρ,η)-derivative defined by (4.9) will be called the covariant (ρ,η)-derivative.
After some calculations, we obtain:

(ρ,η)Dz

(
T
a1,...,ap
b1,...,bq

sa1 ⊗·· ·⊗ sap ⊗ sb1 ⊗·· ·⊗ sbq
)

= zγ ◦h
(

ρkγ ◦h
∂T

a1,...,ap
b1,...,bq

∂xk
+(ρ,η)Γa1

aγT
a,a2,...,ap
b1,...,bq

+(ρ,η)Γa2
aγT

a1,a,...,ap
b1,...,bq

+ · · ·

+(ρ,η)Γ
ap
aγT

a1,a2,...,a
b1,...,bq

−·· ·− (ρ,η)Γb
b1γ

T
a1,a2,...,ap
b,b2,...,bq

− (ρ,η)Γb
b2γ

T
a1,a2,...,ap
b1,b,...,bq

−·· ·

− (ρ,η)Γb
bqγ

T
a1,a2,...,ap
b1,b2,...,b

)

sa1 ⊗·· ·⊗ sap ⊗ sb1 ⊗·· ·⊗ sbq

put
= zγ ◦hTa1,...,ap

b1,...,bq |γsa1 ⊗·· ·⊗ sap ⊗ sb1 ⊗·· ·⊗ sbq .

(4.11)

We remark that if (ρ,η)Γ is the linear (ρ,η)-connection associated to the Ehresmann linear connection Γ, namely
(ρ,η)Γa

bα = (ρkα ◦h)Γa
bk, then

T
a1,...,ap
b1,...,bq |γ = (ρkγ ◦h)Ta1,...,ap

b1,...,bq |k.

In the particular case of Lie algebroids, (η,h) = (IdM , IdM ), the relations (4.11) become:

ρDz

(
T
a1,...,ap
b1,...,bq

sa1 ⊗·· ·⊗ sap ⊗ sb1 ⊗·· ·⊗ sbq
)

= zγ

(

ρkγ

∂T
a1,...,ap
b1,...,bq

∂xk
+ρΓa1

aγT
a,a2,...,ap
b1,...,bq

+ρΓa2
aγT

a1,a,...,ap
b1,...,bq

+ · · ·+ρΓ
ap
aγT

a1,a2,...,a
b1,...,bq

−·· ·

−ρΓb
b1γ

T
a1,a2,...,ap
b,b2,...,bq

−ρΓb
b2γ

T
a1,a2,...,ap
b1,b,...,bq

−·· ·−ρΓb
bqγ

T
a1,a2,...,ap
b1,b2,...,b

)

sa1 ⊗·· ·⊗ sap ⊗ sb1 ⊗·· ·⊗ sbq

put
= zγT

a1,...,ap
b1,...,bq |γsa1 ⊗·· ·⊗ sap ⊗ sb1 ⊗·· ·⊗ sbq .

(4.11′)
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In the classical case, (ρ,η,h) = (IdTM , IdM , IdM ), the relations (4.11′) become:

DX

(
T
i1...ip
j1...jq

∂i1 ⊗·· ·⊗∂ip ⊗dxj1 ⊗·· ·⊗dxjq
)

=Xk

(
∂T

i1...ip
j1...jq

∂xk
+Γ

i1
ikT

ii2...ip
j1...jq

+ · · ·+Γ
ip
ikT

i1...ip−1i
j1...jq

−Γ
j
j1k

T
i1...ip
jj2...jq

−·· ·−Γ
j
jqk

T
i1...ip
j1...jq−1j

)

∂i1 ⊗·· ·⊗∂ip ⊗dxj1 ⊗·· ·⊗dxjq

put
= XkT

i1...ip
j1...jq |k∂i1 ⊗·· ·⊗∂ip ⊗dxj1 ⊗·· ·⊗dxjq .

(4.11′′)

5 Torsion and curvature. Formulas of Ricci and Bianchi type

We apply our theory for the diagram:

E

π

��

(
F, [ , ]F,h,(ρ, IdN )

)

ν

��
M

h �� N,

where (E,π,M) ∈ |Bv| and ((F,ν,N), [ , ]F,h,(ρ, IdN )) ∈ |GLA|.
Let ρΓ be a linear ρ-connection for the vector bundle (E,π,M) by components ρΓa

bα.
Using the components of linear ρ-connection ρΓ, then we obtain a linear ρ-connection ρΓ̇ for the vector bundle

(E,π,M) given by the diagram:

E

π

��

(
h∗F, [ , ]h∗F ,

(h∗F
ρ , IdM

))

h∗ν
��

M
IdM �� M

If (E,π,M) = (F,ν,N), then, using the components of linear ρ-connection ρΓ, we can consider a linear ρ-
connection ρΓ̈ for the vector bundle (h∗E,h∗π,M) given by the diagram:

h∗E

h∗π
��

(h∗E, [ , ]h∗E ,(
h∗E
ρ , IdM ))

h∗π
��

M
IdM �� M

Definition 37. If (E,π,M) = (F,ν,N), then the application

Γ(h∗E,h∗π,M)2 (ρ,h)T �� Γ(h∗E,h∗π,M)

(U,V ) �� ρT(U,V )

defined by:

(ρ,h)T(U,V ) = ρD̈UV −ρD̈V U − [U,V ]h∗E ,

for any U,V ∈ Γ(h∗E,h∗π,M), will be called (ρ,h)-torsion associated to the linear ρ-connection ρΓ̈.
In the particular case of Lie algebroids, h= IdM , we obtain the application:

Γ(E,π,M)2 ρT �� Γ(E,π,M)

(u,v) �� ρT(u,v)

defined by:

ρT(u,v) = ρDuv−ρDvu− [u,v]E ,

for any u,v ∈ Γ(E,π,M), which will be called the ρ-torsion associated to the linear ρ-connection ρΓ.
In the classical case, (ρ,h) = (IdTM , IdM ), we obtain the torsion T associated to the linear connection Γ.
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Proposition 38. The (ρ,h)-torsion (ρ,h)T associated to the linear ρ-connection ρΓ̈ is R-bilinear and antisymmetric.
If

(ρ,h)T(Sa,Sb)
put
= (ρ,h)Tc

abSc

then

(ρ,h)Tc
ab = ρΓc

ab−ρΓc
ba−Lc

ab ◦h. (5.1)

In the particular case of Lie algebroids, h= IdM , we have ρT(sa, sb)
put
= ρTc

absc and

ρTc
ab = ρΓc

ab−ρΓc
ba−Lc

ab. (5.1′)

In the classical case, (ρ,h) = (IdTM , IdM ), the equality (5.1′) becomes:

T
i
jk = Γi

jk−Γi
kj . (5.1′′)

Definition 39. The application

Γ(h∗F,h∗ν,M)2 ×Γ(E,π,M)
(ρ,h)R �� Γ(E,π,M)

((Z,V ),u) �� (ρ,h)R(Z,V )u

defined by

(ρ,h)R(Z,V )u= ρḊZ(ρḊV u)−ρḊV (ρḊZu)−ρḊ[Z,V ]h∗F u,

for any Z,V ∈ Γ(h∗F,h∗ν,M) and u ∈ Γ(E,π,M), will be called (ρ,h)-curvature associated to the linear ρ-
connection ρΓ̇.

In the particular case of Lie algebroids, h= IdM , we obtain the application:

Γ(F,ν,M)2 ×Γ(E,π,M)
ρR �� Γ(E,π,M)

((z,v),u) �� ρR(z,v)u

defined by

ρR(z,v)u= ρḊz(ρḊvu)−ρḊv(ρḊzu)−ρḊ[z,v]F
u,

for any z,v ∈ Γ(F,ν,M) and u∈ Γ(E,π,M), which will be called ρ-curvature associated to the linear ρ-connection
ρΓ.

In the classical case, (ρ,h) = (IdTM , IdM ), we obtain the curvature R associated to the linear connection Γ.

Proposition 40. The (ρ,h)-curvature (ρ,h)R associated to the linear ρ-connection ρΓ̇, is R-linear in each argument
and antisymmetric in the first two arguments.

If

(ρ,h)R(Tβ ,Tα)sb
put
= (ρ,h)Ra

bαβsa,

then

(ρ,h)Ra
bαβ = ρ

j
β ◦h

∂ρΓa
bα

∂xj
+ρΓa

eβρΓ
e
bα−ρiα ◦h∂ρΓ

a
bβ

∂xi
−ρΓa

eαρΓ
e
bβ +ρΓa

bγL
γ
αβ ◦h. (5.2)

In the particular case of Lie algebroids, h= IdM , we obtain ρR(tβ , tα)sb
put
= ρRa

bαβsa, and

ρRa
b αβ = ρ

j
β

∂ρΓa
bα

∂xj
+ρΓa

eβρΓ
e
bα−ρiα

∂ρΓa
bβ

∂xi
−ρΓa

eαρΓ
e
bβ +ρΓa

bγL
γ
αβ . (5.2′)

In the classical case, (ρ,h) = (IdTM , IdM ), we obtain R(∂k,∂h)sb
put
= R

a
bhksa, and the equality (5.2′) becomes:

R
a
b hk =

∂Γa
bh

∂xk
+Γa

ekΓ
e
bh−

∂Γa
bk

∂xh
−Γa

ehΓ
e
bk. (5.2′′)
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Theorem 41. For any uasa ∈ Γ(E,π,M), we will use the notation

ua|αβ = ρ
j
β ◦h

∂

∂xj
(ua1

|α)+ρΓ
a1
bβ
ub|α,

and we verify the equality:

u
a1
|αβ −u

a1
|βα = ua(ρ,h)Ra1

aαβ −u
a1
|γ L

γ
αβ ◦h.

After some calculations, we obtain:

(ρ,h)Ra1
aαβ = ua

(
u
a1
|αβ −u

a1
|βα+u

a1
|γ L

γ
αβ ◦h

)
, (5.3)

where uas
a ∈ Γ(

∗
E,

∗
π,M) such that uaub = δba.

In the particular case of Lie algebroids, h= IdM , the relations (5.3) become:

ρR
a1
aαβ = ua

(
u
a1
|αβ −u

a1
|βα+u

a1
|γ L

γ
αβ

)
. (5.3′)

In the classical case, (ρ,h) = (IdTM , IdM ), the relations (5.3′) become:

R
a1
aij = ua

(
u
a1
|ij −u

a1
|ji
)
. (5.3′′)

Proof. Since

u
a1
|αβ = ρ

j
β ◦h

(
∂

∂xj

(
ρiα ◦h∂u

a1

∂xi
+ρΓa1

aαu
a

))
+ρΓ

a1
bβ

(
ρiα ◦h∂u

b

∂xi
+ρΓb

aαu
a

)

= ρ
j
β ◦h

∂ρiα ◦h
∂xj

∂ua1

∂xi
+ρ

j
β ◦hρiα ◦h ∂

∂xj

(
∂ua1

∂xi

)
+ρ

j
β ◦h

∂ρΓ
a1
aα

∂xj
ua+ρ

j
β ◦hρΓa1

aα

∂ua

∂xj

+ρiα ◦hρΓa1
bβ

∂ub

∂xi
+ρΓ

a1
bβρΓ

b
aαu

a

and

u
a1
|βα = ρiα ◦h

(
∂

∂xi

(
ρ
j
β ◦h

∂ua1

∂xj
+ρΓ

a1
aβu

a

))
+ρΓ

a1
bα

(
ρ
j
β ◦h

∂ub

∂xj
+ρΓb

aβu
a

)

= ρiα ◦h∂ρ
j
β ◦h
∂xi

∂ua1

∂xj
+ρ

j
β ◦hρiα ◦h ∂

∂xi

(
∂ua1

∂xj

)
+ρiα ◦h∂ρΓ

a1
aβ

∂xi
ua+ρiα ◦hρΓa1

aβ

∂ua

∂xi

+ρ
j
β ◦hρΓa1

bα

∂ub

∂xj
+ρΓ

a1
bαρΓ

b
aβu

a,

it results that

u
a1
|αβ −u

a1
|βα = ρ

j
β ◦h

∂ρiα ◦h
∂xj

∂ua1

∂xi
−ρiα ◦h∂ρ

j
β ◦h
∂xi

∂ua1

∂xj

+

(
ρ
j
β ◦hρiα ◦h ∂2ua1

∂xi∂xj
−ρ

j
β ◦hρiα ◦h ∂2ua1

∂xj∂xi

)

+

(
ρ
j
β ◦h

∂ρΓ
a1
aα

∂xj
ua−ρiα ◦h∂ρΓ

a1
aβ

∂xi
ua

)

+

(
ρ
j
β ◦hρΓa1

aα

∂ua

∂xj
−ρ

j
β ◦hρΓa1

bα

∂ub

∂xj

)

+

(
ρiα ◦hρΓa1

bβ

∂ub

∂xi
−ρiα ◦hρΓa1

aβ

∂ua

∂xi

)

+ρΓ
a1
bβρΓ

b
aαu

a−ρΓ
a1
bαρΓ

b
aβu

a.

After some calculations, we obtain:

u
a1
|αβ −u

a1
|βα = L

γ
βα ◦hρkγ ◦h

∂ua1

∂xk
+

(
ρ
j
β ◦h

∂ρΓ
a1
aα

∂xj
ua−ρiα ◦h∂ρΓ

a1
aβ

∂xi
ua

)
+ρΓ

a1
bβρΓ

b
aαu

a−ρΓ
a1
bαρΓ

b
aβu

a.
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Since

ua(ρ,h)Ra1
aαβ = ua

(
ρ
j
β ◦h

∂ρΓ
a1
aα

∂xj
+ρΓ

a1
eβρΓ

e
aα−ρiα ◦h∂ρΓ

a1
aβ

∂xi
−ρΓa1

eαρΓ
e
aβ −ρΓa1

aγL
γ
βα ◦h

)
.

and

u
a1
|γ L

γ
αβ ◦h=

(
ρkγ ◦h

∂ua1

∂xk
+ρΓa1

aγu
a

)
L
γ
αβ ◦h

it results that

ua(ρ,h)Ra1
aαβ −u

a1
|γ L

γ
αβ ◦h

=−L
γ
αβ ◦hρkγ ◦h

∂ua1

∂xk
+

(
ρ
j
β ◦h

∂ρΓ
a1
aα

∂xj
ua−ρiα ◦h∂ρΓ

a1
aβ

∂xi
ua

)
+ρΓ

a1
bβρΓ

b
aαu

a−ρΓ
a1
bαρΓ

b
aβu

a.

Lemma 42. If (E,π,M) = (F,ν,N), then, for any uasa ∈ Γ(E,π,M), we have that ua|c, a,c ∈ 1,n are the compo-

nents of a tensor field of (1,1) type.

Proof. Let U and U ′ be two vector local (m+n) charts such that U ∩U ′ �= φ.
Since ua

′
(x) =Ma′

a (x)ua(x), for any x ∈ U ∩U ′, it results that

ρk
′

c′ ◦h(x)
∂ua

′
(x)

∂xk
′ = ρk

′
c′ ◦h(x)

∂

∂xk
′ (M

a′
a (x))ua(x)+Ma′

a (x)ρk
′

c′ ◦h(x)
∂ua(x)

∂xk
′ . (5.4)

Since, for any x ∈ U ∩U ′, we have

ρΓa′
b′c′(x) =Ma′

a (x)(ρkc ◦h(x)
∂

∂xk
(Ma

b′(x))+ρΓa
bc(x)M

b
b′(x))M

c
c′(x),

and

0 =
∂

∂xk
′ (M

a′
a (x)Ma

b′(x)) =
∂

∂xk
′ (M

a′
a (x))Ma

b′(x)+Ma′
a (x)

∂

∂xk
′ (M

a
b′(x))

it results that

ρΓa′
b′c′(x)u

b′(x) =−ρk
′

c′ ◦h(x)
∂

∂xk
′ (M

a′
a (x))ua(x)+Ma′

a (x)ρΓa
bc(x)u

b(x)Mc
c′(x). (5.5)

Summing the equalities (5.4) and (5.5), it results the conclusion of lemma.

Theorem 43. If (E,π,M) = (F,ν,N), then, for any

uasa ∈ Γ(E,π,M),

we will use the notation

u
a1
|a|b = u

a1
|ab−ρΓd

abu
a1
|d

and we verify the formulas of Ricci type

u
a1
|a|b−u

a1
|b|a+(ρ,h)Td

abu
a1
|d = ud(ρ,h)Ra1

dab−u
a1
|cL

c
ab ◦h. (5.6)

In the particular case of Lie algebroids, h= IdM , the relations (5.6) become:

u
a1
|a|b−u

a1
|b|a+ρTd

abu
a1
|d = udρR

a1
dab−u

a1
|c L

c
ab (5.6′)

In the classical case, (ρ,h) = (IdTM , IdM ), the relations (5.6′) become:

u
i1
|i|j −u

i1
|i|j +T

k
iju

i1
|k = ukR

i1
kij (5.6′′)
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Theorem 44. For any uas
a ∈ Γ(

∗
E,

∗
π,M) we will use the notation:

ub1|αβ = ρ
j
β ◦h

∂

∂xj
(ub1|α)−ρΓb

b1β
ub|α

and we verify the equality:

ub1|αβ −ub1|βα =−ub(ρ,h)R
b
b1αβ

−ub1|γL
γ
αβ ◦h.

After some calculations, we obtain:

(ρ,h)Rb
b1αβ

= ub(−ub1|αβ +ub1|βα−ub1|γL
γ
αβ ◦h), (5.7)

where uasa ∈ Γ(E,π,M) such that uaub = δba.
In the particular case of Lie algebroids, h= IdM , the relations (5.7) become:

ρRb
b1αβ

= ub(−ub1|αβ +ub1|βα−ub1|γL
γ
αβ). (5.7′)

In the classical case, (ρ,h) = (IdTM , IdM ), the relations (5.7′) become:

R
b
b1 ij

= ub(−ub1|ij +ub1|ji). (5.7′′)

Proof. Since

ub1|αβ = ρ
j
β ◦h

(
∂

∂xj

(
ρiα ◦h∂ub1

∂xi
−ρΓb

b1α
ub

))
−ρΓb

b1β

(
ρiα ◦h∂ub

∂xi
−ρΓa

bαua

)

= ρ
j
β ◦h

∂ρiα ◦h
∂xj

∂ub1

∂xi
+ρ

j
β ◦hρiα ◦h ∂

∂xj

(
∂ub1

∂xi

)
−ρ

j
β ◦h

∂ρΓb
b1α

∂xj
ub−ρ

j
β ◦hρΓb

b1α

∂ub

∂xj

−ρiα ◦hρΓb
b1β

∂ub

∂xi
+ρΓb

b1β
ρΓa

bαua

and

ub1|βα = ρiα ◦h
(

∂

∂xi

(
ρ
j
β ◦h

∂ub1

∂xj
−ρΓb

b1β
ub

))
−ρΓb

b1α

(
ρ
j
β ◦h

∂ub

∂xj
−ρΓa

bβua

)

= ρiα ◦h∂ρ
j
β ◦h
∂xi

∂ub1

∂xi
+ρ

j
β ◦hρiα ◦h ∂

∂xi

(
∂ub1

∂xj

)
−ρiα ◦h∂ρΓ

b
b1β

∂xi
ub−ρiα ◦hρΓb

b1β

∂ub

∂xi

−ρ
j
β ◦hρΓb

b1α

∂ub

∂xi
+ρΓb

b1α
ρΓa

bβua

it results that

ub1|αβ −ub1|βα = ρ
j
β ◦h

∂ρiα ◦h
∂xj

∂ub1

∂xi
−ρiα ◦h∂ρ

j
β ◦h
∂xi

∂ub1

∂xj
+ρ

j
β ◦hρiα ◦h ∂

∂xj

(
∂ub1

∂xi

)

−ρ
j
β ◦hρiα ◦h ∂

∂xi

(
∂ub1

∂xj

)
+ρiα ◦h∂ρΓ

b
b1β

∂xi
ub−ρ

j
β ◦h

∂ρΓb
b1α

∂xj
ub+ρ

j
β ◦hρΓb

b1α

∂ub

∂xj

−ρ
j
β ◦hρΓb

b1α

∂ub

∂xj
+ρiα ◦hρΓb

b1α

∂ub

∂xi
−ρiα ◦hρΓb

b1α

∂ub

∂xi
+ρΓb

b1β
ρΓa

bαua−ρΓb
b1α

ρΓa
bβua.

After some calculations, we obtain:

ub1|αβ −ub1|βα = L
γ
βα ◦hρkγ ◦h

∂ub1

∂xk
+

(
ρiα ◦h∂ρΓ

b
b1β

∂xi
ub−ρ

j
β ◦h

∂ρΓb
b1α

∂xj
ub

)
+ρΓb

b1β
ρΓa

bαua−ρΓb
b1α

ρΓa
bβua.

Since

ub(ρ,h)R
b
b1αβ

= ub

(
ρ
j
β ◦h

∂ρΓb
b1α

∂xj
+ρΓb

eβρΓ
e
b1α

−ρiα ◦h∂ρΓ
b
b1β

∂xi
−ρΓb

eαρΓ
e
b1β

−ρΓb
b1γ

L
γ
βα ◦h

)
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and

ub1|γL
γ
αβ ◦h=

(
ρkγ ◦h

∂ub1

∂xk
−ρΓb

b1γ
ub

)
L
γ
αβ ◦h

it results that

−ub(ρ,h)R
b
b1,αβ

−ub1|γL
γ
αβ ◦h=−L

γ
αβ ◦hρkγ ◦h

∂ub1

∂xk
+

(
ρiα ◦h∂ρΓ

b
b1β

∂xi
ub−ρ

j
β ◦h

∂ρΓb
b1α

∂xj
ub

)

+ρΓb
b1β

ρΓa
bαua−ρΓb

b1α
ρΓa

bβua.

Lemma 45. If (E,π,M) = (F,ν,N), then, for any

ubs
b ∈ Γ(

∗
E,

∗
π,M),

we have that ub|c, b,c ∈ 1,n are the components of a tensor field of (0,2) type.

Proof. Let U and U ′ be two vector local (m+n) charts such that U ∩U ′ �= φ.
Since ub′(x) =Mb

b′(x)ub(x), for any x ∈ U ∩U ′, it results that

ρk
′

c′ ◦h(x)
∂ub′(x)

∂xk
′ = ρk

′
c′ ◦h(x)

∂

∂xk
′ (M

b
b′(x))ub(x)+Mb

b′(x)ρ
k′
c′ ◦h(x)

∂ub(x)

∂xk
′ . (5.8)

Since, for any x ∈ U ∩U ′, we have

ρΓa′
b′c′(x) =Ma′

a (x)

(
ρkc ◦h(x)

∂

∂xk
(Ma

b′(x))+ρΓa
bc(x)M

b
b′(x)

)
Mc

c′(x),

and

0 =
∂

∂xk
′ (M

a′
a (x)Ma

b′(x)) =
∂

∂xk
′ (M

a′
a (x))Ma

b′(x)+Ma′
a (x)

∂

∂xk
′ (M

a
b′(x))

it results that

ρΓa′
b′c′(x)ua′(x) =−ρk

′
c′ ◦h(x)

∂

∂xk
′ (M

b
b′(x))ub(x)+Mb

b′(x)ρΓ
a
bc(x)ua(x)M

c
c′(x). (5.9)

Summing the equalities (5.8) and (5.9), it results the conclusion of lemma.

Theorem 46. If (E,π,M) = (F,ν,N), then, for any

ubs
b ∈ Γ(

∗
E,

∗
π,M),

we will use the notation

ub1|a|b = ub1|ab−ρΓd
abub1|d

and we verify the formulas of Ricci type

ub1|a|b−ub1|b|a+(ρ,h)Td
abub1|d =−ud(ρ,h)R

d
b1 ab

−ub1 |dL
d
ab ◦h. (5.10)

In the particular case of Lie algebroids, h= IdM , the relations (5.10) become:

ub1 |a|b−ub1 |b|a+ρTd
abub1|d =−udρR

d
b1 ab

−ub1|dL
d
ab. (5.10′)

In the classical case, (ρ,h) = (IdTM , IdM ), the relations (5.10′) become:

uj1|i|j −uj1|j|i+T
h
ijuj1|h = uhR

h
j1 ij

. (5.10′′)
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Theorem 47. For any tensor field:

T
a1...ap
b1...bq

sa1 ⊗·· ·⊗ sap ⊗ sb1 ⊗·· ·⊗ sbq ,

we verify the equality:

T
a1...ap
b1...bq |αβ −T

a1...ap
b1...bq |βα = T

aa2...ap
b1...bq

(ρ,h)Ra1
aαβ + · · ·+T

a1...ap−1a

b1...bq
(ρ,h)R

ap
aαβ −T

a1...ap
bb2...bq

(ρ,h)Rb
b1αβ

−·· ·
−T

a1...ap
b1...bq−1b

(ρ,h)Rb
bqαβ

−T
a1...ap
b1...bq |γL

γ
αβ ◦h.

(5.11)

In the particular case of Lie algebroids, h= IdM , the relations (5.11) become:

T
a1...ap
b1...bq |αβ −T

a1...ap
b1...bq |βα = T

aa2...ap
b1...bq

ρR
a1
aαβ + · · ·+T

a1...ap−1a

b1...bq
ρR

ap
aαβ −T

a1...ap
bb2...bq

ρRb
b1 αβ

−·· ·
−T

a1...ap
b1...bq−1b

ρRb
bqαβ

−T
a1...ap
b1...bq |γL

γ
αβ .

(5.11′)

In the classical case, (ρ,h) = (IdTM , IdM ), the relations (5.11′) become:

T
i1...ip
j1...jq |hk−T

i1...ip
j1...jq |kh = T

ii2...ip
j1...jq

R
i1
ihk+ · · ·+T

i1...ip−1i
j1...jq

R
ip
ihk−T

i1...ip
jj2...jq

R
j
j1 hk

−·· ·−T
i1...ip
j1...jq−1j

R
j
jq hk

. (5.11′′)

Theorem 48. If (E,π,M) = (F,ν,N), then we obtain the following formulas of Ricci type:

T
a1...ap
b1...bq |b|c−T

a1...ap
b1...bq |c|b+(ρ,h)Td

bcT
a1...ap
b1...bq |d

= T
aa2...ap
b1...bq

(ρ,h)Ra1
abc+ · · ·+T

a1...ap−1a

b1...bq
(ρ,h)R

ap
abc−T

a1...ap
bb2...bq

(ρ,h)Rb
b1 bc

−·· ·
−T

a1...ap
b1...bq−1b

(ρ,h)Rb
bq bc

−T
a1...ap
b1...bq |dL

d
bc ◦h.

(5.12)

In the particular case of Lie algebroids, h= IdM , the relations (5.12) become:

T
a1...ap
b1...bq |b|c−T

a1...ap
b1...bq |c|b+ρTd

bcT
a1...ap
b1...bq |d

= T
aa2...ap
b1...bq

ρR
a1
abc+ · · ·+T

a1...ap−1a

b1...bq
ρR

ap
abc−T

a1...ap
bb2...bq

ρRb
b1 bc

−·· ·
−T

a1...ap
b1...bq−1b

ρRb
bq bc

−T
a1...ap
b1...bq |dL

d
bc.

(5.12′)

In the classical case, (ρ,h) = (IdTM , IdM ), the relations (5.12′) become:

T
i1...ip
j1...jq |h|k−T

i1...ip
j1...jq |k|h+T

m
hkT

i1...ip
j1...jq |m

= T
ii2...ip
j1...jq

R
i1
ihk+ · · ·+T

i1...ip−1i
j1...jq

R
ip
ihk−T

i1...ip
jj2...jq

R
j
j1 hk

−·· ·−T
i1...ip
j1...jq−1j

R
j
jq hk

.
(5.12′′)

We observe that if the structure functions of generalized Lie algebroid:

((F,ν,M), [ , ]F,h,(ρ, IdM )),

the (ρ,h)-torsion associated to linear ρ-connection ρΓ̈, and the (ρ,h)-curvature associated to linear ρ-connection ρΓ̇

are null, then we have the equality:

T
a1...ap
b1...bq |b|c = T

a1...ap
b1...bq |c|b,

which generalizes the Schwartz equality.

Theorem 49. If (E,π,M) = (F,ν,N), then the following relations hold good:
∑

cyclic(U1,U2,U3)

{
(ρD̈U1(ρ,h)T)(U2,U3)− (ρ,h)R(U1,U2)U3 +(ρ,h)T((ρ,h)T(U1,U2),U3)

}
= 0, (B̃1)

and
∑

cyclic(U1,U2,U3,U)

{
(ρD̈U1(ρ,h)R)(U2,U3)U +(ρ,h)R((ρ,h)T(U1,U2),U3)U

}
= 0. (B̃2)

respectively. This identities will be called the first and the second identity of Bianchi type, respectively.
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In the particular case of Lie algebroids, h= IdM , the identities (B̃1) and (B̃2) become:

∑

cyclic(u1,u2,u3)

{
(ρDu1ρT)(u2,u3)−ρR(u1,u2)u3 +ρT(ρT(u1,u2),u3)

}
= 0, (B̃1

′)

∑

cyclic(u1,u2,u3,u)

{
(ρDu1ρR)(u2,u3)u+ρR(ρT(u1,u2),u3)u

}
= 0. (B̃2

′)

In the classical case, (ρ,h) = (IdTM , IdM ), the identities (B̃1
′) and (B̃2

′) become:

∑

cyclic(X1,X2,X3)

{
(DX1T)(X2,X3)−R(X1,X2)X3 +T( T(X1,X2),X3)

}
= 0, (B̃1

′′)

∑

cyclic(X1,X2,X3,X)

{
(DX1R)(X2,X3)X+R(T(X1,X2),X3)X

}
= 0. (B̃2

′′)

Proof. Using the equality:

(ρD̈U1(ρ,h)T)(U2,U3) = ρD̈U1((ρ,h)T(U2,U3))− (ρ,h)T(ρD̈U1U2,U3)− (ρ,h)T(U2,ρD̈U1U3)

and the Jacobi identity, we obtain the first identity of Bianchi type.
Using the equality:

(ρD̈U1(ρ,h)R)(U2,U3)U = ρD̈U1((ρ,h)R(U2,U3)U)− (ρ,h)R(ρD̈U1U2,U3)U

− (ρ,h)R(U2,ρD̈U1U3)U − (ρ,h)R(U2,U3)ρD̈U1U

and the Jacobi identity, we obtain the second identity of Bianchi type.

Remark 50. On components, the identities of Bianchi type become:

∑

cyclic(a1,a2,a3)

{
(ρ,h)Tb

a2a3|a1
+(ρ,h)Tb

ga3
· (ρ,h)Tg

a1a2

}
=

∑

cyclic(a1,a2,a3)

(ρ,h)Ra
a3a1a2

and
∑

cyclic(a,a1,a2,a3)

{
(ρ,h)Rb

aa2a3|a1
+(ρ,h)Rb

aga3
· (ρ,h)Tg

a2a1

}
= 0.

If the (ρ,h) torsion is null, then the identities of Bianchi type become:

∑

cyclic(a1a2,a3)

(ρ,h)Rb
a3a1a2

= 0

and
∑

cyclic(a,a1,a2,a3)

(ρ,h)Rb
aa2a3|a1

= 0.

6 (Pseudo)metrizable vector bundles. Formulas of Levi-Civita type

We will apply our theory for the diagram:

E

π

��

(F, [ , ]F,h,(ρ, IdN ))

ν

��
M

h �� N,

where (E,π,M) ∈ |Bv| and ((F,ν,N), [ , ]F,h,(ρ, IdN )) ∈ |GLA|.
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Definition 51. We will say that the vector bundle (E,π,M) is endowed with a pseudometrical structure if it exists
g = gabs

a⊗ sb ∈ T 0
2 (E,π,M) such that for each x ∈M , the matrix ‖gab(x)‖ is nondegenerate and symmetric.

Moreover, if for each x ∈M the matrix ‖gab(x)‖ has constant signature, then we will say that the vector bundle
(E,π,M) is endowed with a metrical structure.

If g = gabs
a⊗sb ∈ T 0

2 (E,π,M) is a (pseudo)metrical structure, then, for any a,b ∈ 1, r and for any vector local
(m+ r)-chart (U,sU ) of (E,π,M), we consider the real functions

U
g̃ba−−−→ R

such that ‖g̃ba(x)‖= ‖gab(x)‖−1, for any ∀x ∈ U .

Definition 52. We admit that (E,π,M) is a vector bundle endowed with a (pseudo)metrical structure g and with a
linear ρ-connection ρΓ.

We will say that the linear ρ-connection ρΓ is compatible with the (pseudo)metrical structure g if:

ρDzg = 0, ∀z ∈ Γ(F,ν,N).

Definition 53. We will say that the vector bundle (E,π,M) is ρ-(pseudo)metrizable, if it exists a (pseudo)metrical
structure g ∈ T 0

2 (E,π,M) and a linear ρ-connection ρΓ for (E,π,M) compatible with g. The IdTM -(pseudo)metriz-
able vector bundles will be called (pseudo)metrizable vector bundles.

In particular, if (TM,τM ,M) is a (pseudo)metrizable vector bundle, then we will say that (TM,τM ,M) is a
(pseudo)Riemannian space, and the manifold M will be called (pseudo)Riemannian manifold.

The linear connection of a (pseudo)Riemannian space will be called (pseudo)Riemannian linear connection.

Theorem 54. If (E,π,M) = (F,ν,N) and g ∈ T 0
2 (h

∗E,h∗π,M) is a (pseudo)metrical structure, then the local real
functions:

ρΓa
bc =

1
2
g̃ad(ρkc ◦h

∂gbd

∂xk
+ ρ

j
b ◦h

∂gdc

∂xj
−ρld ◦h

∂gbc

∂xl
− (Le

bc ◦h)ged− (Le
bd ◦h)gec+(Le

dc ◦h)geb) (6.1)

are the components of a linear ρ-connection ρΓ̈ for the vector bundle (h∗E,h∗π,M) such that (ρ,h)T= 0 and the
vector bundle (h∗E,h∗π,M) becomes ρ-(pseudo)metrizable. This linear ρ-connection ρΓ will be called the linear
ρ-connection of Levi-Civita type.

In the particular case of Lie algebroids, h= IdM , the relations (6.1) become:

ρΓa
bc =

1
2
g̃ad

(
ρkc

∂gbd

∂xk
+ρ

j
b

∂gdc

∂xj
−ρld

∂gbc

∂xl
−Le

bcged−Le
bdgec+Le

dcgeb

)
. (6.1′)

In the classical case, (ρ,h) = (IdTM , IdM ), the relations (6.1′) become:

Γi
jk =

1
2
g̃ih

(
∂gjh

∂xk
+

∂ghk

∂xj
− ∂gjk

∂xh

)
. (6.1′′)

Proof. Since

(ρD̈Ug)V ⊗Z=Γ
(
h∗E
ρ , IdM

)
(U)(g(V ⊗Z))−g((ρD̈UV )⊗Z)−g(V ⊗(ρD̈UZ)), ∀U,V,Z∈Γ(h∗E,h∗π,M).

it results that, for any U,V,Z ∈ Γ(h∗E,h∗π,M), we obtain the equalities:

Γ(
h∗E
ρ , IdM )(U)(g(V ⊗Z)) = g((ρD̈UV )⊗Z)+ g(V ⊗ (ρD̈UZ)), (6.2)

Γ(
h∗E
ρ , IdM )(Z)(g(U ⊗V )) = g((ρD̈ZU)⊗V )+ g(U ⊗ (ρD̈ZV )), (6.3)

Γ(
h∗E
ρ , IdM )(V )(g(Z⊗U)) = g((ρD̈V Z)⊗U)+ g(Z⊗ (ρD̈V U)). (6.4)

We observe that (6.2)+ (6.4)− (6.3) is equivalent with the equality:

g((ρD̈UV +ρD̈V U)⊗Z)+ g((ρD̈V Z−ρD̈ZV )⊗U)+ g((ρD̈UZ−ρD̈ZU)⊗V )

= Γ
(
h∗E
ρ , IdM

)
(U)(g(V ⊗Z))+Γ

(
h∗E
ρ , IdM

)
(V )(g(Z⊗U))−Γ

(
h∗E
ρ , IdM

)
(Z)(g(U ⊗V )).
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Using the condition (ρ,h)T= 0, which is equivalent with the equality:

ρD̈UV −ρD̈V U − [U,V ]h∗E = 0,

we obtain the equality:

2g((ρD̈UV )⊗Z)+ g([V,U ]h∗E ⊗Z)+ g([V,Z]h∗E ⊗U)+ g([U,Z]h∗E ⊗V )

= Γ
(
h∗E
ρ , IdM

)
(U)(g(V ⊗Z))+Γ

(
h∗E
ρ , IdM

)
(V )(g(Z⊗U))

−Γ
(
h∗E
ρ , IdM

)
(Z)(g(U ⊗V )), ∀U,V,Z ∈ Γ(h∗E,h∗π,M).

This equality is equivalent with the following equality:

2g((ρD̈UV )⊗Z) = Γ
(
h∗E
ρ , IdM

)
(U) · (g(V ⊗Z))+Γ

(
h∗E
ρ , IdM

)
(V )(g(Z⊗U))

−Γ
(
h∗E
ρ , IdM

)
(Z)(g(U ⊗V ))+ g([U,V ]h∗E ⊗Z)− g([V,Z]h∗E ⊗U)+ g([Z,U ]h∗E ⊗V )

for any U,V,Z ∈ Γ(h∗E,h∗π,M).
If U = Sc,V = Sb and Z = Sd, then we obtain the equality:

2g((ρΓa
bcSa)⊗Sd) = ρkc ◦h

∂g(Sb⊗Sd)

∂xk
+ρ

j
b ◦h

∂g(Sd⊗Sc)

∂xj
−ρld ◦h

∂g(Sb⊗Sc)

∂xl
+ g((Le

cb ◦h)Se⊗Sd)

− g((Le
bd ◦h)Se⊗Sc)+ g((Le

dc ◦h)Se⊗Sb),

which is equivalent with:

2gdaρΓ
a
bc = ρkc ◦h

∂gbd

∂xk
+ρ

j
b ◦h

∂gdc

∂xj
−ρld ◦h

∂gbc

∂xl
− (Le

bc ◦h)ged− (Le
bd ◦h)gec+(Le

dc ◦h)geb

Finally, we obtain:

ρΓa
bc =

1
2
g̃ad

(
ρkc ◦h

∂gbd

∂xk
+ ρ

j
b ◦h

∂gdc

∂xj
−ρld ◦h

∂gbc

∂xl
− (Le

bc ◦h)ged− (Le
bd ◦h)gec+(Le

dc ◦h)geb
)
,

where ‖g̃ad(x)‖= ‖gda(x)‖−1, for any x ∈M .

Theorem 55. If (E,π,M) = (F,ν,N), g ∈ T 0
2 (h

∗E,h∗π,M) is a (pseudo)metrical structure and T ∈
T 1

2 (h
∗E,h∗π,M) such that its components are skew symmetric in the lover indices, then the local real functions

ρΓ̊a
bc = ρΓa

bc+
1
2
g̃ad(gdeT

e
bc− gbeT

e
dc+ gecT

e
bd) (6.5)

are the components of a linear ρ-connection compatible with the (pseudo)metrical structure g, where ρΓa
bc are the

components of linear ρ-connection of Levi-Civita type (6.1). Therefore, the vector bundle (h∗E,h∗π,M) becomes
ρ-(pseudo)metrizable and the tensor field T is the (ρ,h)-torsion tensor field.

In the particular case of Lie algebroids, h = IdM , g ∈ T 0
2 (E,π,M) is a (pseudo)metrical structure and T ∈

T 1
2 (E,π,M) such that its components are skew symmetric in the lover indices, then the local real functions

ρΓ̊a
bc = ρΓa

bc+
1
2
g̃ad(gdeT

e
bc− gbeT

e
dc+ gecT

e
bd) (6.5’)

are the components of a linear ρ-connection compatible with the (pseudo)metrical structure g, where ρΓa
bc are the

components of linear ρ-connection of Levi-Civita type (6.1′).
In the classical case, (ρ,h) = (IdTM , IdM ), g ∈ T 0

2 (TM,τM ,M) is a (pseudo)metrical structure and T ∈
T 1

2 (TM,τM ,M) such that its components are skew symmetric in the lover indices, then the local real functions

Γ̊i
jk = Γi

jk+
1
2
g̃ih(gheT

e
jk− gjeT

e
hk+ gekT

e
jh) (6.5”)

are the components of a linear connection compatible with the (pseudo)metrical structure g, where Γi
jk are the

components of linear connection of Levi-Civita type (6.1′′).
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Theorem 56. If (E,π,M) = (F,ν,M), g ∈ T 0
2 (h

∗E,h∗π,M) is a (pseudo)metrical structure and ρΓ̊ is the linear
ρ-connection (6.5) for the vector bundle (h∗E,h∗π,M), then the local real functions

ρΓ̃a
bα = ρΓ̊a

bα+
1
2
g̃acg

cb
◦
|α

(6.6)

are the components of a linear ρ-connection such that the vector bundle (h∗E,h∗π,M) becomes ρ-(pseudo)metriz-
able.

In the particular case of Lie algebroids, h = IdM , g ∈ T 0
2 (E,π,M) is a (pseudo)metrical structure and ρΓ̊ is

the linear ρ-connection (6.5’) for the vector bundle (E,π,M), then the local real functions:

ρΓ̃a
bα = ρΓ̊a

bα+
1
2
g̃acg

cb
◦
|α

(6.6’)

are the components of a linear ρ-connection such that the vector bundle (E,π,M) becomes ρ-(pseudo)metrizable.
In the classical case, (ρ,h) = (IdTM , IdM ), g ∈ T 0

2 (TM,τM ,M) is a (pseudo)metrical structure and ρΓ̊ is the
linear ρ-connection (6.5”) for the vector bundle (TM,τM ,M), then the local real functions:

Γ̃i
jk = Γ̊i

jk+
1
2
g̃ihg

hj
◦
|k

(6.6”)

are the components of a linear connection such that the vector bundle (TM,τM ,M) becomes (pseudo)metrizable.

Theorem 57. If g ∈ T 0
2 (h

∗E,h∗π,M) is a (pseudo)metrical structure, ρΓ̃ is the linear ρ-connection (6.6) for the
vector bundle (h∗E,h∗π,M), T = T d

cαSd⊗Sc⊗tα, and Oca
bd = 1

2δ
c
bδ

a
d−gbdg̃

ca is the Obata operator, then the local
real functions

ρΓ̂a
bα = ρΓ̃a

bα+
1
2
Oca

bdT
d
cα (6.7)

are the components of a linear ρ-connection such that the vector bundle (h∗E,h∗π,M) becomes ρ-(pseudo)metriz-
able.

In the particular case of Lie algebroids, h = IdM , g ∈ T 0
2 (E,π,M) is a (pseudo)metrical structure, ρΓ̃ is the

linear ρ-connection (6.6’) for the vector bundle (E,π,M), T = T d
cαsd⊗ sc⊗ tα and and Oca

bd = 1
2δ

c
bδ

a
d − gbdg̃

ca is
the Obata operator, then the local real functions

ρΓ̂a
bα = ρΓ̃a

bα+
1
2
Oca

bdT
d
cα (6.7’)

are the components of a linear ρ-connection such that the vector bundle (E,π,M) becomes ρ-(pseudo)metrizable.
In the classical case, (ρ,h) = (IdTM , IdM ), g ∈ T 0

2 (TM,τM ,M) is a (pseudo)metrical structure, Γ̃ is the linear
connection (6.6”) for the vector bundle (TM,τM ,M), T = T l

hk∂l⊗dxh⊗dxk and and Ohi
jl =

1
2δ

h
j δ

i
l −gjlg̃

hi is the
Obata operator, then the local real functions

Γ̂i
jk = Γ̃i

jk+
1
2
Ohi

jl T
l
hk (6.7”)

are the components of a linear connection such that the vector bundle (TM,τM ,M) becomes (pseudo)metrizable.
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