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1 Introduction

The quantum dynamical Yang-Baxter equation (QDYBE for short) [9,10], a generalization of the quantum Yang-
Baxter equation (QYBE for short) [2,3,40,41], has been studied extensively in recent years (see [7] and the refer-
ences therein). Dynamical Yang-Baxter maps [31,32,34] are set-theoretical solutions to a version of the QDYBE.

Let H and X be nonempty sets with a map (·) : H ×X � (λ, x) �→ λ · x ∈ H . A map R(λ) : X ×X → X ×X

(λ ∈ H) is a dynamical Yang-Baxter map associated with H , X and (·), if and only if, for every λ ∈ H , R(λ)

satisfies the following equation on X ×X ×X:

R23(λ)R13

(
λ ·X(2)

)
R12(λ) = R12

(
λ ·X(3)

)
R13(λ)R23

(
λ ·X(1)

)
. (1.1)

Here R12(λ), R12(λ ·X(3)), R23(λ ·X(1)), and others are the maps from X ×X ×X to itself defined as follows:
for u, v, w ∈ X ,

R12(λ)(u, v, w) =
(
R(λ)(u, v), w

)
,

R12

(
λ ·X(3)

)
(u, v, w) = R12(λ · w)(u, v, w),

R23

(
λ ·X(1)

)
(u, v, w) =

(
u,R(λ · u)(v, w)

)
.

Set-theoretical solutions to the QYBE [6], also known as Yang-Baxter maps [39], are dynamical Yang-Baxter
maps constant for the parameter λ of any set H; indeed, the dynamical Yang-Baxter map is a generalization of the
set-theoretical solution to the QYBE.

This dynamical Yang-Baxter map yields a bialgebroid [4]. Every dynamical Yang-Baxter map with some condi-
tions gives birth to an (H,X)-bialgebroid [35], a generalization of the quantum group [5,11], through the Faddeev-
Reshetikhin-Takhtajan construction [8].

It is worth pointing out that a ternary system (Definition 1(3)) can produce the dynamical Yang-Baxter map [32].
Each triple (L,M, π) consisting of a left quasigroup L = (L, ·) (Definition 1(1)), a ternary system M satisfying (2.2)
and (2.3), and a (set-theoretic) bijection π : L → M gives a dynamical Yang-Baxter map R(λ) associated with L, L
and (·) (see Section 2 for more details).

Homogeneous systems [18,19,20,21,22,23] are algebraic features of the reductive homogeneous space [24,28]
satisfying suitable conditions. Let A be a group with its subgroup K. We assume that a subset G of the group A

satisfies the following:
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(1) the group A is uniquely factorized as A = GK,
(2) G−1 = G,
(3) kGk−1 = G, for all k ∈ K.

Let p : A → G denote the canonical projection with respect to the factorization A = GK, and (·) the binary
operation on G defined by x · y = p(xy) (x, y ∈ G). Because the map Lx : G � y �→ x · y ∈ G is bijective, we define
the ternary operation η on G by

η(x, y, z) = Lx

((
Lx

)−1
(y) · (Lx

)−1
(z)

)
, x, y, z ∈ G.

This ternary system G = (G, η) is a homogeneous system [23, Proposition 1] (see also Definition 7), and every
homogeneous system is constructed in such a way.

If G is a connected and second countable C∞-manifold with a C∞-map η : G × G × G → G, then the
homogeneous system G = (G, η) is isomorphic to a reductive homogeneous space A/K for a connected Lie group
A with its closed subgroup K [19, Theorem 1]. The homogeneous system is a ternary system, an algebraic structure,
encoded in the reductive homogeneous space (for ternary systems in differential geometry and mathematical physics,
see [13,14,15,29]).

It is natural to relate this homogeneous system to the dynamical Yang-Baxter map through the ternary system.
The aim of this paper is to produce the dynamical Yang-Baxter maps by means of homogeneous pre-systems,

which generalize the homogeneous system. Furthermore, we characterize such dynamical Yang-Baxter maps.
The organization of this paper is as follows.
Section 2 contains a brief summary of the dynamical Yang-Baxter map. We focus on its construction by means

of the ternary system. This construction yields a category A concerning the ternary systems, which is equivalent to
a category D consisting of the dynamical Yang-Baxter maps.

Section 3 presents the notion of a homogeneous pre-system, together with examples.
In Section 4, our main results are stated and proved. Every homogeneous pre-system satisfying (4.1) can produce

a dynamical Yang-Baxter map via the ternary system. More precisely, we construct a category H, isomorphic to the
category A, by means of the homogeneous pre-systems with (4.1). Because the category A is equivalent to the
category D, each object of H gives a dynamical Yang-Baxter map; in particular, we demonstrate dynamical Yang-
Baxter maps provided by a certain left quasigroup and the examples in Section 3.

The last section, Section 5, deals with a relation between the homogeneous pre-system satisfying (4.1) and the
left quasigroup with (5.1), which is due to the work in [32, Section 6]. We introduce a category B concerning the left
quasigroups satisfying (5.1) and an essentially surjective functor J : B → H to construct the dynamical Yang-Baxter
maps by means of quasigroups of reflection [17,27].

Our viewpoint sheds some light on the relation between geometry and the dynamical Yang-Baxter map.

2 Dynamical Yang-Baxter maps

In this section, we briefly summarize without proofs the relevant material in [32] on the construction of the dynamical
Yang-Baxter map.

Definition 1. (1) (L, ·) is a left quasigroup (resp. right quasigroup [38, Section I.4.3]), if and only if L is a nonempty
set, together with a binary operation (·) on L having the property that, for all u,w ∈ L, there uniquely exists
v ∈ L such that u ·v = w (resp. v ·u = w). For the simplicity, one uses the notation uv instead of u ·v (u, v ∈ L).

(2) A quasigroup (Q, ·) is a left and right quasigroup (see [30, Definition I.1.1] and [38, Section I.2]).
(3) A ternary system (M,μ) is a pair of a nonempty set M and a ternary operation μ : M ×M ×M → M .

By this definition, the left quasigroup L = (L, ·) has another binary operation \L called a left division [38,
Section I.2.2]. For u,w ∈ L, we denote by u\Lw the unique element v ∈ L satisfying uv = w,

u\Lw = v ⇐⇒ uv = w. (2.1)

The binary operation on the quasigroup is not always associative.

Example 2. We define the binary operation (∗) on the set Q = {1, 2, 3, 4, 5} of five elements by Table 1. Here
1 ∗ 2 = 3. This Q = (Q, ∗) is a quasigroup, because each element in Q appears once and only once in each row and
in each column of Table 1 [30, Theorem I.1.3]. The binary operation (∗) is not associative, since (1∗2)∗3 	= 1∗(2∗3).
This quasigroup Q is due to Nobusawa [27, Section 6, type 1]. However, the order of the binary operation (∗) in
Table 1 is reversed.
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∗ 1 2 3 4 5

1 1 3 5 2 4

2 5 2 4 1 3

3 4 1 3 5 2

4 3 5 2 4 1

5 2 4 1 3 5

Table 1: Binary operation (∗) on Q.

Each ternary system M = (M,μ) satisfying

μ
(
a, μ(a, b, c), μ

(
μ(a, b, c), c, d

))
= μ

(
a, b, μ(b, c, d)

)
, (2.2)

μ
(
μ
(
a, b, μ(b, c, d)

)
, μ(b, c, d), d

)
= μ

(
μ(a, b, c), c, d

)
, (2.3)

for any a, b, c, d ∈ M , can provide a dynamical Yang-Baxter map [32, Theorem 3.2]. Let L = (L, ·) be a left
quasigroup isomorphic to M as sets, and π : L → M a (set-theoretic) bijection. For λ, u ∈ L, we define the maps
ξ
(L,M,π)
λ (u) : L → L and η

(L,M,π)
λ (u) : L → L as follows: for v ∈ L,

ξ
(L,M,π)
λ (u)(v) = λ\Lπ−1(μ(π(λ), π(λu), π((λu)v))), (2.4)

η
(L,M,π)
λ (u)(v) =

(
λξ

(L,M,π)
λ (v)(u)

)\L
(
(λv)u

)
. (2.5)

Let R(L,M,π)(λ) (λ ∈ L) denote the map from L× L to itself defined by

R(L,M,π)(λ)(u, v) =
(
η
(L,M,π)
λ (v)(u), ξ

(L,M,π)
λ (u)(v)

)
, u, v ∈ L. (2.6)

Theorem 3. The map R(L,M,π)(λ) (2.6) is a dynamical Yang-Baxter map (1.1) associated with L, L and (·).
We now introduce two categories A and D concerning a special class of the dynamical Yang-Baxter maps, which

play a central role in this article.
The first task is to explain the category A (cf. the category A2 in [32, Section 6]). We follow the notation of [16,

Chapter XI]. Let L = (L, ·) be a left quasigroup, M = (M,μ) a ternary system satisfying (2.2) and

μ(a, b, b) = a, ∀a, b ∈ M, (2.7)

μ
(
μ(a, b, c), c, d

)
= μ(a, b, d), ∀a, b, c, d ∈ M, (2.8)

and π : L → M a bijection. The object of A is, by definition, a triple (L,M, π).
The morphism f : (L, (M,μ), π) → (L′, (M ′, μ′), π′) of A is a homomorphism f : L → L′ of left quasigroups

such that h := π′ ◦ f ◦ π−1 : M → M ′ is a homomorphism of ternary systems; that is, the map f : L → L′ satisfies

f
(
a ·L b

)
= f(a) ·L′ f(b), ∀a, b ∈ L,

h
(
μ(a, b, c)

)
= μ′(h(a), h(b), h(c)), ∀a, b, c ∈ M.

(2.9)

The identity id, the source s(f) and the target b(f) of a morphism f : (L,M, π) → (L′,M ′, π′), and the
composition g ◦ f for morphisms f : (L,M, π) → (L′,M ′, π′) and g : (L′,M ′, π′) → (L′′,M ′′, π′′) are defined as
follows: for an object (L,M, π) ∈ A,

id(L,M,π) = idL,

s
(
f : (L,M, π) −→ (

L′,M ′, π′)) = (L,M, π),

b
(
f : (L,M, π) −→ (

L′,M ′, π′)) =
(
L′,M ′, π′),

the composition g ◦ f is the usual one of the maps f : L → L′ and g : L′ → L′′.

Proposition 4. A is a category.
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The next task is to describe the category D, which is exactly the category D2 in [32, Section 6]. The object of this
category D is a pair (L,R) of a left quasigroup L = (L, ·) and a dynamical Yang-Baxter map R(λ) : L×L → L×L

(λ ∈ L) satisfying

ξλ(u)
(
(λu)\L(λu)

)
= λ\Lλ, ∀λ, u ∈ L,

(
λξλ(u)(v)

)
ηλ(v)(u) = (λu)v, ∀λ, u, v ∈ L,

(
λξλ(u)(v)

)
ξλξλ(u)(v)

(
ηλ(v)(u)

)
(w) = λξλ(u)

(
(λu)\L

((
(λu)v

)
w
))
, ∀λ, u, v, w ∈ L.

Here, (ηλ(v)(u), ξλ(u)(v)) := R(λ)(u, v) (λ, u, v ∈ L).
The morphism f : (L,R) → (L′, R′) of D is a homomorphism f : L → L′ of left quasigroups satisfying

R′(f(λ)) ◦ f × f = f × f ◦R(λ), ∀λ ∈ L.

Proposition 5. D is a category; the definitions of the identity, the source, the target and the composition are similar
to those of the category A.

We can construct functors S : A → D and T : D → A, which establish an equivalence of the categories
A and D (cf. [32, Proposition 6.15]): for (L,M, π) ∈ A, set S(L,M, π) = (L,R(L,M,π)). Here, R(L,M,π)(λ) is
defined by (2.4), (2.5) and (2.6); for a morphism f of A, write S(f) = f ; for (L,R) ∈ D, T (L,R) denotes the triple
(L, (M,μ), idL), where M = L as sets and μ(a, b, c) = aξa(a\Lb)(b\Lc) (a, b, c ∈ M(= L)); for a morphism f of
D, set T (f) = f .

These functors S and T satisfy ST = idD , and θ(L,M, π) := idL ((L,M, π) ∈ A) gives a natural isomorphism
θ : TS → idA. Thus, the following theorem holds.

Theorem 6. S : A → D is an equivalence of categories.

3 Homogeneous pre-systems

This section is devoted to introducing homogeneous pre-systems.

Definition 7. (1) A ternary system G = (G, η) (Definition 1(3)) is a homogeneous pre-system if and only if the
ternary operation η satisfies

η(x, y, x) = y, ∀x, y ∈ G, (3.1)

η
(
x, y, η(u, v, w)

)
= η

(
η(x, y, u), η(x, y, v), η(x, y, w)

)
, (3.2)

for all x, y, u, v, w ∈ G.
(2) A homogeneous system G = (G, η) [18] is a homogeneous pre-system satisfying

η(x, x, y) = y, ∀x, y ∈ G,

η
(
x, y, η(y, x, z)

)
= z, ∀x, y, z ∈ G.

(3.3)

We explain two examples in this section: one homogeneous pre-system and one homogeneous system, which
imply dynamical Yang-Baxter maps in the next section.

Let G be an abelian group. We define the ternary operation η on G by

η(x, y, z) = x+ y − z, x, y, z ∈ G. (3.4)

A trivial verification shows that G = (G, η) is a homogeneous pre-system, which is not always a homogeneous
system because of (3.3) (cf. [18, Remark 4]).

Another example is a homogeneous system on an arbitrary group G [18, Example in Section 1]. We define the
ternary operation η on the group G by

η(x, y, z) = yx−1z, x, y, z ∈ G. (3.5)

It is clear that this G = (G, η) is a homogeneous system.

Remark 8. The homogeneous system (G, η) (3.5) is equivalent to the notion of a torsor [25,33,36], also known
as the principal homogeneous space, up to the choice of the unit element. Hence, the principal homogeneous space
provides a homogeneous system.
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4 A relation between dynamical Yang-Baxter maps and homogeneous pre-systems

In this section, we construct dynamical Yang-Baxter maps (2.6) by means of homogeneous pre-systems G = (G, η)

satisfying

η(x, y, z) = η
(
w, η(x, y, w), z

)
, ∀x, y, z, w ∈ G. (4.1)

In fact, we present a category H concerning the homogeneous pre-systems with (4.1); this H is isomorphic to the
category A in Section 2, and, on account of Theorem 6, every object of H consequently gives a dynamical Yang-
Baxter map.

Let L = (L, ·) be a left quasigroup, G = (G, η) a homogeneous pre-system satisfying (4.1) and π : L → G a
(set-theoretic) bijection. The object of H is a triple (L,G, π).

The morphism f : (L, (G, η), π) → (L′, (G′, η′), π′) of H is a homomorphism f : L → L′ of left quasigroups
such that h := π′ ◦ f ◦ π−1 : G → G′ is a homomorphism of ternary systems; that is, the map f : L → L′ satisfies
(2.9) and

h
(
η(x, y, z)

)
= η′

(
h(x), h(y), h(z)

)
, ∀x, y, z ∈ G.

Proposition 9. H is a category; the definitions of the identity, the source, the target and the composition are similar
to those of the category A.

In order to prove that the category H is isomorphic to the category A, we construct functors F : A → H and
F ′ : H → A.

We first introduce the functor F : A → H. Let (L, (M,μ), π) ∈ A. Define the ternary system G = (G, η) by
G = M as sets and

η(x, y, z) = μ(y, x, z), x, y, z ∈ G(= M). (4.2)

Proposition 10. (L,G, π) ∈ H.

Proof. We need only show that G is a homogeneous pre-system satisfying (4.1).
An easy computation shows (3.1) and (4.1).
By virtue of (4.2), the left-hand side of (3.2) is μ(y, x, μ(v, u, w)), and, with the aid of (2.2), (2.7) and (2.8),

μ
(
y, x, μ(v, u, w)

)
= μ

(
μ(y, x, v), v, μ(v, u, w)

)

= μ
(
μ(y, x, v), μ

(
μ(y, x, v), v, u

)
, μ

(
μ
(
μ(y, x, v), v, u

)
, u, w

))

= μ
(
μ(y, x, v), μ(y, x, u), μ(y, x, w)

)
,

which is the right-hand side of (3.2). This proves the proposition.

By setting F (L, (M,μ), π) = (L,G, π) and F (f) = f for a morphism f of A, the following proposition holds.

Proposition 11. F : A → H is a functor.

The next task is to construct a functor F ′ : H → A. Let (L, (G, η), π) ∈ H. We define the ternary system
MG = (MG, μ) by MG = G as sets and

μ(a, b, c) = η(b, a, c), a, b, c ∈ MG(= G). (4.3)

Proposition 12. (L,MG, π) ∈ A.

Proof. It suffices to prove that MG satisfies (2.2), (2.7) and (2.8).
A trivial verification shows (2.7) and (2.8).
Due to (4.1) and (4.3), the left-hand side of (2.2) is

μ
(
a, μ(a, b, c), μ

(
μ(a, b, c), c, d

))
= η

(
η(b, a, c), a, η(b, a, d)

)
.

From (3.1) and (3.2),

η
(
η(b, a, c), a, η(b, a, d)

)
= η

(
η(b, a, c), η(b, a, b), η(b, a, d)

)
= η

(
b, a, η(c, b, d)

)
,

which is exactly the right-hand side of (2.2).
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By setting F ′(L, (G, η), π) = (L,MG, π) and F ′(f) = f for a morphism f of H, the following proposition
holds.

Proposition 13. F ′ : H → A is a functor.

Since the functors F and F ′ satisfy F ′F = idA and FF ′ = idH, the following theorem holds.

Theorem 14. The categories A and H are isomorphic.

By taking account of Theorem 6, we have the following corollary.

Corollary 15. Each object of H provides a dynamical Yang-Baxter map.

The proof of the following proposition is straightforward.

Proposition 16. The ternary operations (3.4) and (3.5) satisfy (4.1).

As a consequence of Corollary 15 and Proposition 16, the homogeneous pre-system G (3.4) and the homoge-
neous system G (3.5) imply dynamical Yang-Baxter maps. Let L = (G, ·) denote the left quasigroup whose binary
operation (·) is defined by

u · v = v, u, v ∈ L, (4.4)

and let π : L(= G) → G be the identity map on G. The corresponding dynamical Yang-Baxter maps are as follows:
if G is a homogeneous pre-system (3.4), then

R(L,MG,π)(λ)(u, v) = (v, λ+ u− v), λ, u, v ∈ L(= G),

and if G is a homogeneous system (3.5), then

R(L,MG,π)(λ)(u, v) =
(
v, λu−1v

)
, λ, u, v ∈ L(= G).

5 A relation between homogeneous pre-systems and left quasigroups

Because of the work in [32, Section 6] and the fact that the categories A and H are isomorphic, every homogeneous
pre-system G (Definition 7(1)) in the object (L,G, π) ∈ H is a left quasigroup (Definition 1(1)) whose binary
operation gives the ternary operation of G. This last section demonstrates it by constructing a category B concerning
the left quasigroups with (5.1) and an essentially surjective functor J : B → H (see [32, Proposition 6.17]). The
functors J : B → H, S : A → D in Section 2, and F ′ : H → A in Section 4, together with quasigroups of
reflection [17,27], provide examples of the dynamical Yang-Baxter map.

The first task is to introduce a category B. Let L1, L2 = (L2, ∗) be left quasigroups. We assume that the left
quasigroup L2 satisfies

(a ∗ c)\L2

(
(a ∗ b) ∗ c) = (a′ ∗ c)\L2

(
(a′ ∗ b) ∗ c), ∀a, a′, b, c ∈ L2. (5.1)

Here the symbol \L2
is the left division (2.1) of L2. Let π : L1 → L2 be a (set-theoretic) bijection. An object of B

is such a triple (L1, L2, π).
A morphism f : (L1, L2, π) → (L′

1, L
′
2, π

′) is a homomorphism f : L1 → L′
1 of left quasigroups such that

π′ ◦ f ◦ π−1 : L2 → L′
2 is also a homomorphism of left quasigroups.

Proposition 17. B is a category; the definitions of the identity, the source, the target and the composition are similar
to those of the category A.

The next task is to construct a functor J : B → H. Let (L1, (L2, ∗), π) ∈ B. We define the ternary system
GL2

= (GL2
, ηL2

) by GL2
= L2 as sets and

ηL2
(x, y, z) = z ∗ (x\L2

y
)
, x, y, z ∈ GL2

(
= L2

)
. (5.2)

Proposition 18. (L1, GL2
, π) ∈ H.
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Proof. It suffices to prove that GL2
is a homogeneous pre-system satisfying (4.1).

We give a proof only for (3.2) because the rest of the proof is straightforward. Let x, y, u, v, w ∈ G(= L2). From
(5.2) we have

ηL2

(
x, y, ηL2

(u, v, w)
)
=

(
w ∗ (u\L2

v
)) ∗ (x\L2

y
)

=
(
w ∗ (x\L2

y
)) ∗ ((w ∗ (x\L2

y
))\L2

((
w ∗ (u\L2

v
)) ∗ (x\L2

y
)))

.
(5.3)

With the aid of (5.1), the right-hand side of (5.3) is
(
w ∗ (x\L2

y
)) ∗ ((w ∗ (x\L2

y
))\L2

((
w ∗ (u\L2

v
)) ∗ (x\L2

y
)))

=
(
w ∗ (x\L2

y
)) ∗ ((u ∗ (x\L2

y
))\L2

((
u ∗ (u\L2

v
)) ∗ (x\L2

y
)))

=
(
w ∗ (x\L2

y
)) ∗ ((u ∗ (x\L2

y
))\L2

(
v ∗ (x\L2

y
)))

,

which is exactly ηL2
(ηL2

(x, y, u), ηL2
(x, y, v), ηL2

(x, y, w)). This is the desired conclusion.

Let f : (L1, L2, π) → (L′
1, L

′
2, π

′) be a morphism of the category B. The map f : L1 → L′
1 is a homomorphism

of left quasigroups. Moreover, h := π′ ◦ f ◦ π−1 : L2 → L′
2 is a homomorphism of ternary systems from GL2

to
GL′

2
, because h is a homomorphism of left quasigroups. As a result, f : (L1, L2, π) → (L′

1, L
′
2, π

′) is a morphism
of the category H.

We set J(L1, L2, π) = (L1, GL2
, π) for (L1, L2, π) ∈ B and J(f) = f for a morphism f of B.

Proposition 19. J : B → H is a functor.

This functor J is essentially surjective. In fact, for any (L,G, π) ∈ H, we can construct a left quasigroup L2

such that (L,L2, π) ∈ B and J(L,L2, π) = (L,G, π). We fix any element λ0 ∈ G. Set L2 = G as sets and

a ∗ b = η
(
λ0, b, a

)
, a, b ∈ L2(= G). (5.4)

Due to (3.1) and (4.1), L2 is a left quasigroup; its left division is defined by

a\L2
c = η

(
a, c, λ0

)
, a, c ∈ L2. (5.5)

Proposition 20. (L,L2, π) ∈ B.

Proof. We need only show (5.1). Let a, a′, b, c ∈ L2(= G). With the aid of (5.4) and (5.5) we have

(a ∗ c)\L2

(
(a ∗ b) ∗ c) = η

(
η
(
λ0, c, a

)
, η
(
λ0, c, η

(
λ0, b, a

))
, λ0

)
. (5.6)

From (3.2) and (4.1),

η
(
λ0, c, η

(
λ0, b, a

))
= η

(
λ0, c, η

(
a′, η

(
λ0, b, a

′), a))

= η
(
η
(
λ0, c, a

′), η(λ0, c, η
(
λ0, b, a

′)), η(λ0, c, a
))
.

By taking into account (4.1) again, the right-hand side of (5.6) is

η
(
η
(
λ0, c, a

)
, η
(
λ0, c, η

(
λ0, b, a

))
, λ0

)
= η

(
η
(
λ0, c, a

′), η(λ0, c, η
(
λ0, b, a

′)), λ0
)
,

which is exactly the right-hand side of (5.1) by virtue of (5.4) and (5.5). This proves the proposition.

It is immediate that J(L,L2, π) = (L,G, π), and consequently, the following holds.

Proposition 21. The functor J : B → H is essentially surjective.

Corollary 22. The functor SF ′J : B → D is essentially surjective.

The final task of this section is to construct dynamical Yang-Baxter maps by means of the functor SF ′J : B → D
and quasigroups of reflection; see [17, Section 1].

Definition 23. A pair (G, ∗) of a nonempty set G and a binary operation (∗) on G is called a quasigroup of reflection
if and only if (G, ∗) is a left quasigroup (Definition 1(1)) satisfying

x ∗ x = x, ∀x ∈ G,

(x ∗ y) ∗ y = x, ∀x, y ∈ G, (5.7)

(x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z), ∀x, y, z ∈ G. (5.8)
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It follows from (5.7) that (G, ∗) is a quasigroup (Definition 1(2)).

Remark 24. (1) The above definition is slightly different from that in [17] (see also [26, II.1.1] and [27, Section 1]);
the order of the binary operation (∗) on G is reversed.

(2) The identity (5.8) is called a right distributive law [30, Section V.2].
(3) The quasigroup of reflection gives an involutory quandle [1,12,37] by reversing the order of the binary

operation in Definition 23.

A straightforward computation shows that Nobusawa’s quasigroup (Q, ∗) in Example 2 is a quasigroup of
reflection.

Let (G, ∗) be a quasigroup of reflection, and L a left quasigroup isomorphic to G as sets. We denote by π a
set-theoretic bijection from L to G. Because (5.8) immediately induces (5.1),

Proposition 25. (L,G, π) ∈ B.

The quasigroup G = (G, ∗) of reflection hence produces the dynamical Yang-Baxter map R(λ) defined by
(L,R) = SF ′J(L,G, π) ∈ D.

For example, let L = (G, ·) denote the left quasigroup (4.4) and π : L(= G) → G the identity map on G. The
above dynamical Yang-Baxter map R(λ) induced by (L,G, π) ∈ B is

R(λ)(u, v) =
(
v, v ∗ (u\Gλ

))
, λ, u, v ∈ L(= G). (5.9)

For Nobusawa’s quasigroup Q = (Q, ∗), the corresponding dynamical Yang-Baxter map (5.9) is really depen-
dent on the parameter λ; in fact,

R(1)(1, 1) = (1, 1), R(2)(1, 1) = (1, 2).
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