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Abstract We have previously introduced the notion of non-commutative phase space (algebra) associated to any
associative algebra, defined over a field. The purpose of the present paper is to prove that this construction is useful
in non-commutative deformation theory for the construction of the versal family of finite families of modules. In
particular, we obtain a much better understanding of the obstruction calculus, that is, of the Massey products.
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1 Introduction

In [8], we sketched a physical “toy model,” where the space-time of classical physics became a section of a universal
fiber space Ẽ, defined on the moduli spaceH = Simp(H) of the physical systems we chose to consider (in this case,
the systems composed of an observer and an observed, both sitting in a Euclidean 3-space). This moduli space was
called the time-space. Time, in this mathematical model, was defined to be a metric ρ on the time-space, measuring
all possible infinitesimal changes of the state of the objects in the family we are studying. This gave us a model
of relativity theory, in which the set of all (relative) velocities turned out to be a projective space. Dynamics was
introduced into this picture, via the general construction, for any associative algebra A, of a phase space Ph(A).
This is a universal pair of a homomorphism of algebras, ι : A→ Ph(A), and a derivation, d : A→ Ph(A), such that
for any homomorphism of A into a k-algebra R, the derivations of A in R are induced by unique homomorphisms
Ph(A)→ R, composed with d. Iterating this Ph(−)-construction, we obtained a limit morphism ι(n) : Phn(A)→
Ph∞(A) with image Ph(n)(A), and a universal derivation δ ∈ Derk(Ph

∞(A),Ph∞(A)), the Dirac-derivation. A
general dynamical structure of order n is now a two-sided δ-ideal σ in Ph∞(A) inducing a surjective homomorphism
Ph(n−1)(A)→ Ph∞(A)/σ =: A(σ).

In [8] and later in [10], we have shown that, associated to any such time spaceH with a fixed dynamical structure
H(σ), there is a kind of “Quantum field theory”. In particular, we have stressed the point that, if H is the affine ring
of a moduli space of the objects we want to study, the ring Ph∞(H) is the complete ring of observables, containing
the parameters not only of the iso-classes of the objects in question, but also of all dynamical parameters. The choice
made by fixing the dynamical structure σ, and reducing to the k-algebra H(σ), would classically correspond to the
introduction of a parsimony principle (e.g. to the choice of some Lagrangian).

The purpose of this paper is to study this phase-space construction in greater detail. There is a natural descending
filtration of two-sided ideals, {Fn}0≤n of Ph∞(A). The corresponding quotients Phn(A)/Fn are finite dimensional
vector spaces, and considered as affine varieties; these are our non-commutative Jet-spaces.

We will first see, in Section 2, that we may extend the usual prolongation-projection procedure of Elie Cartan to
this non-commutative setting, and obtain a framework for the study of general systems of (non-commutative) PDEs;
see also [9].

In Section 3, we present a short introduction to non-commutative deformations of modules, and the generalized
Massey products, as exposed in [4,5].

Then, in Section 4, the main part of the paper follows: the construction for finitely generated associative alge-
bras A of the versal family of the non-commutative deformation functor of any finite family of finitely dimensional
A-modules, based on the phase-space of a resolution of the k-algebra A.

Notice that our Ph∞(A) is a non-commutative analogue of the notion of higher differentials treated in many
texts (see [1] and the more recent paper [2]).

� This article is a part of a Special Issue on Deformation Theory and Applications (A. Makhlouf, E. Paal and A. Stolin, Eds.).
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2 Phase spaces and the Dirac derivation

Given a k-algebra A, denote by A/k − alg the category where the objects are homomorphisms of k-algebras κ :

A→ R, and the morphisms ψ : κ→ κ′ are commutative diagrams:

A

κ κ′

R
ψ

R′

and consider the functor

Derk(A,−) : A/k − alg −→ Sets

defined by Derk(A, κ) := Derk(A,R). It is representable by a k-algebra-morphism, ι : A→ Ph(A) with a universal
family given by a universal derivation d : A → Ph(A). It is easy to construct Ph(A). In fact, let π : F → A be a
surjective homomorphism of algebras, with F = k〈t1, t2, . . . , tr〉, freely generated by the tis, and put I = kerπ.
Let,

Ph(A) = k〈t1, t2, . . . , tr, dt1, dt2, . . . , dtr〉/(I, dI),

where dti is a formal variable. Clearly there is a homomorphism i′0 : F → Ph(A) and a derivation d′ : F → Ph(A),
defined by putting d′(ti) = cl(dti), the equivalence class of dti. Since i′0 and d′ both kill the ideal I, they define a
homomorphism i0 : A→ Ph(A) and a derivation d : A→ Ph(A). To see that i0 and d have the universal property,
let κ : A → R be an object of the category A/k − alg. Any derivation ξ : A → R defines a derivation ξ′ : F → R,
mapping ti to ξ′(ti). Let ρξ′ : k〈t1, t2, . . . , tr, dt1, dt2, . . . , dtr〉 → R be the homomorphism defined by

ρξ′
(
ti
)
= κ

(
π
(
ti
))
, ρξ′

(
dti
)
= ξ
(
π
(
ti
))
,

where ρξ′ sends I and dI to zero, and so defines a homomorphism ρξ : Ph(A) → R, such that the composition
with d : A → Ph(A) is ξ. The unicity is a consequence of the fact that the images of i0 and d generate Ph(A) as
k-algebra.

Clearly Ph(−) is a covariant functor on k − alg, and we have the identities,

d∗ : Derk(A,A) = MorA
(
Ph(A), A

)
,

d∗ : Derk
(
A,Ph(A)

)
= EndA

(
Ph(A)

)
,

with the last one associating d to the identity endomorphism of Ph(A). In particular, we see that i0 has a cosection,
σ0 : Ph(A)→ A, corresponding to the trivial (zero) derivation of A.

Let now V be a right A-module, with the structure morphism ρ(V ) =: ρ : A→ Endk(V ). We obtain a universal
derivation:

u(V ) =: u : A −→ Homk
(
V, V ⊗A Ph(A)

)
,

defined by u(a)(v) = v ⊗ d(a). Using the long exact sequence

0 −→ HomA
(
V, V ⊗A Ph(A)

) −→ Homk
(
V, V ⊗A Ph(A)

)
ι−→ Derk

(
A,Homk

(
V, V ⊗A Ph(A)

)) κ−−→ Ext1A
(
V, V ⊗A Ph(A)

) −→ 0,

we obtain the non-commutative Kodaira-Spencer class

c(V ) := κ
(
u(V )

) ∈ Ext1A
(
V, V ⊗A Ph(A)

)
,

inducing the Kodaira-Spencer morphism

g : ΘA := Derk(A,A) −→ Ext1A(V, V )

via the identity d∗. If c(V ) = 0, then the exact sequence above proves that there exist a∇ ∈ Homk(V, V ⊗APh(A))

such that u = ι(∇). This is just another way of proving that c(V ) is the obstruction for the existence of a connection,

∇ : Derk(A,A) −→ Homk(V, V ).
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It is well known, I think, that in the commutative case, the Kodaira-Spencer class gives rise to a Chern character by
putting

chi(V ) := 1/i! ci(V ) ∈ ExtiA
(
V, V ⊗A Ph(A)

)
and that if c(V ) = 0, the curvature R(∇) of the connection∇ induces a curvature class in a generalized Lie-algebra
cohomology:

R∇ ∈ H2(k,A;ΘA,EndA(V )
)
.

Any Ph(A)-module W , given by its structure map,

ρ(W )1 =: ρ1 : Ph(A) −→ Endk(W ),

corresponds bijectively to an induced A-module structure ρ : A → Endk(W ), together with a derivation δρ ∈
Derk(A,Endk(W )), defining an element [δρ] ∈ Ext1A(W,W ). Fixing this last element, we find that the set of
Ph(A)-module structures on the A-module W is in one-to-one correspondence with Endk(W )/EndA(W ). Con-
versely, starting with an A-module V and an element δ ∈ Derk(A,Endk(V )), we obtain a Ph(A)-module Vδ . It is
then easy to see that the kernel of the natural map

Ext1Ph(A)

(
Vδ, Vδ

) −→ Ext1A(V, V )

induced by the linear map

Derk
(
Ph(A),Endk

(
Vδ
)) −→ Derk

(
A,Endk(V )

)
is the quotient

DerA
(
Ph(A),Endk

(
Vδ
))
/Endk(V )

and the image is a subspace [δρ]
⊥ ⊆ Ext1A(V, V ), which is rather easy to compute; see examples below.

Remark 1. Defining time as a metric on the moduli space, Simp(A), of simple A-modules, in line with the
philosophy of [8], noticing that Ext1A(V, V ) is the tangent space of Simp(A) at the point corresponding to V ,
we see that the non-commutative space Ph(A) also parametrizes the set of generalized momenta, that is, the set of
pairs of a point V ∈ Simp(A), and a tangent vector at that point.

Example 2. (i) Let A = k[t], then obviously, Ph(A) = k〈t, dt〉 and d is given by d(t) = dt, such that for f ∈ k[t],
we find d(f) = Jt(f) with the notations of [7], that is, the non-commutative derivation of f with respect to t. One
should also compare this with the non-commutative Taylor formula of loc.cit. If V 	 k2 is an A-module, defined
by the matrix X ∈ M2(k), and δ ∈ Derk(A,Endk(V )) is defined in terms of the matrix Y ∈ M2(k), then the
Ph(A)-module Vδ is the k〈t, dt〉-module defined by the action of the two matrices X,Y ∈M2(k), and we find

e1V := dimk Ext
1
A(V, V ) = dimk EndA(V ) = dimk

{
Z ∈M2(k) | [X,Z] = 0

}
,

e1Vδ
:= dimk Ext

1
Ph(A)

(
Vδ, Vδ

)
= 8− 4 + dim

{
Z ∈M2(k) | [X,Z] = [Y, Z] = 0

}
.

We have the following inequalities:

2 ≤ e1V ≤ 4 ≤ e1Vδ
≤ 8.

(ii) Let A = k[t1, t2], then we find

Ph(A) = k
〈
t1, t2, dt1, dt2

〉
/
([
t1, t2

]
,
[
dt1, t2

]
+
[
t1, dt2

])
.

In particular, we have a surjective homomorphism

Ph(A) −→ k
〈
t1, t2, dt1, dt2

〉
/
([
t1, t2

]
,
[
dt1, dt2

]
,
[
ti, dti

]− 1
)
,

with the right-hand side algebra being the Weyl algebra. This homomorphism exists in all dimensions. We also have
a surjective homomorphism,

Ph(A) −→ k
[
t1, t2, ξ1, ξ2

]
,

that is, onto the affine algebra of the classical phase-space.
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The phase-space construction may, of course, be iterated. Given the k-algebra A, we may form the sequence
{Phn(A)}0≤n, defined inductively by

Ph0(A) = A, Ph1(A) = Ph(A), . . . ,Phn+1(A) := Ph
(
Phn(A)

)
.

Let in0 : Phn(A)→ Phn+1(A) be the canonical imbedding, and let dn : Phn(A)→ Phn+1(A) be the corresponding
derivation. Since the composition of in0 and the derivation dn+1 is a derivation Phn(A) → Phn+2(A), there exists
by universality a homomorphism in+1

1 : Phn+1(A)→ Phn+2(A), such that

dn ◦ in+1
1 = in0 ◦ dn+1.

Notice that we compose functions and functors from left to right. Clearly, we may continue this process constructing
new homomorphisms {

inj : Phn(A) −→ Phn+1(A)
}
0≤j≤n

with the property

dn ◦ in+1
j+1 = inj ◦ dn+1.

Notice also that we have the “bi-gone” i00i
1
0 = i00i

1
1 and the “hexagone”

i10i
2
0 = i10i

2
1, i11i

2
0 = i10i

2
2, i11i

2
1 = i11i

2
2

and, in general,

inp i
n+1
q = inq−1i

n+1
p (p < q), inp i

n+1
p = inp i

n+1
p+1 , inp i

n+1
q = inq i

n+1
p+1 (q < p)

which is all easily proved by composing with in−1
0 and dn−1. Thus, the Ph∗(A) is a semi-cosimplicial algebra with

a cosection onto A. Therefore, for any object

κ : A −→ R ∈ A/k − alg

the semi-cosimplicial algebra above induces a semi-simplicial k-vector space, Derk(Ph
∗(A), R), and one should be

interested in its homology.
The system of k-algebras and homomorphisms of k-algebras {Phn(A), inj }n,0≤j≤n has an inductive (direct)

limit, Ph∞(A), together with homomorphisms in : Phn(A)→ Ph∞(A) satisfying

inj ◦ in+1 = in, j = 0, 1, . . . , n.

Moreover, the family of derivations {dn}0≤n define a unique derivation δ : Ph∞(A)→ Ph∞(A), such that in ◦δ =
dn ◦ in+1. Put

Ph(n)(A) := im in ⊆ Ph∞(A).

The k-algebra Ph∞(A) has a descending filtration of two-sided ideals, with {Fn}0≤n given inductively by

F1 = Ph∞(A) · im(δ) · Ph∞(A),

δFn ⊆ Fn+1, Fn1Fn2 · Fnr ⊆ Fn, n1 + · · ·+ nr = n,

such that the derivation δ induces derivations δn : Fn → Fn+1. Using the canonical homomorphism in : Phn(A)→
Ph∞(A), we pull the filtration {Fp}0≤p back to Phn(A), not bothering to change the notation.

Definition 3. Let D(A) := lim←−n≥1
Ph∞(A)/Fn be the completion of Ph∞(A) in the topology given by the

filtration {Fn}0≤n. The k-algebra Ph∞(A) will be referred to as the k-algebra of higher differentials, and D(A)
will be called the k-algebra of formalized higher differentials. Put

Dn := Dn(A) := Ph∞(A)/Fn+1.
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Clearly, δ defines a derivation on D(A), and an isomorphism of k-algebras

ε := exp(δ) : D(A) −→ D(A)
and, in particular, an algebra homomorphism

η̃ := exp(δ) : A −→ D(A),
inducing the algebra homomorphisms

η̃n : A −→ Dn(A)
which, by killing, in the right-hand side algebra, the image of the maximal ideal, m(t), of A corresponding to a point
t ∈ Simp1(A), induces a homomorphism of k-algebras

η̃n(t) : A −→ Dn(A)(t) := Dn/
(Dnm(t)Dn

)
and an injective homomorphism

η̃(t) : A −→ lim←−
n≥1

Dn(A)(t);

see [8]. More generally, let A be a finitely generated k-algebra and let ρ : A → Endk(V ) be an n-dimensional
representation (e.g. a point of Simpn(A)) corresponding to a two-sided ideal m = ker ρ of A. Then η̃ induces a
homomorphism

η̃(m) : A −→ D/(DmD)
and we will be interested in the image; see Section 4.

The k-algebras Phn(A) are our generalized jet spaces. In fact, any homomorphism of A-algebras

Pn : Phn(A) −→ A

composed with

δn : A −→ Phn(A)

is a usual differential operator of order ≤ n on A. Notice also the commutative diagram

A
dn−1

Phn−1(A)
d

Phn(A)
d

Phn+1(A) · · ·

Fp−1
d Fp d Fp+1

d · · ·

Fp−1/Fp d Fp/Fp+1
d Fp+1/Fp+2

d · · · · .

Here the upper vertical morphisms are injective, with the lower line being the sequence of symbols.
It is easy to see that the differential operators form an associative k-algebra, Diff(A). In fact, assume two

differential operators

Pm : Phm(A) −→ A, Pn : Phn(A) −→ A,

and consider the functorially defined diagram

A
dm

Phm(A)

Pm

dn

Phm+n(A)

Phn(Pm)

A
dn

Phn(A)

Pn

A,
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then the product is defined by the composition

PmPn = Ph(n)
(
Pm
) ◦ Pn.

Let now V be, as above, a right A-module, with structure morphism ρ(V ) : A→ Endk(V ). Consider the linear
map

ιn := id⊗ (i1 ◦ · · · ◦ in) : V ⊗A PhA −→ V ⊗A Phn+1, n ≥ 0.

Assume that the non-commutative Kodaira-Spencer class, defined above,

c(V ) := κ
(
u(V )

) ∈ Ext1A
(
V, V ⊗A Ph(A)

)
,

vanishes. Then, as we know, there exist a connection, that is, a linear map

∇0 ∈ Homk
(
V, V ⊗A Ph(A)

)
such that u(V ) = ι(∇0). It is also easy to see that this connection induces higher-order connections, that is, k-linear
maps,

∇(n) ∈ Homk
(
V ⊗A Phn(A), V ⊗A Phn+1(A)

)
, n ≥ 0,

defined by

∇(n)(v ⊗ f) = ιn
(∇0(v)

)
i0(f) + v ⊗ dn(f).

In fact, we just have to prove that ∇(n) is well defined, that is, we have to prove that

∇(n)(va⊗ f) = ∇(n)(v ⊗ af), ∀a ∈ A, f ∈ Phn(A).

Noticing that

ιn
(
v ⊗ d0(a)

)
= v ⊗ dn(a),

where we have put a := i0 ◦ · · · ◦ i0(a), we find

∇(n)(va⊗ f) = ιn
(∇0(va)

)
i0(f) + va⊗ dn(f)

= ιn
(∇0(v)i0(a) + v ⊗ da)i0(f) + v ⊗ adnf

= ιn
(∇0(v)

)
i0(af) + v ⊗ dnai0(f) + v ⊗ adnf

= ∇(n)(v ⊗ af).

These higher-order connections will induce a diagram

V ⊗A Phn−1(A)
∇(n−1)

V ⊗A Phn(A)
∇(n)

V ⊗A Phn+1(A) · · ·

V ⊗A Fp−1
∇(n−1)

V ⊗A Fp
∇(n)

V ⊗A Fp+1 · · ·

V ⊗A Fp−1/Fp
∇(n−1)

V ⊗A Fp/Fp+1
∇(n)

V ⊗A Fp+1/Fp+2 · · · ,

where the lower line is the sequence of symbols. Notice that

∇n ∈ Homk
(
V, V ⊗ Phn(A)

)
,

as given above, by definition has the property that for all a ∈ A and all v ∈ V we have

∇n(va) = ∇n(v)a+∇n−1(v)da+ · · ·+ v ⊗ dn(a).
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Assume, in particular, that V and theA-moduleW are free of ranks p and q, respectively. Let {Pi,j}i=1,...,p, j=1,...,q

be a family of A-homomorphisms Phn(A)→ A, defining a generalized differential operator

D :=

⎛
⎝P1,1 · · · P1,p

· · ·
Pq,1, · · · Pq,p

⎞
⎠ ◦ ∇n : V −→W.

The solution space of D is by definition S(D) := kerD. There are natural generalizations of this set-up, which we
will, hopefully, return to in a later paper, extending the classical prolongation-projection method of Elie Cartan to
this non-commutative setting. See Example 4 for the commutative analogue.

In [8], we introduced the notion of a dynamical structure for a k-algebra A, as a two-sided δ-stable ideal σ ⊂
Ph∞(A), or equivalently as the corresponding quotient A(σ) of the δ-algebra Ph∞(A). Any such A(σ) will be
given in terms of a sequence of ideals, σn ⊂ Phn(A) (n ≥ 0), with the property that d(σn) ⊂ σn+1. The solution
space of such a system, should be considered as the non-commutative scheme parametrized by A(σ), that is, as the
geometric system of all simple representations of A(σ); see [6].

This is, in a sense, dual to the classical theory of PDEs, as we will show by considering the following example,
leaving the general situation to the hypothetical paper referred to above.

Example 4 (see [9]). (i) Let A = k[t1, t2, . . . , tn], and consider the situation corresponding to a free particle
(see [8]) that is, where we have obtained A(σ) by killing d2ti, for every i = 1, 2, . . . , n, then the commutativization
A(σ)comk of A(σ)k := Ph(A)/Fk+1 is a free A-module generated by the basis{

dti1dti2 · · · dtir
}
i1≤i2≤···≤ir, r≤k.

Put |i| = r if i = {i1, i2, . . . , ir}. The dual basis {pi}i1≤i2≤···≤ir, r≤k may be identified with a basis Di of
the A-module of all (classical higher-order) differential operators of order less or equal to k. In fact, consider the
composition

η̃ : A −→ D(A) −→ A(σ)k,

then, for f ∈ A we have

pi
(
η̃(f)

)
=

1

μ1!μ2! · · ·μs!D
μ1

j1
Dμ2

j2
· · ·Dμr

jr
(f),

where we assume

j1 = i1 = i2 = · · · = iμ1 < j2 = iμ1+1 = iμ1+2 = · · · = iμ1+μ2 < · · · < iμ1+···+μs = jr

and where Dμp

ip
is μpth-order derivation with respect to tip . If {i1, i2, . . . , ir} = ∅, we let Di to be the identity

operator on A.
Now, consider the commutativization of A(σ), as a k-linear space, and for every k ≥ 1,

Ek := A(σ)comk

as a family of affine spaces fibered over Simp1(A),

πk : Ek −→ Spec(A).

This family is defined by the homomorphism of k-algebras

A −→ O(Ek) := A
[
pi
]
, [i] ≤ k.

Let Pq(t, pi) ∈ O(Ekq ), q = 1, . . . , d, then the system of equations

Pq = 0, q = 1, . . . , d

is a system of partial differential equations (an SPDE, for short). Suppose there is a solution, that is, an f ∈ A, such
that

Pq
(
Di(f)

)
= 0, q = 1, . . . , d,
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then, for every j, we must have

Dj
(
Pq
(
Di(f)

))
= 0

which amounts to extending the SPDE by, including together with Pq ∈ O(Ekq ), the polynomials

DjPq :=
∂Pq
∂tj

+
∑
i

∂Pq
∂pi

pi+j ∈ O
(Ekq+1

)
,

where it should be clear how to interpret the indices. Let us denote by P the extended family of polynomials,{
Djl · · ·Dj1Pq | Pq ∈ O

(Ekq)}jl,q≥0

and let pm ⊂ O(Em) be the ideal, generated by the polynomials in P , contained in O(Em). Denote by Sm :=

SmP ⊂ Em the corresponding subvariety. Clearly, the canonical map Em+l → Em induced by the trivial derivation
of Phm(A) has a canonical restriction pll : Sm+l → Sm. Denote also by πk : Sk → Spec(A) the restriction of
the morphism πk : Em → Spec(A), defined above, to Sk. Classically, the system is called regular if all πk are
fiber bundles, so smooth, for all k ≥ 1. Now, for any closed point of Spec(A), that is, for any point t ∈ Simp1(A),
consider the sequence of fibers over t, and the corresponding sequence of maps pl1(t) : Sm+1(t) → Sm(t). An
element f̃ ∈ lim←−m Sm(t) corresponds exactly to an element f̃ ∈ Ât, for which,

Pq
(
Di(f̂)

)
= 0, q = 1, . . . , d,

that is, to a formal solution of the SPDE. Thus, the projective limit of schemes SP(t) := lim←−m Sm(t) is the space
of formal solutions of the SPDE at t ∈ Simp1(A).

A fundamental problem in the classical theory of PDE is then the following.
Find necessary and sufficient conditions on the SPDE {Pq}q=1,...,d for SP(t) to be non-empty, and find, based

on {Pl}l, its structure. In particular, compute its dimension σ(t).
We will not, here, venture into this vast theory, but just add one remark. The solution space is in fact a family, with

parameter-space Simp1(A). Given any point t ∈ Simp1(A), the (formal) scheme, SP(t), of formal solutions may
have deformations. We might want to compute the formal moduliH , and relate the given family to the corresponding
mini-versal family.

The tangent space of H is given as

A1(k,O(S(P)(t),O(S(P)(t)))) = HomO(E)(t)
(
p(t),O(S(P)(t)))/Der;

see [3]. A tangent at the point t of Simp1(A) is the value at t of a linear combination of the fundamental vector
fields, the derivations {Dj} of A. The map between the tangent space of the given family and the tangent space of
H is then easily seen to be the following:

η : TSimp1(A),t −→ HomO(E)(t)
(
p(t),O(S(P)(t)))/Der,

where η(Dj) is the class of the map, associating a P ∈ p to the class at t of Dj(P ). The image of the tangent at t of
Simp1(A), corresponding to Dj , in the tangent space of H , is zero if this map is a derivation. Now, this is exactly
what we have arranged, together with any P ∈ p, and also including

DjP :=
∂P

∂tj
+
∑
i

∂P

∂pi
pi+j

in the ideal p. Thus, the map η is trivial, and the given pro-family is formally constant, as one probably should have
suspected! Moreover, it is easy to see that if pl1 : Sk+1(t)→ Sk(t) has a local section, then πk : Sk → Spec(A) is
formally constant at t ∈ Spec(A). The basic problem is to find computable conditions under which the constancy of
πk implies the surjectivity of pl1, and thereby the non-triviality of S(P)(t).

We will, hopefully, come back to these questions in a later paper.
(ii) Let A = k[t]/(t2), then

Ph(A) = k〈t, dt〉/(t2, tdt+ dtt
)
,

Ph(2)(A) = k
〈
t, dt, d2t

〉
/
(
t2, tdt+ dtt, td2t+ 2dt2 + d2tt

)
,

Ph∞(A) = k
〈
t, dt, . . . , dnt, . . .

〉
/
(
t2, tdt+ dtt, . . . , tdnt+ ndtdn−1t+ · · ·+ dntt, . . .

)
,
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and it is easy to see that η(t) =
∑
n 1/n!dn(t) is non-zero in D/(D (t)D), and, of course, η(t)2 = 0. In particular,

there is a homomorphism onto

D/(D(t)D) −→ k[dt]/
(
dt2
) 	 A.

(iii) Let now A = k[x, y]/(x3 − y2), compute D, and see that dy2 = 0 in D/(D (x, y)D), so that there are no
natural surjective homomorphisms D/(D (x, y)D)→ A. The map η̃ := exp(δ) : A→ D is, however, injective. The
difference between examples (i) and (ii) is, of course, due to the fact that in the first case A is graded, and in the
second it is not; see Section 4.

3 Non-commutative deformations of families of modules

In [5,6,7], we introduced non-commutative deformations of families of modules of non-commutative k-algebras,
and the notion of swarm of right modules (or more generally of objects in a k-linear abelian category). Let ar denote
the category of r-pointed not necessarily commutative k-algebras R. The objects are the diagrams of k-algebras

kr
ι−→ R

π−−→ kr

such that the composition of ι and π is the identity. Any such r-pointed k-algebra R is isomorphic to a k-algebra of
r × r-matrices (Ri,j). The radical of R is the bilateral ideal Rad(R) := kerπ, such that R/Rad(R) 	 kr . The dual
k-vector space of Rad(R)/Rad(R)2 is called the tangent space of R.

For r = 1, there is an obvious inclusion of categories l ⊆ a1, where l, as usual, denotes the category of
commutative local Artinian k-algebras with residue field k.

Fix a (not necessarily commutative) associative k-algebra A and consider a right A-module M . The ordinary
deformation functor DefM : l→ Sets is then defined. Assuming ExtiA(M,M) has a finite k-dimension for i = 1, 2,
it is well known (see [12] or [5]) that DefM has a pro-representing hull H , the formal moduli of M . Moreover, the
tangent space of H is isomorphic to Ext1A(M,M), and H can be computed in terms of ExtiA(M,M), i = 1, 2, and
their matric Massey products; see [5].

In the general case, consider a finite family V = {Vi}ri=1 of rightA-modules. Assume that dimk Ext
1
A(Vi, Vj) <

∞. Any such family of A-modules will be called a swarm. We will define a deformation functor DefV : ar → Sets

generalizing the functor DefM above. Given an object π : R = (Ri,j)→ kr of ar , consider the k-vector space and
the left R-module (Ri,j ⊗k Vj). It is easy to see that

EndR
((
Ri,j ⊗k Vj

)) 	 (Ri,j ⊗k Homk
(
Vi, Vj

))
.

Clearly, π defines a k-linear and left R-linear map

π(R) :
(
Ri,j ⊗k Vj

) −→ ⊕ri=1Vi,

inducing a homomorphism of R-endomorphism rings,

π̃(R) :
(
Ri,j ⊗k Homk

(
Vi, Vj

)) −→ ⊕ri=1 Endk
(
Vi
)
.

The right A-module structure on the Vis is defined by a homomorphism of k-algebras:

η0 : A −→ ⊕ri=1 Endk
(
Vi
) ⊂ (Homk

(
Vi, Vj

))
=: Endk(V ).

Notice that this homomorphism also provides each Homk(Vi, Vj) with an A-bimodule structure. Let DefV (R) ∈
Sets be the set of isoclasses of homomorphisms of k-algebras,

η′ : A −→ (
Ri,j ⊗k Homk

(
Vi, Vj

))
such that π̃(R)◦η′ = η0, where the equivalence relation is defined by inner automorphisms in the k-algebra (Ri,j⊗k
Homk(Vi, Vj)) inducing the identity on ⊕ri=1 Endk(Vi). One easily proves that DefV has the same properties as the
ordinary deformation functor and we may prove the following theorem (see [5]).
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Theorem 5. The functor DefV has a pro-representable hull, that is, an object H of the category of pro-objects âr
of ar , together with a versal family

Ṽ =
(
Hi,j ⊗ Vj

) ∈ lim←−
n≥1

DefV
(
H/mn

)
,

where m = Rad(H), such that the corresponding morphism of functors on ar

κ : Mor(H,−) −→ DefV ,

defined for φ ∈ Mor(H,R) by κ(φ) = R⊗φ Ṽ , is smooth and an isomorphism on the tangent level. Moreover, H is
uniquely determined by a set of matric Massey products defined on subspaces

D(n) ⊆ Ext1
(
Vi, Vj1

)⊗ · · · ⊗ Ext1
(
Vjn−1

, Vk
)

with values in Ext2(Vi, Vk).

The right action of A on Ṽ defines a homomorphism of k-algebras,

η : A −→ O(V) := EndH(Ṽ ) =
(
Hi,j ⊗Homk

(
Vi, Vj

))
and the k-algebra O(V) acts on the family of A-modules V = {Vi}, extending the action of A. If dimk Vi <∞, for
all i = 1, . . . , r, the operation of associating (O(V),V) to (A,V) turns out to be a closure operation.

Moreover, we prove the crucial result.

Theorem 6 (a generalized Burnside theorem). LetA be a finite dimensional k-algebra, with k being an algebraically
closed field. Consider the family V = {Vi}ri=1 of all simple A-modules, then

η : A −→ O(V) = (Hi,j ⊗Homk
(
Vi, Vj

))
is an isomorphism.

We also prove that there exists, in the non-commutative deformation theory, an obvious analogy to the notion of
pro-representing (modular) substratum H0 of the formal moduli H; see [3]. The tangent space of H0 is determined
by a family of subspaces

Ext10
(
Vi, Vj

) ⊆ Ext1A
(
Vi, Vj

)
, i �= j,

the elements of which should be called the almost split extensions (sequences) relative to the family V , and by a
subspace

T0(Δ) ⊆
∏
i

Ext1A
(
Vi, Vi

)

which is the tangent space of the deformation functor of the full subcategory of the category ofA-modules generated
by the family V = {Vi}ri=1; see [4]. If V = {Vi}ri=1 is the set of all indecomposables of some Artinian k-algebra A,
we show that the above notion of almost split sequence coincides with that of Auslander; see [11].

Using this we consider, in [5,7], the general problem of classification of iterated extensions of a family of
modules V = {Vi, }ri=1, and the corresponding classification of filtered modules with graded components in the
family V , and extension type given by a directed representation graph Γ . The main result is the following; see [7].

Proposition 7. Let A be any k-algebra and V = {Vi}ri=1 any swarm of A-modules, such that

dimk Ext
1
A

(
Vi, Vj

)
<∞, ∀i, j = 1, . . . , r.

(i) Consider an iterated extension E of V , with representation graph Γ . Then there exists a morphism of k-algebras
φ : HV → k[Γ ] such that E 	 k[Γ ]⊗φṼ as right A-algebras.

(ii) The set of equivalence classes of iterated extensions of V with representation graph Γ is a quotient of the set of
closed points of the affine algebraic variety A[Γ ] = Mor(HV, k[Γ ]).

(iii) There is a versal family Ṽ [Γ ] of A-modules defined on A[Γ ], containing as fibers all the isomorphism classes of
iterated extensions of V with representation graph Γ .
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To any, not necessarily finite, swarm c ⊂ mod(A) of right-A-modules, we have associated two associative
k-algebras (see [6,7]):

O
(|c|, π) = lim←−V⊂|c|

O(V)

and a sub-quotient Oπ(c), together with natural k-algebra homomorphisms

η
(|c|) : A −→ O

(|c|, π)
and η(c) : A → Oπ(c) with the property that the A-module structure on c is extended to an O-module structure
in an optimal way. We then defined an affine non-commutative scheme of right A-modules to be a swarm c of
right A-modules, such that η(c) is an isomorphism. In particular, we considered, for finitely generated k-algebras,
the swarm Simp∗<∞(A) consisting of the finite dimensional simple A-modules, and the generic point A, together
with all morphisms between them. The fact that this is a swarm, that is for all objects Vi, Vj ∈ Simp<∞ we have
dimk Ext

1
A(Vi, Vj) < ∞, is easily proved. We have in [7] proved the following result (see [7, Proposition 4.1] for

the definition of the notion of geometric k-algebra)

Proposition 8. Let A be a geometric k-algebra, then the natural homomorphism

η
(
Simp∗(A)

)
: A −→ Oπ

(
Simp∗<∞(A)

)
is an isomorphism, that is, Simp∗<∞(A) is a scheme for A.

In particular, Simp∗<∞(k〈x1, x2, . . . , xd〉) is a scheme for k〈x1, x2, . . . , xd〉. To analyze the local structure of
Simpn(A), we need the following lemma (see [7, Lemma 3.23]).

Lemma 9. Let V = {Vi}i=1,...,r be a finite subset of Simp<∞(A), then the morphism of k-algebras,

A −→ O(V) = (Hi,j ⊗k Homk
(
Vi, Vj

))
is topologically surjective.

Proof. Since the simple modules Vi (i = 1, . . . , r) are distinct, there is an obvious surjection

η0 : A −→
∏

i=1,...,r

Endk
(
Vi
)
.

Put r = ker η0, and consider for m ≥ 2 the finite dimensional k-algebra, B := A/rm. Clearly, Simp(B) = V so that
by the generalized Burnside theorem (see [5, Theorem 3.4]) we find

B 	 OB(V) := (HB
i,j ⊗k Homk

(
Vi, Vj

))
.

Consider the commutative diagram

A
(
HA
i,j ⊗k Homk

(
Vi, Vj

))
=: OA(V)

B
(
HB
i,j ⊗k Homk

(
Vi, Vj

)) α
OA(V)/mm,

where all morphisms are natural. In particular α exists since B = A/rm maps into OAV/Radm, and therefore
induces the morphism α commuting with the rest of the morphisms. Consequently, α has to be surjective, and we
have proved the contention.

Example 10. As an example of what may occur in rank infinity, we will consider the invariant problem A1
C/C

∗.
Here we are talking about the algebra A = C[x](C∗) crossed product of C[x] with the group C∗. If λ ∈ C∗,
the product in A is given by x × λ = λ × λ−1x. There are two “points” (i.e. orbits) modeled by the obvious
origin V0 := A → EndC(C(0)), and by V1 := A → EndC(C[x, x−1]). We may also choose the two points
V0 := C(0), V1 := C[x], in line with the definitions of [6]. Obviously, C[x] corresponds to the closure of the orbit
C[x, x−1]. This choice is the best if we want to make visible the adjacencies in the quotient, and we will therefore
treat both cases.
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We need to compute

ExtpA
(
Vi, Vj

)
, p = 1, 2, i, j = 1, 2.

Now,

Ext1A
(
Vi, Vj

)
= DerC

(
A,HomC

(
Vi, Vj

))
/Triv, i, j = 1, 2

and since x acts as zero on V1, and C∗ acts as identity on V1 and as a homogenous multiplication on V0, we find

Derk
(
A,Homk

(
V0, V0

))
/Triv = Derk

(
A,Homk

(
V0, V0

))
= DerC

(
A,C(0)

)
.

Any δ ∈ Derk(A,C(0)) is determined by its values δ(x), δ(λ) ∈ C(0) | λ ∈ C∗. Moreover, since in A we have
(λ)× (λ−1x) = x× (λ), we find

δ(λμ) = δ(λ) + δ(μ), δ
(
(λ)× (λ−1x

))
= δ
(
x× (λ)

)
.

The left-hand side of the last equation is δ((λ−1x)) = λ−1δ(x), and the right-hand side is δ(x), and since this must
hold for all λ ∈ C∗, we must have δ(x) = 0. Moreover, since δ(λμ) = δ(λ) + δ(μ), it is clear that the continuity of
δ implies that δ must be equal to α ln(| · |), for some α ∈ C. (To simplify the writing, we will put log := ln(| · |).)
Therefore,

Ext1A
(
V0, V0

)
= Derk

(
A,HomC

(
V0, V0

))
= C.

The cup-product of this class, log∪ log, sits in HH2(A,C(0)) = Ext2a(V0, V0), and is given by the 2-cocycle

(λ, μ) −→ log(λ)× log(μ).

This is seen to be a boundary, that is, there exists a map ψ : C∗ → C(0), such that for all λ, μ ∈ C∗ we have

log(λ)× log(μ) = ψ(λ)− ψ(λμ) + ψ(μ).

Just put ψ1,1 := ψ2 = −1/2 log2. Therefore, the cup product is zero, and if we, in general, put

ψn := ψ1,1,...,1 = (−)n+11/(n!) logn, n ≥ 1,

where n is the number of 1s in the first index, then computing the Massey products of the element log ∈
Ext1A(V0, V0), we find the nth Massey product

[
log, log, . . . , log

]
=

{
(λ, μ) −→

∑
p=1,...,n−1

ψpψn−p

}

and this is easily seen to be the boundary of the 1-cochain

ψn+1 = (−)n+21/
(
(n+ 1)!

)
logn+1 .

Therefore, all Massey products are zero. Of course, we have not yet proved that they could be different from zero,
that is, we have not computed the obstruction group Ext2A(V0, V0) and found it non-trivial! Now this is unnecessary.

Now, assume first V0 = C[x, x−1], then every

δ ∈ Ext1A
(
V0, V0

)
= DerC

(
A,HomC

(
V0, V0

))
/Triv

is determined by the values of δ(x) and δ(λ), λ ∈ C∗. Since Ext1C[x](V0, V1) = 0, we may find a trivial derivation
such that subtracting from δ we may assume δ(x) = 0. But then the formula

δ(x× λ) = δ
(
λ× (λ−1x

))
implies

xδ(λ) = δ(λ)
(
λ−1x

)
from which it follows that

δ(λ)
(
xp
)
=
(
λ−1x

)p
δ(λ)(1).
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Now, since λμ = μλ in C∗, we find(
λ−1μx

)p
δ(λ)(1)(μx) =

(
λμ−1x

)p
δ(λ)(1)(λx)

which should hold for any pair of μ, λ ∈ C∗, and any p. This obviously implies δ = 0.
This argument shows not only that

Ext1A
(
V1, V1

)
= DerC

(
A,HomC

(
V1, V1

))
/Triv = 0

when V1 = C[x, x−1], but also when V1 = C[x]. Finally, we find that the formula above,

xδ(λ) = δ(λ)
(
λ−1x

)
,

shows that for

δ ∈ Ext1A
(
V1, V0

)
= DerC

(
A,HomC

(
V1, V0

))
/Triv

we have δ(λ)(xxp) = 0 for all p. Therefore,

Ext1A
(
V1, V0

)
= DerC

(
A,HomC

(
V1, V0

))
/Triv = 0

when V1 = C[x, x−1]. However, when V1 = C[x], we find that δ with δ(λ)(1) �= 0 and with δ(λ)(xp) = 0,
for p ≥ 1, survives. These will, as above, give rise to a logarithm of the real part of C∗. Therefore, in this case
Ext1A(V1, V0) = C. The miniversal families look like

H =

(
C
[
[t]
]
0

0 C

)

when V1 = C[x, x−1], and like

H =

(
C
[
[t]
]
0

〈C〉 C

)

when V1 = C[x].

4 The infinite phase space construction and Massey products

Let, as above, V = {Vi}i=1,...,r be a family ofA-modules. To compute the relevant cohomology for the deformation
theory, that is, the Ext∗A(Vi, Vj), we may use the Leray spectral sequence of [3], together with the formulas

ExtnA
(
Vi, Vj

)
= HHn+1(k,A; Homk

(
Vi, Vj

))
,

HHn+1(k,A;W ) = lim←−
Free /A

(n) Derk(−,W ), n > 0,

where W is any A-bimodule. Choose a surjective morphism μ : F → A of a free k-algebra F onto A, and put
I = kerμ, then we find that

HH3(k,A;W ) = lim←−
Free /A

(2) Derk(−,W ) = HomF
(
I/I2, kerμ

)
/Der,

Ext2A
(
Vi, Vj

)
= HomF

(
I/I2,Homk

(
Vi, Vj

))
/Der,

where Der is the restriction of the derivations, Derk(F,−), to I/I2. Moreover, consider a commutative diagram of
homomorphisms of algebras, in which ρ̃ is not yet included

A

ρ
ρ̃

F

ρ′

I

S R,
π
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and where J := kerπ has square 0. The composition map O : I/I2 → kerπ induces an element o ∈ HH3(k,A; J),
independent upon the choice of ρ′. If this (obstruction) element vanishes, thenO is the restriction to I of a derivation
ξ : F → kerπ. Subtracting this from ρ′, we may assume that ρ′(I) = 0, so there exists a lifting ρ̃ of ρ. If there exists
a lifting ρ̃, then we may obviously assume that O = 0.

Now, let {ψi,j(l) ∈ Derk(A;Vi, Vj)}l=1,...,di,j represent a basis of Ext1A(Vi, Vj), and let Ei,j :=

{ti,j(l)}l=1,...,di,j denote the dual basis. Consider, the free matrix k-algebra (quiver) (T 1
i,j), generated in slot

(i, j) by the (formal) elements of Ei,j . There is a unique homomorphism

π : T 1 :=
(
Ti,j
) −→

⎛
⎜⎜⎝
k 0 · · · 0
0 k · · · 0
· · · · · 0
0 · · · · k

⎞
⎟⎟⎠ .

Denote by the same letter the completion of T 1 with respect to the powers of the radical Rad(T 1) := kerπ. Then
T 1 ∈ âr . Consider the k-algebra and the π-induced homomorphism

π1 :
(
T 1
i,j ⊗k Homk

(
Vi, Vj

)) −→ (
Homk

(
Vi, Vi

))
.

Clearly, π1 splits, and it is easy to see that

ξ : A −→ (
T 1
i,j ⊗Homk

(
Vi, Vj

))
defined by

ξ =
∑
i,j,l

ti,j(l)ψi,j(l)

is a derivation, ξ : A → ((T 1/Rad2(T 1))i,j ⊗k Homk(Vi, Vj)), therefore inducing a unique homomorphism, ρ̃1,
makes the following diagram commute

A

ρ
ρ̃1

id+δ D1(A)

ρ1

D2(A)

(
Homk

(
Vi, Vi

)) ((
T 1/Rad2

(
T 1
))
i,j
⊗k Homk

(
Vi, Vj

))
.

Now, we would have liked to extend this diagram, completing it with commuting homomorphisms,

A

ρ̃1

exp(δ) Dn(A)
ρn(

T 1(1)i,j ⊗k Homk
(
Vi, Vj

)) (
H(n)i,j ⊗k Homk

(
Vi, Vj

))
,

where (
T 1(n) := T 1/Radn+1 (T 1)), (

H(n) := H/Radn+1(H)
)
.

However, as will be clear in the next construction, the obvious continuation of this procedure does not work. In
fact, the formalized higher differentials D(A) is not really the natural phase-space to work with for all purposes. In
an obvious sense it is too homogenous. We are therefore led to the construction of a kind of projective resolution
of A. Consider as above a surjective homomorphism, μ : F → A, with F = k〈x1, x2, . . . , xs〉 a free k-algebra,
and I = kerμ. Obviously Ph(p)(F ), for p ≥ 1, are also free, and Ph(p+1)(F ) is a free Ph(p)(F )-algebra. Let
exp(δ) : F → D(F ) be defined as in Section 2 by

exp(δ) = id+ d+ 1/2d2 + · · ·

and denote by ηp : F → Dp(F ) the induced homomorphism. Define

Hp := Dp(F )/
(
i0(I), ηp(I)

)
.
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Clearly, Hp = Dp(A), H = proj limHp, for p = 0, 1. For p ≥ 2, there are only natural surjective homomorphisms,
κp : Hp → Dp(A). By functoriality, the diagram above induces another commutative diagram, which may be
completed to the commutative diagram (ρ′2 and ρ2 not yet included)

I D1(I) D2(I)

F

μ

id+δ D1(F )

μ1

ρ′1

D2(F )

ρ′2

μ2

A

ρ̃1

id+δ D1(A)

ρ1

H2(A)

ρ2

O(1) O′(2),

where we, in expectation of later constructions, put

H(1) = T 1/Rad
(
T 1)2, H ′(2) = T 1/Rad

(
T 1)3,

O(n) := (H(n)i,j ⊗k Homk
(
Vi, Vj

))
, n ≥ 1,

O′(n) :=
(
H ′(n)i,j ⊗k Homk

(
Vi, Vj

))
, n ≥ 2.

Now the map

(id+ δ) ◦ μ1 ◦ ρ1 : I −→ O(1)

is zero, and the resulting map ρ̃1 : A→ O(1) is, as deformation of the family V , the universal family at the tangent
level. Since Ph(n+1)(F ) is a free algebra over Ph(n)(F ), there is lifting ρ′2. We want an induced ρ2. Consider the
composition

O′ := exp(δ) ◦ ρ2 : F −→ O′(2)

lifting μ ◦ ρ̃1. The restriction to I vanishes on I2 and induces a map

O(2) : I/I2 −→
((

Rad
(
T 1)2/Rad

(
T 1)3)

i,j
⊗k Homk

(
Vi, Vj

))
.

It is easily seen to be F -linear, both from left and right, and so it induces the obstruction

o2 ∈
((

Rad
(
T 1)2/Rad

(
T 1)3)

i,j
⊗k Ext2A

(
Vi, Vj

))
independent upon the choice of extension ρ′2. Now((

Rad
(
T 1)2/Rad

(
T 1)3)

i,j
⊗k Ext2A

(
Vi, Vj

))
may be identified with

Homk

((
Ext2A

(
Vi, Vj

)∗)
,
(
Rad

(
T 1)2/Rad(H)3

)
i,j

)
which is a subspace of

Morar

(
kr ⊕

(
Ext2A

(
Vi, Vj

)∗)
, T 1/Rad

(
T 1)3).

Denote by T 2 the free matrix algebra (quiver), in âr , generated by Ext2A(Vi, Vj)
∗, just like the construction of T 1

above, such that

T 2/Rad
(
T 2)2 = kr ⊕

(
Ext2A

(
Vi, Vj

)∗)
.

We may now state and prove the main result of this paper.
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Theorem 11. (i) For any finite family of (finite dimensional) A-modules, V := {Vi}i=1,...,r , there is a homomor-
phism ρ̃, making the following diagram commutative

A

ρV

exp(δ)
H
ρ̄

Endk(V )
(
Hi,j ⊗Homk

(
Vi, Vj

))
,

such that the versal family ρ̃ = exp(δ) ◦ ρ̄.
(ii) Moreover, H = (Hi,j) may be constructed recursively, as a quotient of T 1 = (T 1

i,j), by annihilating a series of
obstructions, on, defining a morphism in ar , o : T 2 → T 1, such that H 	 T 1 ⊗T 2 kr .

Proof. We have above constructed an obstruction for lifting ρ1 to a ρ2. It is a unique element;

o2 ∈ Morar

(
kr ⊕

(
Ext2A

(
Vi, Vj

)∗)
T 1/Rad

(
T 1)3).

Obviously, the image

o2

((
Ext2A

(
Vi, Vj

)∗) ⊂ T 1/Rad
(
T 1)3)

generates an ideal of T 1, contained in Rad(T 1)2. Call it σ2, and put

H(2) = T 1/
(
Rad

(
T 1)3 + σ2

)
.

Then, there is a commutative diagram

I D1(I) D2(I) · · ·

F

μ

η1 D1(F )

μ1

D2(F )

μ2

A

ρ̃1

η1 D1(A)

ρ1

H2(A)

ρ̄2

O1 O2 =
(
H(2)i,j ⊗Homk

(
Vi, Vj

))
.

In fact, since we have divided out with the obstruction, we know that the morphism

O(2) : I/I2 −→
(
Rad

(
T 1)2/Rad

(
T 1)3 + σ2

)
i,j
⊗k Homk

(
Vi, Vj

)
is the restriction of a derivation

ψ′
2 : F −→

(
Rad

(
T 1)2/Rad

(
T 1)3 + σ2

)
i,j
⊗k Homk

(
Vi, Vj

)
.

Now change the morphism ρ′2, to ρ′′2 mapping d2xi to ρ′2(d2xi) − 2ψ2(xi). It is easily seen that for this new
morphism, η2 ◦ ρ′2 is zero, restricted to I, proving the existence of ρ̄2. Recall that D1(A) = H1.

Now ρ̄2 defines ρ̃2 := η2 ◦ ρ2. Let σ′3 be the two-sided ideal in T 1 generated by

Rad
(
T 1)4 +Rad

(
T 1)σ2 + σ2 Rad

(
T 1)

and let us put

H ′(3) := T 1/σ′3, O′(3) :=
(
H ′(3)⊗k Homk

(
Vi, Vj

))
.
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The diagram above induces a commutative diagram, ρ′3, constructed as above, but where ρ̄3 is the problem,

I D2(I) D3(I)

F

μ

η2 D2(F )

μ2

D3(F )

ρ′3

μ3

A

ρ2

η̃2 H2(A)

ρ̄2

H3

ρ̄3

O(2) O′(3).π

Consider now the map η3 ◦ ρ′3 : I → O′(3) ending up in((
Rad

(
T 1)3 + σ2

)
/σ3

)
i,j
⊗k Homk

(
Vi, Vj

)
which clearly is killed by Rad(O′(3)), and therefore really is a matrix of vector spaces, as an O′(3)-module. As
above, this map is easily seen to be a left and right linear map as F -modules, F acting onO(3) via η̃3 : F → D3(F ).
Moreover, the induced element

o3 ∈
((

Rad
(
T 1)3 + σ2

)
/σ′3
)
i,j
⊗k Ext2A

(
Vi, Vj

)
=
(
Homk

(
Ext2A

(
Vi, Vj

)∗
,
(
Rad

(
T 1)3 + σ2

)
/σ′3
)
i,j

)
is independent on the choice of ρ′3. Now, we define H(3) := H ′(3)/σ3, where σ3 is defined by the image of o3, and
define κ : O′(3)→ O(3) as above. Since, by functoriality, the morphism

η3 ◦ ρ′3κ : I −→ O(3)

must induce the zero element in the corresponding(
Ext1A

(
Vi, Vj

)⊗ ((Rad
(
T 1)3 + σ2

)
/σ′3
)
i,j

)
/imo3,

it must be the restriction of a derivation ξ : F → O(3). Now change ρ′3 by sending d3xi to ρ′3(d3xi) − 3!ψ3(xi),

leaving the other values of the parameters unchanged. Then, a little calculation shows that the new ρ′3 maps each
η3(f), f ∈ I, to zero, inducing a morphism ρ̄3 : H3 → O(3). We now have a new situation, given by a commutative
diagram, not yet including ρ4,

I D3(I) D4(I)

F

μ

η̃3 D3(F )

μ3

D4(F )

ρ′4

μ4

A

ρ̃3

η̃3 H3

ρ̄3

H4

ρ̄4

O(3) O′(4)π

and it is clear how to proceed. This proves (i), and the rest is a consequence of the general theorem [3, Theo-
rem 4.2.4].

We cannot replace H by D. This follows from the trivial Example 4(iii) above. However, if we are in a graded
situation, things are nicer.



18 Journal of Generalized Lie Theory and Applications

Corollary 12. Assume that A is a finitely generated, graded, in degree 1, k-algebra, and assume that V is a family
of graded A-modules. Then there is a corresponding graded formal moduli (Hi,j)

gr, and there is a commutative
diagram,

A

ρV

exp(δ)
D
ρ̄gr

Endk(V )
(
Hgr
i,j ⊗Homk

(
Vi, Vj

))
,

such that the graded versal family ρ̃gr = exp(δ) ◦ ρ̄gr.
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