Research Article Phase Spaces and Deformation Theory*

Olav Arnfinn Laudal

Institute of Mathematics, University of Oslo, P.O. Box 1053, Blindern, 0316 Oslo, Norway Address correspondence to Olav Arnfinn Laudal, arnfinnl@math.uio.no

Received 7 October 2009; Accepted 10 December 2010

Abstract We have previously introduced the notion of non-commutative phase space (algebra) associated to any associative algebra, defined over a field. The purpose of the present paper is to prove that this construction is useful in non-commutative deformation theory for the construction of the versal family of finite families of modules. In particular, we obtain a much better understanding of the obstruction calculus, that is, of the Massey products.

MSC 2010: 12H20, 14A22, 14D15, 14H15, 14R10, 16D10, 16D60, 16G30, 32G34, 34A26, 81-xx, 83-xx

1 Introduction

In [8], we sketched a physical "toy model," where the space-time of classical physics became a section of a universal fiber space \tilde{E} , defined on the moduli space $\underline{H} = \operatorname{Simp}(H)$ of the physical systems we chose to consider (in this case, the systems composed of an observer and an observed, both sitting in a Euclidean 3-space). This moduli space was called the *time-space*. Time, in this mathematical model, was defined to be a metric ρ on the time-space, measuring all possible infinitesimal changes of *the state* of the objects in the family we are studying. This gave us a model of relativity theory, in which the set of all (relative) velocities turned out to be a projective space. Dynamics was introduced into this picture, via the general construction, for any associative algebra A, of a *phase space* $\operatorname{Ph}(A)$. This is a universal pair of a homomorphism of algebras, $\iota : A \to \operatorname{Ph}(A)$, and a derivation, $d : A \to \operatorname{Ph}(A)$, such that for any homomorphism of A into a k-algebra R, the derivations of A in R are induced by unique homomorphisms $\operatorname{Ph}(A) \to R$, composed with d. Iterating this $\operatorname{Ph}(-)$ -construction, we obtained a limit morphism $\iota(n) : \operatorname{Ph}^n(A) \to \operatorname{Ph}^\infty(A)$ with image $\operatorname{Ph}^{(n)}(A)$, and a universal derivation $\delta \in \operatorname{Der}_k(\operatorname{Ph}^\infty(A), \operatorname{Ph}^\infty(A))$, the *Dirac*-derivation. A general *dynamical structure of order* n is now a two-sided δ -ideal σ in $\operatorname{Ph}^\infty(A)$ inducing a surjective homomorphism $\operatorname{Ph}^{(n-1)}(A) \to \operatorname{Ph}^\infty(A)$.

In [8] and later in [10], we have shown that, associated to any such *time space* H with a fixed dynamical structure $H(\sigma)$, there is a kind of "Quantum field theory". In particular, we have stressed the point that, if H is the affine ring of a moduli space of the objects we want to study, the ring $Ph^{\infty}(H)$ is the complete ring of observables, containing the parameters not only of the iso-classes of the objects in question, but also of all dynamical parameters. The choice made by fixing the dynamical structure σ , and reducing to the *k*-algebra $H(\sigma)$, would classically correspond to the introduction of a parsimony principle (e.g. to the choice of some Lagrangian).

The purpose of this paper is to study this phase-space construction in greater detail. There is a natural descending filtration of two-sided ideals, $\{\mathcal{F}_n\}_{0 \le n}$ of $Ph^{\infty}(A)$. The corresponding quotients $Ph^n(A)/\mathcal{F}_n$ are finite dimensional vector spaces, and considered as affine varieties; these are our non-commutative Jet-spaces.

We will first see, in Section 2, that we may extend the usual prolongation-projection procedure of Elie Cartan to this non-commutative setting, and obtain a framework for the study of general systems of (non-commutative) PDEs; see also [9].

In Section 3, we present a short introduction to non-commutative deformations of modules, and the generalized Massey products, as exposed in [4,5].

Then, in Section 4, the main part of the paper follows: the construction for finitely generated associative algebras A of the versal family of the non-commutative deformation functor of any finite family of finitely dimensional A-modules, based on the phase-space of a *resolution* of the k-algebra A.

Notice that our $Ph^{\infty}(A)$ is a non-commutative analogue of the notion of higher differentials treated in many texts (see [1] and the more recent paper [2]).

^{*} This article is a part of a Special Issue on Deformation Theory and Applications (A. Makhlouf, E. Paal and A. Stolin, Eds.).

2 Phase spaces and the Dirac derivation

Given a k-algebra A, denote by $A/k - \underline{alg}$ the category where the objects are homomorphisms of k-algebras $\kappa : A \to R$, and the morphisms $\psi : \kappa \to \kappa'$ are commutative diagrams:

and consider the functor

$$\operatorname{Der}_k(A, -): A/k - \operatorname{alg} \longrightarrow \operatorname{\underline{Sets}}$$

defined by $\operatorname{Der}_k(A, \kappa) := \operatorname{Der}_k(A, R)$. It is representable by a k-algebra-morphism, $\iota : A \to \operatorname{Ph}(A)$ with a universal family given by a universal derivation $d : A \to \operatorname{Ph}(A)$. It is easy to construct $\operatorname{Ph}(A)$. In fact, let $\pi : F \to A$ be a surjective homomorphism of algebras, with $F = k \langle t_1, t_2, \ldots, t_r \rangle$, freely generated by the t_i s, and put $I = \ker \pi$. Let,

$$Ph(A) = k \langle t_1, t_2, \dots, t_r, dt_1, dt_2, \dots, dt_r \rangle / (I, dI),$$

where dt_i is a formal variable. Clearly there is a homomorphism $i'_0: F \to Ph(A)$ and a derivation $d': F \to Ph(A)$, defined by putting $d'(t_i) = cl(dt_i)$, the equivalence class of dt_i . Since i'_0 and d' both kill the ideal *I*, they define a homomorphism $i_0: A \to Ph(A)$ and a derivation $d: A \to Ph(A)$. To see that i_0 and d have the universal property, let $\kappa: A \to R$ be an object of the category A/k - alg. Any derivation $\xi: A \to R$ defines a derivation $\xi': F \to R$, mapping t_i to $\xi'(t_i)$. Let $\rho_{\xi'}: k\langle t_1, t_2, \ldots, t_r, dt_1, \overline{dt_2}, \ldots, dt_r \rangle \to R$ be the homomorphism defined by

$$\rho_{\xi'}(t_i) = \kappa(\pi(t_i)), \quad \rho_{\xi'}(dt_i) = \xi(\pi(t_i)),$$

where $\rho_{\xi'}$ sends *I* and *dI* to zero, and so defines a homomorphism $\rho_{\xi} : Ph(A) \to R$, such that the composition with $d : A \to Ph(A)$ is ξ . The unicity is a consequence of the fact that the images of i_0 and *d* generate Ph(A) as *k*-algebra.

Clearly Ph(-) is a covariant functor on k - alg, and we have the identities,

$$d_* : \operatorname{Der}_k(A, A) = \operatorname{Mor}_A (\operatorname{Ph}(A), A),$$

$$d^* : \operatorname{Der}_k (A, \operatorname{Ph}(A)) = \operatorname{End}_A (\operatorname{Ph}(A)),$$

with the last one associating d to the identity endomorphism of Ph(A). In particular, we see that i_0 has a cosection, $\sigma_0 : Ph(A) \to A$, corresponding to the trivial (zero) derivation of A.

Let now V be a right A-module, with the structure morphism $\rho(V) =: \rho : A \to \text{End}_k(V)$. We obtain a universal derivation:

$$u(V) =: u : A \longrightarrow \operatorname{Hom}_k (V, V \otimes_A \operatorname{Ph}(A)),$$

defined by $u(a)(v) = v \otimes d(a)$. Using the long exact sequence

$$0 \longrightarrow \operatorname{Hom}_{A} \left(V, V \otimes_{A} \operatorname{Ph}(A) \right) \longrightarrow \operatorname{Hom}_{k} \left(V, V \otimes_{A} \operatorname{Ph}(A) \right)$$
$$\stackrel{\iota}{\longrightarrow} \operatorname{Der}_{k} \left(A, \operatorname{Hom}_{k} \left(V, V \otimes_{A} \operatorname{Ph}(A) \right) \right) \stackrel{\kappa}{\longrightarrow} \operatorname{Ext}_{A}^{1} \left(V, V \otimes_{A} \operatorname{Ph}(A) \right) \longrightarrow 0,$$

we obtain the non-commutative Kodaira-Spencer class

$$c(V) := \kappa(u(V)) \in \operatorname{Ext}_{A}^{1}(V, V \otimes_{A} \operatorname{Ph}(A)),$$

inducing the Kodaira-Spencer morphism

$$g: \Theta_A := \operatorname{Der}_k(A, A) \longrightarrow \operatorname{Ext}^1_A(V, V)$$

via the identity d_* . If c(V) = 0, then the exact sequence above proves that there exist a $\nabla \in \text{Hom}_k(V, V \otimes_A \text{Ph}(A))$ such that $u = \iota(\nabla)$. This is just another way of proving that c(V) is the obstruction for the existence of a connection,

$$\nabla : \operatorname{Der}_k(A, A) \longrightarrow \operatorname{Hom}_k(V, V).$$

It is well known, I think, that in the commutative case, the Kodaira-Spencer class gives rise to a Chern character by putting

$$\operatorname{ch}^{i}(V) := 1/i! c^{i}(V) \in \operatorname{Ext}^{i}_{A}(V, V \otimes_{A} \operatorname{Ph}(A))$$

and that if c(V) = 0, the curvature $R(\nabla)$ of the connection ∇ induces a curvature class in a generalized Lie-algebra cohomology:

$$R_{\nabla} \in H^2(k, A; \Theta_A, \operatorname{End}_A(V)).$$

Any Ph(A)-module W, given by its structure map,

$$\rho(W)^1 =: \rho^1 : \operatorname{Ph}(A) \longrightarrow \operatorname{End}_k(W)$$

corresponds bijectively to an induced A-module structure $\rho : A \to \operatorname{End}_k(W)$, together with a derivation $\delta_{\rho} \in \operatorname{Der}_k(A, \operatorname{End}_k(W))$, defining an element $[\delta_{\rho}] \in \operatorname{Ext}_A^1(W, W)$. Fixing this last element, we find that the set of $\operatorname{Ph}(A)$ -module structures on the A-module W is in one-to-one correspondence with $\operatorname{End}_k(W)/\operatorname{End}_A(W)$. Conversely, starting with an A-module V and an element $\delta \in \operatorname{Der}_k(A, \operatorname{End}_k(V))$, we obtain a $\operatorname{Ph}(A)$ -module V_{δ} . It is then easy to see that the kernel of the natural map

$$\operatorname{Ext}^{1}_{\operatorname{Ph}(A)}(V_{\delta}, V_{\delta}) \longrightarrow \operatorname{Ext}^{1}_{A}(V, V)$$

induced by the linear map

$$\operatorname{Der}_k\left(\operatorname{Ph}(A), \operatorname{End}_k\left(V_{\delta}\right)\right) \longrightarrow \operatorname{Der}_k\left(A, \operatorname{End}_k(V)\right)$$

is the quotient

$$\operatorname{Der}_{A}(\operatorname{Ph}(A), \operatorname{End}_{k}(V_{\delta})) / \operatorname{End}_{k}(V)$$

and the image is a subspace $[\delta_{\rho}]^{\perp} \subseteq \operatorname{Ext}_{A}^{1}(V, V)$, which is rather easy to compute; see examples below.

Remark 1. Defining *time* as a metric on the moduli space, Simp(A), of simple A-modules, in line with the philosophy of [8], noticing that $Ext_A^1(V, V)$ is the tangent space of Simp(A) at the point corresponding to V, we see that the non-commutative space Ph(A) also parametrizes the set of *generalized momenta*, that is, the set of pairs of a point $V \in Simp(A)$, and a tangent vector at that point.

Example 2. (i) Let A = k[t], then obviously, $Ph(A) = k\langle t, dt \rangle$ and d is given by d(t) = dt, such that for $f \in k[t]$, we find $d(f) = J_t(f)$ with the notations of [7], that is, the non-commutative derivation of f with respect to t. One should also compare this with the non-commutative Taylor formula of loc.cit. If $V \simeq k^2$ is an A-module, defined by the matrix $X \in M_2(k)$, and $\delta \in Der_k(A, End_k(V))$ is defined in terms of the matrix $Y \in M_2(k)$, then the Ph(A)-module V_{δ} is the $k\langle t, dt \rangle$ -module defined by the action of the two matrices $X, Y \in M_2(k)$, and we find

$$e_{V}^{1} := \dim_{k} \operatorname{Ext}_{A}^{1}(V, V) = \dim_{k} \operatorname{End}_{A}(V) = \dim_{k} \left\{ Z \in M_{2}(k) \mid [X, Z] = 0 \right\},\\ e_{V_{\delta}}^{1} := \dim_{k} \operatorname{Ext}_{Ph(A)}^{1} \left(V_{\delta}, V_{\delta} \right) = 8 - 4 + \dim \left\{ Z \in M_{2}(k) \mid [X, Z] = [Y, Z] = 0 \right\}$$

We have the following inequalities:

$$2 \le e_V^1 \le 4 \le e_{V_\delta}^1 \le 8.$$

(ii) Let $A = k[t_1, t_2]$, then we find

$$Ph(A) = k \langle t_1, t_2, dt_1, dt_2 \rangle / ([t_1, t_2], [dt_1, t_2] + [t_1, dt_2]).$$

In particular, we have a surjective homomorphism

$$Ph(A) \longrightarrow k\langle t_1, t_2, dt_1, dt_2 \rangle / ([t_1, t_2], [dt_1, dt_2], [t_i, dt_i] - 1),$$

with the right-hand side algebra being the Weyl algebra. This homomorphism exists in all dimensions. We also have a surjective homomorphism,

$$\operatorname{Ph}(A) \longrightarrow k[t_1, t_2, \xi_1, \xi_2],$$

that is, onto the affine algebra of the classical phase-space.

The phase-space construction may, of course, be iterated. Given the k-algebra A, we may form the sequence $\{Ph^n(A)\}_{0 \le n}$, defined inductively by

$$\operatorname{Ph}^{0}(A) = A, \quad \operatorname{Ph}^{1}(A) = \operatorname{Ph}(A), \dots, \operatorname{Ph}^{n+1}(A) := \operatorname{Ph}\left(\operatorname{Ph}^{n}(A)\right).$$

Let $i_0^n : \operatorname{Ph}^n(A) \to \operatorname{Ph}^{n+1}(A)$ be the canonical imbedding, and let $d_n : \operatorname{Ph}^n(A) \to \operatorname{Ph}^{n+1}(A)$ be the corresponding derivation. Since the composition of i_0^n and the derivation d_{n+1} is a derivation $\operatorname{Ph}^n(A) \to \operatorname{Ph}^{n+2}(A)$, there exists by universality a homomorphism $i_1^{n+1} : \operatorname{Ph}^{n+1}(A) \to \operatorname{Ph}^{n+2}(A)$, such that

$$d_n \circ i_1^{n+1} = i_0^n \circ d_{n+1}.$$

Notice that we compose functions and functors from left to right. Clearly, we may continue this process constructing new homomorphisms

$$\left\{i_j^n : \operatorname{Ph}^n(A) \longrightarrow \operatorname{Ph}^{n+1}(A)\right\}_{0 \le j \le m}$$

with the property

$$d_n \circ i_{j+1}^{n+1} = i_j^n \circ d_{n+1}.$$

Notice also that we have the "bi-gone" $i_0^0 i_0^1 = i_0^0 i_1^1$ and the "hexagone"

$$i_0^1 i_0^2 = i_0^1 i_1^2, \quad i_1^1 i_0^2 = i_0^1 i_2^2, \quad i_1^1 i_1^2 = i_1^1 i_2^2$$

and, in general,

$$i_{p}^{n}i_{q}^{n+1} = i_{q-1}^{n}i_{p}^{n+1} \quad (p < q), \quad i_{p}^{n}i_{p}^{n+1} = i_{p}^{n}i_{p+1}^{n+1}, \quad i_{p}^{n}i_{q}^{n+1} = i_{q}^{n}i_{p+1}^{n+1} \quad (q < p)$$

which is all easily proved by composing with i_0^{n-1} and d_{n-1} . Thus, the Ph^{*}(A) is a semi-cosimplicial algebra with a cosection onto A. Therefore, for any object

$$\kappa: A \longrightarrow R \in A/k - alg$$

the semi-cosimplicial algebra above induces a semi-simplicial k-vector space, $\text{Der}_k(\text{Ph}^*(A), R)$, and one should be interested in its homology.

The system of k-algebras and homomorphisms of k-algebras $\{Ph^n(A), i_j^n\}_{n,0 \le j \le n}$ has an inductive (direct) limit, $Ph^{\infty}(A)$, together with homomorphisms $i_n : Ph^n(A) \to Ph^{\infty}(A)$ satisfying

$$i_j^n \circ i_{n+1} = i_n, \quad j = 0, 1, \dots, n$$

Moreover, the family of derivations $\{d_n\}_{0 \le n}$ define a unique derivation $\delta : \operatorname{Ph}^{\infty}(A) \to \operatorname{Ph}^{\infty}(A)$, such that $i_n \circ \delta = d_n \circ i_{n+1}$. Put

$$\operatorname{Ph}^{(n)}(A) := im \, i_n \subseteq \operatorname{Ph}^{\infty}(A).$$

The k-algebra $Ph^{\infty}(A)$ has a descending filtration of two-sided ideals, with $\{\mathcal{F}_n\}_{0 \le n}$ given inductively by

$$\mathcal{F}_1 = \operatorname{Ph}^{\infty}(A) \cdot im(\delta) \cdot \operatorname{Ph}^{\infty}(A),$$
$$\delta \mathcal{F}_n \subseteq \mathcal{F}_{n+1}, \quad \mathcal{F}_{n_1} \mathcal{F}_{n_2} \cdot \mathcal{F}_{n_r} \subseteq \mathcal{F}_n, \quad n_1 + \dots + n_r = n_r$$

such that the derivation δ induces derivations $\delta_n : \mathcal{F}_n \to \mathcal{F}_{n+1}$. Using the canonical homomorphism $i_n : \operatorname{Ph}^n(A) \to \operatorname{Ph}^{\infty}(A)$, we pull the filtration $\{\mathcal{F}_p\}_{0 \le p}$ back to $\operatorname{Ph}^n(A)$, not bothering to change the notation.

Definition 3. Let $\mathcal{D}(A) := \lim_{k \to n \ge 1} Ph^{\infty}(A) / \mathcal{F}_n$ be the completion of $Ph^{\infty}(A)$ in the topology given by the filtration $\{\mathcal{F}_n\}_{0 \le n}$. The k-algebra $Ph^{\infty}(A)$ will be referred to as the k-algebra of higher differentials, and $\mathcal{D}(A)$ will be called the k-algebra of formalized higher differentials. Put

$$\mathcal{D}_n := \mathcal{D}_n(A) := \mathrm{Ph}^\infty(A) / \mathcal{F}_{n+1}.$$

Clearly, δ defines a derivation on $\mathcal{D}(A)$, and an isomorphism of k-algebras

$$a := \exp(\delta) : \mathcal{D}(A) \longrightarrow \mathcal{D}(A)$$

and, in particular, an algebra homomorphism

$$\tilde{\eta} := \exp(\delta) : A \longrightarrow \mathcal{D}(A),$$

inducing the algebra homomorphisms

$$\tilde{\eta}_n : A \longrightarrow \mathcal{D}_n(A)$$

which, by killing, in the right-hand side algebra, the image of the maximal ideal, $\mathfrak{m}(\underline{t})$, of A corresponding to a point $\underline{t} \in \text{Simp}_1(A)$, induces a homomorphism of k-algebras

$$\tilde{\eta}_n(\underline{t}): A \longrightarrow \mathcal{D}_n(A)(\underline{t}) := \mathcal{D}_n / (\mathcal{D}_n \mathfrak{m}(\underline{t}) \mathcal{D}_n)$$

and an injective homomorphism

$$\tilde{\eta}(\underline{t}): A \longrightarrow \varprojlim_{n \ge 1} \mathcal{D}_n(A)(\underline{t});$$

see [8]. More generally, let A be a finitely generated k-algebra and let $\rho : A \to \operatorname{End}_k(V)$ be an n-dimensional representation (e.g. a point of $\operatorname{Simp}_n(A)$) corresponding to a two-sided ideal $\mathfrak{m} = \ker \rho$ of A. Then $\tilde{\eta}$ induces a homomorphism

$$\tilde{\eta}(\mathfrak{m}): A \longrightarrow \mathcal{D}/(\mathcal{D}\mathfrak{m}\mathcal{D})$$

and we will be interested in the image; see Section 4.

The k-algebras $Ph^n(A)$ are our generalized jet spaces. In fact, any homomorphism of A-algebras

$$P_n: \operatorname{Ph}^n(A) \longrightarrow A$$

composed with

$$\delta^n : A \longrightarrow \operatorname{Ph}^n(A)$$

is a usual differential operator of order $\leq n$ on A. Notice also the commutative diagram

Here the upper vertical morphisms are injective, with the lower line being the sequence of *symbols*.

It is easy to see that the differential operators form an associative k-algebra, Diff(A). In fact, assume two differential operators

$$P_m : \operatorname{Ph}^m(A) \longrightarrow A, \quad P_n : \operatorname{Ph}^n(A) \longrightarrow A,$$

and consider the functorially defined diagram

then the product is defined by the composition

$$P_m P_n = \operatorname{Ph}^{(n)}(P_m) \circ P_n.$$

Let now V be, as above, a right A-module, with structure morphism $\rho(V) : A \to \operatorname{End}_k(V)$. Consider the linear map

$$\iota_n := id \otimes (i_1 \circ \cdots \circ i_n) : V \otimes_A \operatorname{Ph} A \longrightarrow V \otimes_A \operatorname{Ph}^{n+1}, \quad n \ge 0.$$

Assume that the non-commutative Kodaira-Spencer class, defined above,

$$c(V) := \kappa(u(V)) \in \operatorname{Ext}_{A}^{1}(V, V \otimes_{A} \operatorname{Ph}(A)),$$

vanishes. Then, as we know, there exist a connection, that is, a linear map

$$\nabla_0 \in \operatorname{Hom}_k (V, V \otimes_A \operatorname{Ph}(A))$$

such that $u(V) = \iota(\nabla_0)$. It is also easy to see that this connection induces higher-*order connections*, that is, k-linear maps,

$$\nabla(n) \in \operatorname{Hom}_k \left(V \otimes_A \operatorname{Ph}^n(A), V \otimes_A \operatorname{Ph}^{n+1}(A) \right), \quad n \ge 0,$$

defined by

$$\nabla(n)(v \otimes f) = \iota_n \big(\nabla_0(v) \big) i_0(f) + v \otimes d_n(f)$$

In fact, we just have to prove that $\nabla(n)$ is well defined, that is, we have to prove that

$$\nabla(n)(va \otimes f) = \nabla(n)(v \otimes af), \quad \forall a \in A, \ f \in Ph^n(A).$$

Noticing that

$$\iota_n\big(v\otimes d_0(a)\big)=v\otimes d_n(a),$$

where we have put $a := i_0 \circ \cdots \circ i_0(a)$, we find

$$\nabla(n)(va \otimes f) = \iota_n (\nabla_0(va))i_0(f) + va \otimes d_n(f)$$

= $\iota_n (\nabla_0(v)i_0(a) + v \otimes da)i_0(f) + v \otimes ad_n f$
= $\iota_n (\nabla_0(v))i_0(af) + v \otimes d_nai_0(f) + v \otimes ad_n f$
= $\nabla(n)(v \otimes af).$

These higher-order connections will induce a diagram

where the lower line is the sequence of symbols. Notice that

$$\nabla^n \in \operatorname{Hom}_k(V, V \otimes \operatorname{Ph}^n(A)),$$

as given above, by definition has the property that for all $a \in A$ and all $v \in V$ we have

$$\nabla^n(va) = \nabla^n(v)a + \nabla^{n-1}(v)da + \dots + v \otimes d^n(a).$$

Assume, in particular, that V and the A-module W are free of ranks p and q, respectively. Let $\{P_{i,j}\}_{i=1,...,p, j=1,...,q}$ be a family of A-homomorphisms $Ph^n(A) \to A$, defining a generalized differential operator

$$\mathfrak{D} := \begin{pmatrix} P_{1,1} \cdots P_{1,p} \\ \cdots \\ P_{q,1}, \cdots P_{q,p} \end{pmatrix} \circ \nabla^n : V \longrightarrow W.$$

The solution space of \mathfrak{D} is by definition $S(\mathfrak{D}) := \ker \mathfrak{D}$. There are natural generalizations of this set-up, which we will, hopefully, return to in a later paper, extending the classical prolongation-projection method of Elie Cartan to this non-commutative setting. See Example 4 for the commutative analogue.

In [8], we introduced the notion of a dynamical structure for a k-algebra A, as a two-sided δ -stable ideal $\sigma \subset Ph^{\infty}(A)$, or equivalently as the corresponding quotient $A(\sigma)$ of the δ -algebra $Ph^{\infty}(A)$. Any such $A(\sigma)$ will be given in terms of a sequence of ideals, $\sigma_n \subset Ph^n(A)$ $(n \ge 0)$, with the property that $d(\sigma_n) \subset \sigma_{n+1}$. The solution space of such a system, should be considered as the non-commutative scheme parametrized by $A(\sigma)$, that is, as the geometric system of all simple representations of $A(\sigma)$; see [6].

This is, in a sense, dual to the classical theory of PDEs, as we will show by considering the following example, leaving the general situation to the hypothetical paper referred to above.

Example 4 (see [9]). (i) Let $A = k[t_1, t_2, ..., t_n]$, and consider the situation corresponding to a *free particle* (see [8]) that is, where we have obtained $A(\sigma)$ by killing d^2t_i , for every i = 1, 2, ..., n, then the commutativization $A(\sigma)_k^{\text{com}}$ of $A(\sigma)_k := \text{Ph}(A)/\mathcal{F}_{k+1}$ is a free A-module generated by the basis

$$\{dt_{i_1}dt_{i_2}\cdots dt_{i_r}\}_{i_1 < i_2 < \cdots < i_r, \ r < k}$$

Put $|\underline{i}| = r$ if $\underline{i} = \{i_1, i_2, \dots, i_r\}$. The dual basis $\{p_{\underline{i}}\}_{i_1 \leq i_2 \leq \dots \leq i_r, r \leq k}$ may be identified with a basis $D_{\underline{i}}$ of the A-module of all (classical higher-order) differential operators of order less or equal to k. In fact, consider the composition

$$\tilde{\eta}: A \longrightarrow \mathcal{D}(A) \longrightarrow A(\sigma)_k,$$

then, for $f \in A$ we have

$$p_{\underline{i}}(\tilde{\eta}(f)) = \frac{1}{\mu_1!\mu_2!\cdots\mu_s!} D_{j_1}^{\mu_1} D_{j_2}^{\mu_2}\cdots D_{j_r}^{\mu_r}(f),$$

where we assume

and where $D_{i_p}^{\mu_p}$ is μ_p th-order derivation with respect to t_{i_p} . If $\{i_1, i_2, \ldots, i_r\} = \emptyset$, we let $D_{\underline{i}}$ to be the identity operator on A.

Now, consider the commutativization of $A(\sigma)$, as a k-linear space, and for every $k \ge 1$,

$$\mathcal{E}_k := A(\sigma)_k^{\mathrm{com}}$$

as a family of affine spaces fibered over $Simp_1(A)$,

$$\pi_k : \mathcal{E}_k \longrightarrow \operatorname{Spec}(A).$$

This family is defined by the homomorphism of k-algebras

$$A \longrightarrow \mathcal{O}(\mathcal{E}_k) := A[p_{\underline{i}}], \quad [\underline{i}] \le k.$$

Let $P_q(\underline{t}, p_i) \in \mathcal{O}(\mathcal{E}_{k_q}), q = 1, \dots, d$, then the system of equations

$$P_q = 0, \quad q = 1, \dots, d$$

is a system of partial differential equations (an SPDE, for short). Suppose there is a *solution*, that is, an $f \in A$, such that

$$P_q(D_i(f)) = 0, \quad q = 1, \dots, d,$$

then, for every j, we must have

$$D_j(P_q(D_i(f))) = 0$$

which amounts to extending the SPDE by, including together with $P_q \in \mathcal{O}(\mathcal{E}_{k_q})$, the polynomials

$$D_j P_q := \frac{\partial P_q}{\partial t_j} + \sum_i \frac{\partial P_q}{\partial p_{\underline{i}}} \ p_{\underline{i}+j} \in \mathcal{O}\big(\mathcal{E}_{k_q+1}\big),$$

where it should be clear how to interpret the indices. Let us denote by \mathcal{P} the extended family of polynomials,

$$\left\{D_{j_l}\cdots D_{j_1}P_q \mid P_q \in \mathcal{O}(\mathcal{E}_{k_q})\right\}_{j_l,q \ge 0}$$

and let $\mathfrak{p}_m \subset O(\mathcal{E}_m)$ be the ideal, generated by the polynomials in \mathcal{P} , contained in $O(\mathcal{E}_m)$. Denote by $S_m := S_m \mathcal{P} \subset \mathcal{E}_m$ the corresponding subvariety. Clearly, the canonical map $\mathcal{E}_{m+l} \to \mathcal{E}_m$ induced by the trivial derivation of $\operatorname{Ph}^m(A)$ has a canonical restriction $pl_l : S_{m+l} \to S_m$. Denote also by $\pi_k : S_k \to \operatorname{Spec}(A)$ the restriction of the morphism $\pi_k : \mathcal{E}_m \to \operatorname{Spec}(A)$, defined above, to S_k . Classically, the system is called regular if all π_k are fiber bundles, so smooth, for all $k \geq 1$. Now, for any closed point of $\operatorname{Spec}(A)$, that is, for any point $\underline{t} \in \operatorname{Simp}_1(A)$, consider the sequence of fibers over \underline{t} , and the corresponding sequence of maps $pl_1(\underline{t}) : S_{m+1}(\underline{t}) \to S_m(\underline{t})$. An element $\tilde{f} \in \varinjlim_m S_m(\underline{t})$ corresponds exactly to an element $\tilde{f} \in A_{\underline{t}}$, for which,

$$P_q(D_i(\hat{f})) = 0, \quad q = 1, \dots, d$$

that is, to a formal solution of the SPDE. Thus, the projective limit of schemes $SP(\underline{t}) := \varprojlim_m S_m(\underline{t})$ is the space of formal solutions of the SPDE at $\underline{t} \in \text{Simp}_1(A)$.

A fundamental problem in the classical theory of PDE is then the following.

Find necessary and sufficient conditions on the SPDE $\{P_q\}_{q=1,...,d}$ for $S\mathcal{P}(\underline{t})$ to be non-empty, and find, based on $\{P_l\}_l$, its structure. In particular, compute its dimension $\sigma(\underline{t})$.

We will not, here, venture into this vast theory, but just add one remark. The solution space is in fact a family, with parameter-space $\text{Simp}_1(A)$. Given any point $\underline{t} \in \text{Simp}_1(A)$, the (formal) scheme, $SP(\underline{t})$, of formal solutions may have deformations. We might want to compute the formal moduli \underline{H} , and relate the given family to the corresponding mini-versal family.

The tangent space of \underline{H} is given as

$$A^{1}\left(k, \mathcal{O}\left(\mathcal{S}(\mathcal{P})(\underline{t}), \mathcal{O}\left(\mathcal{S}(\mathcal{P})(\underline{t})\right)\right)\right) = \operatorname{Hom}_{\mathcal{O}(\mathcal{E})(\underline{t})}\left(\mathfrak{p}(\underline{t}), \mathcal{O}\left(\mathcal{S}(\mathcal{P})(\underline{t})\right)\right) / \operatorname{Der};$$

see [3]. A tangent at the point \underline{t} of $\operatorname{Simp}_1(A)$ is the value at \underline{t} of a linear combination of the fundamental vector fields, the derivations $\{D_j\}$ of A. The map between the tangent space of the given family and the tangent space of H is then easily seen to be the following:

$$\eta: T_{\operatorname{Simp}_1(A), \underline{t}} \longrightarrow \operatorname{Hom}_{\mathcal{O}(\mathcal{E})(\underline{t})} \left(\mathfrak{p}(\underline{t}), \mathcal{O}(\mathcal{S}(\mathcal{P})(\underline{t})) \right) / \operatorname{Der},$$

where $\eta(D_j)$ is the class of the map, associating a $P \in \mathfrak{p}$ to the class at \underline{t} of $D_j(P)$. The image of the tangent at \underline{t} of $\operatorname{Simp}_1(A)$, corresponding to D_j , in the tangent space of H, is zero if this map is a derivation. Now, this is exactly what we have arranged, together with any $P \in \mathfrak{p}$, and also including

$$D_j P := \frac{\partial P}{\partial t_j} + \sum_i \frac{\partial P}{\partial p_{\underline{i}}} p_{\underline{i}+j}$$

in the ideal p. Thus, the map η is trivial, and the given pro-family is formally constant, as one probably should have suspected! Moreover, it is easy to see that if $pl_1 : S_{k+1}(\underline{t}) \to S_k(\underline{t})$ has a local section, then $\pi_k : S_k \to \text{Spec}(A)$ is formally constant at $\underline{t} \in \text{Spec}(A)$. The basic problem is to find computable conditions under which the constancy of π_k implies the surjectivity of pl_1 , and thereby the non-triviality of $S(\mathcal{P})(\underline{t})$.

We will, hopefully, come back to these questions in a later paper.

(ii) Let $A = k[t]/(t^2)$, then

$$Ph(A) = k\langle t, dt \rangle / (t^2, tdt + dtt),$$

$$Ph^{(2)}(A) = k\langle t, dt, d^2t \rangle / (t^2, tdt + dtt, td^2t + 2dt^2 + d^2tt),$$

$$Ph^{\infty}(A) = k\langle t, dt, \dots, d^nt, \dots \rangle / (t^2, tdt + dtt, \dots, td^nt + ndtd^{n-1}t + \dots + d^ntt, \dots),$$

and it is easy to see that $\eta(t) = \sum_{n} 1/n! d^n(t)$ is non-zero in $\mathcal{D}/(\mathcal{D}(t)\mathcal{D})$, and, of course, $\eta(t)^2 = 0$. In particular, there is a homomorphism onto

$$\mathcal{D}/(\mathcal{D}(t)\mathcal{D}) \longrightarrow k[dt]/(dt^2) \simeq A.$$

(iii) Let now $A = k[x, y]/(x^3 - y^2)$, compute \mathcal{D} , and see that $dy^2 = 0$ in $\mathcal{D}/(\mathcal{D}(x, y)\mathcal{D})$, so that there are no natural surjective homomorphisms $\mathcal{D}/(\mathcal{D}(x, y)\mathcal{D}) \to A$. The map $\tilde{\eta} := \exp(\delta) : A \to \mathcal{D}$ is, however, injective. The difference between examples (i) and (ii) is, of course, due to the fact that in the first case A is graded, and in the second it is not; see Section 4.

3 Non-commutative deformations of families of modules

In [5,6,7], we introduced non-commutative deformations of families of modules of non-commutative k-algebras, and the notion of *swarm* of right modules (or more generally of objects in a k-linear abelian category). Let \underline{a}_r denote the category of r-pointed not necessarily commutative k-algebras R. The objects are the diagrams of k-algebras

$$k^r \xrightarrow{\iota} R \xrightarrow{\pi} k^r$$

such that the composition of ι and π is the identity. Any such *r*-pointed *k*-algebra *R* is isomorphic to a *k*-algebra of $r \times r$ -matrices $(R_{i,j})$. The radical of *R* is the bilateral ideal $\operatorname{Rad}(R) := \ker \pi$, such that $R/\operatorname{Rad}(R) \simeq k^r$. The dual *k*-vector space of $\operatorname{Rad}(R)/\operatorname{Rad}(R)^2$ is called the tangent space of *R*.

For r = 1, there is an obvious inclusion of categories $\underline{l} \subseteq \underline{a}_1$, where \underline{l} , as usual, denotes the category of commutative local Artinian k-algebras with residue field k.

Fix a (not necessarily commutative) associative k-algebra A and consider a right A-module M. The ordinary deformation functor $\text{Def}_M : \underline{l} \to \underline{\text{Sets}}$ is then defined. Assuming $\text{Ext}_A^i(M, M)$ has a finite k-dimension for i = 1, 2, it is well known (see [12] or [5]) that Def_M has a pro-representing hull H, the formal moduli of M. Moreover, the tangent space of H is isomorphic to $\text{Ext}_A^1(M, M)$, and H can be computed in terms of $\text{Ext}_A^i(M, M)$, i = 1, 2, and their matric Massey products; see [5].

In the general case, consider a finite family $\mathcal{V} = \{V_i\}_{i=1}^r$ of right A-modules. Assume that $\dim_k \operatorname{Ext}_A^1(V_i, V_j) < \infty$. Any such family of A-modules will be called a *swarm*. We will define a deformation functor $\operatorname{Def}_{\mathcal{V}} : \underline{a}_r \to \underline{\operatorname{Sets}}$ generalizing the functor Def_M above. Given an object $\pi : R = (R_{i,j}) \to k^r$ of \underline{a}_r , consider the k-vector space and the left R-module $(R_{i,j} \otimes_k V_j)$. It is easy to see that

$$\operatorname{End}_{R}\left(\left(R_{i,j}\otimes_{k}V_{j}\right)\right)\simeq\left(R_{i,j}\otimes_{k}\operatorname{Hom}_{k}\left(V_{i},V_{j}\right)\right).$$

Clearly, π defines a k-linear and left R-linear map

$$\pi(R): (R_{i,j} \otimes_k V_j) \longrightarrow \oplus_{i=1}^r V_i,$$

inducing a homomorphism of R-endomorphism rings,

$$\tilde{\pi}(R): \left(R_{i,j} \otimes_k \operatorname{Hom}_k\left(V_i, V_j\right)\right) \longrightarrow \oplus_{i=1}^r \operatorname{End}_k\left(V_i\right).$$

The right A-module structure on the V_i s is defined by a homomorphism of k-algebras:

$$\eta_0: A \longrightarrow \bigoplus_{i=1}^r \operatorname{End}_k (V_i) \subset (\operatorname{Hom}_k (V_i, V_j)) =: \operatorname{End}_k (V).$$

Notice that this homomorphism also provides each $\operatorname{Hom}_k(V_i, V_j)$ with an A-bimodule structure. Let $\operatorname{Def}_{\mathcal{V}}(R) \in \underline{\operatorname{Sets}}$ be the set of isoclasses of homomorphisms of k-algebras,

$$\eta': A \longrightarrow \left(R_{i,j} \otimes_k \operatorname{Hom}_k\left(V_i, V_j\right)\right)$$

such that $\tilde{\pi}(R) \circ \eta' = \eta_0$, where the equivalence relation is defined by inner automorphisms in the k-algebra $(R_{i,j} \otimes_k \operatorname{Hom}_k(V_i, V_j))$ inducing the identity on $\bigoplus_{i=1}^r \operatorname{End}_k(V_i)$. One easily proves that $\operatorname{Def}_{\mathcal{V}}$ has the same properties as the ordinary deformation functor and we may prove the following theorem (see [5]).

Theorem 5. The functor $Def_{\mathcal{V}}$ has a pro-representable hull, that is, an object H of the category of pro-objects $\underline{\hat{a}_r}$ of $\underline{a_r}$, together with a versal family

$$\tilde{V} = (H_{i,j} \otimes V_j) \in \varprojlim_{n \ge 1} \operatorname{Def}_{\mathcal{V}}(H/\mathfrak{m}^n),$$

where $\mathfrak{m} = \operatorname{Rad}(H)$, such that the corresponding morphism of functors on \underline{a}_r

$$\kappa : \operatorname{Mor}(H, -) \longrightarrow \operatorname{Def}_{\mathcal{V}},$$

defined for $\phi \in Mor(H, R)$ by $\kappa(\phi) = R \otimes_{\phi} \tilde{V}$, is smooth and an isomorphism on the tangent level. Moreover, H is uniquely determined by a set of matric Massey products defined on subspaces

$$D(n) \subseteq \operatorname{Ext}^{1}(V_{i}, V_{j_{1}}) \otimes \cdots \otimes \operatorname{Ext}^{1}(V_{j_{n-1}}, V_{k})$$

with values in $\operatorname{Ext}^2(V_i, V_k)$.

The right action of A on \tilde{V} defines a homomorphism of k-algebras,

$$\eta: A \longrightarrow O(\mathcal{V}) := \operatorname{End}_H(\tilde{V}) = (H_{i,j} \otimes \operatorname{Hom}_k(V_i, V_j))$$

and the k-algebra $O(\mathcal{V})$ acts on the family of A-modules $\mathcal{V} = \{V_i\}$, extending the action of A. If $\dim_k V_i < \infty$, for all $i = 1, \ldots, r$, the operation of associating $(O(\mathcal{V}), \mathcal{V})$ to (A, \mathcal{V}) turns out to be a closure operation.

Moreover, we prove the crucial result.

Theorem 6 (a generalized Burnside theorem). Let A be a finite dimensional k-algebra, with k being an algebraically closed field. Consider the family $\mathcal{V} = \{V_i\}_{i=1}^r$ of all simple A-modules, then

$$\eta: A \longrightarrow O(\mathcal{V}) = (H_{i,j} \otimes \operatorname{Hom}_k(V_i, V_j))$$

is an isomorphism.

We also prove that there exists, in the non-commutative deformation theory, an obvious analogy to the notion of pro-representing (modular) substratum H_0 of the formal moduli H; see [3]. The tangent space of H_0 is determined by a family of subspaces

$$\operatorname{Ext}_{0}^{1}\left(V_{i}, V_{j}\right) \subseteq \operatorname{Ext}_{A}^{1}\left(V_{i}, V_{j}\right), \quad i \neq j,$$

the elements of which should be called the almost split extensions (sequences) relative to the family \mathcal{V} , and by a subspace

$$T_0(\Delta) \subseteq \prod_i \operatorname{Ext}^1_A \left(V_i, V_i \right)$$

which is the tangent space of the deformation functor of the full subcategory of the category of A-modules generated by the family $\mathcal{V} = \{V_i\}_{i=1}^r$; see [4]. If $\mathcal{V} = \{V_i\}_{i=1}^r$ is the set of all indecomposables of some Artinian k-algebra A, we show that the above notion of *almost split sequence* coincides with that of Auslander; see [11].

Using this we consider, in [5,7], the general problem of classification of iterated extensions of a family of modules $\mathcal{V} = \{V_i, \}_{i=1}^r$, and the corresponding classification of filtered modules with graded components in the family \mathcal{V} , and extension type given by a directed representation graph Γ . The main result is the following; see [7].

Proposition 7. Let A be any k-algebra and $\mathcal{V} = \{V_i\}_{i=1}^r$ any swarm of A-modules, such that

$$\dim_k \operatorname{Ext}^1_A (V_i, V_j) < \infty, \quad \forall i, j = 1, \dots, r.$$

- (i) Consider an iterated extension E of V, with representation graph Γ. Then there exists a morphism of k-algebras φ : HV → k[Γ] such that E ≃ k[Γ]⊗_φṼ as right A-algebras.
- (ii) The set of equivalence classes of iterated extensions of V with representation graph Γ is a quotient of the set of closed points of the affine algebraic variety <u>A</u>[Γ] = Mor(HV, k[Γ]).
- (iii) There is a versal family $\tilde{V}[\Gamma]$ of A-modules defined on $\underline{A}[\Gamma]$, containing as fibers all the isomorphism classes of iterated extensions of \mathcal{V} with representation graph Γ .

To any, not necessarily finite, swarm $\underline{c} \subset \underline{\mathrm{mod}}(A)$ of right-A-modules, we have associated two associative k-algebras (see [6,7]):

$$O(|\underline{c}|, \pi) = \varprojlim_{\mathcal{V} \subseteq |\underline{c}|} O(\mathcal{V})$$

and a sub-quotient $\mathcal{O}_{\pi}(\underline{c})$, together with natural k-algebra homomorphisms

$$\eta(|\underline{c}|): A \longrightarrow O(|\underline{c}|, \pi)$$

and $\eta(\underline{c}) : A \to \mathcal{O}_{\pi}(\underline{c})$ with the property that the A-module structure on \underline{c} is extended to an \mathcal{O} -module structure in an optimal way. We then defined an *affine non-commutative scheme* of right A-modules to be a swarm \underline{c} of right A-modules, such that $\eta(\underline{c})$ is an isomorphism. In particular, we considered, for finitely generated k-algebras, the swarm $\operatorname{Simp}_{<\infty}^*(A)$ consisting of the finite dimensional simple A-modules, and the *generic* point A, together with all morphisms between them. The fact that this is a swarm, that is for all objects $V_i, V_j \in \operatorname{Simp}_{<\infty}$ we have $\dim_k \operatorname{Ext}_A^1(V_i, V_j) < \infty$, is easily proved. We have in [7] proved the following result (see [7, Proposition 4.1] for the definition of the notion of *geometric* k-algebra)

Proposition 8. Let A be a geometric k-algebra, then the natural homomorphism

$$\eta(\operatorname{Simp}^*(A)): A \longrightarrow \mathcal{O}_{\pi}(\operatorname{Simp}^*_{<\infty}(A))$$

is an isomorphism, that is, $\operatorname{Simp}_{<\infty}^*(A)$ is a scheme for A.

In particular, $\operatorname{Simp}_{<\infty}^*(k\langle x_1, x_2, \dots, x_d \rangle)$ is a scheme for $k\langle x_1, x_2, \dots, x_d \rangle$. To analyze the local structure of $\operatorname{Simp}_n(A)$, we need the following lemma (see [7, Lemma 3.23]).

Lemma 9. Let $\mathcal{V} = \{V_i\}_{i=1,\dots,r}$ be a finite subset of $\operatorname{Simp}_{<\infty}(A)$, then the morphism of k-algebras,

$$A \longrightarrow O(\mathcal{V}) = (H_{i,j} \otimes_k \operatorname{Hom}_k (V_i, V_j))$$

is topologically surjective.

Proof. Since the simple modules V_i (i = 1, ..., r) are distinct, there is an obvious surjection

$$\eta_0: A \longrightarrow \prod_{i=1,\dots,r} \operatorname{End}_k (V_i).$$

Put $\mathfrak{r} = \ker \eta_0$, and consider for $m \ge 2$ the finite dimensional k-algebra, $B := A/\mathfrak{r}^m$. Clearly, $\operatorname{Simp}(B) = \mathcal{V}$ so that by the generalized Burnside theorem (see [5, Theorem 3.4]) we find

$$B \simeq O^B(\mathcal{V}) := (H^B_{i,j} \otimes_k \operatorname{Hom}_k (V_i, V_j)).$$

Consider the commutative diagram

where all morphisms are natural. In particular α exists since $B = A/\mathfrak{r}^m$ maps into $O^A \mathcal{V} / \operatorname{Rad}^m$, and therefore induces the morphism α commuting with the rest of the morphisms. Consequently, α has to be surjective, and we have proved the contention.

Example 10. As an example of what may occur in rank infinity, we will consider the invariant problem $\mathbf{A}^{1}_{\mathbf{C}}/\mathbf{C}^{*}$. Here we are talking about the algebra $A = \mathbf{C}[x](\mathbf{C}^{*})$ crossed product of $\mathbf{C}[x]$ with the group \mathbf{C}^{*} . If $\lambda \in \mathbf{C}^{*}$, the product in A is given by $x \times \lambda = \lambda \times \lambda^{-1}x$. There are two "points" (i.e. orbits) modeled by the obvious origin $V_{0} := A \to \operatorname{End}_{\mathbf{C}}(\mathbf{C}(0))$, and by $V_{1} := A \to \operatorname{End}_{\mathbf{C}}(\mathbf{C}[x, x^{-1}])$. We may also choose the two points $V_{0} := \mathbf{C}(0), V_{1} := \mathbf{C}[x]$, in line with the definitions of [6]. Obviously, $\mathbf{C}[x]$ corresponds to the closure of the orbit $\mathbf{C}[x, x^{-1}]$. This choice is the best if we want to make visible the adjacencies in the quotient, and we will therefore treat both cases. We need to compute

$$\operatorname{Ext}_{A}^{p}(V_{i}, V_{j}), \quad p = 1, 2, \ i, j = 1, 2.$$

Now,

$$\operatorname{Ext}_{A}^{1}(V_{i}, V_{j}) = \operatorname{Der}_{\mathbf{C}}(A, \operatorname{Hom}_{\mathbf{C}}(V_{i}, V_{j})) / \operatorname{Triv}, \quad i, j = 1, 2$$

and since x acts as zero on V_1 , and \mathbf{C}^* acts as identity on V_1 and as a homogenous multiplication on V_0 , we find

$$\operatorname{Der}_k(A, \operatorname{Hom}_k(V_0, V_0))/\operatorname{Triv} = \operatorname{Der}_k(A, \operatorname{Hom}_k(V_0, V_0)) = \operatorname{Der}_{\mathbf{C}}(A, \mathbf{C}(0)).$$

Any $\delta \in \text{Der}_k(A, \mathbf{C}(0))$ is determined by its values $\delta(x), \delta(\lambda) \in \mathbf{C}(0) \mid \lambda \in \mathbf{C}^*$. Moreover, since in A we have $(\lambda) \times (\lambda^{-1}x) = x \times (\lambda)$, we find

$$\delta(\lambda\mu) = \delta(\lambda) + \delta(\mu), \quad \delta\bigl((\lambda) \times \bigl(\lambda^{-1}x\bigr)\bigr) = \delta\bigl(x \times (\lambda)\bigr).$$

The left-hand side of the last equation is $\delta((\lambda^{-1}x)) = \lambda^{-1}\delta(x)$, and the right-hand side is $\delta(x)$, and since this must hold for all $\lambda \in \mathbf{C}^*$, we must have $\delta(x) = 0$. Moreover, since $\delta(\lambda\mu) = \delta(\lambda) + \delta(\mu)$, it is clear that the continuity of δ implies that δ must be equal to $\alpha \ln(|\cdot|)$, for some $\alpha \in \mathbf{C}$. (To simplify the writing, we will put $\log := \ln(|\cdot|)$.) Therefore,

$$\operatorname{Ext}_{A}^{1}\left(V_{0}, V_{0}\right) = \operatorname{Der}_{k}\left(A, \operatorname{Hom}_{\mathbf{C}}\left(V_{0}, V_{0}\right)\right) = \mathbf{C}$$

The cup-product of this class, $\log \cup \log$, sits in $HH^2(A, \mathbf{C}(0)) = \operatorname{Ext}_a^2(V_0, V_0)$, and is given by the 2-cocycle

$$(\lambda, \mu) \longrightarrow \log(\lambda) \times \log(\mu).$$

This is seen to be a boundary, that is, there exists a map $\psi : \mathbf{C}^* \to \mathbf{C}(0)$, such that for all $\lambda, \mu \in \mathbf{C}^*$ we have

$$\log(\lambda) \times \log(\mu) = \psi(\lambda) - \psi(\lambda\mu) + \psi(\mu).$$

Just put $\psi_{1,1} := \psi_2 = -1/2 \log^2$. Therefore, the cup product is zero, and if we, in general, put

$$\psi_n := \psi_{1,1,\dots,1} = (-)^{n+1} 1/(n!) \log^n, \quad n \ge 1,$$

where n is the number of 1s in the first index, then computing the Massey products of the element $\log \in \operatorname{Ext}_{A}^{1}(V_{0}, V_{0})$, we find the *n*th Massey product

$$\left[\log, \log, \dots, \log\right] = \left\{ (\lambda, \mu) \longrightarrow \sum_{p=1,\dots,n-1} \psi_p \psi_{n-p} \right\}$$

and this is easily seen to be the boundary of the 1-cochain

$$\psi_{n+1} = (-)^{n+2} 1/((n+1)!) \log^{n+1}$$

Therefore, all Massey products are zero. Of course, we have not yet proved that they could be different from zero, that is, we have not computed the *obstruction* group $\operatorname{Ext}_{A}^{2}(V_{0}, V_{0})$ and found it non-trivial! Now this is unnecessary.

Now, assume first $V_0 = \mathbf{C}[x, x^{-1}]$, then every

$$\delta \in \operatorname{Ext}_{A}^{1}(V_{0}, V_{0}) = \operatorname{Der}_{\mathbf{C}}(A, \operatorname{Hom}_{\mathbf{C}}(V_{0}, V_{0})) / \operatorname{Triv}$$

is determined by the values of $\delta(x)$ and $\delta(\lambda)$, $\lambda \in \mathbb{C}^*$. Since $\operatorname{Ext}^1_{\mathbb{C}[x]}(V_0, V_1) = 0$, we may find a trivial derivation such that subtracting from δ we may assume $\delta(x) = 0$. But then the formula

$$\delta(x \times \lambda) = \delta(\lambda \times (\lambda^{-1}x))$$

implies

$$x\delta(\lambda) = \delta(\lambda) \left(\lambda^{-1} x\right)$$

from which it follows that

$$\delta(\lambda)(x^p) = (\lambda^{-1}x)^p \delta(\lambda)(1)$$

Now, since $\lambda \mu = \mu \lambda$ in \mathbf{C}^* , we find

$$\left(\lambda^{-1}\mu x\right)^p \delta(\lambda)(1)(\mu x) = \left(\lambda\mu^{-1}x\right)^p \delta(\lambda)(1)(\lambda x)$$

which should hold for any pair of $\mu, \lambda \in \mathbb{C}^*$, and any p. This obviously implies $\delta = 0$.

This argument shows not only that

$$\operatorname{Ext}_{A}^{1}(V_{1}, V_{1}) = \operatorname{Der}_{\mathbf{C}}(A, \operatorname{Hom}_{\mathbf{C}}(V_{1}, V_{1})) / \operatorname{Triv} = 0$$

when $V_1 = \mathbf{C}[x, x^{-1}]$, but also when $V_1 = \mathbf{C}[x]$. Finally, we find that the formula above,

$$x\delta(\lambda) = \delta(\lambda) \left(\lambda^{-1} x\right),$$

shows that for

$$\delta \in \operatorname{Ext}_{A}^{1}(V_{1}, V_{0}) = \operatorname{Der}_{\mathbf{C}}(A, \operatorname{Hom}_{\mathbf{C}}(V_{1}, V_{0})) / \operatorname{Triv}$$

we have $\delta(\lambda)(xx^p) = 0$ for all p. Therefore,

$$\operatorname{Ext}_{A}^{1}(V_{1}, V_{0}) = \operatorname{Der}_{\mathbf{C}}(A, \operatorname{Hom}_{\mathbf{C}}(V_{1}, V_{0})) / \operatorname{Triv} = 0$$

when $V_1 = \mathbf{C}[x, x^{-1}]$. However, when $V_1 = \mathbf{C}[x]$, we find that δ with $\delta(\lambda)(1) \neq 0$ and with $\delta(\lambda)(x^p) = 0$, for $p \geq 1$, survives. These will, as above, give rise to a logarithm of the real part of \mathbf{C}^* . Therefore, in this case $\operatorname{Ext}^1_A(V_1, V_0) = \mathbf{C}$. The miniversal families look like

$$H = \begin{pmatrix} \mathbf{C} \begin{bmatrix} [t] \end{bmatrix} & \mathbf{0} \\ 0 & \mathbf{C} \end{pmatrix}$$

when $V_1 = \mathbf{C}[x, x^{-1}]$, and like

$$H = \begin{pmatrix} \mathbf{C} \begin{bmatrix} [t] \end{bmatrix} & 0 \\ \langle \mathbf{C} \rangle & \mathbf{C} \end{pmatrix}$$

when $V_1 = \mathbf{C}[x]$.

4 The infinite phase space construction and Massey products

Let, as above, $\mathcal{V} = \{V_i\}_{i=1,...,r}$ be a family of A-modules. To compute the relevant cohomology for the deformation theory, that is, the $\operatorname{Ext}_A^*(V_i, V_j)$, we may use the Leray spectral sequence of [3], together with the formulas

$$\operatorname{Ext}_{A}^{n}(V_{i}, V_{j}) = HH^{n+1}(k, A; \operatorname{Hom}_{k}(V_{i}, V_{j})),$$
$$HH^{n+1}(k, A; W) = \varprojlim_{\operatorname{Free}/A} {}^{(n)}\operatorname{Der}_{k}(-, W), \quad n > 0.$$

where W is any A-bimodule. Choose a surjective morphism $\mu : F \to A$ of a free k-algebra F onto A, and put $I = \ker \mu$, then we find that

$$HH^{3}(k, A; W) = \underbrace{\lim_{\underline{\mathrm{Free}}/A}}^{(2)} \operatorname{Der}_{k}(-, W) = \operatorname{Hom}_{F}(I/I^{2}, \ker \mu) / \operatorname{Der},$$
$$\operatorname{Ext}_{A}^{2}(V_{i}, V_{j}) = \operatorname{Hom}_{F}(I/I^{2}, \operatorname{Hom}_{k}(V_{i}, V_{j})) / \operatorname{Der},$$

where Der is the restriction of the derivations, $\text{Der}_k(F, -)$, to I/I^2 . Moreover, consider a commutative diagram of homomorphisms of algebras, in which $\tilde{\rho}$ is not yet included

and where $J := \ker \pi$ has square 0. The composition map $O : I/I^2 \to \ker \pi$ induces an element $o \in HH^3(k, A; J)$, independent upon the choice of ρ' . If this (obstruction) element vanishes, then O is the restriction to I of a derivation $\xi : F \to \ker \pi$. Subtracting this from ρ' , we may assume that $\rho'(I) = 0$, so there exists a lifting $\tilde{\rho}$ of ρ . If there exists a lifting $\tilde{\rho}$, then we may obviously assume that O = 0.

Now, let $\{\psi_{i,j}(l) \in \text{Der}_k(A; V_i, V_j)\}_{l=1,...,d_{i,j}}$ represent a basis of $\text{Ext}_A^1(V_i, V_j)$, and let $E_{i,j} := \{t_{i,j}(l)\}_{l=1,...,d_{i,j}}$ denote the dual basis. Consider, the free matrix k-algebra (quiver) $(T_{i,j}^1)$, generated in slot (i, j) by the (formal) elements of $E_{i,j}$. There is a unique homomorphism

$$\pi: T^{1} := (T_{i,j}) \longrightarrow \begin{pmatrix} k \ 0 \ \cdots \ 0 \\ 0 \ k \ \cdots \ 0 \\ 0 \ \cdots \ k \end{pmatrix}$$

Denote by the same letter the completion of T^1 with respect to the powers of the radical $\operatorname{Rad}(T^1) := \ker \pi$. Then $T^1 \in \underline{\hat{a}}_r$. Consider the k-algebra and the π -induced homomorphism

$$\pi_1: \left(T_{i,j}^1 \otimes_k \operatorname{Hom}_k\left(V_i, V_j\right)\right) \longrightarrow \left(\operatorname{Hom}_k\left(V_i, V_i\right)\right)$$

Clearly, π_1 splits, and it is easy to see that

$$\xi: A \longrightarrow \left(T_{i,j}^1 \otimes \operatorname{Hom}_k\left(V_i, V_j\right)\right)$$

defined by

$$\xi = \sum_{i,j,l} t_{i,j}(l) \psi_{i,j}(l)$$

is a derivation, $\xi : A \to ((T^1/\operatorname{Rad}^2(T^1))_{i,j} \otimes_k \operatorname{Hom}_k(V_i, V_j))$, therefore inducing a unique homomorphism, $\tilde{\rho}_1$, makes the following diagram commute

Now, we would have liked to extend this diagram, completing it with commuting homomorphisms,

where

$$(T^{1}(n) := T^{1} / \operatorname{Rad}^{n+1} (T^{1})), \quad (H(n) := H / \operatorname{Rad}^{n+1}(H))$$

However, as will be clear in the next construction, the obvious continuation of this procedure does not work. In fact, the formalized higher differentials $\mathcal{D}(A)$ is not really the natural phase-space to work with for all purposes. In an obvious sense it is too homogenous. We are therefore led to the construction of a kind of *projective resolution* of A. Consider as above a surjective homomorphism, $\mu : F \to A$, with $F = k\langle x_1, x_2, \ldots, x_s \rangle$ a free k-algebra, and $I = \ker \mu$. Obviously $Ph^{(p)}(F)$, for $p \ge 1$, are also free, and $Ph^{(p+1)}(F)$ is a free $Ph^{(p)}(F)$ -algebra. Let $\exp(\delta) : F \to \mathcal{D}(F)$ be defined as in Section 2 by

$$\exp(\delta) = id + d + 1/2d^2 + \cdots$$

and denote by $\eta_p: F \to \mathcal{D}_p(F)$ the induced homomorphism. Define

$$\mathcal{H}_p := \mathcal{D}_p(F) / (i_0(I), \eta_p(I))$$

Clearly, $\mathcal{H}_p = \mathcal{D}_p(A)$, $\mathcal{H} = \text{proj} \lim \mathcal{H}_p$, for p = 0, 1. For $p \ge 2$, there are only natural surjective homomorphisms, $\kappa_p : \mathcal{H}_p \to \mathcal{D}_p(A)$. By functoriality, the diagram above induces another commutative diagram, which may be completed to the commutative diagram (ρ'_2 and ρ_2 not yet included)

where we, in expectation of later constructions, put

$$H(1) = T^{1} / \operatorname{Rad} (T^{1})^{2}, \quad H'(2) = T^{1} / \operatorname{Rad} (T^{1})^{3},$$

$$\mathcal{O}(n) := (H(n)_{i,j} \otimes_{k} \operatorname{Hom}_{k} (V_{i}, V_{j})), \quad n \ge 1,$$

$$\mathcal{O}'(n) := (H'(n)_{i,j} \otimes_{k} \operatorname{Hom}_{k} (V_{i}, V_{j})), \quad n \ge 2.$$

Now the map

$$(id + \delta) \circ \mu_1 \circ \rho_1 : I \longrightarrow \mathcal{O}(1)$$

is zero, and the resulting map $\tilde{\rho}_1 : A \to \mathcal{O}(1)$ is, as deformation of the family \mathcal{V} , the universal family at the tangent level. Since $Ph^{(n+1)}(F)$ is a free algebra over $Ph^{(n)}(F)$, there is lifting ρ'_2 . We want an induced ρ_2 . Consider the composition

$$O' := \exp(\delta) \circ \rho_2 : F \longrightarrow \mathcal{O}'(2)$$

lifting $\mu \circ \tilde{\rho}_1$. The restriction to *I* vanishes on I^2 and induces a map

$$O(2): I/I^2 \longrightarrow \left(\left(\operatorname{Rad} \left(T^1 \right)^2 / \operatorname{Rad} \left(T^1 \right)^3 \right)_{i,j} \otimes_k \operatorname{Hom}_k \left(V_i, V_j \right) \right).$$

It is easily seen to be F-linear, both from left and right, and so it induces the obstruction

$$o_{2} \in \left(\left(\operatorname{Rad}\left(T^{1}\right)^{2}/\operatorname{Rad}\left(T^{1}\right)^{3}\right)_{i,j} \otimes_{k} \operatorname{Ext}_{A}^{2}\left(V_{i},V_{j}\right)\right)$$

independent upon the choice of extension ρ'_2 . Now

$$\left(\left(\operatorname{Rad}\left(T^{1}\right)^{2}/\operatorname{Rad}\left(T^{1}\right)^{3}\right)_{i,j}\otimes_{k}\operatorname{Ext}_{A}^{2}\left(V_{i},V_{j}\right)\right)$$

may be identified with

$$\operatorname{Hom}_{k}\left(\left(\operatorname{Ext}_{A}^{2}\left(V_{i},V_{j}\right)^{*}\right),\left(\operatorname{Rad}\left(T^{1}\right)^{2}/\operatorname{Rad}\left(H\right)^{3}\right)_{i,j}\right)$$

which is a subspace of

$$\operatorname{Mor}_{\underline{a}_{r}}\left(k^{r} \oplus \left(\operatorname{Ext}_{A}^{2}\left(V_{i}, V_{j}\right)^{*}\right), T^{1}/\operatorname{Rad}\left(T^{1}\right)^{3}\right).$$

Denote by T^2 the free matrix algebra (quiver), in $\underline{\hat{u}}_r$, generated by $\operatorname{Ext}_A^2(V_i, V_j)^*$, just like the construction of T^1 above, such that

$$T^2 / \operatorname{Rad} (T^2)^2 = k^r \oplus \left(\operatorname{Ext}_A^2 (V_i, V_j)^* \right).$$

We may now state and prove the main result of this paper.

Theorem 11. (i) For any finite family of (finite dimensional) A-modules, $\mathcal{V} := \{V_i\}_{i=1,...,r}$, there is a homomorphism $\tilde{\rho}$, making the following diagram commutative

such that the versal family $\tilde{\rho} = \exp(\delta) \circ \bar{\rho}$. (ii) Moreover, $H = (H_{i,j})$ may be constructed recursively, as a quotient of $T^1 = (T^1_{i,j})$, by annihilating a series of obstructions, o_n , defining a morphism in \underline{a}_r , $o: T^2 \to T^1$, such that $H \simeq T^1 \otimes_{T^2} k^r$.

Proof. We have above constructed an obstruction for lifting ρ_1 to a ρ_2 . It is a unique element;

$$o_2 \in \operatorname{Mor}_{\underline{a}_r}\left(k^r \oplus \left(\operatorname{Ext}_A^2\left(V_i, V_j\right)^*\right)T^1 / \operatorname{Rad}\left(T^1\right)^3\right).$$

Obviously, the image

$$o_2\left(\left(\operatorname{Ext}^2_A\left(V_i, V_j\right)^*\right) \subset T^1 / \operatorname{Rad}\left(T^1\right)^3\right)$$

generates an ideal of T^1 , contained in $\operatorname{Rad}(T^1)^2$. Call it σ_2 , and put

$$H(2) = T^1 / \left(\operatorname{Rad} \left(T^1 \right)^3 + \sigma_2 \right).$$

Then, there is a commutative diagram

In fact, since we have divided out with the obstruction, we know that the morphism

$$O(2): I/I^2 \longrightarrow \left(\operatorname{Rad} \left(T^1 \right)^2 / \operatorname{Rad} \left(T^1 \right)^3 + \sigma_2 \right)_{i,j} \otimes_k \operatorname{Hom}_k \left(V_i, V_j \right)$$

is the restriction of a derivation

$$\psi'_{2}: F \longrightarrow \left(\operatorname{Rad} \left(T^{1} \right)^{2} / \operatorname{Rad} \left(T^{1} \right)^{3} + \sigma_{2} \right)_{i,j} \otimes_{k} \operatorname{Hom}_{k} \left(V_{i}, V_{j} \right).$$

Now change the morphism ρ'_2 , to ρ''_2 mapping d^2x_i to $\rho'_2(d^2x_i) - 2\psi_2(x_i)$. It is easily seen that for this new morphism, $\eta_2 \circ \rho'_2$ is zero, restricted to I, proving the existence of $\bar{\rho}_2$. Recall that $\mathcal{D}_1(A) = \mathcal{H}_1$. Now $\bar{\rho}_2$ defines $\tilde{\rho}_2 := \eta_2 \circ \rho_2$. Let σ'_3 be the two-sided ideal in T^1 generated by

$$\operatorname{Rad}(T^{1})^{4} + \operatorname{Rad}(T^{1})\sigma_{2} + \sigma_{2}\operatorname{Rad}(T^{1})$$

and let us put

$$H'(3) := T^1/\sigma'_3, \quad \mathcal{O}'(3) := \left(H'(3) \otimes_k \operatorname{Hom}_k\left(V_i, V_j\right)\right).$$

The diagram above induces a commutative diagram, ρ'_3 , constructed as above, but where $\bar{\rho}_3$ is the problem,

Consider now the map $\eta_3 \circ \rho'_3 : I \to \mathcal{O}'(3)$ ending up in

$$\left(\left(\operatorname{Rad}\left(T^{1}\right)^{3}+\sigma_{2}\right)/\sigma_{3}\right)_{i,j}\otimes_{k}\operatorname{Hom}_{k}\left(V_{i},V_{j}\right)$$

which clearly is killed by $\operatorname{Rad}(\mathcal{O}'(3))$, and therefore really is a matrix of vector spaces, as an $\mathcal{O}'(3)$ -module. As above, this map is easily seen to be a left and right linear map as *F*-modules, *F* acting on $\mathcal{O}(3)$ via $\tilde{\eta}_3 : F \to \mathcal{D}_3(F)$. Moreover, the induced element

$$o_{3} \in \left(\left(\operatorname{Rad}\left(T^{1}\right)^{3} + \sigma_{2}\right)/\sigma'_{3}\right)_{i,j} \otimes_{k} \operatorname{Ext}_{A}^{2}\left(V_{i}, V_{j}\right)$$
$$= \left(\operatorname{Hom}_{k}\left(\operatorname{Ext}_{A}^{2}\left(V_{i}, V_{j}\right)^{*}, \left(\operatorname{Rad}\left(T^{1}\right)^{3} + \sigma_{2}\right)/\sigma'_{3}\right)_{i,j}\right)$$

is independent on the choice of ρ'_3 . Now, we define $H(3) := H'(3)/\sigma_3$, where σ_3 is defined by the image of o_3 , and define $\kappa : \mathcal{O}'(3) \to \mathcal{O}(3)$ as above. Since, by functoriality, the morphism

$$\eta_3 \circ \rho'_3 \kappa : I \longrightarrow \mathcal{O}(3)$$

must induce the zero element in the corresponding

$$\left(\operatorname{Ext}_{A}^{1}\left(V_{i},V_{j}\right)\otimes\left(\left(\operatorname{Rad}\left(T^{1}\right)^{3}+\sigma_{2}\right)/\sigma_{3}'\right)_{i,j}\right)/imo_{3},$$

it must be the restriction of a derivation $\xi : F \to \mathcal{O}(3)$. Now change ρ'_3 by sending d^3x_i to $\rho'_3(d^3x_i) - 3!\psi_3(x_i)$, leaving the other values of the parameters unchanged. Then, a little calculation shows that the new ρ'_3 maps each $\eta_3(f), f \in I$, to zero, inducing a morphism $\bar{\rho}_3 : \mathcal{H}_3 \to \mathcal{O}(3)$. We now have a new situation, given by a commutative diagram, not yet including ρ_4 ,

and it is clear how to proceed. This proves (i), and the rest is a consequence of the general theorem [3, Theorem 4.2.4]. \Box

We cannot replace \mathcal{H} by \mathcal{D} . This follows from the trivial Example 4(iii) above. However, if we are in a graded situation, things are nicer.

Corollary 12. Assume that A is a finitely generated, graded, in degree 1, k-algebra, and assume that V is a family of graded A-modules. Then there is a corresponding graded formal moduli $(H_{i,j})^{\text{gr}}$, and there is a commutative diagram,

such that the graded versal family $\tilde{\rho}^{\rm gr} = \exp(\delta) \circ \bar{\rho}^{\rm gr}$.

References

- [1] S. Iitaka, Symmetric forms and Weierstrass cycles, Proc. Japan Acad. Ser. A Math. Sci., 54 (1978), 101–103.
- [2] D. Laksov and A. Thorup, These are the differentials of order n, Trans. Amer. Math. Soc., 351 (1999), 1293–1353.
- [3] O. A. Laudal, Formal Moduli of Algebraic Structures, vol. 754 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1979.
- [4] ——, Matric Massey products and formal moduli. I, in Algebra, Algebraic Topology and Their Interactions (Stockholm, 1983), vol. 1183 of Lecture Notes in Math., Springer-Verlag, Berlin, 1986, 218–240.
- [5] ——, Noncommutative deformations of modules, Homology Homotopy Appl., 4 (2002), 357–396.
- [6] —, Noncommutative algebraic geometry, Rev. Mat. Iberoamericana, 19 (2003), 509–580.
- [7] ---, *The structure of* Simp_{<∞}(*A*) *for finitely generated k-algebras A*, in Computational Commutative and Non-Commutative Algebraic Geometry, vol. 196 of NATO Sci. Ser. III Comput. Syst. Sci., IOS, Amsterdam, 2005, 3–43.
- [8] ——, *Time-space and space-times*, in Noncommutative Geometry and Representation Theory in Mathematical Physics, vol. 391 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2005, 249–280.
- [9] _____, Phase spaces and deformation theory, Acta Appl. Math., 101 (2008), 191-204.
- [10] —, Geometry of Time-Spaces: Non-Commutative Algebraic Geometry, Applied to Quantum Theory, World Scientific, Hackensack, NJ, 2011.
- [11] I. Reiten, An introduction to the representation theory of Artin algebras, Bull. London Math. Soc., 17 (1985), 209-233.
- [12] M. Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc., 130 (1968), 208-222.