Research Article

Phase Spaces and Deformation Theory ${ }^{\star}$

Olav Arnfinn Laudal
Institute of Mathematics, University of Oslo, P.O. Box 1053, Blindern, 0316 Oslo, Norway
Address correspondence to Olav Arnfinn Laudal, arnfinnl@math.uio.no

Received 7 October 2009; Accepted 10 December 2010

Abstract

We have previously introduced the notion of non-commutative phase space (algebra) associated to any associative algebra, defined over a field. The purpose of the present paper is to prove that this construction is useful in non-commutative deformation theory for the construction of the versal family of finite families of modules. In particular, we obtain a much better understanding of the obstruction calculus, that is, of the Massey products.

MSC 2010: 12H20, 14A22, 14D15, 14H15, 14R10, 16D10, 16D60, 16G30, 32G34, 34A26, 81-xx, 83-xx

1 Introduction

In [8], we sketched a physical "toy model," where the space-time of classical physics became a section of a universal fiber space \tilde{E}, defined on the moduli space $\underline{H}=\operatorname{Simp}(H)$ of the physical systems we chose to consider (in this case, the systems composed of an observer and an observed, both sitting in a Euclidean 3 -space). This moduli space was called the time-space. Time, in this mathematical model, was defined to be a metric ρ on the time-space, measuring all possible infinitesimal changes of the state of the objects in the family we are studying. This gave us a model of relativity theory, in which the set of all (relative) velocities turned out to be a projective space. Dynamics was introduced into this picture, via the general construction, for any associative algebra A, of a phase space $\operatorname{Ph}(A)$. This is a universal pair of a homomorphism of algebras, $\iota: A \rightarrow \mathrm{Ph}(A)$, and a derivation, $d: A \rightarrow \mathrm{Ph}(A)$, such that for any homomorphism of A into a k-algebra R, the derivations of A in R are induced by unique homomorphisms $\operatorname{Ph}(A) \rightarrow R$, composed with d. Iterating this $\operatorname{Ph}(-)$-construction, we obtained a limit morphism $\iota(n): \operatorname{Ph}^{n}(A) \rightarrow$ $\mathrm{Ph}^{\infty}(A)$ with image $\mathrm{Ph}^{(n)}(A)$, and a universal derivation $\delta \in \operatorname{Der}_{k}\left(\mathrm{Ph}^{\infty}(A), \mathrm{Ph}^{\infty}(A)\right)$, the Dirac-derivation. A general dynamical structure of order n is now a two-sided δ-ideal σ in $\mathrm{Ph}^{\infty}(A)$ inducing a surjective homomorphism $\mathrm{Ph}^{(n-1)}(A) \rightarrow \mathrm{Ph}^{\infty}(A) / \sigma=: A(\sigma)$.

In [8] and later in [10], we have shown that, associated to any such time space H with a fixed dynamical structure $H(\sigma)$, there is a kind of "Quantum field theory". In particular, we have stressed the point that, if H is the affine ring of a moduli space of the objects we want to study, the ring $\mathrm{Ph}^{\infty}(H)$ is the complete ring of observables, containing the parameters not only of the iso-classes of the objects in question, but also of all dynamical parameters. The choice made by fixing the dynamical structure σ, and reducing to the k-algebra $H(\sigma)$, would classically correspond to the introduction of a parsimony principle (e.g. to the choice of some Lagrangian).

The purpose of this paper is to study this phase-space construction in greater detail. There is a natural descending filtration of two-sided ideals, $\left\{\mathcal{F}_{n}\right\}_{0 \leq n}$ of $\mathrm{Ph}^{\infty}(A)$. The corresponding quotients $\mathrm{Ph}^{n}(A) / \mathcal{F}_{n}$ are finite dimensional vector spaces, and considered as affine varieties; these are our non-commutative Jet-spaces.

We will first see, in Section 2, that we may extend the usual prolongation-projection procedure of Elie Cartan to this non-commutative setting, and obtain a framework for the study of general systems of (non-commutative) PDEs; see also [9].

In Section 3, we present a short introduction to non-commutative deformations of modules, and the generalized Massey products, as exposed in [4,5].

Then, in Section 4, the main part of the paper follows: the construction for finitely generated associative algebras A of the versal family of the non-commutative deformation functor of any finite family of finitely dimensional A-modules, based on the phase-space of a resolution of the k-algebra A.

Notice that our $\mathrm{Ph}^{\infty}(A)$ is a non-commutative analogue of the notion of higher differentials treated in many texts (see [1] and the more recent paper [2]).

[^0]
2 Phase spaces and the Dirac derivation

Given a k-algebra A, denote by A / k - alg the category where the objects are homomorphisms of k-algebras κ : $A \rightarrow R$, and the morphisms $\psi: \kappa \rightarrow \kappa^{\prime}$ are commutative diagrams:

and consider the functor

$$
\operatorname{Der}_{k}(A,-): A / k-\underline{\text { alg }} \longrightarrow \underline{\text { Sets }}
$$

defined by $\operatorname{Der}_{k}(A, \kappa):=\operatorname{Der}_{k}(A, R)$. It is representable by a k-algebra-morphism, $\iota: A \rightarrow \operatorname{Ph}(A)$ with a universal family given by a universal derivation $d: A \rightarrow \operatorname{Ph}(A)$. It is easy to construct $\operatorname{Ph}(A)$. In fact, let $\pi: F \rightarrow A$ be a surjective homomorphism of algebras, with $F=k\left\langle t_{1}, t_{2}, \ldots, t_{r}\right\rangle$, freely generated by the t_{i} s, and put $I=\operatorname{ker} \pi$. Let,

$$
\operatorname{Ph}(A)=k\left\langle t_{1}, t_{2}, \ldots, t_{r}, d t_{1}, d t_{2}, \ldots, d t_{r}\right\rangle /(I, d I)
$$

where $d t_{i}$ is a formal variable. Clearly there is a homomorphism $i_{0}^{\prime}: F \rightarrow \operatorname{Ph}(A)$ and a derivation $d^{\prime}: F \rightarrow \operatorname{Ph}(A)$, defined by putting $d^{\prime}\left(t_{i}\right)=\operatorname{cl}\left(d t_{i}\right)$, the equivalence class of $d t_{i}$. Since i_{0}^{\prime} and d^{\prime} both kill the ideal I, they define a homomorphism $i_{0}: A \rightarrow \mathrm{Ph}(A)$ and a derivation $d: A \rightarrow \mathrm{Ph}(A)$. To see that i_{0} and d have the universal property, let $\kappa: A \rightarrow R$ be an object of the category $A / k-$ alg. Any derivation $\xi: A \rightarrow R$ defines a derivation $\xi^{\prime}: F \rightarrow R$, mapping t_{i} to $\xi^{\prime}\left(t_{i}\right)$. Let $\rho_{\xi^{\prime}}: k\left\langle t_{1}, t_{2}, \ldots, t_{r}, d t_{1}, \overline{d t_{2}}, \ldots, d t_{r}\right\rangle \rightarrow R$ be the homomorphism defined by

$$
\rho_{\xi^{\prime}}\left(t_{i}\right)=\kappa\left(\pi\left(t_{i}\right)\right), \quad \rho_{\xi^{\prime}}\left(d t_{i}\right)=\xi\left(\pi\left(t_{i}\right)\right),
$$

where $\rho_{\xi^{\prime}}$ sends I and $d I$ to zero, and so defines a homomorphism $\rho_{\xi}: \operatorname{Ph}(A) \rightarrow R$, such that the composition with $d: A \rightarrow \operatorname{Ph}(A)$ is ξ. The unicity is a consequence of the fact that the images of i_{0} and d generate $\operatorname{Ph}(A)$ as k-algebra.

Clearly $\operatorname{Ph}(-)$ is a covariant functor on $k-$ alg, and we have the identities,

$$
\begin{aligned}
& d_{*}: \operatorname{Der}_{k}(A, A)=\operatorname{Mor}_{A}(\operatorname{Ph}(A), A), \\
& d^{*}: \operatorname{Der}_{k}(A, \operatorname{Ph}(A))=\operatorname{End}_{A}(\operatorname{Ph}(A)),
\end{aligned}
$$

with the last one associating d to the identity endomorphism of $\operatorname{Ph}(A)$. In particular, we see that i_{0} has a cosection, $\sigma_{0}: \operatorname{Ph}(A) \rightarrow A$, corresponding to the trivial (zero) derivation of A.

Let now V be a right A-module, with the structure morphism $\rho(V)=: \rho: A \rightarrow \operatorname{End}_{k}(V)$. We obtain a universal derivation:

$$
u(V)=: u: A \longrightarrow \operatorname{Hom}_{k}\left(V, V \otimes_{A} \operatorname{Ph}(A)\right),
$$

defined by $u(a)(v)=v \otimes d(a)$. Using the long exact sequence

$$
\begin{aligned}
& 0 \longrightarrow \operatorname{Hom}_{A}\left(V, V \otimes_{A} \operatorname{Ph}(A)\right) \longrightarrow \operatorname{Hom}_{k}\left(V, V \otimes_{A} \operatorname{Ph}(A)\right) \\
& \quad \xrightarrow{\iota} \operatorname{Der}_{k}\left(A, \operatorname{Hom}_{k}\left(V, V \otimes_{A} \operatorname{Ph}(A)\right)\right) \xrightarrow{\kappa} \operatorname{Ext}_{A}^{1}\left(V, V \otimes_{A} \operatorname{Ph}(A)\right) \longrightarrow 0,
\end{aligned}
$$

we obtain the non-commutative Kodaira-Spencer class

$$
c(V):=\kappa(u(V)) \in \operatorname{Ext}_{A}^{1}\left(V, V \otimes_{A} \operatorname{Ph}(A)\right),
$$

inducing the Kodaira-Spencer morphism

$$
g: \Theta_{A}:=\operatorname{Der}_{k}(A, A) \longrightarrow \operatorname{Ext}_{A}^{1}(V, V)
$$

via the identity d_{*}. If $c(V)=0$, then the exact sequence above proves that there exist a $\nabla \in \operatorname{Hom}_{k}\left(V, V \otimes_{A} \operatorname{Ph}(A)\right)$ such that $u=\iota(\nabla)$. This is just another way of proving that $c(V)$ is the obstruction for the existence of a connection,

$$
\nabla: \operatorname{Der}_{k}(A, A) \longrightarrow \operatorname{Hom}_{k}(V, V)
$$

It is well known, I think, that in the commutative case, the Kodaira-Spencer class gives rise to a Chern character by putting

$$
\operatorname{ch}^{i}(V):=1 / i!c^{i}(V) \in \operatorname{Ext}_{A}^{i}\left(V, V \otimes_{A} \operatorname{Ph}(A)\right)
$$

and that if $c(V)=0$, the curvature $R(\nabla)$ of the connection ∇ induces a curvature class in a generalized Lie-algebra cohomology:

$$
R_{\nabla} \in H^{2}\left(k, A ; \Theta_{A}, \operatorname{End}_{A}(V)\right)
$$

Any $\operatorname{Ph}(A)$-module W, given by its structure map,

$$
\rho(W)^{1}=: \rho^{1}: \operatorname{Ph}(A) \longrightarrow \operatorname{End}_{k}(W)
$$

corresponds bijectively to an induced A-module structure $\rho: A \rightarrow \operatorname{End}_{k}(W)$, together with a derivation $\delta_{\rho} \in$ $\operatorname{Der}_{k}\left(A, \operatorname{End}_{k}(W)\right)$, defining an element $\left[\delta_{\rho}\right] \in \operatorname{Ext}_{A}^{1}(W, W)$. Fixing this last element, we find that the set of $\operatorname{Ph}(A)$-module structures on the A-module W is in one-to-one correspondence with $\operatorname{End}_{k}(W) / \operatorname{End}_{A}(W)$. Conversely, starting with an A-module V and an element $\delta \in \operatorname{Der}_{k}\left(A, \operatorname{End}_{k}(V)\right)$, we obtain a $\operatorname{Ph}(A)$-module V_{δ}. It is then easy to see that the kernel of the natural map

$$
\operatorname{Ext}_{\operatorname{Ph}(A)}^{1}\left(V_{\delta}, V_{\delta}\right) \longrightarrow \operatorname{Ext}_{A}^{1}(V, V)
$$

induced by the linear map

$$
\operatorname{Der}_{k}\left(\operatorname{Ph}(A), \operatorname{End}_{k}\left(V_{\delta}\right)\right) \longrightarrow \operatorname{Der}_{k}\left(A, \operatorname{End}_{k}(V)\right)
$$

is the quotient

$$
\operatorname{Der}_{A}\left(\operatorname{Ph}(A), \operatorname{End}_{k}\left(V_{\delta}\right)\right) / \operatorname{End}_{k}(V)
$$

and the image is a subspace $\left[\delta_{\rho}\right]^{\perp} \subseteq \operatorname{Ext}_{A}^{1}(V, V)$, which is rather easy to compute; see examples below.
Remark 1. Defining time as a metric on the moduli space, $\operatorname{Simp}(A)$, of simple A-modules, in line with the philosophy of [8], noticing that $\operatorname{Ext}_{A}^{1}(V, V)$ is the tangent space of $\operatorname{Simp}(A)$ at the point corresponding to V, we see that the non-commutative space $\operatorname{Ph}(A)$ also parametrizes the set of generalized momenta, that is, the set of pairs of a point $V \in \operatorname{Simp}(A)$, and a tangent vector at that point.
Example 2. (i) Let $A=k[t]$, then obviously, $\operatorname{Ph}(A)=k\langle t, d t\rangle$ and d is given by $d(t)=d t$, such that for $f \in k[t]$, we find $d(f)=J_{t}(f)$ with the notations of [7], that is, the non-commutative derivation of f with respect to t. One should also compare this with the non-commutative Taylor formula of loc.cit. If $V \simeq k^{2}$ is an A-module, defined by the matrix $X \in M_{2}(k)$, and $\delta \in \operatorname{Der}_{k}\left(A, \operatorname{End}_{k}(V)\right)$ is defined in terms of the matrix $Y \in M_{2}(k)$, then the $\operatorname{Ph}(A)$-module V_{δ} is the $k\langle t, d t\rangle$-module defined by the action of the two matrices $X, Y \in M_{2}(k)$, and we find

$$
\begin{aligned}
e_{V}^{1} & :=\operatorname{dim}_{k} \operatorname{Ext}_{A}^{1}(V, V)=\operatorname{dim}_{k} \operatorname{End}_{A}(V)=\operatorname{dim}_{k}\left\{Z \in M_{2}(k) \mid[X, Z]=0\right\}, \\
e_{V_{\delta}}^{1} & :=\operatorname{dim}_{k} \operatorname{Ext}_{\operatorname{Ph}(A)}^{1}\left(V_{\delta}, V_{\delta}\right)=8-4+\operatorname{dim}\left\{Z \in M_{2}(k) \mid[X, Z]=[Y, Z]=0\right\} .
\end{aligned}
$$

We have the following inequalities:

$$
2 \leq e_{V}^{1} \leq 4 \leq e_{V_{\delta}}^{1} \leq 8
$$

(ii) Let $A=k\left[t_{1}, t_{2}\right]$, then we find

$$
\operatorname{Ph}(A)=k\left\langle t_{1}, t_{2}, d t_{1}, d t_{2}\right\rangle /\left(\left[t_{1}, t_{2}\right],\left[d t_{1}, t_{2}\right]+\left[t_{1}, d t_{2}\right]\right) .
$$

In particular, we have a surjective homomorphism

$$
\operatorname{Ph}(A) \longrightarrow k\left\langle t_{1}, t_{2}, d t_{1}, d t_{2}\right\rangle /\left(\left[t_{1}, t_{2}\right],\left[d t_{1}, d t_{2}\right],\left[t_{i}, d t_{i}\right]-1\right),
$$

with the right-hand side algebra being the Weyl algebra. This homomorphism exists in all dimensions. We also have a surjective homomorphism,

$$
\operatorname{Ph}(A) \longrightarrow k\left[t_{1}, t_{2}, \xi_{1}, \xi_{2}\right],
$$

that is, onto the affine algebra of the classical phase-space.

The phase-space construction may, of course, be iterated. Given the k-algebra A, we may form the sequence $\left\{\mathrm{Ph}^{n}(A)\right\}_{0 \leq n}$, defined inductively by

$$
\operatorname{Ph}^{0}(A)=A, \quad \operatorname{Ph}^{1}(A)=\operatorname{Ph}(A), \ldots, \operatorname{Ph}^{n+1}(A):=\operatorname{Ph}\left(\operatorname{Ph}^{n}(A)\right)
$$

Let $i_{0}^{n}: \operatorname{Ph}^{n}(A) \rightarrow \mathrm{Ph}^{n+1}(A)$ be the canonical imbedding, and let $d_{n}: \mathrm{Ph}^{n}(A) \rightarrow \mathrm{Ph}^{n+1}(A)$ be the corresponding derivation. Since the composition of i_{0}^{n} and the derivation d_{n+1} is a derivation $\mathrm{Ph}^{n}(A) \rightarrow \mathrm{Ph}^{n+2}(A)$, there exists by universality a homomorphism $i_{1}^{n+1}: \mathrm{Ph}^{n+1}(A) \rightarrow \mathrm{Ph}^{n+2}(A)$, such that

$$
d_{n} \circ i_{1}^{n+1}=i_{0}^{n} \circ d_{n+1} .
$$

Notice that we compose functions and functors from left to right. Clearly, we may continue this process constructing new homomorphisms

$$
\left\{i_{j}^{n}: \operatorname{Ph}^{n}(A) \longrightarrow \operatorname{Ph}^{n+1}(A)\right\}_{0 \leq j \leq n}
$$

with the property

$$
d_{n} \circ i_{j+1}^{n+1}=i_{j}^{n} \circ d_{n+1} .
$$

Notice also that we have the "bi-gone" $i_{0}^{0} i_{0}^{1}=i_{0}^{0} i_{1}^{1}$ and the "hexagone"

$$
i_{0}^{1} i_{0}^{2}=i_{0}^{1} i_{1}^{2}, \quad i_{1}^{1} i_{0}^{2}=i_{0}^{1} i_{2}^{2}, \quad i_{1}^{1} i_{1}^{2}=i_{1}^{1} i_{2}^{2}
$$

and, in general,

$$
i_{p}^{n} i_{q}^{n+1}=i_{q-1}^{n} i_{p}^{n+1} \quad(p<q), \quad i_{p}^{n} i_{p}^{n+1}=i_{p}^{n} i_{p+1}^{n+1}, \quad i_{p}^{n} i_{q}^{n+1}=i_{q}^{n} i_{p+1}^{n+1} \quad(q<p)
$$

which is all easily proved by composing with i_{0}^{n-1} and d_{n-1}. Thus, the $\mathrm{Ph}^{*}(A)$ is a semi-cosimplicial algebra with a cosection onto A. Therefore, for any object

$$
\kappa: A \longrightarrow R \in A / k-\underline{\text { alg }}
$$

the semi-cosimplicial algebra above induces a semi-simplicial k-vector space, $\operatorname{Der}_{k}\left(\operatorname{Ph}^{*}(A), R\right)$, and one should be interested in its homology.

The system of k-algebras and homomorphisms of k-algebras $\left\{\mathrm{Ph}^{n}(A), i_{j}^{n}\right\}_{n, 0 \leq j \leq n}$ has an inductive (direct) limit, $\mathrm{Ph}^{\infty}(A)$, together with homomorphisms $i_{n}: \mathrm{Ph}^{n}(A) \rightarrow \mathrm{Ph}^{\infty}(A)$ satisfying

$$
i_{j}^{n} \circ i_{n+1}=i_{n}, \quad j=0,1, \ldots, n .
$$

Moreover, the family of derivations $\left\{d_{n}\right\}_{0 \leq n}$ define a unique derivation $\delta: \mathrm{Ph}^{\infty}(A) \rightarrow \mathrm{Ph}^{\infty}(A)$, such that $i_{n} \circ \delta=$ $d_{n} \circ i_{n+1}$. Put

$$
\mathrm{Ph}^{(n)}(A):=i m i_{n} \subseteq \operatorname{Ph}^{\infty}(A)
$$

The k-algebra $\mathrm{Ph}^{\infty}(A)$ has a descending filtration of two-sided ideals, with $\left\{\mathcal{F}_{n}\right\}_{0 \leq n}$ given inductively by

$$
\begin{gathered}
\mathcal{F}_{1}=\mathrm{Ph}^{\infty}(A) \cdot \operatorname{im}(\delta) \cdot \mathrm{Ph}^{\infty}(A), \\
\delta \mathcal{F}_{n} \subseteq \mathcal{F}_{n+1}, \quad \mathcal{F}_{n_{1}} \mathcal{F}_{n_{2}} \cdot \mathcal{F}_{n_{r}} \subseteq \mathcal{F}_{n}, \quad n_{1}+\cdots+n_{r}=n
\end{gathered}
$$

such that the derivation δ induces derivations $\delta_{n}: \mathcal{F}_{n} \rightarrow \mathcal{F}_{n+1}$. Using the canonical homomorphism $i_{n}: \mathrm{Ph}^{n}(A) \rightarrow$ $\mathrm{Ph}^{\infty}(A)$, we pull the filtration $\left\{\mathcal{F}_{p}\right\}_{0 \leq p}$ back to $\mathrm{Ph}^{n}(A)$, not bothering to change the notation.

Definition 3. Let $\mathcal{D}(A):=\varliminf_{l_{n \geq 1}} \mathrm{Ph}^{\infty}(A) / \mathcal{F}_{n}$ be the completion of $\mathrm{Ph}^{\infty}(A)$ in the topology given by the filtration $\left\{\mathcal{F}_{n}\right\}_{0 \leq n}$. The k-algebra $\operatorname{Ph}^{\infty}(A)$ will be referred to as the k-algebra of higher differentials, and $\mathcal{D}(A)$ will be called the k-algebra of formalized higher differentials. Put

$$
\mathcal{D}_{n}:=\mathcal{D}_{n}(A):=\mathrm{Ph}^{\infty}(A) / \mathcal{F}_{n+1}
$$

Clearly, δ defines a derivation on $\mathcal{D}(A)$, and an isomorphism of k-algebras

$$
\epsilon:=\exp (\delta): \mathcal{D}(A) \longrightarrow \mathcal{D}(A)
$$

and, in particular, an algebra homomorphism

$$
\tilde{\eta}:=\exp (\delta): A \longrightarrow \mathcal{D}(A),
$$

inducing the algebra homomorphisms

$$
\tilde{\eta}_{n}: A \longrightarrow \mathcal{D}_{n}(A)
$$

which, by killing, in the right-hand side algebra, the image of the maximal ideal, $\mathfrak{m}(\underline{t})$, of A corresponding to a point $\underline{t} \in \operatorname{Simp}_{1}(A)$, induces a homomorphism of k-algebras

$$
\tilde{\eta}_{n}(\underline{t}): A \longrightarrow \mathcal{D}_{n}(A)(\underline{t}):=\mathcal{D}_{n} /\left(\mathcal{D}_{n} \mathfrak{m}(\underline{t}) \mathcal{D}_{n}\right)
$$

and an injective homomorphism

$$
\tilde{\eta}(\underline{t}): A \longrightarrow \lim _{n \geq 1} \mathcal{D}_{n}(A)(\underline{t}) ;
$$

see [8]. More generally, let A be a finitely generated k-algebra and let $\rho: A \rightarrow \operatorname{End}_{k}(V)$ be an n-dimensional representation (e.g. a point of $\operatorname{Simp}_{n}(A)$) corresponding to a two-sided ideal $\mathfrak{m}=\operatorname{ker} \rho$ of A. Then $\tilde{\eta}$ induces a homomorphism

$$
\tilde{\eta}(\mathfrak{m}): A \longrightarrow \mathcal{D} /(\mathcal{D} \mathfrak{m} \mathcal{D})
$$

and we will be interested in the image; see Section 4.
The k-algebras $\mathrm{Ph}^{n}(A)$ are our generalized jet spaces. In fact, any homomorphism of A-algebras

$$
P_{n}: \operatorname{Ph}^{n}(A) \longrightarrow A
$$

composed with

$$
\delta^{n}: A \longrightarrow \operatorname{Ph}^{n}(A)
$$

is a usual differential operator of order $\leq n$ on A. Notice also the commutative diagram

Here the upper vertical morphisms are injective, with the lower line being the sequence of symbols.
It is easy to see that the differential operators form an associative k-algebra, $\operatorname{Diff}(A)$. In fact, assume two differential operators

$$
P_{m}: \mathrm{Ph}^{m}(A) \longrightarrow A, \quad P_{n}: \mathrm{Ph}^{n}(A) \longrightarrow A,
$$

and consider the functorially defined diagram

then the product is defined by the composition

$$
P_{m} P_{n}=\mathrm{Ph}^{(n)}\left(P_{m}\right) \circ P_{n}
$$

Let now V be, as above, a right A-module, with structure morphism $\rho(V): A \rightarrow \operatorname{End}_{k}(V)$. Consider the linear map

$$
\iota_{n}:=i d \otimes\left(i_{1} \circ \cdots \circ i_{n}\right): V \otimes_{A} \operatorname{Ph} A \longrightarrow V \otimes_{A} \mathrm{Ph}^{n+1}, \quad n \geq 0 .
$$

Assume that the non-commutative Kodaira-Spencer class, defined above,

$$
c(V):=\kappa(u(V)) \in \operatorname{Ext}_{A}^{1}\left(V, V \otimes_{A} \operatorname{Ph}(A)\right),
$$

vanishes. Then, as we know, there exist a connection, that is, a linear map

$$
\nabla_{0} \in \operatorname{Hom}_{k}\left(V, V \otimes_{A} \operatorname{Ph}(A)\right)
$$

such that $u(V)=\iota\left(\nabla_{0}\right)$. It is also easy to see that this connection induces higher-order connections, that is, k-linear maps,

$$
\nabla(n) \in \operatorname{Hom}_{k}\left(V \otimes_{A} \operatorname{Ph}^{n}(A), V \otimes_{A} \mathrm{Ph}^{n+1}(A)\right), \quad n \geq 0,
$$

defined by

$$
\nabla(n)(v \otimes f)=\iota_{n}\left(\nabla_{0}(v)\right) i_{0}(f)+v \otimes d_{n}(f) .
$$

In fact, we just have to prove that $\nabla(n)$ is well defined, that is, we have to prove that

$$
\nabla(n)(v a \otimes f)=\nabla(n)(v \otimes a f), \quad \forall a \in A, f \in \mathrm{Ph}^{n}(A)
$$

Noticing that

$$
\iota_{n}\left(v \otimes d_{0}(a)\right)=v \otimes d_{n}(a),
$$

where we have put $a:=i_{0} \circ \cdots \circ i_{0}(a)$, we find

$$
\begin{aligned}
\nabla(n)(v a \otimes f) & =\iota_{n}\left(\nabla_{0}(v a)\right) i_{0}(f)+v a \otimes d_{n}(f) \\
& =\iota_{n}\left(\nabla_{0}(v) i_{0}(a)+v \otimes d a\right) i_{0}(f)+v \otimes a d_{n} f \\
& =\iota_{n}\left(\nabla_{0}(v)\right) i_{0}(a f)+v \otimes d_{n} a i_{0}(f)+v \otimes a d_{n} f \\
& =\nabla(n)(v \otimes a f) .
\end{aligned}
$$

These higher-order connections will induce a diagram

where the lower line is the sequence of symbols. Notice that

$$
\nabla^{n} \in \operatorname{Hom}_{k}\left(V, V \otimes \operatorname{Ph}^{n}(A)\right),
$$

as given above, by definition has the property that for all $a \in A$ and all $v \in V$ we have

$$
\nabla^{n}(v a)=\nabla^{n}(v) a+\nabla^{n-1}(v) d a+\cdots+v \otimes d^{n}(a)
$$

Assume, in particular, that V and the A-module W are free of ranks p and q, respectively. Let $\left\{P_{i, j}\right\}_{i=1, \ldots, p, j=1, \ldots, q}$ be a family of A-homomorphisms $\mathrm{Ph}^{n}(A) \rightarrow A$, defining a generalized differential operator

$$
\mathfrak{D}:=\left(\begin{array}{ccc}
P_{1,1} & \cdots & P_{1, p} \\
\cdots & & \\
P_{q, 1}, & \cdots & P_{q, p}
\end{array}\right) \circ \nabla^{n}: V \longrightarrow W
$$

The solution space of \mathfrak{D} is by definition $\mathbf{S}(\mathfrak{D}):=\operatorname{ker} \mathfrak{D}$. There are natural generalizations of this set-up, which we will, hopefully, return to in a later paper, extending the classical prolongation-projection method of Elie Cartan to this non-commutative setting. See Example 4 for the commutative analogue.

In [8], we introduced the notion of a dynamical structure for a k-algebra A, as a two-sided δ-stable ideal $\sigma \subset$ $\mathrm{Ph}^{\infty}(A)$, or equivalently as the corresponding quotient $A(\sigma)$ of the δ-algebra $\mathrm{Ph}^{\infty}(A)$. Any such $A(\sigma)$ will be given in terms of a sequence of ideals, $\sigma_{n} \subset \operatorname{Ph}^{n}(A)(n \geq 0)$, with the property that $d\left(\sigma_{n}\right) \subset \sigma_{n+1}$. The solution space of such a system, should be considered as the non-commutative scheme parametrized by $A(\sigma)$, that is, as the geometric system of all simple representations of $A(\sigma)$; see [6].

This is, in a sense, dual to the classical theory of PDEs, as we will show by considering the following example, leaving the general situation to the hypothetical paper referred to above.

Example 4 (see [9]). (i) Let $A=k\left[t_{1}, t_{2}, \ldots, t_{n}\right]$, and consider the situation corresponding to a free particle (see [8]) that is, where we have obtained $A(\sigma)$ by killing $d^{2} t_{i}$, for every $i=1,2, \ldots, n$, then the commutativization $A(\sigma)_{k}^{\text {com }}$ of $A(\sigma)_{k}:=\operatorname{Ph}(A) / \mathcal{F}_{k+1}$ is a free A-module generated by the basis

$$
\left\{d t_{i_{1}} d t_{i_{2}} \cdots d t_{i_{r}}\right\}_{i_{1} \leq i_{2} \leq \cdots \leq i_{r}, r \leq k} .
$$

Put $|\underline{i}|=r$ if $\underline{i}=\left\{i_{1}, i_{2}, \ldots, i_{r}\right\}$. The dual basis $\left\{p_{\underline{i}}\right\}_{i_{1} \leq i_{2} \leq \cdots \leq i_{r}, r \leq k}$ may be identified with a basis $D_{\underline{i}}$ of the A-module of all (classical higher-order) differential operators of order less or equal to k. In fact, consider the composition

$$
\tilde{\eta}: A \longrightarrow \mathcal{D}(A) \longrightarrow A(\sigma)_{k},
$$

then, for $f \in A$ we have

$$
p_{\underline{i}}(\tilde{\eta}(f))=\frac{1}{\mu_{1}!\mu_{2}!\cdots \mu_{s}!} D_{j_{1}}^{\mu_{1}} D_{j_{2}}^{\mu_{2}} \cdots D_{j_{r}}^{\mu_{r}}(f)
$$

where we assume

$$
j_{1}=i_{1}=i_{2}=\cdots=i_{\mu_{1}}<j_{2}=i_{\mu_{1}+1}=i_{\mu_{1}+2}=\cdots=i_{\mu_{1}+\mu_{2}}<\cdots<i_{\mu_{1}+\cdots+\mu_{s}}=j_{r}
$$

and where $D_{i_{p}}^{\mu_{p}}$ is μ_{p} th-order derivation with respect to $t_{i_{p}}$. If $\left\{i_{1}, i_{2}, \ldots, i_{r}\right\}=\emptyset$, we let $D_{\underline{i}}$ to be the identity operator on A.

Now, consider the commutativization of $A(\sigma)$, as a k-linear space, and for every $k \geq 1$,

$$
\mathcal{E}_{k}:=A(\sigma)_{k}^{\mathrm{com}}
$$

as a family of affine spaces fibered over $\operatorname{Simp}_{1}(A)$,

$$
\pi_{k}: \mathcal{E}_{k} \longrightarrow \operatorname{Spec}(A)
$$

This family is defined by the homomorphism of k-algebras

$$
A \longrightarrow \mathcal{O}\left(\mathcal{E}_{k}\right):=A\left[p_{i}\right], \quad[\underline{i}] \leq k .
$$

Let $P_{q}\left(\underline{t}, p_{\underline{i}}\right) \in \mathcal{O}\left(\mathcal{E}_{k_{q}}\right), q=1, \ldots, d$, then the system of equations

$$
P_{q}=0, \quad q=1, \ldots, d
$$

is a system of partial differential equations (an SPDE, for short). Suppose there is a solution, that is, an $f \in A$, such that

$$
P_{q}\left(D_{\underline{i}}(f)\right)=0, \quad q=1, \ldots, d,
$$

then, for every j, we must have

$$
D_{j}\left(P_{q}\left(D_{\underline{i}}(f)\right)\right)=0
$$

which amounts to extending the SPDE by, including together with $P_{q} \in \mathcal{O}\left(\mathcal{E}_{k_{q}}\right)$, the polynomials

$$
D_{j} P_{q}:=\frac{\partial P_{q}}{\partial t_{j}}+\sum_{\underline{i}} \frac{\partial P_{q}}{\partial p_{\underline{i}}} p_{\underline{+}+j} \in \mathcal{O}\left(\mathcal{E}_{k_{q}+1}\right),
$$

where it should be clear how to interpret the indices. Let us denote by \mathcal{P} the extended family of polynomials,

$$
\left\{D_{j_{l}} \cdots D_{j_{1}} P_{q} \mid P_{q} \in \mathcal{O}\left(\mathcal{E}_{k_{q}}\right)\right\}_{j_{l}, q \geq 0}
$$

and let $\mathfrak{p}_{m} \subset O\left(\mathcal{E}_{m}\right)$ be the ideal, generated by the polynomials in \mathcal{P}, contained in $O\left(\mathcal{E}_{m}\right)$. Denote by $S_{m}:=$ $S_{m} \mathcal{P} \subset \mathcal{E}_{m}$ the corresponding subvariety. Clearly, the canonical map $\mathcal{E}_{m+l} \rightarrow \mathcal{E}_{m}$ induced by the trivial derivation of $\mathrm{Ph}^{m}(A)$ has a canonical restriction $p l_{l}: S_{m+l} \rightarrow S_{m}$. Denote also by $\pi_{k}: S_{k} \rightarrow \operatorname{Spec}(A)$ the restriction of the morphism $\pi_{k}: \mathcal{E}_{m} \rightarrow \operatorname{Spec}(A)$, defined above, to S_{k}. Classically, the system is called regular if all π_{k} are fiber bundles, so smooth, for all $k \geq 1$. Now, for any closed point of $\operatorname{Spec}(A)$, that is, for any point $\underline{t} \in \operatorname{Simp}_{1}(A)$, consider the sequence of fibers over \underline{t}, and the corresponding sequence of maps $p l_{1}(\underline{t}): S_{m+1}(\underline{t}) \rightarrow S_{m}(\underline{t})$. An element $\tilde{f} \in \varliminf_{幺} S_{m}(\underline{t})$ corresponds exactly to an element $\tilde{f} \in \hat{A}_{\underline{t}}$, for which,

$$
P_{q}\left(D_{\underline{i}}(\hat{f})\right)=0, \quad q=1, \ldots, d
$$

that is, to a formal solution of the SPDE. Thus, the projective limit of schemes $\mathcal{S P}(\underline{t}):=\lim _{m} S_{m}(\underline{t})$ is the space of formal solutions of the SPDE at $\underline{t} \in \operatorname{Simp}_{1}(A)$.

A fundamental problem in the classical theory of PDE is then the following.
Find necessary and sufficient conditions on the $\operatorname{SPDE}\left\{P_{q}\right\}_{q=1, \ldots, d}$ for $\mathcal{S P}(\underline{t})$ to be non-empty, and find, based on $\left\{P_{l}\right\}_{l}$, its structure. In particular, compute its dimension $\sigma(\underline{t})$.

We will not, here, venture into this vast theory, but just add one remark. The solution space is in fact a family, with parameter-space $\operatorname{Simp}_{1}(A)$. Given any point $\underline{t} \in \operatorname{Simp}_{1}(A)$, the (formal) scheme, $\mathcal{S P}(\underline{t})$, of formal solutions may have deformations. We might want to compute the formal moduli \underline{H}, and relate the given family to the corresponding mini-versal family.

The tangent space of \underline{H} is given as

$$
A^{1}(k, \mathcal{O}(\mathcal{S}(\mathcal{P})(\underline{t}), \mathcal{O}(\mathcal{S}(\mathcal{P})(\underline{t}))))=\operatorname{Hom}_{\mathcal{O}(\mathcal{E})(\underline{t})}(\mathfrak{p}(\underline{t}), \mathcal{O}(\mathcal{S}(\mathcal{P})(\underline{t}))) / \text { Der }
$$

see [3]. A tangent at the point \underline{t} of $\operatorname{Simp}_{1}(A)$ is the value at \underline{t} of a linear combination of the fundamental vector fields, the derivations $\left\{D_{j}\right\}$ of A. The map between the tangent space of the given family and the tangent space of H is then easily seen to be the following:

$$
\eta: T_{\operatorname{Simp}_{1}(A), \underline{t}} \longrightarrow \operatorname{Hom}_{\mathcal{O}(\mathcal{E})(\underline{t})}(\mathfrak{p}(\underline{t}), \mathcal{O}(\mathcal{S}(\mathcal{P})(\underline{t}))) / \text { Der }
$$

where $\eta\left(D_{j}\right)$ is the class of the map, associating a $P \in \mathfrak{p}$ to the class at \underline{t} of $D_{j}(P)$. The image of the tangent at \underline{t} of $\operatorname{Simp}_{1}(A)$, corresponding to D_{j}, in the tangent space of H, is zero if this map is a derivation. Now, this is exactly what we have arranged, together with any $P \in \mathfrak{p}$, and also including

$$
D_{j} P:=\frac{\partial P}{\partial t_{j}}+\sum_{\underline{i}} \frac{\partial P}{\partial p_{\underline{i}}} p_{\underline{i}+j}
$$

in the ideal \mathfrak{p}. Thus, the map η is trivial, and the given pro-family is formally constant, as one probably should have suspected! Moreover, it is easy to see that if $p l_{1}: S_{k+1}(\underline{t}) \rightarrow S_{k}(\underline{t})$ has a local section, then $\pi_{k}: S_{k} \rightarrow \operatorname{Spec}(A)$ is formally constant at $\underline{t} \in \operatorname{Spec}(A)$. The basic problem is to find computable conditions under which the constancy of π_{k} implies the surjectivity of $p l_{1}$, and thereby the non-triviality of $\mathcal{S}(\mathcal{P})(\underline{t})$.

We will, hopefully, come back to these questions in a later paper.
(ii) Let $A=k[t] /\left(t^{2}\right)$, then

$$
\begin{aligned}
\operatorname{Ph}(A) & =k\langle t, d t\rangle /\left(t^{2}, t d t+d t t\right) \\
\operatorname{Ph}^{(2)}(A) & =k\left\langle t, d t, d^{2} t\right\rangle /\left(t^{2}, t d t+d t t, t d^{2} t+2 d t^{2}+d^{2} t t\right) \\
\operatorname{Ph}^{\infty}(A) & =k\left\langle t, d t, \ldots, d^{n} t, \ldots\right\rangle /\left(t^{2}, t d t+d t t, \ldots, t d^{n} t+n d t d^{n-1} t+\cdots+d^{n} t t, \ldots\right),
\end{aligned}
$$

and it is easy to see that $\eta(t)=\sum_{n} 1 / n!d^{n}(t)$ is non-zero in $\mathcal{D} /(\mathcal{D}(t) \mathcal{D})$, and, of course, $\eta(t)^{2}=0$. In particular, there is a homomorphism onto

$$
\mathcal{D} /(\mathcal{D}(t) \mathcal{D}) \longrightarrow k[d t] /\left(d t^{2}\right) \simeq A .
$$

(iii) Let now $A=k[x, y] /\left(x^{3}-y^{2}\right)$, compute \mathcal{D}, and see that $d y^{2}=0$ in $\mathcal{D} /(\mathcal{D}(x, y) \mathcal{D})$, so that there are no natural surjective homomorphisms $\mathcal{D} /(\mathcal{D}(x, y) \mathcal{D}) \rightarrow A$. The map $\tilde{\eta}:=\exp (\delta): A \rightarrow \mathcal{D}$ is, however, injective. The difference between examples (i) and (ii) is, of course, due to the fact that in the first case A is graded, and in the second it is not; see Section 4.

3 Non-commutative deformations of families of modules

In [5,6,7], we introduced non-commutative deformations of families of modules of non-commutative k-algebras, and the notion of swarm of right modules (or more generally of objects in a k-linear abelian category). Let \underline{a}_{r} denote the category of r-pointed not necessarily commutative k-algebras R. The objects are the diagrams of k-algebras

$$
k^{r} \xrightarrow{\iota} R \xrightarrow{\pi} k^{r}
$$

such that the composition of ι and π is the identity. Any such r-pointed k-algebra R is isomorphic to a k-algebra of $r \times r$-matrices $\left(R_{i, j}\right)$. The radical of R is the bilateral ideal $\operatorname{Rad}(R):=\operatorname{ker} \pi$, such that $R / \operatorname{Rad}(R) \simeq k^{r}$. The dual k-vector space of $\operatorname{Rad}(R) / \operatorname{Rad}(R)^{2}$ is called the tangent space of R.

For $r=1$, there is an obvious inclusion of categories $\underline{l} \subseteq \underline{a}_{1}$, where \underline{l}, as usual, denotes the category of commutative local Artinian k-algebras with residue field k.

Fix a (not necessarily commutative) associative k-algebra A and consider a right A-module M. The ordinary deformation functor $\operatorname{Def}_{M}: \underline{l} \rightarrow \underline{\operatorname{Sets}}$ is then defined. Assuming $\operatorname{Ext}^{i}{ }_{A}(M, M)$ has a finite k-dimension for $i=1,2$, it is well known (see [12] or [5]) that Def_{M} has a pro-representing hull H, the formal moduli of M. Moreover, the tangent space of H is isomorphic to $\operatorname{Ext}_{A}^{1}(M, M)$, and H can be computed in terms of $\operatorname{Ext}^{i}{ }_{A}(M, M), i=1,2$, and their matric Massey products; see [5].

In the general case, consider a finite family $\mathcal{V}=\left\{V_{i}\right\}_{i=1}^{r}$ of right A-modules. Assume that $\operatorname{dim}_{k} \operatorname{Ext}_{A}^{1}\left(V_{i}, V_{j}\right)<$ ∞. Any such family of A-modules will be called a swarm. We will define a deformation functor Def $\mathcal{V}: \underline{a}_{r} \rightarrow \underline{\text { Sets }}$ generalizing the functor Def_{M} above. Given an object $\pi: R=\left(R_{i, j}\right) \rightarrow k^{r}$ of \underline{a}_{r}, consider the k-vector space and the left R-module ($R_{i, j} \otimes_{k} V_{j}$). It is easy to see that

$$
\operatorname{End}_{R}\left(\left(R_{i, j} \otimes_{k} V_{j}\right)\right) \simeq\left(R_{i, j} \otimes_{k} \operatorname{Hom}_{k}\left(V_{i}, V_{j}\right)\right)
$$

Clearly, π defines a k-linear and left R-linear map

$$
\pi(R):\left(R_{i, j} \otimes_{k} V_{j}\right) \longrightarrow \oplus_{i=1}^{r} V_{i}
$$

inducing a homomorphism of R-endomorphism rings,

$$
\tilde{\pi}(R):\left(R_{i, j} \otimes_{k} \operatorname{Hom}_{k}\left(V_{i}, V_{j}\right)\right) \longrightarrow \oplus_{i=1}^{r} \operatorname{End}_{k}\left(V_{i}\right)
$$

The right A-module structure on the $V_{i} \mathrm{~s}$ is defined by a homomorphism of k-algebras:

$$
\eta_{0}: A \longrightarrow \oplus_{i=1}^{r} \operatorname{End}_{k}\left(V_{i}\right) \subset\left(\operatorname{Hom}_{k}\left(V_{i}, V_{j}\right)\right)=\operatorname{End}_{k}(V) .
$$

Notice that this homomorphism also provides each $\operatorname{Hom}_{k}\left(V_{i}, V_{j}\right)$ with an A-bimodule structure. Let $\operatorname{Def} \mathcal{V}(R) \in$ Sets be the set of isoclasses of homomorphisms of k-algebras,

$$
\eta^{\prime}: A \longrightarrow\left(R_{i, j} \otimes_{k} \operatorname{Hom}_{k}\left(V_{i}, V_{j}\right)\right)
$$

such that $\tilde{\pi}(R) \circ \eta^{\prime}=\eta_{0}$, where the equivalence relation is defined by inner automorphisms in the k-algebra $\left(R_{i, j} \otimes_{k}\right.$ $\left.\operatorname{Hom}_{k}\left(V_{i}, V_{j}\right)\right)$ inducing the identity on $\oplus_{i=1}^{r} \operatorname{End}_{k}\left(V_{i}\right)$. One easily proves that Def \mathcal{V} has the same properties as the ordinary deformation functor and we may prove the following theorem (see [5]).

Theorem 5. The functor $\operatorname{Def}_{\mathcal{V}}$ has a pro-representable hull, that is, an object H of the category of pro-objects $\hat{\underline{a}}_{r}$ of \underline{a}_{r}, together with a versal family

$$
\tilde{V}=\left(H_{i, j} \otimes V_{j}\right) \in{\underset{n}{n \geq 1}}^{\operatorname{Def}} \mathcal{\mathcal { V }}\left(H / \mathfrak{m}^{n}\right)
$$

where $\mathfrak{m}=\operatorname{Rad}(H)$, such that the corresponding morphism of functors on \underline{a}_{r}

$$
\kappa: \operatorname{Mor}(H,-) \longrightarrow \operatorname{Def}_{\mathcal{V}}
$$

defined for $\phi \in \operatorname{Mor}(H, R)$ by $\kappa(\phi)=R \otimes_{\phi} \tilde{V}$, is smooth and an isomorphism on the tangent level. Moreover, H is uniquely determined by a set of matric Massey products defined on subspaces

$$
D(n) \subseteq \operatorname{Ext}^{1}\left(V_{i}, V_{j_{1}}\right) \otimes \cdots \otimes \operatorname{Ext}^{1}\left(V_{j_{n-1}}, V_{k}\right)
$$

with values in $\operatorname{Ext}^{2}\left(V_{i}, V_{k}\right)$.
The right action of A on \tilde{V} defines a homomorphism of k-algebras,

$$
\eta: A \longrightarrow O(\mathcal{V}):=\operatorname{End}_{H}(\tilde{V})=\left(H_{i, j} \otimes \operatorname{Hom}_{k}\left(V_{i}, V_{j}\right)\right)
$$

and the k-algebra $O(\mathcal{V})$ acts on the family of A-modules $\mathcal{V}=\left\{V_{i}\right\}$, extending the action of A. If $\operatorname{dim}_{k} V_{i}<\infty$, for all $i=1, \ldots, r$, the operation of associating $(O(\mathcal{V}), \mathcal{V})$ to (A, \mathcal{V}) turns out to be a closure operation.

Moreover, we prove the crucial result.
Theorem 6 (a generalized Burnside theorem). Let A be a finite dimensional k-algebra, with k being an algebraically closed field. Consider the family $\mathcal{V}=\left\{V_{i}\right\}_{i=1}^{r}$ of all simple A-modules, then

$$
\eta: A \longrightarrow O(\mathcal{V})=\left(H_{i, j} \otimes \operatorname{Hom}_{k}\left(V_{i}, V_{j}\right)\right)
$$

is an isomorphism.
We also prove that there exists, in the non-commutative deformation theory, an obvious analogy to the notion of pro-representing (modular) substratum H_{0} of the formal moduli H; see [3]. The tangent space of H_{0} is determined by a family of subspaces

$$
\operatorname{Ext}_{0}^{1}\left(V_{i}, V_{j}\right) \subseteq \operatorname{Ext}_{A}^{1}\left(V_{i}, V_{j}\right), \quad i \neq j,
$$

the elements of which should be called the almost split extensions (sequences) relative to the family \mathcal{V}, and by a subspace

$$
T_{0}(\Delta) \subseteq \prod_{i} \operatorname{Ext}_{A}^{1}\left(V_{i}, V_{i}\right)
$$

which is the tangent space of the deformation functor of the full subcategory of the category of A-modules generated by the family $\mathcal{V}=\left\{V_{i}\right\}_{i=1}^{r}$; see [4]. If $\mathcal{V}=\left\{V_{i}\right\}_{i=1}^{r}$ is the set of all indecomposables of some Artinian k-algebra A, we show that the above notion of almost split sequence coincides with that of Auslander; see [11].

Using this we consider, in [5,7], the general problem of classification of iterated extensions of a family of modules $\mathcal{V}=\left\{V_{i},\right\}_{i=1}^{r}$, and the corresponding classification of filtered modules with graded components in the family \mathcal{V}, and extension type given by a directed representation graph Γ. The main result is the following; see [7].

Proposition 7. Let A be any k-algebra and $\mathcal{V}=\left\{V_{i}\right\}_{i=1}^{r}$ any swarm of A-modules, such that

$$
\operatorname{dim}_{k} \operatorname{Ext}_{A}^{1}\left(V_{i}, V_{j}\right)<\infty, \quad \forall i, j=1, \ldots, r .
$$

(i) Consider an iterated extension E of \mathcal{V}, with representation graph Γ. Then there exists a morphism of k-algebras $\phi: H \mathcal{V} \rightarrow k[\Gamma]$ such that $E \simeq k[\Gamma] \otimes_{\phi} \tilde{V}$ as right A-algebras.
(ii) The set of equivalence classes of iterated extensions of \mathcal{V} with representation graph Γ is a quotient of the set of closed points of the affine algebraic variety $\underline{A}[\Gamma]=\operatorname{Mor}(H \mathcal{V}, k[\Gamma])$.
(iii) There is a versal family $\tilde{V}[\Gamma]$ of A-modules defined on $\underline{A}[\Gamma]$, containing as fibers all the isomorphism classes of iterated extensions of \mathcal{V} with representation graph Γ.

To any, not necessarily finite, swarm $\underline{c} \subset \underline{\bmod }(A)$ of right- A-modules, we have associated two associative k-algebras (see [6,7]):

$$
O(|\underline{c}|, \pi)={\underset{\mathcal{V}}{\overleftarrow{\mathcal{C}}|\underline{c}|}}_{\lim } O(\mathcal{V})
$$

and a sub-quotient $\mathcal{O}_{\pi}(\underline{c})$, together with natural k-algebra homomorphisms

$$
\eta(|\underline{c}|): A \longrightarrow O(|\underline{c}|, \pi)
$$

and $\eta(\underline{c}): A \rightarrow \mathcal{O}_{\pi}(\underline{c})$ with the property that the A-module structure on \underline{c} is extended to an \mathcal{O}-module structure in an optimal way. We then defined an affine non-commutative scheme of right A-modules to be a swarm \underline{c} of right A-modules, such that $\eta(\underline{c})$ is an isomorphism. In particular, we considered, for finitely generated k-algebras, the swarm $\operatorname{Simp}_{<\infty}^{*}(A)$ consisting of the finite dimensional simple A-modules, and the generic point A, together with all morphisms between them. The fact that this is a swarm, that is for all objects $V_{i}, V_{j} \in \operatorname{Simp}_{<\infty}$ we have $\operatorname{dim}_{k} \operatorname{Ext}_{A}^{1}\left(V_{i}, V_{j}\right)<\infty$, is easily proved. We have in [7] proved the following result (see [7, Proposition 4.1] for the definition of the notion of geometric k-algebra)
Proposition 8. Let A be a geometric k-algebra, then the natural homomorphism

$$
\eta\left(\operatorname{Simp}^{*}(A)\right): A \longrightarrow \mathcal{O}_{\pi}\left(\operatorname{Simp}_{<\infty}^{*}(A)\right)
$$

is an isomorphism, that is, $\operatorname{Simp}_{<\infty}^{*}(A)$ is a scheme for A.
In particular, $\operatorname{Simp}_{<\infty}^{*}\left(k\left\langle x_{1}, x_{2}, \ldots, x_{d}\right\rangle\right)$ is a scheme for $k\left\langle x_{1}, x_{2}, \ldots, x_{d}\right\rangle$. To analyze the local structure of $\operatorname{Simp}_{n}(A)$, we need the following lemma (see [7, Lemma 3.23]).
Lemma 9. Let $\mathcal{V}=\left\{V_{i}\right\}_{i=1, \ldots, r}$ be a finite subset of $\operatorname{Simp}_{<\infty}(A)$, then the morphism of k-algebras,

$$
A \longrightarrow O(\mathcal{V})=\left(H_{i, j} \otimes_{k} \operatorname{Hom}_{k}\left(V_{i}, V_{j}\right)\right)
$$

is topologically surjective.
Proof. Since the simple modules $V_{i}(i=1, \ldots, r)$ are distinct, there is an obvious surjection

$$
\eta_{0}: A \longrightarrow \prod_{i=1, \ldots, r} \operatorname{End}_{k}\left(V_{i}\right)
$$

Put $\mathfrak{r}=\operatorname{ker} \eta_{0}$, and consider for $m \geq 2$ the finite dimensional k-algebra, $B:=A / \mathfrak{r}^{m}$. Clearly, $\operatorname{Simp}(B)=\mathcal{V}$ so that by the generalized Burnside theorem (see [5, Theorem 3.4]) we find

$$
B \simeq O^{B}(\mathcal{V}):=\left(H_{i, j}^{B} \otimes_{k} \operatorname{Hom}_{k}\left(V_{i}, V_{j}\right)\right)
$$

Consider the commutative diagram

where all morphisms are natural. In particular α exists since $B=A / \mathfrak{r}^{m}$ maps into $O^{A} \mathcal{V} / \operatorname{Rad}^{m}$, and therefore induces the morphism α commuting with the rest of the morphisms. Consequently, α has to be surjective, and we have proved the contention.

Example 10. As an example of what may occur in rank infinity, we will consider the invariant problem $\mathbf{A}_{\mathbf{C}}^{1} / \mathbf{C}^{*}$. Here we are talking about the algebra $A=\mathbf{C}[x]\left(\mathbf{C}^{*}\right)$ crossed product of $\mathbf{C}[x]$ with the group \mathbf{C}^{*}. If $\lambda \in \mathbf{C}^{*}$, the product in A is given by $x \times \lambda=\lambda \times \lambda^{-1} x$. There are two "points" (i.e. orbits) modeled by the obvious origin $V_{0}:=A \rightarrow \operatorname{End}_{\mathbf{C}}(\mathbf{C}(0))$, and by $V_{1}:=A \rightarrow \operatorname{End}_{\mathbf{C}}\left(\mathbf{C}\left[x, x^{-1}\right]\right)$. We may also choose the two points $V_{0}:=\mathbf{C}(0), V_{1}:=\mathbf{C}[x]$, in line with the definitions of [6]. Obviously, $\mathbf{C}[x]$ corresponds to the closure of the orbit $\mathbf{C}\left[x, x^{-1}\right]$. This choice is the best if we want to make visible the adjacencies in the quotient, and we will therefore treat both cases.

We need to compute

$$
\operatorname{Ext}_{A}^{p}\left(V_{i}, V_{j}\right), \quad p=1,2, i, j=1,2 .
$$

Now,

$$
\operatorname{Ext}_{A}^{1}\left(V_{i}, V_{j}\right)=\operatorname{Der}_{\mathbf{C}}\left(A, \operatorname{Hom}_{\mathbf{C}}\left(V_{i}, V_{j}\right)\right) / \text { Triv, } \quad i, j=1,2
$$

and since x acts as zero on V_{1}, and \mathbf{C}^{*} acts as identity on V_{1} and as a homogenous multiplication on V_{0}, we find

$$
\operatorname{Der}_{k}\left(A, \operatorname{Hom}_{k}\left(V_{0}, V_{0}\right)\right) / \operatorname{Triv}=\operatorname{Der}_{k}\left(A, \operatorname{Hom}_{k}\left(V_{0}, V_{0}\right)\right)=\operatorname{Der}_{\mathbf{C}}(A, \mathbf{C}(0))
$$

Any $\delta \in \operatorname{Der}_{k}(A, \mathbf{C}(0))$ is determined by its values $\delta(x), \delta(\lambda) \in \mathbf{C}(0) \mid \lambda \in \mathbf{C}^{*}$. Moreover, since in A we have $(\lambda) \times\left(\lambda^{-1} x\right)=x \times(\lambda)$, we find

$$
\delta(\lambda \mu)=\delta(\lambda)+\delta(\mu), \quad \delta\left((\lambda) \times\left(\lambda^{-1} x\right)\right)=\delta(x \times(\lambda)) .
$$

The left-hand side of the last equation is $\delta\left(\left(\lambda^{-1} x\right)\right)=\lambda^{-1} \delta(x)$, and the right-hand side is $\delta(x)$, and since this must hold for all $\lambda \in \mathbf{C}^{*}$, we must have $\delta(x)=0$. Moreover, since $\delta(\lambda \mu)=\delta(\lambda)+\delta(\mu)$, it is clear that the continuity of δ implies that δ must be equal to $\alpha \ln (|\cdot|)$, for some $\alpha \in \mathbf{C}$. (To simplify the writing, we will put $\log :=\ln (|\cdot|)$.) Therefore,

$$
\operatorname{Ext}_{A}^{1}\left(V_{0}, V_{0}\right)=\operatorname{Der}_{k}\left(A, \operatorname{Hom}_{\mathbf{C}}\left(V_{0}, V_{0}\right)\right)=\mathbf{C}
$$

The cup-product of this class, $\log \cup \log$, sits in ${H H^{2}}^{2}(A, \mathbf{C}(0))=\operatorname{Ext}_{a}^{2}\left(V_{0}, V_{0}\right)$, and is given by the 2-cocycle

$$
(\lambda, \mu) \longrightarrow \log (\lambda) \times \log (\mu)
$$

This is seen to be a boundary, that is, there exists a map $\psi: \mathbf{C}^{*} \rightarrow \mathbf{C}(0)$, such that for all $\lambda, \mu \in \mathbf{C}^{*}$ we have

$$
\log (\lambda) \times \log (\mu)=\psi(\lambda)-\psi(\lambda \mu)+\psi(\mu) .
$$

Just put $\psi_{1,1}:=\psi_{2}=-1 / 2 \log ^{2}$. Therefore, the cup product is zero, and if we, in general, put

$$
\psi_{n}:=\psi_{1,1, \ldots, 1}=(-)^{n+1} 1 /(n!) \log ^{n}, \quad n \geq 1
$$

where n is the number of 1 s in the first index, then computing the Massey products of the element $\log \in$ $\operatorname{Ext}_{A}^{1}\left(V_{0}, V_{0}\right)$, we find the nth Massey product

$$
[\log , \log , \ldots, \log]=\left\{(\lambda, \mu) \longrightarrow \sum_{p=1, \ldots, n-1} \psi_{p} \psi_{n-p}\right\}
$$

and this is easily seen to be the boundary of the 1-cochain

$$
\psi_{n+1}=(-)^{n+2} 1 /((n+1)!) \log ^{n+1}
$$

Therefore, all Massey products are zero. Of course, we have not yet proved that they could be different from zero, that is, we have not computed the obstruction group $\operatorname{Ext}_{A}^{2}\left(V_{0}, V_{0}\right)$ and found it non-trivial! Now this is unnecessary.

Now, assume first $V_{0}=\mathbf{C}\left[x, x^{-1}\right]$, then every

$$
\delta \in \operatorname{Ext}_{A}^{1}\left(V_{0}, V_{0}\right)=\operatorname{Der}_{\mathbf{C}}\left(A, \operatorname{Hom}_{\mathbf{C}}\left(V_{0}, V_{0}\right)\right) / \text { Triv }
$$

is determined by the values of $\delta(x)$ and $\delta(\lambda), \lambda \in \mathbf{C}^{*}$. Since $\operatorname{Ext}_{\mathbf{C}[x]}^{1}\left(V_{0}, V_{1}\right)=0$, we may find a trivial derivation such that subtracting from δ we may assume $\delta(x)=0$. But then the formula

$$
\delta(x \times \lambda)=\delta\left(\lambda \times\left(\lambda^{-1} x\right)\right)
$$

implies

$$
x \delta(\lambda)=\delta(\lambda)\left(\lambda^{-1} x\right)
$$

from which it follows that

$$
\delta(\lambda)\left(x^{p}\right)=\left(\lambda^{-1} x\right)^{p} \delta(\lambda)(1) .
$$

Now, since $\lambda \mu=\mu \lambda$ in \mathbf{C}^{*}, we find

$$
\left(\lambda^{-1} \mu x\right)^{p} \delta(\lambda)(1)(\mu x)=\left(\lambda \mu^{-1} x\right)^{p} \delta(\lambda)(1)(\lambda x)
$$

which should hold for any pair of $\mu, \lambda \in \mathbf{C}^{*}$, and any p. This obviously implies $\delta=0$.
This argument shows not only that

$$
\operatorname{Ext}_{A}^{1}\left(V_{1}, V_{1}\right)=\operatorname{Der}_{\mathbf{C}}\left(A, \operatorname{Hom}_{\mathbf{C}}\left(V_{1}, V_{1}\right)\right) / \operatorname{Triv}=0
$$

when $V_{1}=\mathbf{C}\left[x, x^{-1}\right]$, but also when $V_{1}=\mathbf{C}[x]$. Finally, we find that the formula above,

$$
x \delta(\lambda)=\delta(\lambda)\left(\lambda^{-1} x\right),
$$

shows that for

$$
\delta \in \operatorname{Ext}_{A}^{1}\left(V_{1}, V_{0}\right)=\operatorname{Der}_{\mathbf{C}}\left(A, \operatorname{Hom}_{\mathbf{C}}\left(V_{1}, V_{0}\right)\right) / \text { Triv }
$$

we have $\delta(\lambda)\left(x x^{p}\right)=0$ for all p. Therefore,

$$
\operatorname{Ext}_{A}^{1}\left(V_{1}, V_{0}\right)=\operatorname{Der}_{\mathbf{C}}\left(A, \operatorname{Hom}_{\mathbf{C}}\left(V_{1}, V_{0}\right)\right) / \text { Triv }=0
$$

when $V_{1}=\mathbf{C}\left[x, x^{-1}\right]$. However, when $V_{1}=\mathbf{C}[x]$, we find that δ with $\delta(\lambda)(1) \neq 0$ and with $\delta(\lambda)\left(x^{p}\right)=0$, for $p \geq 1$, survives. These will, as above, give rise to a logarithm of the real part of \mathbf{C}^{*}. Therefore, in this case $\operatorname{Ext}_{A}^{1}\left(V_{1}, V_{0}\right)=\mathbf{C}$. The miniversal families look like

$$
H=\left(\begin{array}{cc}
\mathbf{C}[[t]] & 0 \\
0 & \mathbf{C}
\end{array}\right)
$$

when $V_{1}=\mathbf{C}\left[x, x^{-1}\right]$, and like

$$
H=\left(\begin{array}{cc}
\mathbf{C}[[t]] & 0 \\
\langle\mathbf{C}\rangle & \mathbf{C}
\end{array}\right)
$$

when $V_{1}=\mathbf{C}[x]$.

4 The infinite phase space construction and Massey products

Let, as above, $\mathcal{V}=\left\{V_{i}\right\}_{i=1, \ldots, r}$ be a family of A-modules. To compute the relevant cohomology for the deformation theory, that is, the $\operatorname{Ext}_{A}^{*}\left(V_{i}, V_{j}\right)$, we may use the Leray spectral sequence of [3], together with the formulas

$$
\begin{gathered}
\operatorname{Ext}_{A}^{n}\left(V_{i}, V_{j}\right)=H H^{n+1}\left(k, A ; \operatorname{Hom}_{k}\left(V_{i}, V_{j}\right)\right), \\
H H^{n+1}(k, A ; W)={\underset{\text { Free }}{ } / A}_{\lim _{m}}^{(n)} \operatorname{Der}_{k}(-, W), \quad n>0,
\end{gathered}
$$

where W is any A-bimodule. Choose a surjective morphism $\mu: F \rightarrow A$ of a free k-algebra F onto A, and put $I=\operatorname{ker} \mu$, then we find that

$$
\begin{gathered}
H H^{3}(k, A ; W)=\underset{\underset{\text { Free }}{\leftarrow} / A}{\lim }{ }^{(2)} \operatorname{Der}_{k}(-, W)=\operatorname{Hom}_{F}\left(I / I^{2}, \text { ker } \mu\right) / \text { Der, } \\
\operatorname{Ext}_{A}^{2}\left(V_{i}, V_{j}\right)=\operatorname{Hom}_{F}\left(I / I^{2}, \operatorname{Hom}_{k}\left(V_{i}, V_{j}\right)\right) / \operatorname{Der},
\end{gathered}
$$

where Der is the restriction of the derivations, $\operatorname{Der}_{k}(F,-)$, to I / I^{2}. Moreover, consider a commutative diagram of homomorphisms of algebras, in which $\tilde{\rho}$ is not yet included

and where $J:=\operatorname{ker} \pi$ has square 0 . The composition map $O: I / I^{2} \rightarrow \operatorname{ker} \pi$ induces an element $o \in H H^{3}(k, A ; J)$, independent upon the choice of ρ^{\prime}. If this (obstruction) element vanishes, then O is the restriction to I of a derivation $\xi: F \rightarrow \operatorname{ker} \pi$. Subtracting this from ρ^{\prime}, we may assume that $\rho^{\prime}(I)=0$, so there exists a lifting $\tilde{\rho}$ of ρ. If there exists a lifting $\tilde{\rho}$, then we may obviously assume that $O=0$.

Now, let $\left\{\psi_{i, j}(l) \in \operatorname{Der}_{k}\left(A ; V_{i}, V_{j}\right)\right\}_{l=1, \ldots, d_{i, j}}$ represent a basis of $\operatorname{Ext}_{A}^{1}\left(V_{i}, V_{j}\right)$, and let $E_{i, j}:=$ $\left\{t_{i, j}(l)\right\}_{l=1, \ldots, d_{i, j}}$ denote the dual basis. Consider, the free matrix k-algebra (quiver) $\left(T_{i, j}^{1}\right)$, generated in slot (i, j) by the (formal) elements of $E_{i, j}$. There is a unique homomorphism

$$
\pi: T^{1}:=\left(T_{i, j}\right) \longrightarrow\left(\begin{array}{cccc}
k & 0 & \cdots & 0 \\
0 & k & \cdots & 0 \\
\cdots & \cdots & 0 \\
0 & \cdots & \cdots & k
\end{array}\right)
$$

Denote by the same letter the completion of T^{1} with respect to the powers of the radical $\operatorname{Rad}\left(T^{1}\right):=\operatorname{ker} \pi$. Then $T^{1} \in \underline{\hat{a}}_{r}$. Consider the k-algebra and the π-induced homomorphism

$$
\pi_{1}:\left(T_{i, j}^{1} \otimes_{k} \operatorname{Hom}_{k}\left(V_{i}, V_{j}\right)\right) \longrightarrow\left(\operatorname{Hom}_{k}\left(V_{i}, V_{i}\right)\right)
$$

Clearly, π_{1} splits, and it is easy to see that

$$
\xi: A \longrightarrow\left(T_{i, j}^{1} \otimes \operatorname{Hom}_{k}\left(V_{i}, V_{j}\right)\right)
$$

defined by

$$
\xi=\sum_{i, j, l} t_{i, j}(l) \psi_{i, j}(l)
$$

is a derivation, $\xi: A \rightarrow\left(\left(T^{1} / \operatorname{Rad}^{2}\left(T^{1}\right)\right)_{i, j} \otimes_{k} \operatorname{Hom}_{k}\left(V_{i}, V_{j}\right)\right)$, therefore inducing a unique homomorphism, $\tilde{\rho}_{1}$, makes the following diagram commute

Now, we would have liked to extend this diagram, completing it with commuting homomorphisms,

where

$$
\left(T^{1}(n):=T^{1} / \operatorname{Rad}^{n+1}\left(T^{1}\right)\right), \quad\left(H(n):=H / \operatorname{Rad}^{n+1}(H)\right) .
$$

However, as will be clear in the next construction, the obvious continuation of this procedure does not work. In fact, the formalized higher differentials $\mathcal{D}(A)$ is not really the natural phase-space to work with for all purposes. In an obvious sense it is too homogenous. We are therefore led to the construction of a kind of projective resolution of A. Consider as above a surjective homomorphism, $\mu: F \rightarrow A$, with $F=k\left\langle x_{1}, x_{2}, \ldots, x_{s}\right\rangle$ a free k-algebra, and $I=\operatorname{ker} \mu$. Obviously $\mathrm{Ph}^{(p)}(F)$, for $p \geq 1$, are also free, and $\mathrm{Ph}^{(p+1)}(F)$ is a free $\mathrm{Ph}^{(p)}(F)$-algebra. Let $\exp (\delta): F \rightarrow \mathcal{D}(F)$ be defined as in Section 2 by

$$
\exp (\delta)=i d+d+1 / 2 d^{2}+\cdots
$$

and denote by $\eta_{p}: F \rightarrow \mathcal{D}_{p}(F)$ the induced homomorphism. Define

$$
\mathcal{H}_{p}:=\mathcal{D}_{p}(F) /\left(i_{0}(I), \eta_{p}(I)\right)
$$

Clearly, $\mathcal{H}_{p}=\mathcal{D}_{p}(A), \mathcal{H}=\operatorname{proj} \lim \mathcal{H}_{p}$, for $p=0,1$. For $p \geq 2$, there are only natural surjective homomorphisms, $\kappa_{p}: \mathcal{H}_{p} \rightarrow \mathcal{D}_{p}(A)$. By functoriality, the diagram above induces another commutative diagram, which may be completed to the commutative diagram (ρ_{2}^{\prime} and ρ_{2} not yet included)

where we, in expectation of later constructions, put

$$
\begin{aligned}
H(1) & =T^{1} / \operatorname{Rad}\left(T^{1}\right)^{2}, \quad H^{\prime}(2)=T^{1} / \operatorname{Rad}\left(T^{1}\right)^{3}, \\
\mathcal{O}(n) & :=\left(H(n)_{i, j} \otimes_{k} \operatorname{Hom}_{k}\left(V_{i}, V_{j}\right)\right), \quad n \geq 1, \\
\mathcal{O}^{\prime}(n) & :=\left(H^{\prime}(n)_{i, j} \otimes_{k} \operatorname{Hom}_{k}\left(V_{i}, V_{j}\right)\right), \quad n \geq 2 .
\end{aligned}
$$

Now the map

$$
(i d+\delta) \circ \mu_{1} \circ \rho_{1}: I \longrightarrow \mathcal{O}(1)
$$

is zero, and the resulting map $\tilde{\rho}_{1}: A \rightarrow \mathcal{O}(1)$ is, as deformation of the family \mathcal{V}, the universal family at the tangent level. Since $\mathrm{Ph}^{(n+1)}(F)$ is a free algebra over $\mathrm{Ph}^{(n)}(F)$, there is lifting ρ_{2}^{\prime}. We want an induced ρ_{2}. Consider the composition

$$
O^{\prime}:=\exp (\delta) \circ \rho_{2}: F \longrightarrow \mathcal{O}^{\prime}(2)
$$

lifting $\mu \circ \tilde{\rho}_{1}$. The restriction to I vanishes on I^{2} and induces a map

$$
O(2): I / I^{2} \longrightarrow\left(\left(\operatorname{Rad}\left(T^{1}\right)^{2} / \operatorname{Rad}\left(T^{1}\right)^{3}\right)_{i, j} \otimes_{k} \operatorname{Hom}_{k}\left(V_{i}, V_{j}\right)\right)
$$

It is easily seen to be F-linear, both from left and right, and so it induces the obstruction

$$
o_{2} \in\left(\left(\operatorname{Rad}\left(T^{1}\right)^{2} / \operatorname{Rad}\left(T^{1}\right)^{3}\right)_{i, j} \otimes_{k} \operatorname{Ext}_{A}^{2}\left(V_{i}, V_{j}\right)\right)
$$

independent upon the choice of extension ρ_{2}^{\prime}. Now

$$
\left(\left(\operatorname{Rad}\left(T^{1}\right)^{2} / \operatorname{Rad}\left(T^{1}\right)^{3}\right)_{i, j} \otimes_{k} \operatorname{Ext}_{A}^{2}\left(V_{i}, V_{j}\right)\right)
$$

may be identified with

$$
\operatorname{Hom}_{k}\left(\left(\operatorname{Ext}_{A}^{2}\left(V_{i}, V_{j}\right)^{*}\right),\left(\operatorname{Rad}\left(T^{1}\right)^{2} / \operatorname{Rad}(H)^{3}\right)_{i, j}\right)
$$

which is a subspace of

$$
\operatorname{Mor}_{\underline{a}_{r}}\left(k^{r} \oplus\left(\operatorname{Ext}_{A}^{2}\left(V_{i}, V_{j}\right)^{*}\right), T^{1} / \operatorname{Rad}\left(T^{1}\right)^{3}\right) .
$$

Denote by T^{2} the free matrix algebra (quiver), in $\underline{\hat{a}}_{r}$, generated by $\operatorname{Ext}_{A}^{2}\left(V_{i}, V_{j}\right)^{*}$, just like the construction of T^{1} above, such that

$$
T^{2} / \operatorname{Rad}\left(T^{2}\right)^{2}=k^{r} \oplus\left(\operatorname{Ext}_{A}^{2}\left(V_{i}, V_{j}\right)^{*}\right)
$$

We may now state and prove the main result of this paper.

Theorem 11. (i) For any finite family of (finite dimensional) A-modules, $\mathcal{V}:=\left\{V_{i}\right\}_{i=1, \ldots, r}$, there is a homomorphism $\tilde{\rho}$, making the following diagram commutative

such that the versal family $\tilde{\rho}=\exp (\delta) \circ \bar{\rho}$.
(ii) Moreover, $H=\left(H_{i, j}\right)$ may be constructed recursively, as a quotient of $T^{1}=\left(T_{i, j}^{1}\right)$, by annihilating a series of obstructions, on, defining a morphism in $\underline{a}_{r}, o: T^{2} \rightarrow T^{1}$, such that $H \simeq T^{1} \otimes_{T^{2}} k^{r}$.

Proof. We have above constructed an obstruction for lifting ρ_{1} to a ρ_{2}. It is a unique element;

$$
o_{2} \in \operatorname{Mor}_{\underline{\underline{a}}_{r}}\left(k^{r} \oplus\left(\operatorname{Ext}_{A}^{2}\left(V_{i}, V_{j}\right)^{*}\right) T^{1} / \operatorname{Rad}\left(T^{1}\right)^{3}\right) .
$$

Obviously, the image

$$
o_{2}\left(\left(\operatorname{Ext}_{A}^{2}\left(V_{i}, V_{j}\right)^{*}\right) \subset T^{1} / \operatorname{Rad}\left(T^{1}\right)^{3}\right)
$$

generates an ideal of T^{1}, contained in $\operatorname{Rad}\left(T^{1}\right)^{2}$. Call it σ_{2}, and put

$$
H(2)=T^{1} /\left(\operatorname{Rad}\left(T^{1}\right)^{3}+\sigma_{2}\right)
$$

Then, there is a commutative diagram

In fact, since we have divided out with the obstruction, we know that the morphism

$$
O(2): I / I^{2} \longrightarrow\left(\operatorname{Rad}\left(T^{1}\right)^{2} / \operatorname{Rad}\left(T^{1}\right)^{3}+\sigma_{2}\right)_{i, j} \otimes_{k} \operatorname{Hom}_{k}\left(V_{i}, V_{j}\right)
$$

is the restriction of a derivation

$$
\psi_{2}^{\prime}: F \longrightarrow\left(\operatorname{Rad}\left(T^{1}\right)^{2} / \operatorname{Rad}\left(T^{1}\right)^{3}+\sigma_{2}\right)_{i, j} \otimes_{k} \operatorname{Hom}_{k}\left(V_{i}, V_{j}\right)
$$

Now change the morphism ρ_{2}^{\prime}, to $\rho_{2}^{\prime \prime}$ mapping $d^{2} x_{i}$ to $\rho_{2}^{\prime}\left(d^{2} x_{i}\right)-2 \psi_{2}\left(x_{i}\right)$. It is easily seen that for this new morphism, $\eta_{2} \circ \rho_{2}^{\prime}$ is zero, restricted to I, proving the existence of $\bar{\rho}_{2}$. Recall that $\mathcal{D}_{1}(A)=\mathcal{H}_{1}$.

Now $\bar{\rho}_{2}$ defines $\tilde{\rho}_{2}:=\eta_{2} \circ \rho_{2}$. Let σ_{3}^{\prime} be the two-sided ideal in T^{1} generated by

$$
\operatorname{Rad}\left(T^{1}\right)^{4}+\operatorname{Rad}\left(T^{1}\right) \sigma_{2}+\sigma_{2} \operatorname{Rad}\left(T^{1}\right)
$$

and let us put

$$
H^{\prime}(3):=T^{1} / \sigma_{3}^{\prime}, \quad \mathcal{O}^{\prime}(3):=\left(H^{\prime}(3) \otimes_{k} \operatorname{Hom}_{k}\left(V_{i}, V_{j}\right)\right)
$$

The diagram above induces a commutative diagram, ρ_{3}^{\prime}, constructed as above, but where $\bar{\rho}_{3}$ is the problem,

Consider now the map $\eta_{3} \circ \rho_{3}^{\prime}: I \rightarrow \mathcal{O}^{\prime}(3)$ ending up in

$$
\left(\left(\operatorname{Rad}\left(T^{1}\right)^{3}+\sigma_{2}\right) / \sigma_{3}\right)_{i, j} \otimes_{k} \operatorname{Hom}_{k}\left(V_{i}, V_{j}\right)
$$

which clearly is killed by $\operatorname{Rad}\left(\mathcal{O}^{\prime}(3)\right)$, and therefore really is a matrix of vector spaces, as an $\mathcal{O}^{\prime}(3)$-module. As above, this map is easily seen to be a left and right linear map as F-modules, F acting on $\mathcal{O}(3)$ via $\tilde{\eta}_{3}: F \rightarrow \mathcal{D}_{3}(F)$. Moreover, the induced element

$$
\begin{aligned}
o_{3} & \in\left(\left(\operatorname{Rad}\left(T^{1}\right)^{3}+\sigma_{2}\right) / \sigma_{3}^{\prime}\right)_{i, j} \otimes_{k} \operatorname{Ext}_{A}^{2}\left(V_{i}, V_{j}\right) \\
& =\left(\operatorname{Hom}_{k}\left(\operatorname{Ext}_{A}^{2}\left(V_{i}, V_{j}\right)^{*},\left(\operatorname{Rad}\left(T^{1}\right)^{3}+\sigma_{2}\right) / \sigma_{3}^{\prime}\right)_{i, j}\right)
\end{aligned}
$$

is independent on the choice of ρ_{3}^{\prime}. Now, we define $H(3):=H^{\prime}(3) / \sigma_{3}$, where σ_{3} is defined by the image of o_{3}, and define $\kappa: \mathcal{O}^{\prime}(3) \rightarrow \mathcal{O}(3)$ as above. Since, by functoriality, the morphism

$$
\eta_{3} \circ \rho_{3}^{\prime} \kappa: I \longrightarrow \mathcal{O}(3)
$$

must induce the zero element in the corresponding

$$
\left(\operatorname{Ext}_{A}^{1}\left(V_{i}, V_{j}\right) \otimes\left(\left(\operatorname{Rad}\left(T^{1}\right)^{3}+\sigma_{2}\right) / \sigma_{3}^{\prime}\right)_{i, j}\right) / i m o_{3}
$$

it must be the restriction of a derivation $\xi: F \rightarrow \mathcal{O}(3)$. Now change ρ_{3}^{\prime} by sending $d^{3} x_{i}$ to $\rho_{3}^{\prime}\left(d^{3} x_{i}\right)-3!\psi_{3}\left(x_{i}\right)$, leaving the other values of the parameters unchanged. Then, a little calculation shows that the new ρ_{3}^{\prime} maps each $\eta_{3}(f), f \in I$, to zero, inducing a morphism $\bar{\rho}_{3}: \mathcal{H}_{3} \rightarrow \mathcal{O}(3)$. We now have a new situation, given by a commutative diagram, not yet including ρ_{4},

and it is clear how to proceed. This proves (i), and the rest is a consequence of the general theorem [3, Theorem 4.2.4].

We cannot replace \mathcal{H} by \mathcal{D}. This follows from the trivial Example 4(iii) above. However, if we are in a graded situation, things are nicer.

Corollary 12. Assume that A is a finitely generated, graded, in degree $1, k$-algebra, and assume that \mathcal{V} is a family of graded A-modules. Then there is a corresponding graded formal moduli $\left(H_{i, j}\right)^{\mathrm{gr}}$, and there is a commutative diagram,

such that the graded versal family $\tilde{\rho}^{\mathrm{gr}}=\exp (\delta) \circ \bar{\rho}^{\mathrm{gr}}$.

References

[1] S. Iitaka, Symmetric forms and Weierstrass cycles, Proc. Japan Acad. Ser. A Math. Sci., 54 (1978), 101-103.
[2] D. Laksov and A. Thorup, These are the differentials of order n, Trans. Amer. Math. Soc., 351 (1999), 1293-1353.
[3] O. A. Laudal, Formal Moduli of Algebraic Structures, vol. 754 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1979.
[4] -, Matric Massey products and formal moduli. I, in Algebra, Algebraic Topology and Their Interactions (Stockholm, 1983), vol. 1183 of Lecture Notes in Math., Springer-Verlag, Berlin, 1986, 218-240.
[5] ——, Noncommutative deformations of modules, Homology Homotopy Appl., 4 (2002), 357-396.
[6] ——, Noncommutative algebraic geometry, Rev. Mat. Iberoamericana, 19 (2003), 509-580.
[7] ——, The structure of $\operatorname{Simp}_{<\infty}(A)$ for finitely generated k-algebras A, in Computational Commutative and Non-Commutative Algebraic Geometry, vol. 196 of NATO Sci. Ser. III Comput. Syst. Sci., IOS, Amsterdam, 2005, 3-43.
[8] _, Time-space and space-times, in Noncommutative Geometry and Representation Theory in Mathematical Physics, vol. 391 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2005, 249-280.
[9] -, Phase spaces and deformation theory, Acta Appl. Math., 101 (2008), 191-204.
[10] ——, Geometry of Time-Spaces: Non-Commutative Algebraic Geometry, Applied to Quantum Theory, World Scientific, Hackensack, NJ, 2011.
[11] I. Reiten, An introduction to the representation theory of Artin algebras, Bull. London Math. Soc., 17 (1985), 209-233.
[12] M. Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc., 130 (1968), 208-222.

[^0]: * This article is a part of a Special Issue on Deformation Theory and Applications (A. Makhlouf, E. Paal and A. Stolin, Eds.).

