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Abstract The index of a seaweed Lie algebra can be computed from its associated meander graph. We examine this
graph in several ways with a goal of determining families of Frobenius (index zero) seaweed algebras. Our analysis
gives two new families of Frobenius seaweed algebras as well as elementary proofs of known families of such Lie
algebras.
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1 Introduction

Let L be a Lie algebra over a field of characteristic zero. For any functional F ∈ L∗ there is an associated skew
bilinear form BF on L defined by BF (x, y) = F ([x, y]) for x, y ∈ L. The index of L is defined to be

ind L = min
F∈L∗

dim
(
ker

(
BF

))
.

The Lie algebra L is Frobenius if dim = 0; equivalently, if there is a functional F ∈ L∗ such that BF (−,−) is
non-degenerate.

Frobenius Lie algebras were first studied by Ooms in [9], where he proved that the universal enveloping algebra
UL is primitive (i.e. admits a faithful simple module) provided that L is Frobenius and that the converse holds
when L is algebraic. The relevance of Frobenius Lie algebras to deformation and quantum group theory stems
from their relation to the classical Yang-Baxter equation (CYBE). Suppose BF (−,−) is non-degenerate and let
M be the matrix of BF (−.−) relative to some basis {x1, . . . , xn} of L. Belavin and Drinfel’d showed that r =∑

i,j(M
−1)ijxi ∧ xj is a (constant) solution of the CYBE; see [1]. Thus, each pair consisting of a Lie algebra L

together with functional F ∈ L∗ such that BF is non-degenerate provides a solution to the CYBE; see [5,6] for
examples.

The index of a semisimple Lie algebra g is equal to its rank and thus such algebras can never be Frobenius. How-
ever, there always exist subalgebras of g which are Frobenius. In particular, many amongst the class of biparabolic
subalgebras of g are Frobenius. A biparabolic subalgebra is the intersection of two parabolic subalgebras whose sum
is g. They were first introduced in the case g = sl(n) by Dergachev and Kirillov in [2] where they were called Lie
algebras of seaweed type. Associated to each seaweed algebra is a certain graph called the meander. One of the main
results of [2] is that the algebra’s index is determined by graph-theoretical properties of its meander; see Section 3
for details.

Using different methods, Panyushev developed an inductive procedure for computing the index of seaweed
subalgebras; see [10]. In the same paper, he exhibits a closed form for the index of a biparabolic subalgebra of
sp(n). One may see also [8,11].

Tauvel and Yu found in [12] an upper bound for the index of a biparabolic subalgebra of an arbitrary semisimple
Lie algebra, and they conjectured that this was an equality. Joseph proved the Tauvel-Yu conjecture in [7].

The methods of [2,7,10,12] are all combinatorial in nature. Yet even with this theory available, it is difficult
in practice to implement this theory to find families of Frobenius biparabolic Lie algebras. In contrast, for many
cases it is known explicitly which biparabolic algebras have the maximum possible index. For example, the only

� This article is a part of a Special Issue on Deformation Theory and Applications (A. Makhlouf, E. Paal and A. Stolin, Eds.).



2 Journal of Generalized Lie Theory and Applications

biparabolics in sl(n) and sp(n) which have maximal index are the Levi subalgebras. In contrast, the problem of
determining the biparabolics of minimal index is an open question in all cases.

Our focus in this note is on the seaweed Lie algebras—these are the biparabolic subalgebras of sl(n). The only
known families of Frobenius seaweed Lie algebras that seem to be in the literature will be outlined in Section 4,
although the unpublished preprint [4] may offer more examples. We will examine these families using the meander
graphs of Dergachev and Kirillov. Our methodology provides new proofs that these algebras are indeed Frobenius.
We also exhibit a new infinite family of Frobenius seaweed Lie algebras in Section 4.4.

2 Seaweed Lie algebras

In this section, we introduce the seaweed Lie algebras of [2]. Recall that a composition of a positive integer n is an
unordered partition x = (a1, . . . , am). That is, each ai ≥ 0 and

∑
ai = n.

Definition 1. Let V be an n-dimensional vector space with a basis e1, . . . , en. Let x = (a1, . . . , am) and y =

(b1, . . . , bt) be two compositions of n and consider the flags

{0} ⊂ V1 ⊂ · · · ⊂ Vm−1 ⊂ Vm = V, V = W0 ⊃ W1 ⊃ · · · ⊃ Wt = {0},
where Vi = span{e1, . . . , ea1+···+ai} and Wj = span{eb1+···+ebj+1 , . . . , en}. The subalgebra of sl(n) preserving
these flags is called a seaweed Lie algebra and is denoted by p(x | y).

A basis-free definition is available but is not necessary for the present discussion. The name seaweed Lie algebra
was chosen due to their suggestive shape when exhibited in matrix form. For example, the algebra p(3, 1, 3, 2 |
4, 2, 3) consists of traceless matrices of the form⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗ · · · · ·
∗ ∗ ∗ ∗ · · · · ·
∗ ∗ ∗ ∗ · · · ·
· · · ∗ ∗ ∗ · · ·
· · · · ∗ ∗ · · ·
· · · · ∗ ∗ · · ·
· · · · ∗ ∗ ∗ ∗ ∗
· · · · · · ∗ ∗ ∗
· · · · · · ∗ ∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the entries marked by the dots are zero.
Many important subalgebras of sl(n) are of seaweed type, as illustrated in the following example.

Example 2. • The entire algebra sl(n) = p(n | n) has index n − 1.
• The Cartan subalgebra of traceless diagonal matrices is p(1 | 1), where 1 = (1, 1, . . . , 1) and has index n − 1.
• The Borel subalgebra is p(1 | n) and has index �(n + 1)/2	.
• A maximal parabolic subalgebra is of the form p(a, b | n). Èlashvili proved in [3] that its index is gcd(a, n)− 1.

The only explicitly known Frobenius examples in the above list are the maximal parabolic algebras p(a, b | n)

with a and n relatively prime. Of course, another infinite family of Frobenius seaweed algebras occurs when a =

(2, . . . , 2, 1), b = (1, 2, . . . , 2), and n is odd. A similar case is a = (1, 2, . . . , 2, 1), b = (2, . . . , 2), and n is even.
These two families are detailed in [10].

A tantalizing question is how to classify which seaweed algebras are Frobenius, especially given their importance
in the general theory of Lie algebras and applications to deformations and quantum groups.

3 Meanders

As stated earlier, Dergachev and Kirillov have developed a combinatorial algorithm to compute the index of an
arbitrary p(x | y) from its associated meander graph M(x | y) determined by the compositions x and y. The vertices
of M(x | y) consist of n ordered points on a horizontal line, which can be called 1, 2, . . . , n. The edges are arcs
above and below the line connecting pairs of different vertices.

More specifically, the composition x = (a1, . . . , am) determines arcs above the line which we will call the top
edges. The component a1 of x determines �a1/2	 arcs above vertices 1, . . . , a1. The arcs are obtained by connecting
vertex 1 to vertex a1, vertex 2 to vertex a1 − 1, and so on. If a1 is odd then vertex a�a1/2� has no arc above it. For
the component a2 of a, we do the same procedure over vertices a1 +1, . . . , a1 +a2, and continue with the higher ai.
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Figure 1: M(5, 2, 2 | 2, 4, 3).

Figure 2: M(3, 2, 2 | 2, 5).

The arcs corresponding to y = (b1, . . . , bt) are drawn with the same rule but are under the line containing the
vertices. These are called the bottom edges.

It is easy to see that every meander consists of a disjoint union of cycles, paths, and isolated points, but not all
of these are necessarily present in any given meander.

Theorem 3 (Dergachev-Kirillov). The index of the Lie algebra of seaweed type p(a | b) is equal to the number of
connected components in the meander plus the number of closed cycles minus 1.

Remark 4. The presence of the minus one in the theorem is due to our use of seaweed subalgebras of sl(n) rather
than of gl(n) as used by Dergachev and Kirillov [2]. The index drops by one by the restriction to sl(n) from gl(n).

Example 5. Figure 1 shows the meander M(x | y) corresponding to the compositions x = (5, 2, 2) and y = (2, 4, 3).
We see that there is a single path and a single cycle. Using the theorem above, the index is 2+1−1 = 2. Hence,

p(5, 2, 2 | 2, 4, 3) is not a Frobenius algebra.

It is easy to see that to obtain a Frobenius algebra, the only possibility for the meander is that it consist of a
single path with no cycles and no isolated points. The following illustrates this point.

Example 6. Consider the algebra p(3, 2, 2 | 2, 5). Its meander is given in Figure 2.
Labeling the vertices with {1, 2, . . . , n} from left to right, notice that M(3, 2, 2 | 2, 5) is the single path

2, 1, 3, 7, 6, 4, 5 (if we start with 2) or its reversal 5, 4, 6, 7, 3, 1, 2 if we start with 5. In particular, the index is 1−1 = 0

and so this is a Frobenius algebra.

Question 7. What are the conditions on the compositions x and y so that the meander M(x | y) consists of a single
path with no cycles or isolated points?

As stated, this seems to be an elementary question involving nothing more that the basics of graph theory.
However, the apparent simplicity of the question is misleading since an answer would provide a complete classi-
fication of Frobenius seaweed algebras—a difficult problem. Even so, it is easy to give some necessary conditions
on x = (a1, . . . , am) and y = (b1, . . . , bt) for M(x | y) to be a single path. For example, exactly two elements of
the set (a1, . . . , am, b1, . . . , bt) must be odd. This is because a path must have a starting point and an ending point,
and these correspond to vertices of degree one. A vertex of degree one is either missing a top edge or bottom edge
connecting to it, and this happens only if some ai or bj is odd.

Another necessary condition for M(x | y) to be a single path is that a1 
= b1. In this case,

p(x | y) � sl
(
a1

) ⊕
p
(
a2, . . . , am | b2, . . . , bt

)
and thus p(x | y) is not Frobenius since the index is additive for direct sums of Lie algebras. More generally, if∑r

i=1 ai =
∑r

j=1 bj for some r ≤ min{m, t}, then the meander is not a single path. Other necessary conditions can
be given, but none seems to shed light on what is sufficient.

4 Families of Frobenius seaweed algebras

In this section, we revisit some known families of Frobenius seaweed algebras in terms of meanders. At the end we
also provide two new families.
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Figure 3: M(5, 2, 2 | 2, 4, 3) with loops.

First consider Panyushev’s example with x = (2, . . . , 2, 1), y = (1, 2, . . . , 2), and n is odd. Again, numbering
as in Example 6, the top edges connect 2 to 4, 4 to 6, and so on. while the bottom edges connect 1 to 3, 3 to 5, and
so on. Hence, the meander consists of the single path 1, 2, . . . , n. A similar argument verifies that the meander for
x = (1, 2, . . . , 2, 1) and y = (2, . . . , 2) with n even is also the path 1, 2, . . . , n.

To analyze some other cases, it is convenient to modify the definition of the meander M(x | y).

Definition 8. Suppose x and y are compositions of n. The modified meander M ′(x | y) is the graph M(x | y)

appended with a loop corresponding to each odd ai and bj . Specifically, for all odd ai, add a loop connecting
a1 + · · ·+ ai−1 + 
ai/2� to itself. Similarly, for all odd bj , add a bottom loop connecting b1 + · · ·+ bj−1 + 
bj/2�
to itself.

Note that in M ′(x | y), each vertex is incident with exactly one top and one bottom edge or loop.

Example 9. Figure 3 shows the modified meander M ′(5, 2, 2 | 2, 4, 3). Compare with the meander M(5, 2, 2 |
2, 4, 3) given in Example 5.

4.1 The top and bottom bijections

Each modified meander determines two bijections of S = {1, 2, . . . , n} to itself. Define a “top” bijection t of S by
t(i) = i, where j is the unique vertex incident with the same top edge as i. If i is joined to itself by a top loop, then
t(i) = 1. In a similar way, define a “bottom” bijection b of S by b(i) = j, where j is the unique vertex incident with
the same bottom edge as j. If i is joined to itself by a bottom loop, then b(i) = 1. Clearly the maps t and b are well
defined. For instance, in Example 9, we have t(3) = 3 and b(3) = 6.

Definition 10. Let x and y be compositions of n. The meander permutation σx,y ∈ Sn is the permutation t ◦ b of S.
That is, σx,y(i) = t(b(i)).

Example 11. Consider the meander permutation σx,y with x and y as in Example 9. We can write σx,y as a product
of disjoint cycles in Sn: (1, 4)(2, 5)(3, 7, 8, 9, 6) (note the different use of the term “cycle”).

Theorem 12. Suppose x and y are compositions of n. Then the meander M(x | y) is a single path if and only if the
meander permutation σx,y is an n-cycle in Sn.

Proof. Suppose the meander M(x | y) is the single path a1, a2, . . . , an. By switching x and y if necessary, we can
assume that b(a1) = a2. Then the meander permutation is the n-cycle (a1, a3, . . . , an−1, an, an−2, . . . , a2) if n is
even, and if n is odd it is the n-cycle if (a1, a3, . . . , an, an−1, an−3, . . . , a2).

Conversely, suppose σx,y is an n-cycle but M(x | y) is not a single path. Then M(x | y) contains either an
isolated point, a path of length less than n, or a cycle. We will show that each of these possibilities leads to a
contradiction.

If i is an isolated point of M(x | y), then it is a fixed point of σx,y which therefore cannot be an n-cycle.
If a1, . . . , ak is a path in M(x | y) with k < n, then, depending on whether k is even or odd, either the

(a1, a3, . . . , ak−1, ak, ak−2, . . . , a2) or (a1, a3, . . . , ak, ak−1, ak−3, . . . , a2) appears in the cycle decomposition of
σx,y . Since k < n, we conclude that σx,y is not an n-cycle.

Now if M(x | y) contains a cycle a1, a2, . . . , ak, a1, then the meander permutation contains either the k/2 cycle
(a1, a3, . . . , an−1) if n is even or the k-cycle (a1, a3, . . . , an, a2, a4, . . . , an−1) if n is odd. If k < n, then σx,y is
not an n-cycle. If k = n is even, then the same argument shows that σx,y is not an n-cycle. The remaining case is
that k = n is odd. If this happens though, we must have M(x | y) = M ′(x | y), and consequently all components ai

and bj are even. Since
∑

ai = n, we have a contradiction. Thus, in all cases when M(x | y) is not a single path, the
meander permutation σx,y is not an n-cycle, which is a contradiction. The proof is complete.



Journal of Generalized Lie Theory and Applications 5

4.2 Maximal parabolic subalgebras

To generate more examples of Frobenius Lie algebras, we consider maximal parabolic seaweed subalgebras of sl(n)

which are necessarily of the form p(a, b | n).

Lemma 13. Consider the compositions x = (a, b) and y = n. The meander permutation σx,y is the map sending i

to i + a mod n for all i.

Proof. By definition of the top and bottom maps, we have

b(i) = n + 1 − i, t(i) =

{
a + 1 if 1 ≤ i ≤ a,

n + a + 1 − i if a + 1 ≤ i ≤ n,

and thus

t
(
b(i)

)
=

{
a − n + i if 1 ≤ b(i) ≤ a,

a + i if a + 1 ≤ b(i) ≤ n.

Therefore, σx,y(i) = t(b(i)) = i + a mod n.

Recall Èlashvili’s result asserting that the maximal parabolic algebra p(a, b | n) is Frobenius if and only if
gcd(a, n) = 1. An immediate corollary of the previous lemma gives a new simple proof of Èlashvili’s result.

Corollary 14. The maximal parabolic algebra p(a, b | n) is Frobenius if and only if gcd(a, n) = 1.

Proof. By Theorem 12 it suffices to show that the meander permutation is an n-cycle. According to Lemma 13,
σx,y(i) = i + a mod n for all i. Thus, the meander permutation is an n-cycle if and only if the sequence i, i + a, i +

2a, . . . , i + (n − 1)a forms a complete residue system modulo n. This occurs precisely when gcd(a, n) = 1. The
proof is complete.

4.3 Opposite maximal parabolic subalgebras

We now use the same ideas to present another family of Frobenius seaweed algebras each of which is an intersection
of a positive and a negative maximal parabolic algebra. Such algebras are of the form p(a, b | c, d) and are called
opposite maximal parabolic subalgebras.

Lemma 15. Let x = (a, b) and y = (c, d) be compositions of n. The permutation meander σx,y is the map sending
i to a − c mod n for all i.

Proof. The bottom and top maps are given by

b(i) =

{
c + 1 − i if 1 ≤ i ≤ c,

n + c + 1 − i if c + 1 ≤ i ≤ n,
t(i) =

{
a + 1 − i if 1 ≤ i ≤ a,

n + a + 1 − i if a + 1 ≤ i ≤ n.

There are four possible compositions t(b(i)), depending on and whether i ≤ c or i > c and whether b(i) ≤ a or
b(i) > a. It is an easy calculation to see that in each case t(b(i)) = a − c + i mod n.

An immediate consequence is the following result.

Corollary 16. The opposite maximal parabolic seaweed algebra p(a, b | c, d) is Frobenius if and only if gcd(a −
c, n) = 1.

Proof. The argument is exactly as that used in Corollary 14. Namely, that the meander permutation is an n-cycle if
and only if the sequence i, i + (a − c), i + 2(a − c), . . . , i + (n − 1)(a − c) is a complete residue system modulo n,
and this is the case if and only if gcd(a − c, n) = 1.

The result of the corollary was first proved using different methods by Stolin in [11]. For example, the Lie
algebra p(2, 3 | 4, 1) is Frobenius since 2 − 4 = −2 is relatively prime to 7.

At this time, the above line of reasoning does not easily extend to compositions x and y with more than two
components. However, some calculations offer hope of producing more families of Frobenius Lie algebras using
methods similar to those above.
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4.4 Submaximal parabolic algebras

We conclude with another new family of Frobenius algebras. These are of the form p(a, b, c | n), so they are
parabolic algebras omitting exactly two simple roots. We use a different technique than for maximal or opposite
maximal algebras to analyze this family. Our result is the following classification theorem.

Theorem 17. The submaximal parabolic algebra p(a, b, c | n) is Frobenius if and only if gcd(a + b, b + c) = 1.

We first establish some conditions on the degrees of the vertices {v1, v2, . . . , vn} of the meander M = M(a, b, c |
n). Since the vertices of M are viewed as the numbers {1, 2, . . . , n} on a line, the interval between vertices vi and
vi+1 makes sense.

Lemma 18. Suppose gcd(a + b, b + c) = 1. Then, there are exactly two vertices of degree 1 in M and all other
vertices have degree 2.

Proof. Suppose for a moment that there exists a vertex v of degree 0. This vertex must have no bottom edge, meaning
that n is odd and v = v(n+1)/2. We also know that v has no top edge so b is odd and v is halfway between va+1 and
va+b. This implies that a = c so a + b = b + c, a contradiction. Hence, we get exactly one vertex of degree 1 for
each integer in {a, b, c, n} which is odd.

If n is odd, the vertex v(n+1)/2 has degree 1. If all three of a, b and c are odd, then a + b and b + c are both even,
meaning they have a common factor of 2, a contradiction. This implies that exactly one of a, b or c must be odd.
Then, there is exactly one other vertex of degree one as desired.

If n is even, the bottom edges form a perfect matching. If all three of a, b and c are even, then a + b and b + c

are again even, a contradiction. This implies that exactly two of a, b or c are odd, meaning there are two vertices of
degree 1 as desired.

By Lemma 18, one component of M must be a path and there are possibly more components which are all
cycles. Let P be this path and suppose P has a′ ≤ a vertices in the first part of the partition, and b′ ≤ b and
c′ ≤ c vertices in the other parts, respectively. Note that one of a′, b′ or c′ may be zero. Label the vertices of P with
u1, u2, . . . , un′ , where n′ = |P | following the inherited order (the order of the labels vi) of the vertices. Notice that
the path P forms a meander graph on its own. This means that, by the proof of Lemma 18, we know that exactly
two of the integers in {a′, b′, c′, n′} are even and two are odd.

Now suppose there exists at least one component of M that is a cycle. Let C be the set of all vertices in cycles
of M . Suppose C has d vertices in the interval between ui and ui+1. For the moment, let us suppose that i 
= n′

2 .
Following the bottom edges, this means that C must also have d vertices in the interval between un′−i and un′−i+1.
Using this argument, we will show that C has d vertices in almost every interval.

Define a dead end in M to be an interval ui to ui+1 such that M contains an edge joining ui and ui+1. In
particular, if n′ is even, then the interval between un′/2 and un′/2+1 is a dead end.

Lemma 19. Suppose gcd(a + b, b + c) = 1. Then there are exactly two dead ends in M .

Proof. A dead end is formed by two consecutive vertices of P which are adjacent. Each occurrence of a dead end
coincides with one of a′, b′, c′ or n′ being even, and we know that exactly two of these are even. Thus, there are
exactly two dead ends and the proof is complete.

Proof of Theorem 17. Call an interval a partition interval if it is the meeting point of two parts of our partition.
Namely, the partition intervals are from ua′ to ua′+1 and from ua′+b′ to ua′+b′+1. Now suppose C has d vertices in
the interval from ui to ui+1. For the moment, we suppose this interval is not a dead end. As mentioned before, this
means that, by following bottom edges, C must also have d vertices in the interval from un′−i to un′−i+1. Also, by
following top edges, C must have d vertices in another interval (depending where the top edges go).

If the interval from ui to ui+1 happens to be one of the two partition intervals (e.g. suppose i = a′), then this
means that C must have d1 vertices in the interval outside u1 and at least d2 vertices in the interval from ua′+b′ to
ua′+b′+1 where d1 + d2 = d. This then implies that C has d1 vertices in the interval beyond un (following bottom
edges) and another d1 vertices in the interval from ua′+b′ to ua′+b′+1 (following top edges) for a total of d vertices
in the interval ua′+b′ to ua′+b′+1. See Figure 4 for an example. In this figure, the dark lines represent the edges of
P while light lines represent edges of C. The unlabeled light lines represent d edges each. Here n′ = 7, a′ = 2,
b′ = 2 and c′ = 3.

Alternating following top and bottom edges, we see that the cycle C has exactly d vertices in every interval
between vertices and possibly d1 ≤ d vertices on each end beyond u1 and beyond un′ . Carefully counting, we
see that the first part of our partition has a = a′ + 2d1 + (a′ − 1)d vertices. Similarly, the second part has b =
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d1 d2
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Figure 4: M(2, 2, 3 | 7) with inserted cycle.

Figure 5: M(3, 2, 2, 2 | 9) with inserted cycle.

b′ + 2d2 + (b′ − 1)d and the third part has c = c′ + 2d1 + (c′ − 1)d. This means that a + b = (a′ + b′)(d + 1) and
b+ c = (b′ + c′)(d+1) and these have a common factor of d+1, a contradiction. This shows that C must be empty,
so G is simply the path P .

The following is an example to show that this argument does not work when we break n into more pieces.
Consider the meander M = M(3, 2, 2, 2 | 9) pictured in Figure 5.

Here we have broken the top into 4 pieces while leaving the bottom in one piece. Notice that we can add a cycle
to this structure which does not pass through all the intervals. This happens because, as the number of pieces we
have increases, the number of dead ends also increases, allowing more flexibility in the placement of the cycles.

The above illustrates the complexity of the meander graphs M(x | y) as the number of parts of x and y grow. At
the moment, the problem of classifying all Frobenius seaweed Lie algebras seems to be out of reach. Of late, there
has been a great deal of interest in Frobenius Lie algebras. Perhaps these recent developments will be instrumental
in the development of a classification theory.
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[12] P. Tauvel and R. W. T. Yu, Sur l’indice de certaines algèbres de Lie, Ann. Inst. Fourier (Grenoble), 54 (2004), 1793–1810.


