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Address correspondence to Rosa Marı́a Navarro, rnavarro@unex.es

Received 22 January 2013; Accepted 30 January 2013

Copyright c© 2013 Rosa Marı́a Navarro. This is an open access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract In this work, it is considered that the vector space is composed by the infinitesimal deformations of the
model Z3-filiform Lie algebra Ln,m,p. By using these deformations, all the Z3-filiform Lie algebras can be obtained,
hence the importance of these deformations. The results obtained in this work, together with those obtained by
Khakimdjanov and Navarro (J. Geom. Phys. 2011 and 2012), lead to compute the total dimension of the mentioned
space of deformations.
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1 Introduction

The concept of filiform Lie algebras was firstly introduced by Vergne [18]. This type of nilpotent Lie algebra has
important properties; in particular, every filiform Lie algebra can be obtained by a deformation of the model filiform
algebra Ln. In the same way as filiform Lie algebras, all filiform Lie superalgebras can be obtained by infinitesimal
deformations of the model Lie superalgebra Ln,m [1,4,8,9].

Continuing with the work of Vergne, we have generalized the concept and the properties of the filiform Lie
algebras into the theory of color Lie superalgebras. Thus, filiform G-color Lie superalgebras and the model filiform
G-color Lie superalgebra were obtained in a previous study [10].

In the present, paper the focus of interest are color Lie superalgebras with a Z3-grading vector space (i.e.,
G = Z3, due to its physical applications) [3,7,6,13,16,17]. Due to the fact that the one admissible commutation
factor for Z3 is exactly β(g,h) = 1 ∀g,h, Z3-color Lie superalgebras are indeed Z3-color Lie algebras or Z3-graded
Lie algebras. Thus, we have studied the infinitesimal deformations of the model Z3-color Lie superalgebra (i.e.,
the model Z3-filiform Lie algebra Ln,m,p). By means of these deformations, all Z3-filiform Lie algebras can be
obtained, hence the importance of these deformations.

Khakimdjanov and Navarro [11,12] decomposed the space of these infinitesimal deformations, noted by
Z2(L;L), into six subspaces of deformations:

Z2(L;L)∩Hom
(
L0 ∧L0,L0

)⊕Z2(L;L)∩Hom
(
L0 ∧L1,L1

)⊕Z2(L;L)

∩Hom
(
L0 ∧L2,L2

)⊕Z2(L;L)∩Hom
(
L1 ∧L1,L2

)⊕Z2(L;L)

∩Hom
(
L1 ∧L2,L0

)⊕Z2(L;L)∩Hom
(
L2 ∧L2,L1

)
= A⊕B⊕C⊕D⊕E⊕F.

In the present paper, a method is given that will allow to determine the dimension of the subspaces A, B, and
C, giving explicitly the total dimension of all of them (Theorems 19, 23, and 24). This result, together with those
obtained by Khakimdjanov and Navarro [11,12], leads to obtain the total dimension of the infinitesimal deformations
of the model Z3-filiform Lie algebra Ln,m,p (Main theorem).

We do assume that the reader is familiar with the standard theory of Lie algebras. All the vector spaces that
appear in this paper (and thus, all the algebras) are assumed to be F-vector spaces (F=C or R) with finite dimension.

2 Preliminaries

The vector space V is said to be Zn-graded if it admits a decomposition in direct sum, V = V0 ⊕V1 ⊕·· ·Vn−1. An
element X of V is called homogeneous of degree γ (deg(X) = d(X) = γ), γ ∈ Zn, if it is an element of Vγ .
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Let V = V0 ⊕ V1 ⊕ ·· ·Vn−1 and W = W0 ⊕W1 ⊕ ·· ·Wn−1 be two graded vector spaces. A linear mapping
f : V →W is said to be homogeneous of degree γ (deg(f) = d(f) = γ), γ ∈ Zn, if f(Vα) ⊂Wα+γ (modn) for all
α ∈ Zn. The mapping f is called a homomorphism of the Zn-graded vector space V into the Zn-graded vector
space W , if f is homogeneous of degree 0. Now it is evident how we define an isomorphism or an automorphism of
Zn-graded vector spaces.

A superalgebra g is just a Z2-graded algebra g= g0 ⊕g1. That is, if we denote by [ , ] the bracket product of g,
we have [gα,gβ ]⊂ gα+β (mod2) for all α,β ∈ Z2.

Definition 1 (see [14]). Let g = g0 ⊕ g1 be a superalgebra whose multiplication is denoted by the bracket product
[ , ]. We call g a Lie superalgebra if the multiplication satisfies the following identities:

(1) [X,Y ] =−(−1)α·β [Y,X], ∀X ∈ gα, ∀Y ∈ gβ .

(2) (−1)γ·α[X, [Y,Z]]+ (−1)α·β [Y, [Z,X]]+ (−1)β·γ [Z, [X,Y ]] = 0 ∀X ∈ gα, Y ∈ gβ , Z ∈ gγ with α,β,γ ∈ Z2.

Identity (2) is called the graded Jacobi identity, and it will be denoted by Jg(X,Y,Z).

We observe that if g= g0 ⊕g1 is a Lie superalgebra, we have that g0 is a Lie algebra and g1 has the structure of
a g0-module.

Color Lie (super)algebras can be seen as a direct generalization of Lie (super)algebras. Indeed, the latter are
defined through antisymmetric (commutator) or symmetric (anticommutator) products, although for the former, the
product is neither symmetric nor antisymmetric and is defined by means of a commutation factor. This commutation
factor is equal to ±1 for (super)Lie algebras and more general for arbitrary color Lie (super)algebras. As happened
for Lie superalgebras, the basic tool to define color Lie (super)algebras is a grading determined by an abelian group.

Definition 2. Let G be an abelian group. A commutation factor β is a map β : G×G→ F \ {0}, (F = C or R),
satisfying the following constraints:

(1) β(g,h)β(h,g) = 1 ∀g,h ∈G
(2) β(g,h+k) = β(g,h)β(g,k) ∀g,h,k ∈G
(3) β(g+h,k) = β(g,k)β(h,k) ∀g,h,k ∈G.

The definition above implies, in particular, the following relations:

β(0, g) = β(g,0) = 1, β(g,h) = β(−h,g), β(g,g) =±1 ∀g,h ∈G,
where 0 denotes the identity element of G. In particular, fixing g one element of G, the induced mapping βg : G→
F\{0} defines a homomorphism of groups.

Definition 3. Let G be an abelian group and β a commutation factor. The (complex or real) G-graded algebra

L=
⊕

g∈G
Lg

with bracket product [ , ], is called a (G,β)-color Lie superalgebra if for any X ∈ Lg , Y ∈ Lh, and Z ∈ L, we have:

(1) [X,Y ] =−β(g,h)[Y,X] (anticommutative identity)

(2) [[X,Y ],Z] = [X, [Y,Z]]−β(g,h)[Y, [X,Z]] (Jacobi identity).

Corollary 4. Let L=
⊕

g∈GLg be a (G,β)-color Lie superalgebra. Then we have:

(1) L0 is a (complex or real) Lie algebra where 0 denotes the identity element of G.
(2) For all g ∈G\{0}, Lg is a representation of L0. If X ∈ L0 and Y ∈ Lg , then [X,Y ] denotes the action of X on

Y .

Examples. For the particular case G= {0}, L= L0 reduces to a Lie algebra. If G= Z2 = {0,1} and β(1,1) =−1,
we have ordinary Lie superalgebras; that is, a Lie superalgebra is a (Z2,β)-color Lie superalgebra where β(i, j) =
(−1)ij for all i, j ∈ Z2.

Definition 5. A representation of a (G,β)-color Lie superalgebra is a mapping ρ : L → End(V ), where V =⊕
g∈GVg is a graded vector space such that:

[
ρ(X),ρ(Y )

]
= ρ(X)ρ(Y )−β(g,h)ρ(Y )ρ(X)

for all X ∈ Lg , Y ∈ Lh.
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We observe that for all g,h ∈ G we have ρ(Lg)Vh ⊆ Vg+h, which implies that any Vg has the structure of a
L0-module. In particular considering the adjoint representation adL we have that every Lg has the structure of a
L0-module.

Two (G,β)-color Lie superalgebras L and M are called isomorphic if there is a linear isomorphism ϕ : L→M

such that ϕ(Lg) =Mg for any g ∈G and also ϕ([x,y]) = [ϕ(x),ϕ(y)] for any x,y ∈ L.
Let L=

⊕
g∈GLg be a (G,β)-color Lie superalgebra. The descending central sequence of L is defined by

C0(L) = L, Ck+1(L) =
[Ck(L),L] ∀k ≥ 0.

If Ck(L) = {0} for some k, the (G,β)-color Lie superalgebra is called nilpotent. The smallest integer k such as
Ck(L) = {0} is called the nilindex of L.

Also, we are going to define some new descending sequences of ideals, see [10]. Let L=
⊕

g∈GLg be a (G,β)-

color Lie superalgebra. Then, we define the new descending sequences of ideals Ck(L0) (where 0 denotes the identity
element of G) and Ck(Lg) with g ∈G\{0}, as follows:

C0(L0
)
= L0, Ck+1(L0

)
=
[
L0,Ck

(
L0

)]
, k ≥ 0

and

C0(Lg

)
= Lg, Ck+1(Lg

)
=
[
L0,Ck

(
Lg

)]
, k ≥ 0, g ∈G\{0}.

Using the descending sequences of ideals defined above, we give an invariant of color Lie superalgebras called
color-nilindex. We are going to particularize this definition for G= Z3.

Definition 6 (see [11]). If L= L0 ⊕L1 ⊕L2 is a nilpotent (Z3,β)-color Lie superalgebra, then L has color-nilindex
(p0,p1,p2), if the following conditions hold:

(Cp0−1(L0
))(Cp1−1(L1

))(Cp2−1(L2
)) �= 0

and

Cp0
(
L0

)
= Cp1

(
L1

)
= Cp2

(
L2

)
= 0.

Definition 7 (see [10]). Let L=
⊕

g∈GLg be a (G,β)-color Lie superalgebra. Lg is called a L0-filiform module if
there exists a decreasing subsequence of vectorial subspaces in its underlying vectorial space V , V = Vm ⊃ ·· · ⊃
V1 ⊃ V0, with dimensions m,m−1, . . .0, respectively, m> 0, and such that [L0,Vi+1] = Vi.

Remark 8. The definition of filiform module is also valid for G-graded Lie algebras.

Definition 9 (see [10]). Let L =
⊕

g∈GLg be a (G,β)-color Lie superalgebra. Then L is a filiform color Lie
superalgebra if the following conditions hold:

(1) L0 is a filiform Lie algebra where 0 denotes the identity element of G.
(2) Lg has structure of L0-filiform module, for all g ∈G\{0}
Definition 10. Let L =

⊕
g∈GLg be a G-graded Lie algebra. Then L is a G-filiform Lie algebra if the following

conditions hold:

(1) L0 is a filiform Lie algebra where 0 denotes the identity element of G.
(2) Lg has structure of L0-filiform module, for all g ∈G\{0}

It is not difficult to see that for G= Z3, there is only one possibility for the commutation factor β, that is:

β(g,h) = 1 ∀g,h ∈ Z3 = {0,1,2}.

From now on, we will consider this commutation factor, and we will write “Z3-color” instead of “(Z3,β)-color”.
We will note by Ln,m,p, the variety of all Z3-color Lie superalgebras L = L0 ⊕L1 ⊕L2 with dim(L0) = n+ 1,
dim(L1) =m and dim(L2) = p. Nn,m,p will be the variety of all nilpotent Z3-color Lie superalgebras, and Fn,m,p

is the subset of Nn,m,p composed of all filiform color Lie superalgebras.

Remark 11. If G = Z3, then β(g,h) = 1 ∀g,h. Thus, Z3-color Lie superalgebras are effectively Z3-graded Lie
algebras, and filiform Z3-color Lie superalgebras are Z3-filiform Lie algebras.



4 Journal of Generalized Lie Theory and Applications

In the particular case of G= Z3, the theorem of adapted basis rests as follows for L= L0 ⊕L1 ⊕L2 ∈ Fn,m,p:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
X0,Xi

]
=Xi+1, 1 ≤ i≤ n−1,

[
X0,Xn

]
= 0,

[
X0,Yj

]
= Yj+1, 1 ≤ j ≤m−1,

[
X0,Ym

]
= 0

[
X0,Zk

]
= Zk+1, 1 ≤ k ≤ p−1,

[
X0,Zp

]
= 0.

with {X0,X1, . . . ,Xn} a basis of L0, {Y1, . . . ,Ym} a basis of L1, and {Z1, . . . ,Zp} a basis of L2. The model
Z3-filiform Lie algebra, Ln,m,p, is the simplest Z3-filiform Lie algebra; and it is defined in an adapted basis
{X0,X1, . . . ,Xn,Y1, . . . ,Ym,Z1, . . . ,Zp} by the following non-null bracket products:

Ln,m,p =

⎧
⎪⎪⎨

⎪⎪⎩

[
X0,Xi

]
=Xi+1, 1 ≤ i≤ n−1

[
X0,Yj

]
= Yj+1, 1 ≤ j ≤m−1

[
X0,Zk

]
= Zk+1, 1 ≤ k ≤ p−1.

3 Cocycles and infinitesimal deformations

Recall that a module V = V0 ⊕V1 ⊕V2 of the Z3-color Lie superalgebra L is a bilinear map of degree 0, L×V → V

satisfying:

∀X ∈ Lg, Y ∈ Lh, v ∈ V : X(Y v)−Y (Xv) = [X,Y ]v

color Lie superalgebra cohomology is defined in the following well-known way (see, e.g., [15]): in particular, the
superspace of q-dimensional cocycles of the Z3-color Lie superalgebra L = L0 ⊕L1 ⊕L2 with coefficients in the
L-module V = V0 ⊕V1 ⊕V2 will be given by:

Cq(L;V ) =
⊕

q0+q1+q2=q

Hom
(∧q0 L0 ⊗∧q1L1 ⊗∧q2L2,V

)
.

This space is graded by Cq(L;V ) = C
q
0 (L;V )⊕Cq

1 (L;V )⊕Cq
2 (L;V ) with

Cq
p(L;V ) =

⊕

q0+q1+q2=q
q1+2q2+p≡rmod3

Hom
(∧q0 L0 ⊗∧q1L1 ⊗∧q2L2,Vr

)

The coboundary operator δq : Cq(L;V ) → Cq+1(L;V ), with δq+1 ◦ δq = 0 is defined in general, with L an
arbitrary (G,β)-color Lie superalgebra and V an L-module, by the following formula for q ≥ 1:

(
δqg

)(
A0,A1, . . . ,Aq

)
=

q∑

r=0

(−1)rβ
(
γ+α0 + · · ·+αr−1,αr

)
Ar · g

(
A0, . . . , Âr, . . . ,Aq

)

+
∑

r<s

(−1)sβ
(
αr+1 + · · ·+αs−1,αs

)
g
(
A0, . . . ,Ar−1, [Ar,As],Ar+1, . . . , Âs, . . . ,Aq

)
,

where g ∈Cq(L;V ) of degree γ, and A0,A1, . . . ,Aq ∈ L are homogeneous with degrees α0,α1, . . . ,αq , respectively.
The sign ˆ indicates that the element below must be omitted, and empty sums (like α0 + · · ·+αr−1 for r = 0 and
αr+1 + · · ·+αs−1 for s= r+1) are set equal to zero. In particular, for q = 2, we obtain:
(
δ2g

)(
A0,A1,A2

)
= β

(
γ,α0

)
A0 · g

(
A1,A2

)−β(γ+α0,α1
)
A1 · g

(
A0,A2

)
+β

(
γ+α0 +α1,α2

)
A2 · g

(
A0,A1

)

− g([A0,A1
]
,A2

)
+β

(
α1,α2

)
g
([
A0,A2

]
,A1

)
+ g

(
A0,

[
A1,A2

])
.

Let Zq(L;V ) denote the kernel of δq and let Bq(L;V ) denote the image of δq−1, then we have that Bq(L;V )⊂
Zq(L;V ). The elements of Zq(L;V ) are called q-cocycles; the elements of Bq(L;V ) are the q-coboundaries. Thus,
we can construct the so-called cohomology groups:

Hq(L;V ) = Zq(L;V )/Bq(L;V ), Hq
p(L;V ) = Zq

p(L;V )/Bq
p(L;V ), if G= Z3 then p= 0,1,2.
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Two elements of Zq(L;V ) are said to be cohomologous if their residue classes modulo Bq(L;V ) coincide, that
is, if their difference lies in Bq(L;V ).

We will focus our study in the 2-cocycles Z2
0 (L

n,m,p;Ln,m,p) with Ln,m,p, the model filiform Z3-color Lie
superalgebra. Thus, G = Z3 and the only admissible commutation factor is exactly β(g,h) = 1. Under all these
restrictions, the condition that have to verify ψ ∈ C2

0 (L
n,m,p;Ln,m,p) to be a 2-cocycle rests

(
δ2ψ

)(
A0,A1,A2

)
=
[
A0,ψ

(
A1,A2

)]− [
A1,ψ

(
A0,A2

)]
+
[
A2,ψ

(
A0,A1

)]

−ψ([A0,A1
]
,A2

)
+ψ

([
A0,A2

]
,A1

)
+ψ

(
A0,

[
A1,A2

])
= 0

for all A0,A1,A2 ∈ Ln,m,p. We observe that Ln,m,p has the structure of a Ln,m,p-module via the adjoint represen-
tation.

We consider a homogeneous basis of Ln,m,p = L0 ⊕L1 ⊕L2, in particular an adapted basis {X0,X1, . . . ,Xn,

Y1, . . . ,Ym,Z1, . . . ,Zp} with {X0,X1, . . . ,Xn} a basis of L0, {Y1, . . . ,Ym} a basis of L1 and {Z1, . . . ,Zp} a basis of
L2.

Under these conditions, we have the following lemma.

Lemma 12 (see [11,12]). Let ψ be such that ψ∈C2
0 (L

n,m,p;Ln,m,p), then ψ is a 2-cocycle, ψ∈Z2
0 (L

n,m,p;Ln,m,p),
iff the 10 conditions below hold for all Xi,Xj ,Xk ∈ L0, Yi,Yj ,Yk ∈ L1 and Zi,Zj ,Zk ∈ L2

(1) [Xi,ψ(Xj ,Xk)]−[Xj ,ψ(Xi,Xk)]+[Xk,ψ(Xi,Xj)]−ψ([Xi,Xj ],Xk)+ψ([Xi,Xk],Xj)+ψ(Xi, [Xj ,Xk]) =
0

(2) [Xi,ψ(Xj ,Yk)]− [Xj ,ψ(Xi,Yk)]+ [Yk,ψ(Xi,Xj)]−ψ([Xi,Xj ],Yk)+ψ([Xi,Yk],Xj)+ψ(Xi, [Xj ,Yk]) = 0

(3) [Xi,ψ(Xj ,Zk)]− [Xj ,ψ(Xi,Zk)]+[Zk,ψ(Xi,Xj)]−ψ([Xi,Xj ],Zk)+ψ([Xi,Zk],Xj)+ψ(Xi, [Xj ,Zk]) = 0

(4) [Xi,ψ(Yj ,Yk)]− [Yj ,ψ(Xi,Yk)]+ [Yk,ψ(Xi,Yj)]−ψ([Xi,Yj ],Yk)+ψ([Xi,Yk],Yj)+ψ(Xi, [Yj ,Yk]) = 0

(5) [Xi,ψ(Yj ,Zk)]− [Yj ,ψ(Xi,Zk)]+ [Zk,ψ(Xi,Yj)]−ψ([Xi,Yj ],Zk)+ψ([Xi,Zk],Yj)+ψ(Xi, [Yj ,Zk]) = 0

(6) [Xi,ψ(Zj ,Zk)]− [Zj ,ψ(Xi,Zk)]+ [Zk,ψ(Xi,Zj)]−ψ([Xi,Zj ],Zk)+ψ([Xi,Zk],Zj)+ψ(Xi, [Zj ,Zk]) = 0

(7) [Yi,ψ(Yj ,Yk)]− [Yj ,ψ(Yi,Yk)]+ [Yk,ψ(Yi,Yj)]−ψ([Yi,Yj ],Yk)+ψ([Yi,Yk],Yj)+ψ(Yi, [Yj ,Yk]) = 0

(8) [Yi,ψ(Yj ,Zk)]− [Yj ,ψ(Yi,Zk)]+ [Zk,ψ(Yi,Yj)]−ψ([Yi,Yj ],Zk)+ψ([Yi,Zk],Yj)+ψ(Yi, [Yj ,Zk]) = 0

(9) [Yi,ψ(Zj ,Zk)]− [Zj ,ψ(Yi,Zk)]+ [Zk,ψ(Yi,Zj)]−ψ([Yi,Zj ],Zk)+ψ([Yi,Zk],Zj)+ψ(Yi, [Zj ,Zk]) = 0

(10) [Zi,ψ(Zj ,Zk)]− [Zj ,ψ(Zi,Zk)]+ [Zk,ψ(Zi,Zj)]−ψ([Zi,Zj ],Zk)+ψ([Zi,Zk],Zj)+ψ(Zi, [Zj ,Zk]) = 0.

Proposition 13 (see [11]). ψ is an infinitesimal deformation of Ln,m,p iff ψ is a 2-cocycle of degree 0, ψ ∈
Z2

0 (L
n,m,p;Ln,m,p).

Theorem 14 (see [10]). (1) Any filiform (G,β)-color Lie superalgebra law μ is isomorphic to μ0 +ϕ, where μ0 is
the law of the model filiform (G,β)-color Lie superalgebra, and ϕ is an infinitesimal deformation of μ0 verifying
that ϕ(X0,X) = 0 for all X ∈ L, with X0 the characteristic vector of model one.

(2) Conversely, if ϕ is an infinitesimal deformation of a model filiform (G,β)-color Lie superalgebra law μ0

with ϕ(X0,X) = 0 for all X ∈ L, then the law μ0 +ϕ is a filiform (G,β)-color Lie superalgebra law iff ϕ◦ϕ= 0.

Thus, any Z3-filiform Lie algebra (filiform Z3-color Lie superalgebra) will be a linear deformation of the model
Z3-filiform Lie algebra (the model Z3-color Lie superalgebra); that is, Ln,m,p is the model Z3-filiform Lie algebra,
and another arbitrary Z3-filiform Lie algebra will be equal to Ln,m,p+ϕ, with ϕ an infinitesimal deformation of
Ln,m,p, hence the importance of these deformations. So, in order to determine all the Z3-filiform Lie algebras, it
is only necessary to compute the infinitesimal deformations or so-called 2-cocycles of degree 0, that vanish on the
characteristic vector X0. Thanks to the following lemma, these infinitesimal deformations can be decomposed into
six subspaces.

Lemma 15 (see [11,12]). Let Z2(L;L) be the 2-cocycles Z2
0 (L

n,m,p;Ln,m,p) that vanish on the characteristic
vector X0. Then Z2(L;L) can be divided into six subspaces; that is, if Ln,m,p = L= L0 ⊕L1 ⊕L2, we will have:

Z2(L;L) = Z2(L;L)∩Hom
(
L0 ∧L0,L0

)⊕Z2(L;L)∩Hom
(
L0 ∧L1,L1

)⊕Z2(L;L)

∩Hom
(
L0 ∧L2,L2

)⊕Z2(L;L)∩Hom
(
L1 ∧L1,L2

)⊕Z2(L;L)

∩Hom
(
L1 ∧L2,L0

)⊕Z2(L;L)∩Hom
(
L2 ∧L2,L1

)
= A⊕B⊕C⊕D⊕E⊕F.

In order to obtain the dimension of A, B, and C, we are going to adapt the sl2(C)-module method that we have
already used for Lie superalgebras [1,4,8] and for color Lie superalgebras [11,12]. Next, we will do it explicitly for
A= Z2(L;L)∩Hom(L0 ∧L0,L0).
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4 Dimension of A= Z2(L;L)∩Hom(L0 ∧L0,L0)

In general, any cocycle a ∈ Z2(L;L)∩Hom(L0 ∧L0,L0) will be any skew-symmetric bilinear map from L0 ∧L0 to
L0 such that:

[Xi,a(Xj ,Xk)]− [Xj ,a(Xi,Xk)]+ [Xk,a(Xi,Xj)]−a([Xi,Xj ],Xk)

+a([Xi,Xk],Xj)+a(Xi, [Xj ,Xk]) = 0 ∀Xi,Xj ,Xk ∈ L0
(4.1)

with a(X0,X) = 0 ∀X ∈ L. As X0 /∈ Ima and taking into account the bracket products of L, then (4.1) can be
rewritten as follows:

[
X0,a

(
Xj ,Xk

)]−a([X0,Xj

]
,Xk

)−a(Xj ,
[
X0,Xk

])
= 0, 1 ≤ j < k ≤ n. (4.2)

In order to obtain the dimension of the space of cocycles for A, we apply an adaptation of the sl(2,C)-module
method that we used in a previous study [11].

Recall the following well-known facts about the Lie algebra sl(2,C) and its finite-dimensional modules, see, for
example, [2,5]:

sl(2,C) = 〈X−,H,X+〉 with the following commutation relations:
⎧
⎪⎪⎨

⎪⎪⎩

[
X+,X−

]
=H,

[
H,X+

]
= 2X+,

[
H,X−

]
=−2X−.

Let V be a n-dimensional sl(2,C)-module, V = 〈e1, . . . , en〉. Then, up to isomorphism, there exists a unique structure
of an irreducible sl(2,C)-module in V given in a basis {e1, . . . , en} as follows [2]:

⎧
⎪⎪⎨

⎪⎪⎩

X+ · ei = ei+1, 1 ≤ i≤ n−1,

X+ · en = 0,

H · ei = (−n+2i−1)ei, 1 ≤ i≤ n.

It is easy to see that en is the maximal vector of V ; and its weight, called the highest weight of V , is equal to
n−1.

Let W0,W1, . . . ,Wk be sl(2,C)-modules, then the space Hom(⊗k
i=1Wi,W0) is a sl(2,C)-module in the follow-

ing natural manner:

(ξ ·ϕ)(x1, . . . ,xk) = ξ ·ϕ(x1, . . . ,xk)−
k∑

i=1

ϕ(x1, . . . , ξ ·xi,xi+1, . . . ,xn)

with ξ ∈ sl(2,C) and ϕ ∈ Hom(⊗k
i=1Wi,W0). In particular, if k = 2 and W0 =W1 =W2 = V0, then:

(ξ ·ϕ)(x1,x2
)
= ξ ·ϕ(x1,x2

)−ϕ(ξ ·x1,x2
)−ϕ(x1, ξ ·x2

)
.

An element ϕ ∈ Hom(V0 ⊗V0,V0) is said to be invariant if X+ ·ϕ= 0, that is:

X+ ·ϕ(x1,x2
)−ϕ(X+ ·x1,x2

)−ϕ(x1,X+ ·x2
)
= 0, ∀x1,x2 ∈ V. (4.3)

Note that ϕ ∈ Hom(V0 ⊗V0,V0) is invariant if and only if ϕ is a maximal vector.
We are going to consider the structure of irreducible sl(2,C)-module in V0 = 〈X1, . . . ,Xn〉= L0/CX0, thus in

particular:
{
X+ ·Xi =Xi+1, 1 ≤ i≤ n−1,

X+ ·Xn = 0.

Next, we identify the multiplication of X+ and Xi in the sl(2,C)-module V0 = 〈X1, . . . ,Xn〉, with the bracket
[X0,Xi] in L0 and thanks to these identifications, the expressions (4.2) and (4.3) are equivalent. Thus, we have the
following result:

Proposition 16. Any skew-symmetric bilinear map ϕ, ϕ : V0 ∧V0 → V0 will be an element of the space of cocycles
A if and only if ϕ is a maximal vector of the sl(2,C)-module Hom(V0 ∧V0,V0), with V0 = 〈X1, . . . ,Xn〉.



Journal of Generalized Lie Theory and Applications 7

Corollary 17. As each irreducible sl(2,C)-module has (up to nonzero scalar multiples) a unique maximal vector,
then the dimension of the space of cocyclesA is equal to the number of summands of any decomposition of Hom(V0∧
V0,V0) into the direct sum of irreducible sl(2,C)-modules.

We use the fact that each irreducible module contains either a unique (up to scalar multiples) vector of weight 0
(in case the dimension of the irreducible module is odd) or a unique (up to scalar multiples) vector of weight 1 (in
case the dimension of the irreducible module is even). We therefore have:

Corollary 18. The dimension of the space of cocycles A is equal to the dimension of the subspace of Hom(V0 ∧
V0,V0) spanned by the vectors of weight 0 or 1.

At this point, we are going to apply the sl(2,C)-module method aforementioned in order to obtain the dimension
of the space of cocycles A.

We consider a natural basis B of Hom(V0 ∧V0,V0) consisting of the following maps:

ϕs
i,j(Xk,Xl) =

{
Xs if (i, j) = (k, l)

0 in all other cases

where 1 ≤ i, j,k, l,s≤ n, with i �= j and ϕs
i,j =−ϕs

j,i.
Thanks to Corollary 18, it will be enough to find the basis vectors ϕs

i,j with weight 0 or 1. The weight of an
element ϕs

i,j (with respect to H) is:

λ
(
ϕs
i,j

)
= λ

(
Xs

)−λ(Xi

)−λ(Xj

)
= n+2(s− i− j)+1.

In fact,
(
H ·ϕs

i,j

)(
Xi,Xj

)
=H ·ϕs

i,j

(
Xi,Xj

)−ϕs
i,j

(
H ·Xi,Xj

)−ϕs
i,j

(
Xi,H ·Xj

)

=H ·Xs−ϕs
i,j

(
(−n−1+2i)Xi,Xj

)−ϕs
i,j

(
Xi,(−n−1+2j)Xj

)

= (−n−1+2s)Xs− (−n−1+2i)Xs− (−n−1+2j)Xs

=
[
n+2(s− i− j)+1

]
Xs.

We observe that if n is even, then λ(ϕ) is odd; and if n is odd, then λ(ϕ) is even. So, if n is even, it will be
sufficient to find the elements ϕs

i,j with weight 1 and if n is odd it will be sufficient to find those of them with weight
0.

We can consider the three sequences that correspond with the weights of V = 〈X1,X2, . . . ,Xn−1,Xn〉 in order
to find the elements with weight 0 or 1:

−n+1,−n+3, . . . ,n−3,n−1; −n+1,−n+3, . . . ,n−3,n−1; −n+1,−n+3, . . . ,n−3,n−1.

and we have to count the number of all possibilities to obtain 1 (if n is even) or 0 (if n is odd). Remember that
λ(ϕs

i,j) = λ(Xs)−λ(Xi)−λ(Xj), where λ(Xs) belongs to the last sequence, and λ(Xi), λ(Xj) belong to the first
and second sequences respectively. For example, if n is odd, we have to obtain 0, so we can fix an element (a weight)
of the last sequence and then count the possibilities to sum the same quantity between the two first sequences. Taking
into account the skew-symmetry of ϕs

i,j , that is ϕs
i,j =−ϕs

j,i and i �= j, and repeating the above reasoning for all the
elements of the last sequence, we obtain the following theorem:

Theorem 19. Let Z2(L;L) be the 2-cocycles Z2
0 (L

n,m,p;Ln,m,p) that vanish on the characteristic vectorX0. Then,
if A= Z2(L;L)∩Hom(L0 ∧L0,L0), we have that

dimA=

⎧
⎪⎪⎨

⎪⎪⎩

n(3n−2)
8

if n is even,

3n2 −4n+1
8

+

⌊
n+1

4

⌋
if n is odd.

Proof. It is convenient to distinguish the following four cases where the reasoning for each case is not hard:

(1) n≡ 0 (mod4).

(2) n≡ 1 (mod4).

(3) n≡ 2 (mod4).

(4) n≡ 3 (mod4).
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5 Dimension of B = Z2(L;L)∩Hom(L0 ∧L1,L1)

In general, any cocycle b ∈ Z2(L;L)∩Hom(L0 ∧L1,L1) will be any skew-symmetric bilinear map from L0 ∧L1 to
L1 such that:

[Xi, b(Xj ,Yk)]− [Xj , b(Xi,Yk)]− b([Xi,Xj ],Yk)+ b([Xi,Yk],Xj)

+ b(Xi, [Xj ,Yk]) = 0 ∀Xi,Xj ∈ L0, Yk ∈ L1
(5.1)

with b(X0,X) = 0 ∀X ∈ L. This condition reduces to
[
X0, b

(
Xj ,Yk

)]− b([X0,Xj

]
,Yk

)− b(Xj ,
[
X0,Yk

])
= 0, 1 ≤ j ≤ n, 1 ≤ k ≤m. (5.2)

In order to obtain the dimension of the space of cocycles B, we apply an adaptation of the sl(2,C)-module
method that we have already used in the precedent section.

Recall that ifW0,W1, . . . ,Wk are sl(2,C)-modules, then the space Hom(⊗k
i=1Wi,W0) will be a sl(2,C)-module

in the following natural manner:

(ξ ·ϕ)(x1, . . . ,xk
)
= ξ ·ϕ(x1, . . . ,xk

)−
k∑

i=1

ϕ
(
x1, . . . , ξ ·xi,xi+1, . . . ,xn

)

with ξ ∈ sl(2,C) and ϕ ∈ Hom(⊗k
i=1Wi,W0). In particular, if k = 2 and V0 =W1, V1 =W2 =W0, then:

(ξ ·ϕ)(x1,x2
)
= ξ ·ϕ(x1,x2

)−ϕ(ξ ·x1,x2
)−ϕ(x1, ξ ·x2

)
.

An element ϕ ∈ Hom(V0 ⊗V1,V1) is said to be invariant if that is:

X+ ·ϕ(x1,x2
)−ϕ(X+ ·x1,x2

)−ϕ(x1,X+ ·x2
)
= 0, ∀x1 ∈ V0, ∀x2 ∈ V1. (5.3)

Note that ϕ ∈ Hom(V0 ⊗V1,V1) is invariant if and only if ϕ is a maximal vector.
In this case, we are going to consider the structure of irreducible sl(2,C)-module in V0 = 〈X1, . . . ,Xn〉 =

L0/CX0 and in V1 = 〈Y1, . . . ,Yn〉= L1. Thus, in particular:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

X+ ·Xi =Xi+1, 1 ≤ i≤ n−1

X+ ·Xn = 0

X+ ·Yj = Yj+1, 1 ≤ j ≤m−1

X+ ·Ym = 0.

We identify the multiplication ofX+ andXi in the sl(2,C)-module V0 = 〈X1, . . . ,Xn〉, with the bracket product
[X0,Xi] in L0. Analogously withX+ ·Yj and [X0,Yj ]. Thanks to these identifications, the expressions (5.2) and (5.3)
are equivalent, so we have the following result:

Proposition 20. Any skew-symmetric bilinear map ϕ, ϕ : V0 ∧V1 → V1 will be an element of B if and only if ϕ is a
maximal vector of the sl(2,C)-module Hom(V0 ∧V1,V1), with V0 = 〈X1, . . . ,Xn〉 and V1 = L1.

Corollary 21. As each sl(2,C)-module has (up to nonzero scalar multiples) a unique maximal vector, then the
dimension of B is equal to the number of summands of any decomposition of Hom(V0 ∧V1,V1) into direct sum of
irreducible sl(2,C)-modules.

As each irreducible module contains either a unique (up to scalar multiples) vector of weight 0 or a unique vector
of weight 1, then we have the following corollary.

Corollary 22. The dimension of B is equal to the dimension of the subspace of Hom(V0 ∧V1,V1) spanned by the
vectors of weight 0 or 1.

Next, we consider a natural basis of Hom(V0 ∧V1,V1) consisting of the following maps where 1 ≤ s,j, l ≤m

and 1 ≤ i,k ≤ n:

ϕs
i,j(Xk,Yl) =

{
Ys if (i, j) = (k, l),

0 in all other cases.
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Thanks to Corollary 22, it will be enough to find the basis vectors ϕs
i,j with weight 0 or 1. It is not difficult to

see that the weight of an element ϕs
i,j (with respect to H) is:

λ(ϕs
i,j) = λ(Ys)−λ(Xi)−λ(Yj) = n+2(s− i− j)+1.

Thus, if n is even, then λ(ϕ) is odd; and if n is odd, then λ(ϕ) is even. So, if n is even, it will be sufficient to
find the elements ϕs

i,j with weight 1; and if n is odd, it will be sufficient to find those with weight 0. To do that
we consider the three sequences that correspond with the weights of V0 = 〈X1, . . . ,Xn〉, V1 = 〈Y1,Y2, . . . ,Ym〉 and
V1 = 〈Y1,Y2, . . . ,Ym〉:

−n+1,−n+3, . . . ,n−3,n−1; −m+1,−m+3, . . . ,m−3,m−1; −m+1,−m+3, . . . ,m−3,m−1.

We shall have to count the number of all possibilities to obtain 1 (if n is even) or 0 (if n is odd). Remember that
λ(ϕs

i,j) = λ(Ys)−λ(Xi)−λ(Yj), where λ(Ys) belongs to the last sequence, and λ(Xi), λ(Yj) belong to the first
and second sequences respectively. Thus, we obtain the following theorem.

Theorem 23. Let Z2(L;L) be the 2-cocycles Z2
0 (L

n,m,p;Ln,m,p) that vanish on the characteristic vectorX0. Then,
if B = Z2(L;L)∩Hom(L0 ∧L1,L1), we have that:

dimB =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

4nm−n2 +1
4

if n is odd, n < 2m+1,

4nm−n2

4
if n is even, n < 2m+1,

m2 if n≥ 2m+1.

Proof. It is convenient to distinguish the following four cases where the reasoning for each case is not hard:

(1) n≡ 0 (mod4).
(2) n≡ 1 (mod4).
(3) n≡ 2 (mod4).
(4) n≡ 3 (mod4).

6 Dimension of C = Z2(L;L)∩Hom(L0 ∧L2,L2)

Similarly to the previous section, we can obtain the equivalent result for C.

Theorem 24. Let Z2(L;L) be the 2-cocycles Z2
0 (L

n,m,p;Ln,m,p) that vanish on the characteristic vectorX0. Then,
if C = Z2(L;L)∩Hom(L0 ∧L2,L2), we have that:

dimC =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

4np−n2 +1
4

if n is odd, n < 2p+1,

4np−n2

4
if n is even, n < 2p+1,

p2 if n≥ 2p+1.

7 Conclusions

Theorems 1, 2, and 3, together with those obtained by Khakimdjanov and Navarro [11,12], lead to obtain the
total dimension of the infinitesimal deformations of the model Z3-filiform Lie algebra Ln,m,p. Thus, we have the
following theorem.

Main theorem. The dimension of the space of infinitesimal deformations of the model Z3-filiform Lie algebra
Ln,m,p that vanish on the characteristic vector X0, is exactly A+B+C+D+E+F where

A=

⎧
⎪⎪⎨

⎪⎪⎩

n(3n−2)
8

if n is even

3n2 −4n+1
8

+

⌊
n+1

4

⌋
if n is odd

B =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

4nm−n2 +1
4

if n is odd, n < 2m+1

4nm−n2

4
if n is even, n < 2m+1

m2 if n≥ 2m+1
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C =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

4np−n2 +1
4

if n is odd, n < 2p+1

4np−n2

4
if n is even, n < 2p+1

p2 if n≥ 2p+1

D =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m(m−1)
2

if p≥ 2m−1

1
8

(
4mp−p2 −2p−1

)
if p < 2m−1, p≡ 1 (mod4) and m odd, or p≡ 3 (mod4) and m even

1
8

(
4mp−p2 −2p+3

)
if p < 2m−1, p≡ 3 (mod4) and m odd, or p≡ 1 (mod4) and m even

1
8

(
4mp−p2 −2p

)
if p < 2m−1 and p even

F =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(p−1)
2

if m≥ 2p−1

1
8

(
4pm−m2 −2m−1

)
if m< 2p−1, m≡ 1 (mod4) and p odd, or m≡ 3 (mod4) and p even

1
8

(
4pm−m2 −2m+3

)
if m< 2p−1, m≡ 3 (mod4) and p odd, or m≡ 1 (mod4) and p even

1
8

(
4pm−m2 −2m

)
if m< 2p−1 and m even.

(1) If m+p−n is even, then

E =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

mn if p≥m+n

np−1 if p < m+n, p=m−n+2

np if p < m+n, p < m−n+2

1
4

(−m2 −n2 −p2 +2np+2mn+2mp
)

if p < m+n,p > m−n+2, p≥ n−m+2

mp if p < m+n, p > m−n+2, p < n−m+2

(2) If m+p−n is odd, then

E =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

mn if p≥m+n−1

np if p < m+n−1, p≤m−n+1

1
4

(−m2 −n2 −p2 +2np+2mn+2mp+1
)

if p < m+n−1, p > m−n+1, p≥ n−m+1

mp if p < m+n−1, p > m−n+1, p < n−m+1.

References

[1] M. Bordemann, Nondegenerate invariant bilinear forms on nonassociative algebras, Acta Math. Univ. Comenian. (N.S.), 66 (1997),
151–201.
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