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Introduction
A way I see to prove the breakdown solutions of Navier-Stokes 

equations, following the described in [1], refers to the condition of 
bounded energy, the finiteness of the integral of the squared velocity of 
the fluid in the whole space.

We can certainly construct solutions for

3 2
j 1 v ,1 3j i i

j i

ui ui pu u f i
t x x=

∂ ∂ ∂
+ Σ = ∇ − + ≤ ≤

∂ ∂ ∂
                    (1)

That obeys the condition of divergence-free to the velocity 
(continuity equation to the constant mass density

0u(x,0) u (x)=                                           (2)(Incompressiable Fluids)

And the initial condition
0u(x,0) u (x)=                     (3)

Where ui,p,fi are functions of the position x∈3 and the time 
t ≥ 0, t∈. The constant v≥0 is the viscosity coefficient, p represents 
the pressure and is the fluid velocity u=(u1,u2,u3), measured in the 

position x and time t, with 
2

32
2. 1

i
i

∂
∇ = ∇ ∇ =

∂∑ . The function f=(f1,f2, 

f3) has the dimension as acceleration or force per mass unit, but we will 
keep on naming this vector and its components by its generic name of 
force such as used in [2]. It’s the externally applied force to the fluid, 
for example, gravity.

The functions U0(x) and f(x,t)must obey, respectively,

| (1 | |)0 K
x aku (x)| C xα −∂ ≤ +  (4) on ℝ3 for any 0

3α ∈ and K∈

And
m
t| (1 | | ) K

x amKf(x,t)| C x tα −∂ ∂ ≤ + +  (5) on 3×[0,¥), for any 0
3α ∈ , 

m0 and K∈

With 0={0,1,2,3,…} (derivatives of order zero does not change 
the value of function), and a solution(p,u) from (1) to be considered 
physically reasonable must be continuous and have all the derivatives, 
of infinite orders, also continuous (smooth), i.e.,

3( [0, ])p,u C∞∈ × ∞

                      (6)

Given an initial velocity u0 of C¥class, divergence-free (Ñ.u0=0) on 

3 and an external forces field f also C¥ class on [0,¥), we want, for 
that a solution to be physically reasonable, beyond the validity of (6), 
that u(x,t)does not diverge to |x |→¥ and satisfy the bounded energy 
condition, i.e.,

3
2| |u(x,t) dx C<∫



                   (7)

We see that every condition above, from (1) to (7), need to be obeyed 
to get a solution(p,u) considered physically reasonable, however, to get 
the breakdown solutions, (1), (2), (3), (6) or (7) could not be satisfied to 
some t≥0, in some position x∈3, still maintaining (4) and (5) validity.

A way to make this situation (breakdown) happens is when (1) 
have no possible solution to the pressure p(x,t), when the vector field 
φ:3 × C¥[0,¥) →3 in

2 ( . )p
uv u u u f
t

φ∂
∇ = ∇ − − ∇ + =

∂
                 (8)

is not gradient, not conservative, in at least one (x,t)∈3 × C[0,¥). 
In this case, to

 φ=(φ1, φ2, φ3) not to be gradient, it must be

ji ,
j i

i j
x x

φφ ∂∂
≠ ≠

∂ ∂
                   (9)

To some pair and time not negative (for details check, for example, 
Apostol [2], chapter 10).

If we admit, however, that (1) has a possible solution (p,u) and this 
also obey (2), (3) and (6), the initial condition u0(x) and are verifies (2) 
and (4), the external force f(x,t) verifies (5) and both u0(x) and f(x,t) 
are C¥ class, we can try get a breakdown solutions in t≥0 violating the 
condition (7) (boundary energy) , i.e.,, Choosing u0(x) or u(x,t) that 
also obey to 

3
2| |u(x,t) dx → ∞∫



, for some t≥0              (10)

C) Breakdown solutions of Navier-Stokes on 3. Take v>0 and n=3. 
Then there exist a smooth and divergence-free vector field u0(x) on 3 
and a smooth external force on f(x,t)on 3 × [0,¥), satisfying
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follows the finiteness of 
0 2| ( ) |

n

u x dx∫


. Therefore, if the condition (7) 

is disobeyed, as we propose in this article, will be for t >0, for example, 
finding some function u(x,t) like u0(x) v(x,t), v(x,0)=1or u0(x)+ v(x,t), 

v(x,0)=0 with ( )
3

2| , |u x t dx → ∞∫


and ( )
3

2| , |u x t dx → ∞∫


.

Examples 
ℝeally, choosing u0(x)∈S(ℝ3) and f(x,t)∈S(3 × [0,¥)), obeying 

this way (4) and (5), remembering that we do not need have 
u,p∈S(3 × [0,¥)) [ as a solution, but only u,p∈ C¥(3 × [0,¥)) then 
it is possible to build a solution to the velocity like u(x,t)=u0(x)

e-t +v(t), with v(0)=0, such that ( )
3

2| , |u x t dx → ∞∫


, because 

when 0 2 0[| ( ) | 2 ( ). ( )] 0
n

tu x e u x v t dx− + ≥∫


, for example, when each 

component of has the same sign of the respective component v(t) of 

or the product between them is zero or 
3

0[| ( ) | . ( ) 0u x v t dx ≥∫


, we will 

have, ( )
3 3 3

2 2 2| , | | ( ) | | ( ) |u x t dx v t dx v t dx≥ = → ∞∫ ∫ ∫
  

 with v(t)≠0, 

t>0 . We must also choose u,u0 such that ∇.u=∇.u0=0.

In particular, we choose, for 1≤i≤3
( )0

2( )
2 2 2
1 2 3x +x +x

2 3 1 3 1u (x) e x ,x ,x x ,-2x x−=                 (13.1)
-t -t

iv (t) w(t) e (1 - e )= =                  (13.2)

0 t
i ( ) ( )i iu (x,t)= u x e v t− +                   (13.3)

0 0
0 3 0 3 2 0i i
i j 1 j j 1 i( ) ( )t t

i j
j j

u uf x,t u e u v v u e
x x

− −
= =

∂ ∂
= − + Σ + Σ − ∇

∂ ∂
               (13.4)

which results to p(x,t) , as the only unknown dependent variable yet to 
be determined,

0vp
t

∂
∇ + =

∂
                  (14)

And then

1 2 3( ) ( ) ( )dwp x,t x x x t
dt

θ= − + + +                 (15)

The resulting pressure has a general time dependence θ(t), 
should be class C¥([0,¥)) and we can assume limited, and diverges at 
infinity(|x|→∞), but tends to zero at all space with the increased time 
(unless possibly θ(t)) , due to the factor e-t that appears in the derivative 
of w(t),

0[| ( ) | . ( ) 0
n

u x v t dx =∫


                   (16)

In this example 0[| ( ) | . ( ) 0
n

u x v t dx =∫


, and so ( )
3

2| , |u x t dx → ∞∫


 

for t>0, as we wanted. Simpler it would be to choose u0(x)=0 Interesting 
to note that there is no discontinuity in velocity, no singularity  
(divergence: |u|→∞), however diverges the total kinetic energy in the 
whole space, 

3

2[| ( ) |u x dx → ∞∫


, t>0. . We had as input data u0∈L2(ℝ3), 

f L2(3 × [0,¥)) but the solution u0∉L2(ℝ3× [0,¥)), as p∉ L2(ℝ3× [0,¥)).

Another interesting example, using the same previous initial 
velocity, but making v explicitly depend on the position coordinates 
x1,x2 in the direction e1, e2, besides time t , and be equal to zero in the 
direction e3, with v(x,0)=0,∇=0,v ≠0 (v not identically zero), and also 

C¥ f(x,t)

| (1 | |)0 K
x aKu (x)| C xα −∂ ≤ +  on 3 , ∀α , K                 (4')

And
m
t| (1 | | ) K

x amKf(x,t)| C x tα −∂ ∂ ≤ + +                  (10)

For which there exist no solutions (p,u)of (1), (2), (3), (6), (7) on 
ℝ3×[0,∞) It’s clear to see that we can solve this problem searching valid 
velocities which the integral of its square in all space ℝ3is infinite, or 
also, as shown in (8), searching functions φ non gradients, where the 
pressure won’t be considered a potential function to some instant t ≥ 0. 
We understand that the α,m shown in (4) and (5) just make sense to 
|α|,m∈{1,2,3,4…} and the negatives K can be neglected because it does 
not limit the value of functions u0, f and its derivatives when |x|→∞ or 
t→∞ , with Cak, Camk >0 .

The Schwartz Space S
The inequation (4) brings implicitly that u0(x) must belong to the 

vectorial space of rapidly decreasing functions, which tend to zero 
for |x|→∞ , known as Schwartz space S(ℝ3), , named after the French 
mathematician Laurent Schwartz (1915-2002) which studied it [3]. 
These functions and its derivatives of all orders are continuous (C∞) 
and decrease faster than the inverse of any polynomial, such that

|x|lim | | ( ) 0kx D xαϕ→∞ =                                   (11)

for all α=(α1… αn) αi , non negative integer k≥0, and all integer . is a 
multiindex, with the convention

1 n

1 n

| |

1 n i
x x

D ,| | ... , {0,1,2,...}
...

α
α

α α

∂
= α = α + + α α ∈

∂ ∂
             (12)

D0 is the operator identity, Dα is a differential operator. An example 
of function of this space is u(x)=p(x)e-|x|2, where P(x) is a polynomial 
function.

The following properties are valid [4]:

1) S (ℝn) is a vector space; it is closed under linear combinations.

2) S (ℝn) is an algebra; the product of functions in S (ℝn)also belongs 
to S (ℝn) this follows from Leibniz’ formula for derivatives of products .

3) S (ℝn) is closed under multiplication by polinomials, althrough 
polynomials are not in S.

4) S (ℝn) is closed under differentiation.

5) S (ℝn) is closed under translations and multiplication by complex 
exponentials (eix.ξ)

6) Functions are integrable: | ( ) |
n

f x dx < ∞∫


for f ∈S(ℝn). 

This follows from the fact that and, using polar coordinates, 
( 1) 1 1

0

(1 | |) (1 )
n

n n nx dx C r r dr
∞

− + − − −+ = + < ∞∫ ∫


 , i.e., the function |f 

decreases like r-2 (and (1+r)-2) at infinity and a finite integral is produced. 

By S(ℝ3) definition and previous properties we see that, as , 

u0(x)∈S(ℝ3) then 0 4 2

0

| ( ) | (1 | | ) (1 )
n

u x dx M x dx C r dr
∞

− −≤ + ≤ + < ∞∫ ∫


and squared | u0(x)| and M (1+|x|)-4 and we come to the inequality 
0 2| ( ) |

n

u x dx < ∞∫


, that contradicts (10).

Another way to check this is that the set S(ℝ3) it is contained in 
Lp (ℝn )for all p, 1≤ p <∞ [5-9], and in particular for p=2 and n=3 
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obeys all the conditions (1) to (6), is, for 1≤ i ≤ 3,
( )0

2( )
2 2 2
1 2 3x +x +x

2 3 1 3 1u (x) e x x ,x x ,-2x x−=                              (17.1)
-tv(x,t) e w(x,t)=                  (17.2)

1 1 2 2 1 2( ) ( ( , , ), ( , , ),0)w x,t w x x t w x x t=           (17.3)

 3 3( ) 0, . 0, 0, 0w x,0 w w v w= ∇ = = = ≠

0 t 0
i i( ) ( , ) [ ( ) ( , )] t

i i iu (x,t)= u x e v x t u x w x t e− −+ = +              (17.4)
0 0

0 3 0 0 2 0i i i
i j 1 j j i( ) ( [ ] )t t

i j
j j j

u w uf x,t u e u u + w v u e
x x x

− −
=

∂ ∂ ∂
= − + Σ + − ∇

∂ ∂ ∂
0 0

0 3 0 0 2 0i i i
i j 1 j j i( [ ] )t t

j
j j j

u v uu e u u + v v u e
x x x

− −
=

∂ ∂ ∂
= − + Σ + − ∇

∂ ∂ ∂
         (17.5)

which results for p(x,t) and v(x,t), as unknowns still to be determined,

3 2i i
j 1 j i

ji

p v vv v v
x t x=

∂ ∂ ∂
+ + Σ = ∇

∂ ∂ ∂
                (18)

the Navier-Stokes equations without external force.

We know that for n=2 the equation (18) has a solution whose 
existence and uniqueness is already demonstrated [10-13], therefore, we 
will transform our three-dimensional system (18) in a two-dimensional 
system in , which offers as solution a pressure p and a velocity, a priori, 
with spatially two-dimensional domain, i.e., in the variables (x1, x2, 
t). ℝesolved, by hypothesis, the equation (18) above, with v(x, 0)=0, 
∇ v=0, but v not identically zero, we add the third spatial coordinate 
v3=0 in the definitive solution for u(x, t), spatially three dimensional, in 
(17.4), and calculate the external force in (17.5). Choosing v∈S(2 ×[0, 
∞)) or v polinomial, sine, cosine or their sums to be used in (18), we 
guarantee that f S(3 ×[0, ∞)), obeying up (5), with u0∈S(3), according 
(4). Making v limited in module (norm in Euclidean space) we make 
that u not diverge at |x|→∞, which is a physically reasonable and 
desirable condition in [1]. Then build a velocity not identically zero, 
with v(x, 0)=0, ∇ v=0, such that it is relatively simple to solve (18), 
which is limited in module, can (preferably) go to zero at infinity in 
at least some situations and can be integrated in 2 , it is C∞ class and 
satisfies (5).

Equation (18) also admit a general time dependence to the pressure 
that is of the form (19) 

3
1 1 2( ) ( , , ) ( ),p x,t p x x t t xθ= + ∈                 (19)

i.e., besides the conventional solution p1 to the pressure of the two-
dimensional problem of the Navier-Stokes equations (18) in the 
independent variables (x1, x2, t), add to p a generic parcel θ (t) only 
dependent on the time and/or a constant as the definitive pressure 
solution in the original three-dimensional problem, as we have seen 
in (15). 

The infinitude of the total kinetic energy in this second example, 
occurs due to the integration of a two dimensional function (| v |2 or 
|w2) not identically zero in the infinite three dimensional space (3).

The total kinetic energy of the problem is, for v=e-tw,

3 3

3

2 2 0 2 0 2

2 0 2 0 2

| ( | | 2 . | | )

(| | 2 . | | )

t t

t

u | dx = e u e u v v dx

e u u w w dx

− −

−

+ +

= + +

∫ ∫
∫

 



                               (20)

Although ( )3
0 2 0| | 2u u w dx+ ⋅∫



 is finite, by the properties of 

functions belonging to the Schwartz space and integrable (the case u0=0 
is elementary), the third parcel in (20) will be infinite in 3 for v, w≠0, 
though the function can converge and be finite in 2, that is, if |v| is not 

identically zero and t >0,

3 2
2 2

3 2 3| ( | | )v | dx = v dx dx C dx
+∞ +∞

−∞ −∞

= → ∞∫ ∫ ∫ ∫
 

                  (21)

hence, for strictly positive and finite t,

3
2| u | dx ,t > 0,v 0→ ∞ ≠∫



                (22)

the violation of condition (7).

Let us now solve (18) explicitly, first in the domain 2× [0, ∞) . In 
the example 3 your domain will be 3× [0, ∞) . We show that a solution 
of the type

1 2 1 2 1 2( , , ) ( ( ) ( ), ( ) ( ))v x x t X x x T t X x x T t= − −                 (23)

with a given pressure such that

1 2
1 2

( ) ( )p p aQ x - x R t b
x x

∂ ∂
= − = +

∂ ∂
              (24)

a, b constants, a ≠ 0, Q a function of the difference of the spatial 
coordinates, R a function of time, Q, R not identically zero functions, 
solve (18) and eliminate the non-linear term, in which case T(0)=0 if 
resolves (17) and the original system (1), (2), (3). X and T not identically 
zero, of course.

If vi=vj=V in (18), we have to the nonlinear terms

3 3 3i
j 1 j j 1 j 1

j j j

v v vv V V
x x x= = =

∂ ∂ ∂
Σ = Σ = Σ

∂ ∂ ∂
                                (25)

Doing 
3

=1
0

j

v
x

∂
∂

=∑
j

in (25) eliminates the nonlinear term, equality 

which is true when the necessary condition incompressible fluid 
imposed by us, ∇ v=0, is satisfied, i.e.,

3 3i
i 1 j 1 0

j j

v v
x x= =

∂ ∂
Σ = Σ =

∂ ∂
                 (26)

Defining V(x,t)=X(ξ(x) T(t), with x ∈ n, then

n n n n
j 1 j 1 j 1 j 1

( ( )) ( ) ( )( ) ( ) ( ) ( ) ( )
j j j j

v x x x xT t T t X T t X
x x x x

ξ ξ ξξ ξ= = = =

∂ ∂ ∂ ∂′ ′Σ = Σ = Σ = Σ
∂ ∂ ∂ ∂

(27)

Functions ξ(x) such that ( )
=1

0n

j

x
x

∂ξ
∂

=∑
j

 then result in 

=1
0n

j

v
x

∂
∂

=∑
j

, according (27), following the example of ξ=x1-x2 in 

spatial dimension n=2, as it was used in (23).

Substituting (24) in (18), already no nonlinear terms 
3

=1
i

j 'j
j

 vv
x

∂
∂∑  

and for simplicity making a=1, b=0, comes

2
1 2( ) ( ) vQ x x R t v V

t
∂

− + = ∇
∂

                 (28)

With V=X(x1-x2) T(t) . We thus transform a system of n partial 
differential equations nonlinear in a single linear partial differential 
equation.

Defining ξ=x1-x2, equation (28) becomes
2( ) ( ) ( ) ( )dTQ R t X vT X

dt
∇ ξξ + ξ =                 (29)

We want to get a function T(t) such that T (0)=0, in order that 
in t=0 we have v(x,0)=0, according (23). Let us choose, for example, 
among other possibilities endless,

( ) (1 e )et tT t − −= −                 (30)
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limited function in range 0 ≤ T (t) ≤ 1, t ≥ 0, going to zero for t → ∞.

Thus, by (29), with

e (2e 1)t tdT
dt

− −= −                   (31)

Comes
2( ) ( ) ( ) (2 1) (1 ) ( )t t t tQ R t X e e v e e Xξ ξ ξ− − − −+ − = − ∇             (32)

Defining Q(ξ)=X(ξ) in (32), to separate our equation with the 
traditional method of separation of variables used in D.P.E. theory,

2[ ( ) (2 1)] ( ) (1 ) ( )t t t tR t e e X v e e Xξ ξ− − − −+ − = − ∇                (33)

The linear partial differential equation (33) may be resolved by 
some alternative combinations:

2

( ) (2 1) (1 )
( ) ( )

t t t tR t e e v e e
X Xξ ξ

− − − − + − = ± −


= ±∇
                 (34)

Or

2

( ) (2 1) (1 )
( ) ( )

t t t tR t e e e e
X v Xξ ξ

− − − − + − = ± −


= ± ∇
                (35)

or more generally, with v1  v2=v > 0, v1, v2 > 0,

1
2

( ) (2 1) (1 )
( ) ( )

t t t t

2

R t e e v e e
X v Xξ ξ

− − − − + − = ± −


= ± ∇
               (36)

The differential equation of second order in X, depending on which 
of the signals we use to ±, The differential equation of second order X 
in the above systems, depending on which of the signals we use to ± 
leads us to the Helmholtz equation (negative sign) or a moving steady 
state governed by Schrӧdinger equation independent of time (positive 
signal or negative).

Not intending to use any specific boundary condition for X(ξ) and 
we do make use of series and Fourier integrals, we choose here the 
negative sign in ± (the option should be the same in both equations 
system), and let us make be a trigonometric function, sum of sine and 
cosine in ξ, i.e.,

( ) ( ) ( )X Acos B C sen Dξ ξ ξ= +                 (37)

With ξ=x1-x2 we have
2 2

2
2 2
1 2

2 2

2 2
1 2

2

( )[ ( ) ( )]

[ ( ) ( )] [ ( ) ( )]

2[ ( ) ( )]2

X Acos B C sen D
x x

Acos B C sen D Acos B C sen D
x x

AB cos B CD sen D

ξ ξ

ξ ξ ξ ξ

ξ ξ

∂ ∂
∇ = + +

∂ ∂

∂ ∂
= + + +

∂ ∂

= − +

  (38)

From X(ξ)=-v2∇2X(ξ) in (36) comes 

2 2
2 12 2

1 1 , 2 2 ,| | | |
2 2

v v B v D v B D
B D

= = = = =                (39)

whatever the values of A and C (if A=C=0 or B=D=0 we have the trivial 
and unwanted solution v(x, t) ≡ 0) 

The solution for R (t) obtained is then, using v1=2B2v given in (39) 
and the negative sign in (36),

2( ) [2 (1 ) 2 1]t t tR t e B v e e− − −= − − + −                  (40)

Being R(0)=-1.

From (23), (30) and (37) comes up as a possible solution, for x ∈ 
3 and implicitly introducing the third coordinate space v3≡0 into v, to

1 2( , ) ( ) ( )(1,1,0)

[ ( ) ( )](1 ) (1,1,0)t t

v x t X x x T t
Acos B C sen B e eξ ξ − −

= −

= + ± −
                (41)

which as we can see is not actually a single solution for speed, because 
of the endless possibilities that we had to set the time dependence T(t), 
as well as the temporal dependence X(ξ),ξ=x1-x2, beyond the arbitrary 
constants in (41). Even without uniqueness of solution, it meets the 
requirements we expected: it is limited, continuous of class C∞, equal 
to zero at the initial time, tends to zero with increasing time, and has 
divergent null (∇ v=0). Furthermore, when used in the expression 
(17.5) obtained for the external force f, it does not remove to the force 
the condition that belong to Schwartz space in relation to space and to 
the time, i.e., f ∈S(3×[0,∞)), as can be shown of the S properties that 
we saw in section § 2 above.

The pressure is obtained by integrating (24) with respect to the 
difference =x1 – x2, with a=1, b=0, Q(ξ)=X(ξ) and R(t) given in (40),

0

0

2

( , ) ( ) ( ) ( )

[2 (1 ) 2 1] ( )
A( ) [ ( ) ( ) [ ( ) ( )]
B

t t t

p x t p t R t Q d

e B v e e S
AS sen B sen B cos B cos B
B 0 0

ξ ξ

ξ

ξ ξ ξ ξ ξ

ξ

ξ

− − −

− =

= − + −

= − ± ± − ±

∫
      (42)

where ξ0 is the surface ξ=ξ0 and where the pressure is p0 at time . 
Again we see that this solution is not unique, not only due solely to 
the function p0 (t) and respective ξ0, but also because of the arbitrary 
constants A and B, the signal ,± beyond from the way R(T) and Q(ξ) 
were obtained, with a certain freedom of possibilities. p0 (t) substitute 
the function θ(t) used in (15) and (19), our generic function of time, or 
a constant, which must be class C∞([0, ∞)) and we can assume limited. 

Completing the main solution (p,u) that we seek to equation (1), 
we finally have

0 t( , ) ( ) ( , )−= +u x t u x e v x t                 (43)

with u0(x) given in (17.1), v(x,t) in (41) and f(x,t) in (17.5).

The velocity (secondary) v we choose makes the velocity (main) u 
a function with some properties similar to it: u It is limited oscillating, 
contains a sum of sine and cosine of a difference in spatial coordinates 
and decays exponentially over time, or does, not belong to a Schwartz 
space over the position, nor is square integrable (violating so the 
inequality (7) in t > 0), but is continuous of class C∞ and does not diverge 
when |x| → ∞ . Their behavior in relation to x1-x2and the divergence of 
the total kinetic energy obviously not withdraw of f(x,t) the condition 
to be pertaining to S(ℝ3×[0,∞)), equivalent to inequality (5), since it 
only depends on u0(x) and v(x,t). We also have v(x,0)=0,∇·v=0, v∈ 
C∞(ℝ3×[0,∞)), the validity of (1), (2), (3), (4) and (6), u(x,0)=u0(x) u0∈ 
S(ℝ3), with ∇· u=0 and u∈ C∞(ℝ3×[0,∞)), as we wanted.

The Non-uniqueness in n=2 Spatial Dimension
What's with the proofs of uniqueness of solutions of the Navier-

Stokes equations in spatial dimension n=2?

Not possible to examine all the available proofs, you can at 
least understand that such proofs should not take into account 
the absence of the nonlinear term in the Navier-Stokes equations, 

1
(( ) )n i

j ij
j

uu u u
x=

∂
≡ ⋅∇

∂∑ , 1 ≤ I ≤ n, and it was this lack that we use in 

our second example.

Similarly to this cause, also realize that different equations of the 
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type Navier-Stokes equations with the absence of one or more terms of 
their complete equation, and which nevertheless have the same initial 
condition u(x,0)=u0(x), will probably, in the general case, different 
solutions u(x,t) among them, and so there can be no uniqueness of 
solution from the full Navier-Stokes equation, with all terms. If all 
always presented the same and only solution would suffice for us to 
solve the simplest of them only, for example, up

t
∂

∆ =−
∂

 or ∇p=v∇2u 

(Poisson Equation if ∇p≠ 0 or by Laplace if ∇p=0) or 2u v u
t

∂
= ∆

∂
 (Heat 

Equation with ∇p=0), all with u(x,0)=u0(x), and check if the sum of 
the other missing terms is zero to apply the solution obtained in the 
reduced equation. If so, the solution of the reduced equation is also 
solution of the complete equation. Important example of this absence 
are the Euler equations, which differ from the Navier-Stokes equations 
by the absence of differential operator nabla applied to u, ∇2u=∇u, due 
to the viscosity coefficient be zero, v=0.

It is easy to prove that the above three equations, as well as the 

equation 2up v u
t

∂
∆ + = ∆

∂
, not may actually have a unique solution, 

given only the initial condition for velocity u(x,0)=u0(x). On the 
contrary, the complete form of the Navier-Stokes equations, where we 

assume that 1
(( ) ) 0,1n i

j ij
j

uu u u i n
x=

∂
≡ ⋅ ∆ ≠ ≤ ≤

∂∑ , It has uniqueness of 

solution for n=2 and at least a short period of time not null [0,T ] for 
n=3, where T is known as blowup time. Let us add all of these equations 
the condition of incompressibility, ∇· u=0.

This is so an interesting problem of Combinatorial Analysis applied 
to Mathematical Analysis and Mathematical Physics.

Uniqueness in n=2 Spatial Dimension
We found that the system

2

( . ) 0
. 0

( ,0) 0

vp v v
t

v v
v

v x

∂∇ + = ∇ ∂ ∇ =
 ∇ =


=

                                   (44)

has infinite solutions to the velocity of the form

1 2( , ) ( ) ( )(1,1),v x t X T t x xξ ξ= = −                    (45)

with, T(0)=0 however there are known proofs of the uniqueness of

2( . )

. 0
( ,0) 0

vp v v v v
t

v
v x

∂∇ + + ∇ = ∇ ∂
∇ =

 =


                 (46)

contradicting what we got.

No need to linger in the known proofs, exposing all its details, 
repeating his steps, you can be seen in Leray [10], Ladyzhenskaya [11], 
Leray [14], among others, that the proofs of existence and uniqueness 
are based on the complete form of the Navier-Stokes equations, for 
example (46), and not in a dismembered form of the Navier-Stokes 
equations, as (44).

The Navier-Stokes equations without external force with n=2 are 
(using x=x1 and y=x2)

21 1 1
1 1 1

22 2 2
1 2 2

p u u uu u v u
x t x y
p u u uu u v u
y t x y

∂ ∂ ∂ ∂
+ + + = ∇∂ ∂ ∂ ∂


∂ ∂ ∂ ∂ + + + = ∇∂ ∂ ∂ ∂

                (47)

We can dispose the system up in a similar form to a system of linear 
equations,

21 1 1
1 2 1

22 2 2
1 2 2

u u p uu u v u
x y x t
u u p uu u v u
x y y t

 ∂ ∂ ∂ ∂
+ = ∇ − − ∂ ∂ ∂ ∂


∂ ∂ ∂ ∂ + = ∇ − − ∂ ∂ ∂ ∂

               (48)

and then in the form of a matrix equation,

1 1 2 1
1

1

2 222 2
2

u u p uv u
x y u x t

p uuu u v u
y tx y

 ∂ ∂  ∂ ∂
∇ − −    ∂ ∂ ∂ ∂   =    ∂ ∂∂ ∂   ∇ − −     ∂ ∂∂ ∂   

                  (49)

Calling

1 1

2 2

u u
x y

A
u u
x y

 ∂ ∂
 ∂ ∂ =  ∂ ∂
  ∂ ∂ 

                  (50)

1

2

u
U

u
 

=  
 

                   (51)

2 1
1

2 2
2

p uv u
x tB
p uv u
y t

 ∂ ∂
∇ − − ∂ ∂ =

 ∂ ∂
∇ − − ∂ ∂ 

                  (52)

The solution for U of the equation (49), AU=B, is

1U A B−=                     (53)

That for its existence and unique solution must be

1 2 1 2det 0u u u uA
x y y x

∂ ∂ ∂ ∂
= − ≠

∂ ∂ ∂ ∂
                    (54)

That is,

1 2 1 2u u u u
x y y x

∂ ∂ ∂ ∂
≠

∂ ∂ ∂ ∂
                  (55)

ℝule should also be obeyed for t=0 (again can lead us to cases (C) 
and (D) of [1] applying the method in matrix 3×3, i.e., n=3, however, 
with appropriate choice of p or ∂u/∂t the system will be possible).

If we use the condition of incompressibility∇· u=0,

1 2 0u u
x y

∂ ∂
+ =

∂ ∂
                   (56)

i.e.,

1 2u u
x y

∂ ∂
= −

∂ ∂
                  (57)

becomes the condition (55) in

22 1 2( )u u u
y y x

∂ ∂ ∂
− ≠

∂ ∂ ∂
                  (58)

or equivalently,
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21 1 2( )u u u
x y x

∂ ∂ ∂
− ≠

∂ ∂ ∂
                    (59)

Since this condition must be valid for all t, in t=0 must obey to
0 0 0

21 1 2( )u u u
x y x

∂ ∂ ∂
− ≠

∂ ∂ ∂
               (60)

and
0 0 0

22 1 2( )u u u
x y x

∂ ∂ ∂
− ≠

∂ ∂ ∂
                   (61)

Using ( ) ( ) ( )0 0 0
1 2, ,0  ,   ( x, y , ( , ))u x y u x y u u x y= =

If the initial velocity u0is such that either disobeyed (60) or (61) 
then either there is no solution to the system (47) (impossible system) 
or there will be a non-unique solution (indeterminate system), as in 
theory linear systems.

Defining

2 1 1
1

1
2 2 2

2

p u uv u
x t y

U
p u uv u
y t y

 ∂ ∂ ∂
∇ − − ∂ ∂ ∂ =  ∂ ∂ ∂

 ∇ − − ∂ ∂ ∂ 

                (62)

and

21 1
1

22 2
2

2

u p uv u
x x tU
u p uv u
x y t

 ∂ ∂ ∂
∇ − − ∂ ∂ ∂ =

 ∂ ∂ ∂
∇ − − ∂ ∂ ∂ 

                  (63)

the solution for u1,u2will be
1

1
det
det

Uu
A

=                 (64)

and
2

2
det
det

Uu
A

=                    (65)

Being
2 21 2 2 1

1 1 2det ( ) ( )p u u p u uU v u v u
x t y y t y

∂ ∂ ∂ ∂ ∂ ∂
= ∇ − − − ∇ − −

∂ ∂ ∂ ∂ ∂ ∂
           (66)

and

2 22 1 1 2
2 2 1det ( ) ( )p u u p u uU v u v u

y t x x t x
∂ ∂ ∂ ∂ ∂ ∂

= ∇ − − − ∇ − −
∂ ∂ ∂ ∂ ∂ ∂

          (67)

with det A given in (54), then we have

2 21 2 2 1
1 2

1
1

1 2 1 2

( ) ( )
det
det

p u u p u uv u v u
U x t y y t yu

u u u uA
x y y x

∂ ∂ ∂ ∂ ∂ ∂
∇ − − − ∇ − −

∂ ∂ ∂ ∂ ∂ ∂= =
∂ ∂ ∂ ∂

−
∂ ∂ ∂ ∂

 (68)

and
2 22 1 2 2

2 1
2

1 2 1 2

( ) ( )
det
det2

p u u p u uv u v u
U y t x x t xu

u u u uA
x y y x

∂ ∂ ∂ ∂ ∂ ∂
∇ − − − ∇ − −

∂ ∂ ∂ ∂ ∂ ∂= =
∂ ∂ ∂ ∂

−
∂ ∂ ∂ ∂

 (69)

Using the incompressibility equation in the determinant of A,
2 21 2 2 1

1 2

1
22 1 2

( ) ( )

( )

p u u p u uv u v u
x t y y t yu

u u u
y y x

∂ ∂ ∂ ∂ ∂ ∂
∇ − − − ∇ − −

∂ ∂ ∂ ∂ ∂ ∂= −
∂ ∂ ∂

+
∂ ∂ ∂

             (70)

and

2 22 1 1 2
2 1

21 1 2

( ) ( )

( )
2

p u u p u uv u v u
y t x x t xu

u u u
x y x

∂ ∂ ∂ ∂ ∂ ∂
∇ − − − ∇ − −

∂ ∂ ∂ ∂ ∂ ∂= −
∂ ∂ ∂

+
∂ ∂ ∂

          (71)

It is true that the solutions (equations) above are as or more 
complicated as the original equations (47), and seems there no use 
whatsoever in resolving them.

But this complicated form can be reached with more certainty to 
the following conclusion: the Navier-Stokes (and Euler) equations have 
a symmetry between the variables, both dependent as independent. The 
same can also be realized directly in (47).

The symmetry in this case of n=2 is

1 2u u↔                   (72.1)

x y↔                 (72.2)

p and t being unchanged:

p p↔                  (73.1)

t t↔                 (73.2)

This suggests, if not completely solves, the question of the solution 
of these equations. If the equations themselves are symmetrical with 
respect to certain transformations, so we hope that their solutions are 
also under these transformations. The same method can be applied also 
for n ≥ 3, with the rule (e.g.)

i 1 n 1 1,ix x x x+ + ≡               (74.1)

i 1 n 1 1,ix x x x+ + ≡               (74.2)

p p↔                 (74.3)

t t↔                  (74.4)

In this case it is necessary that the initial condition u(x,0)=u0(x) 
also obey these symmetries, but remains unchanged the condition of 
incompressibility:

0n n
i i

i 1 i 1i i

0u u
x x= =

∂ ∂
= =

∂ ∂∑ ∑
If we provide u2 (x,y,t)as input data in our system then we can 

conclude that the solution for u1, supposedly symmetrical to by the rule 
(72) previous, is

1 2( , , ) ( , , )u x y t u y x t=                 (75)

i.e., we exchange x by y, and vice versa, in the solution previously given 
for u2and we equate u1to the result of this transformation. Lack get the 
pressure p or else if it has also been given, check that the variables u1, u2, 
p really satisfy the original system.

The general form of the solution to the pressure p, which must 
satisfy

2( )up + u u v u
t

∂
∇ + ⋅∇ = ∇

∂
               (76)

is

0 0

( , )
2

0
( , )

( ) [ ( ) ].
x y

x y

up p t v u u u dl
t

∂
− = ∇ − − ⋅∇

∂∫                 (77)

Where we assume that in the position (x,y)=(x0,y0)and at the 
instant t the pressure is equal to p0(t). The integration occurs in any way 
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between (x0,y0) and (x,y), because the pressure should be a potential 
function of the integral of (77) in order that (47) has solution.

It is also expected that p be symmetric with respect to variables x 
and y, in other words,

( , , ) ( , , )p x y t p y x t=                      (78)

as well as in 3 dimensions, using x=x1,y=x2,z=x3,

( , ,z, ) ( ,z, , ) (z, , , )p x y t p y x t p x y t= =               (79)

Of course (74), (75), (78) and (79) implicitly admits that we have 
rectangular symmetry in the initial and contour conditions of the 
system. Since this symmetry does not occur, for example, have another 
type of symmetry, spherical, cylindrical, or even none symmetry 
(general case), the equalities (74), (75), (78) and (79) do not need to be 
met. Thus, the solution for the case that there is none symmetry is still a 
problem to be solved, assuming that there is at least one solution (when 
the system is possible; as we said, it can be proved that the system is 
always possible, for example, with appropriate choice of p or ∂u/∂t).

Finally then developed the foregoing, our example 3, which seeks 
a unique solution to the Navier-Stokes system with n=3, all terms of 
the equation, nonzero external force, and provides infinite total kinetic 
energy to the system (1) to (6) in t > 0will be based on the example 
2, but again need to resort to the absence of non-linear term in the 
equation auxiliary with n=3. Since (18), the Navier-Stokes equation 
without external force, has as initial condition the zero initial velocity, 
the only possible velocity for your solution with all the terms is also 
the zero velocity due to the uniqueness of the solutions in the form 
complete this equation (abstracting constant generic pressures and/or 
time functions), solution that does not interest us. So, we need again 
that (18) does not have the non-linear term. The uniqueness of the 
main equation solution in three dimensions, however, at least in short 
time, is guaranteed because it contains all terms (again, except for not 
unique pressure), including the applied external force (which itself 
depends of not unique solution of the auxiliary equation with n=3).

The third example is a generalization of the example 2, with the 
velocity components v2 and v3 proportional to the component v1,

1 1 2 3
1 1( ) ( ), 2 , 0, 0v X T t x x xξ ξ α β
α β

= = + − ≠ ≠              (80.1)

12v vα=                   (80.2)

3 1v vβ=                                   (80.3)

α and β non-zero constant. We could also use other coefficients 
combinations in the variables xi in ξ, whenever ∇·(ξI)=0, with I=(1,1,1). 
In the example 2 we use α=1, β=0.

We will choose the components of the initial velocity u0 with some 
property of symmetry. It is not easy to think of not constant velocities 
with symmetrical components 0

1u and simultaneously whose divergent 
∇·u0 is null. The velocities with symmetry which the i-th component 
does not contain the i-th coordinate space, for all i (natural) in 1≤ i≤ n, 

fulfill this requirement:
0
1 0
i

u
x

∂
=

∂
. Alternatively we can use the known 

vector equality ∇·(∇×A)=0, ie, choosing a vector u0 that has a potential 
vector A, i.e.,u0=∇×A. So we choose primarily a vector A that has the 
symmetry properties we expect.

Be A=(A1,A2,A3) the potential vector we want. Doing A1=A2=,A3=e-r2, 
with 2 2 2 2

1 2 3r x x x= + + , the value assigned to the initial velocity u0 (x) 
will be

20 -r
2 3 3 1 1 2( ) 2 ( , , )u x rot A= e x x x x x x= − + − + − +                           (81)

Following the equations 17 of Example 2, let us now for x∈ℝ3,
( , ) ( , )tv x t e w x t−=                (82.1)

1 1 2 3 2 1 2 3 1 2 3( , ) ( ( , , ), ( , , ), ( , , ))3w x t w x x ,x t w x x ,x t w x x ,x t=             (82.2)
( ,0) 0, . 0, 0w x w= w= ∇ ≠

0 0( , ) ( ) ( , ) [ ( ) ( , )]t t
i i i i iu x t u x e v x t u x w x t e− −= + = +            (82.3)

3
2i i

j i
j 1i j

p v vv v v
x t x=

∂ ∂ ∂
+ + = ∇

∂ ∂ ∂∑                (82.4)

Which results for p(x,t) and v(x,t), as unknowns variables still to 
be determined,

3
2i i

j i
j 1i j

p v vv v v
x t x=

∂ ∂ ∂
+ + = ∇

∂ ∂ ∂∑                  (83)

The Navier-Stokes equations without external force.

Equations (80) applied to (83) result in

2i 1 1 1
1 1

1 2 3

21 1 1 1
1 1

2 1 2 3

21 1 1 1
1 1

3 1 2 3

( )

( )

( )

i

p v v v vv v v
x t x x x

p v v v vv v v
x t x x x
p v v v vv v v
x t x x x

α β

α β α

β β α β β

 ∂ ∂ ∂ ∂ ∂
+ + + + = ∇ ∂ ∂ ∂ ∂ ∂

 ∂ ∂ ∂ ∂ ∂ + α + α + + = ∇
∂ ∂ ∂ ∂ ∂

 ∂ ∂ ∂ ∂ ∂ + + + + = ∇
∂ ∂ ∂ ∂ ∂

                (84)

As

1 1 1

1 2 3 1 2 3

( ) ( )

( ) (1 1 2) 0

v v v dXT t
x x x d x x x

dXT t
d

ξ ξ ξα β α β
ξ

ξ

∂ ∂ ∂ ∂ ∂ ∂
+ + = + +

∂ ∂ ∂ ∂ ∂ ∂

= + − =

                    (85)

By the definition of we use in (80.1), then (84) becomes

2i
1

21
1

2

21
1

3

i

p v v v
x t

p v v v
x t
p v v v
x t

α

β β

 ∂ ∂
+ = ∇ ∂ ∂

 ∂ ∂ + α = ∇
∂ ∂

 ∂ ∂ + = ∇
∂ ∂

                  (86)

or equivalently,

2 1
1

2 1
1

2

2 1
1

3

[ ]

[ ]

i

i

i

p vv v
x t

p v pv v
x t x
p v pv v
x t x

α

= β β

 ∂ ∂
= ∇ − ∂ ∂

 ∂ ∂ ∂ = α ∇ − =
∂ ∂ ∂

 ∂ ∂ ∂ ∇ − =
∂ ∂ ∂

                (87)

Similar to what we saw in section § 5, equation (24) for a=1 and 
b=0, we will make the pressure to be defined as

( ) ( )dp Q R t
d

ξ
ξ

=                    (88)

and the velocity

i i 1 2 3( ( )) ( ), 1, ,v c X x T t c c cξ α β= = = =                (89)

with defined in (80.1),
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1 12 , 0, 0x x x= α β
α β1 2 3ξ + − ≠ ≠                (90)

Then it will be sufficient, besides the equation (88) to the pressure, 
solve one linear partial differential equation involving v1, instead of a 
system of three nonlinear partial differential equations involving v1, v2, v3.

The development of the solution here follows the same steps 
already seen in section § 5, equations (29) to (43), being the main 
change the expression for ξ given in (90), with increased dimensions 
and the proportionality between v2, v3 and v1. We come to

1

-t -t

1 1( , ) ( 2 ) ( )(1, ,

( ) + ( )](1- ) (1, , , 0

v x t X x x x T t

cos B C sen B e e

α β
α β
ξ ξ α β α β

2 3= + − )

= [Α ± ), ≠

      (91)

keeping valid the solutions (42) and (43) for the pressure p and velocity 
u, respectively. Initial velocity equal to(81). We also have the validity 
of ∇·v=0 and the corresponding integral ∫ℝ

3|v|2 dx infinite, portion of 
kinetic energy total system (1) to (6).

Conclusion
All three examples obey the necessary conditions of divergence-

free (∇·u0=0), smoothness (C∞) and partial derivatives of u0and f of 
Cαk(1+|x|)-k and Cαmk(1+|x|+t)-k order, respectively. We conclude that 
we must have u0∈S(ℝ)3and f∈S(ℝ3× [0,)). To each possible u(x,t) so 
that (3) is true, the external force f(x,t) and the pressure p(x,t)can be 
fittingly constructed, in C∞class, verifying (8), and in a way to satisfy 
all the necessary conditions, finding, this way, a possible solution to 
(1), (2), (3), (4), (5) and (6), and only (7) wouldn’t be satisfied for t>0 
, according to (10). We then show examples of breakdown solutions 
to case (C) of this millennium problem. These examples, however 
won’t take to case A from [1] of existence and smoothness of solutions, 
because they violate (7) (case (A) also impose a null external force, f=0).

An overview of the problem’s conditions is listed below (:ℝ3 and : 
ℝ3× [0,) representing the respective functions domains).

v > 0, n=3

∃u0(x):3 smooth (C∞), divergence-free (∇ u0=0)

∃f (x, t) : 3×[0, ∞) smooth (C∞)

(4) ( ) ( )0 31 : , ,akx C x Kα≤ + ∀

-ká
x곜

u

(5) ( ) ( ) 3, 1 x t : [0, ), , ,
k

mKx t C m Kα
−

α≤ + + × ∞ ∀

á m
x t곜

곜
f

( ) 3: [0, ) /p,u × ∞

(1) ( ) ( )3 2 3
1 , ,1 3 , 0i

j j i i
j i

ui u pu v u f x t i x t
t x x=+ ∑ = ∇ − + ≤ ≤ ∈ ≥

곜
곜

곜
곜

곜
곜

(2) ∇ u=0

(3) u (x,0)=u0(x) (x ∈3)

(6) p, u∈C∞(3×[0,∞))

(7) ( )3

2
, , 0u x t dx C t∫ < ∀ ≥



 (bounded energy)

In all three examples the head velocity u we used was of the form
0 -t -t( , ) [ ( ) ( )(1- )u x t u x w x e e= +                  (92)

in example 1, w(x)=1 , in example 2, w(x)=X(ξ) (1,1,0), ξ=x1-x2, and in 
example 3, w(x)=X(ξ) (1,α,β), 1 2 3

1 12x x xξ
α β

= − , α,β cte.  0, examples 2 

and 3 with X(ξ) [A cos(Bξ) + C sen (±Bξ)].

It’s important that we also analyse the solution’s uniqueness 
question. As u0 (x) and f (x,t) are given of class C∞, chosen by us, and 
satisfying (4) and (5), i.e., belonging to the Schwartz space, with ·u0=0, 
claim that there is no solution (p,u) to the system (1), (2), (3), (6) and 
(7) might assume that we explored, or proved to, the infinite possible 
combinations of p and u, i.e., of (p,u). So we need that exists uniqueness 
of solution for the velocity that we build, eliminating other possible 
velocitys for the same data used, u0 (x) and f (x,t), and involving in finite 
total kinetic energy.

The uniqueness of the solution (except due the pressure p (x,t) 
with constant additional term or time-dependent θ(t), além de outros 
casos de não unicidade da pressão sobre x e T(t)) comes from classical 
results already known, for example described in the mentioned article 
of Fefferman [1]: the system of Navier-Stokes equations (1), (2), (3) 
it has unique solution for all t  0or only for a finite time interval [0,T) 
depending on the initial data, where T is called “blowup time”. When 
there is a solution with finite T then the velocity u becomes unbounded 
near the “blowup time”.

We see that the existence of each our solution in the given examples 
are guaranteed by construction and direct substitution. Our velocities 
has no irregular behavior, any regularity loss, at no time , in none 
position, that becomes one unlimited, infinite, even for t  ∞ or |x| → 
∞, therefore, there can be no "blowup time" in the examples we gave, 
therefore the solutions found in the previous cases are unique at all 
times (unless pressure). But even if there were a finite T (in [14,15] we 
see that T > 0), the uniqueness would exist in at least a small interval 
of time, which is enough to show that in this time range occurs the 
breakdown of Navier-Stokes solutions because it was disobeyed the 
limited kinetic energy condition (7), making the case (C) true.

We must understand that uniqueness is in the main velocity u 
(equation 1), it is not necessary that is also in secondary velocity v 
(equations 14, 18 and 83), which as we have seen in the examples 2 and 
3 it can have infinite solutions, due to the absence of n nonlinear terms 

1

n i
jj

j

vv
v=

∂
∂∑ . Chosen a velocity v, however, applying in it the external 

force f (equations 13.4, 17.5, 82.4), results finally in the uniqueness of 
u(according 13.3, 17.4, 43, 82.3), solution of an equation with all the 
terms, of its kinetic energy and the corresponding divergence of the 
total kinetic energy ∫ℝ

3|u|2dx in t > 0 due to the term ∫ℝ
3|v|2dx →∞. The 

pressure p, we already know, It is not unique, but this does not change, 
qualitatively, the fact that the total kinetic energy of the system is 
infinite or not. This is better understood with examples 1 and 2: v being 
any constant or time dependent exclusively, or with x∈ℝ or with x∈ℝ2, 
since not identically zero, and whatever the pressure , null or not, the 
condition (7) is violated due to integration of |v|2 in the whole space ℝ3.

It is not difficult to extend the results obtained earlier in the § 5 with 
the two-dimensional speed to a speed v with three non-zero spatial 
components, as we saw in section § 8.

In examples 2 and 3 we had to solve an ordinary differential 
equation to get X(ξ). We will now, however, find a solution non unique 
for the velocity in the Navier-Stokes equations, but without solving 
any differential equation aid. You just have to make an integration 
necessary to obtain pressure. Out of curiosity, the initial speed may 
be different from zero, as well as the external force, and we are not 
concerned to seek just endless kinetic energies or velocities belonging 
to the Schwartz space. We are not looking now a breakdown solution, 
on the contrary, we seek endless (many) solutions.
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We will solve the system (1), (2), (3) for the special case in which

1 2 3 1 2 3

1 2 3

( , , , ) ) ( )(1,1,

( ) , (1,1,

u x x x t X(x x x T t X t J

x x x x J

ξ Τ

ξ

= + + −2) = ( ) ( )

= + + = −2)
          (93)

being worth ∇·(ξJ)=0. This gives us ∇·u=∇·u0=0 and the elimination 

of non-linear terms
3

1
1 3

( ) , 0i
jj

j i

uu u u
x=

≤ ≤

 ∂
⋅∇ ≡ =  ∂ 

∑  (of the Navier-

Stokes equations, with or without external force. So the solution of 
(1) will be reduced to the solution of one linear partial differential 
equation, the Heat Equation three-dimensional inhomogeneous,

2

i

,1 3i
i i i

p uv u f i
x t

φ∂ ∂
= ∇ − + = ≤ ≤

∂ ∂
                (94)

need to be true

j i

,ji i j
x x

φφ ∂∂
= ≠

∂ ∂
                 (95)

As 
i i

p p p
x x

ξ
ξ ξ

∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂
, ∀i, as well the differential operators 

i ix x
ξ

ξ ξ
∂ ∂ ∂ ∂

= =
∂ ∂ ∂ ∂

and 
2 2

ix ξ
   ∂ ∂

=   ∂ ∂  
, ∀i, i.e., we have a pressure that 

may be expressed as a function of ξ, as well as the velocity components u, 
and the xi are shown symmetrically and linearly relative to ξ=x1+x2+x3, 
with the transformation of infinitesimal element of integration 

1 2 3 1 2 3
1 2 3

d dx dx dx dx dx dx
x x x
ξ ξ ξξ ∂ ∂ ∂

= + + = + +
∂ ∂ ∂

, equality (95) is true, 

it is valid 
2 2

j i i j

p p
x x x x
∂ ∂

=
∂ ∂ ∂ ∂ , and we have the following solution to the 

pressure:
( )

2 d( ) ( T )
d

x

0
Tp(x,t) - p t v X X f d
t

ξ

ξ= ∇ − +∫
0î

              (96)

with

1 2 3

p p p
x x x

∂ ∂ ∂
= =

∂ ∂ ∂
                  (97)

assuming that the force f (x,t) is of the form Y(ξ)Z(t) (1,1,-2), such 
as u(x,t)=X(ξ)T(t) (1,1,-2). Let us consider p0(t) as the pressure at 
the instant t and the surface ξ=ξ0. This solves the system we wanted, 
since the integration in (96) is possible, and so we do not solve any 
intermediate ordinary differential equation to find X(ξ), because we 
can prefix which the expression for X(ξ) we want to use, among infinite 
possibilities, and such that have u(x,0)=u0(x).

Other combinations of the components of the vector J may be used, 
as well as other combinations of the coefficients of x1,x2,x3 in ξ, provided 
that they eliminate non-linear terms and check it (2) and (95). Thus, 
more complex forms to ξ are also possible, in addition to linear, which 
provides a robust way to achieve solutions for u. For example, defining

1 1,1 , 1i iu (x,t)u i nα α= ≤ ≤ =                (98)

the condition to be obeyed by X and ξ in order to eliminate the 
nonlinear terms is

n n

j 1 j 1j j

d ( ) ( ) 0
d

i
i j j

X X
x x

ξ ξ αα α ξ α
ξ = =

∂ ∂
+ =

∂ ∂∑ ∑                           (99)

for all (natural) in 1 ≤ i ≤ n. For each determined i liminates the 
nonlinear term of the line (or coordinate) i if (99) is satisfied.

One way to do (99) true is when
n n

j 1 j 1j j

0i
j jx x

ξ αα α
= =

∂ ∂
= =

∂ ∂∑ ∑                (100)

When the αj are constant or time dependent only the condition to 
be obeyed for ξ is

n

j 1 j

0j x
ξα

=

∂
=

∂∑                 (101)

which is in accordance with examples 2 and 3 above.

Including also the incompressibility condition for u, must be valid 
also the relation

n n n
1 1

1
j 1 j 1 j 1j j j

n n
j

j 1 j 1j j

( )

d ( )T(t)[ ( ) 0
d

j j
j

j

u uu
x x x

XX
x x

α α
α

α ξ ξξ α
ξ

= = =

= =

∂ ∂ ∂
= +

∂ ∂ ∂

∂ ∂
= + =

∂ ∂

∑ ∑ ∑

∑ ∑
 (102)

As (102) must be valid for all t, then we need to be valid
n n

j 1 j 1j j

d ( )( ) 0
d

j
j

XX
x x
α ξ ξξ α

ξ= =

∂ ∂
+ =

∂ ∂∑ ∑                (103)

When the αj are constant or time dependent only, the condition to 
be obeyed for ξ is equal to the condition (101) previous,

n

j 1 j

0j x
ξα

=

∂
=

∂∑                 (104)

Notice that the function T(t) in (93) must not have singularities 
in case it is desired that the velocity u is regular, limited in module, 
notwithstanding, T(t) singular, infinite for one or more values of time , 
the function can be considered as a "highlighter" of blowups, and so we 
can build solutions with instants of blowup τ* well determined, to our 
will, such that T(τ*) → ∞.

In the absence of singularities of T(t) and X(ξ(x)), however, only 
wishing regular velocities, it follows that it is possible for a three-
dimensional Navier-Stokes equation (generally, n-dimensional) “well 
behaved” have more than one solution for the same initial velocity. To 
the special form given to the solution u(x,t) in (93), with T(0)=0 or not, 
for a same initial velocity u(x,0)=X(ξ(x))T(0)J=u0(x)with J=(1,1,-2), can 
be generated, in principle, infinite different velocities u(x,t)=X(ξ(x))
T(t)J, for different functions of the position X(ξ(x)) and T(t) time , 
solutions that solve the Navier-Stokes equation (1). If the external force 
is zero, this brings us to the negative answer to 15th problem of Smale 
[12], as we have seen before thinking only in the non uniqueness of 
pressure due to the additional term θ (t) + q, where q ≠ 0is a constant 
and θ (t) an explicit function of time (in the original Smile problem 
pressure does not vary in time).
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