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Introduction
This paper is a continuation of the research [1] where the linear 

topology space of entire functions of a proximate order and normal 
type, less than or equal σ, with respect to the proximate order were 
considered. We introduce the necessary definitions. A function ρ(r), 
defined on the ray (0,∞) and satisfying the Lipschitz condition on any 
segment [a, b]⊂ (0,∞) that satisfies the conditions

'
lim ( ) and lim ( ) ln 0
r r

r r r rρ ρ ρ
→∞ →∞

= ≥ 0, + =

This is called a proximate order.

A detailed exposition of the properties of proximate order can 
be found [2,3]. In this paper we use the notation V (r)=rρ(r). We will 
assume that V (r) is an increasing function on (0,∞) and 

0
lim ( ) 0
r

V r
→+

= .

We now formulate some simple property of proximate order that 
we shall need frequently [2].

For r→∞ and 0 a k b< ≤ ≤ < ∞  asymptotic inequality holds 
uniformly in k.

(1 ) ( ) ( ) (1 ) ( )k V r V kr k V rρ ρε ε− < < +                    (1)
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= . If for the entire function f(z) the quantity

log ( )
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M r
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σ
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Is different from zero and infinity, then ρ(r) is called of a proximate 
order of the given entire function f(z) and σf is called the type of the 
function f(z) with respect to the proximate order ρ(r).Let ρ(r) be a 
proximate order, lim ( ) 0

x
rρ ρ

→∞
= ≥ . A single valued function f(z) of 

the complex variable z is said to belong to the space [ρ(r),¥) if f(z) has 
the order less than ρ(r) or equal ρ(r) but in this case type less than ¥. 
A sequence of functions {fn(z)} from [ρ(r),¥) converges in the sense of 
[ρ(r),¥) if

(i) It converges uniformly on compacts, (ii) there exists β<1 such that

0| ( ) | ( )exp[ | |)], | | ( )( 1)nf z C V z z r nβ β β< > ≥ ,

where r0(β) does not depend on (n ≥ 1). For a suitable C(β), which does 
not depend on n, for all z

| ( ) | ( )exp[ | |)] ( 1)nf z C V z nβ β< ≥                    (2)

The space [ρ(r),¥) is the linear topology space with sequence 
topology. Furthermore, a single valued function f(z) of the complex 
variable z is said to belong to the space [ρ(r), p] if f(z) has the order 

less than ρ(r) or equal ρ(r) but in this case type less than or equal p. A 
sequence of functions {fn(z)} from [ρ(r), p] converges in the sense of 
[ρ(r), p] if (i) it converges uniformly on compacts, (ii) for all ε > 0 there 
exists r0(ε) does not depend on n such that

0| ( ) | exp[( ) | |)], | | ( )( 1)nf z p V z z r nε ε< + > ≥ .

The space [ρ(r), p] is also the linear topology space with sequence 
topology. We introduce the function φ(t) defined to be the unique 
solution of the equation t=V (r). So

φ(V (t))=t. (3)

Theorem 1.1 ([2, Theorem 2', p.42])

The type σf of the entire function 
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= ∑  with the proximate 
order ρ(r) (ρ > 0) is given by the equation
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Let ρ > 0
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It is regular, in any case in the circle |z| < 1 [1]. Fact mapping 
function f(z) of [ρ(r), p] to the function F(z) as indicated above will be 
celebrating a record f(z) ~F(z).

In [1] it is proved the following two theorems.

Theorem 1.2

In order to be a sequence {fn(z)} of functions from [ρ(r), p] to converge 
in the sense of [ρ(r), p] necessary and sufficient that the sequence {fn(z)} 
(fn(z)~Fn(z)) converges uniformly inside the disk |z| < 1.
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ρ(r) if 10 lim ( ) lim ( )
r r

r r Aρ ρ ρ ρ
→∞ →∞

< = < = single valued function f(z) of the 
complex variable z is said to belong to the space Eρ(r) if f(z) has the order 
less than ρ(r).

A sequence of functions {fn(z)} from Eρ(r) converges in the sense of 
Eρ(r) if (i) it converges uniformly on compacts, (ii) there exists proximate 
order ρ1(r), 1 10 lim ( ) lim ( )

r r
r rρ ρ ρ ρ

→∞ →∞
< = < = such that

1 0| ( ) | exp[ | |)], | | ( )( 1)nf z V z z r nβ< > ≥                  (11)

where r0(β) does not depend on (n ≥ 1), V1(r)=rr1(r).The space Eρ(r) 
is the linear topology space with sequence topology. A continuous 
linear functional l(f) on the space Eρ(r) has the form (8). Let us find the 
conditions that satisfy the values an. The functional l(f) is in particular 
continuous linear functional on the space [ρ1(r),¥) for all proximate 
order ρ1(r), 1 10 lim ( ) lim ( )

r r
r rρ ρ ρ ρ

→∞ →∞
< = < = . Therefore, by theorem
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n
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where φ1(t) defined to be the unique solution of the equation t=V1(r). 
From this

0
log | | 1,
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1j

So ρ1(r) is arbitrary less then ρ(r) that

log | |limsup 1
( )

n

n

a
n n→∞

≤
j

                  (13)

Contrary, let the condition (13) is true and ρ1(r) is arbitrary less 
than ρ(r). So φ1(n) > φ(n), n > n0, that

0
log | | 1,

( )
na n n

n n
< >

1j

Therefor the condition (12) is true and l(f) is continuous linear 
functional on the space [ρ(r),¥). So ρ1(r) is arbitrary less then, ρ(r) that 
l(f) is continuous linear functional on the space Er(r).

Theorem 3.1

Continuous linear functional l on the space E ρ(r) has the form

0 0
( ) , ( ) n

n n n
n n

l f a c f z c z
∞ ∞

= =

= =∑ ∑
Where the quantities an satisfy

log | |limsup 1
( )

n

n

a
n n→∞

≤
j

Remark: The case of the spaces [ρ,¥) and Er, where ρ(r)=ρ > 0, 
considered A.F Leont’ev [4].

Conclusion
The linear topology space of entire functions of a proximate order 

and normal type with respect to the proximate order is considered. We 
obtain the form of continuous linear functional on this space through 
our work.
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Theorem 1.3

Continuous linear functional l on the space [ρ(r), p] has the form
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= =

= =∑ ∑                  (6)

Where the quantities an satisfy

limsup | | 0
n

n
n
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=-1j ( )                     (7)

The following is our main result.

Theorem 1.4

Continuous linear functional l on the space [ρ(r),¥ has the form
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( ) , ( ) n

n n n
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l f a c f z c z
∞ ∞

= =

= =∑ ∑ ,                  (8)

Where the quantities an satisfy

limsup | | 0
n
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The Space of Entire Functions [ρ(r),¥)
We now prove the theorem 1.4. Let l(f) be a continuous 

linear functional on the space [ρ(r),¥). Set ( ) ( 0)n
nl z a n= ≥  Let 

0
( ) n

n
n

f z c z
∞

=

= ∑ be a function in [ρ(r),¥). Since the series converges in 

the sense of [ρ(r),¥) then, by continuous of the functional,
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Take an arbitrary finite p>0. Functional l(f) is, in particular, 
continuous linear functional on the space [ρ(r), p]. By theorem 1.3, the 
condition

1/limsup | | ( )
n

n
n

n a epp ρ−

→∞
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But p is arbitrary, hence,
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n

n
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We now verify that if the condition (9) then the functional 
(10) is continuous linear functional on the space [ρ(r),¥). Let 
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And then the series (10) converges.

Let ( )
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let l satisfies (9). By (2), there exists β > 0 such that {{fk(z)}, f(z)}Ì[r(r), 
β] in the sense [ρ(r), β]. By (9) and (8) l is continuous linear functional 
on the space [ρ(r), β]. Then l(fk)→l l(f) if k→¥. Therefore l is continuous 
linear functional on the space [ρ(r),¥).

Space of Entire Functions Eρ(r)
We now consider the space of entire functions Eρ(r) which have 

a proximate orders less then ρ(r). A proximate order ρ1(r) less then 
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