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Introduction
The following analysis presents a practical approach for 

measuring the absolute velocity of an observer, which could be used 
for determining a spacecraft's state of motion from inside a closed 
cabin. The concept of absolute velocity generally refers to a standard 
uniform velocity of the various objects of a physical system relative to 
a postulated immobile space that exists independently of the physical 
objects contained therein (i.e., an absolute space).

Analysis on Absolute Velocity
Herein, we present an approach based on rigid kinematics to 

demonstrate that the absolute velocity of an observer can be determined 
from the fact that light travels through a vacuum at speed c regardless 
of the motion of the light source or that of an observer's frame of 
reference. Consequently, sometime is required for light to travel from a 
light source to an observer in space, such that the emission of light and 
the observance of the emitted light are not simultaneous.

In the proposed analysis, we first provide the following 
conventions for the coordinate systems under consideration. We 
assume a Cartesian coordinate system comprised of three pair-wise 
perpendicular axes originating from point (0,0,0), where any point P 
in space can be defined by its coordinates along the x, y, and z axes, 
represented by an ordered pair of real numbers (x,y,z). An inertial 
reference system S is assumed to be represented by a space rectangular 
coordinate system (x,y,z) whose origin is O. A series of standard clocks 
(denoted as S clocks) are located at stationary points in S. The S clocks 
are mutually calibrated (i.e., they provide equivalent readings at the 
same instant in time) based on the transmission and reception of a 
light signal. Specifically, at time tA, a light beam is projected from clock 
A to clock B, which is then reflected at time tB by clock B back toward 
clock A, and arrives at clock A at time tA'. If BAAB tttt −′=− , the 
two clocks are calibrated. For any event located at coordinates x,y,z, its 
time coordinate t is given by the reading of the event-related S clock. 
Similarly, another inertial reference system S' is established based on a 
second space rectangular coordinate system (x',y',z') whose origin is O', 
and another series of mutually calibrated standard clocks (S' clocks) are 
located at stationary points in reference system S'. For any event located 
at coordinates x',y',z', its time coordinate t' is given by the reading of the 
event-related S' clock.

Because the respective origins of the spatial and temporal 
coordinates, as well as the directions of the coordinate axes can be 

selected arbitrarily to a large extent, the relationships between S and S' 
employed herein are based on the following conventions, which have 
been applied for simplicity.

(1) At a particular instant in time, the origins and coordinate axes 
of the two systems are superposed, and the clocks respectively 
located at O and O' are set to zero, i.e,. t=t′=0

(2) The x and x' axes are coincident in the direction of the relative 
motion of S and S'; thus, x and x' are coincident at all times, 
while y and y', as well as z and z' are parallel.

(3) S' moves along the +x direction of S.

The proposed analysis is based on the fundamental principle 
that light in a vacuum travels at a constant velocity c regardless of 
the motion of either the observer or the light source. Thus, we herein 
define the absolute velocity U of the observer, which is assumed to be 
linear and uniform, as U= c. f(φ), where f(φ) represents a function of 
the geometrical relationship between the direction of a light signal and 
the direction of U, denoted herein as φ. 

Two new explanations of the relativity of time and length are 
provided in the proposed analysis, which differ from Einstein's 
explanations (please refer to “On the Electrodynamics of Moving 
Bodies”). These explanations are introduced in the following sections.

The relativity of time

Owing to the finite velocity of light, sometime is required for light 
to travel from a light source to an observer in space. It can therefore be 
deduced that the emission of light and the observance of light cannot 
be simultaneous. Based on the constancy of the velocity of light and 
the conditions illustrated in Figure 1, we define the following factors. 
The positions of a light source and an observer at t=0, at which time 
the light source emits light (denoted as event R), are given respectively 
as A and H0. During the period of light propagation from t=0 to t=T, 
the observer travels a distance U∙T from position H0 to H, whereupon 
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the observer receives the emitted light. Accordingly, we define HA  as 
the distance l between the position of the observer upon receiving the 
light signal at t=T and the position of the light source when emitting 
light at t=0. Owing to the constancy of the velocity of light, l=c .T 
the distance HH0  is equivalent to U∙T. Finally, we define AH0  as the 
distance l0 between the position of the observer at t=0 and the position 
of the light source at t=0. Here, we introduce a consideration of the 
observer's position at t=0, which was previously thought to have no 
physical significance. If the states of motion of the observer and the 
light source are equivalent, l0 is given, such that U can be calculated via 
the triangular relations illustrated in Figure 1.

In the present work, the time of an event is measured using the 
following method. Both the observer and a clock are placed at the 
origin. When the light signal representing the occurrence of an event 
reaches the observer, the light arrival time will correspond with the 
time indicated by the clock. The advantage of the correspondence is 
that it is always related to the position of the observer who employs 
the clock. As seen in Figure 1, spatial point O3 can be defined based on 
the position of the light source when emitting light at t=0, and spatial 
point O2 can be defined based on the position of the observer when 
receiving light at t =T. However, the means of defining spatial point 
O1 at which the observer is located when the light source emits light 
at t=0 is not obvious. To solve this problem, the concepts of absolute 
rest (i.e., 0=U ) and absolute motion (i.e. , U≠0) are introduced. We 
respectively substitute the single moving observer at H0 and H with two 
observers H1 and H2 at rest at spatial points O1 and O2, respectively, 
while light source A is at rest at spatial point O3. Each of the observers 
and the light source employ calibrated standard clocks, and A emits a 
light signal at t=0 denoted as event R0. When observer H1 receives the 
light signal traveling at c, the clock reading is T0, and when H2 receives 
it, the reading is T. As such, the distances 13OO  and 23OO  can be defined 
based on the respective travel times of the light signal as follows:

013 TcOO ⋅= , 					                     (1)

and

TcOO ⋅=23
. 					                     (2)

According to the triangular relations shown in Figure 1, the 
transformation of event R0 between observers H1 and H2 is given as follows.
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Figure 1: Calculating the parameters with triangular relations.

Here, ϕ is the angle between the line O3O1 and the x axis, and ′ is the 
angle between the line O3O2 and the x axis.

Returning now to the condition of a single moving observer, 
we assume that, in system S, both the observer H and light source A 
employ a calibrated standard clock [1]. At the instant of event R, light 
source A is at spatial point O3, and observer H is at O1. The instant 
at which the light signal reaches spatial point O1 corresponds with an 
S clock reading of T0. When observer H receives the light signal, the 
reading is T, and H is at O2.

Of course, H cannot observe event R at point O1. To solve this 
problem, another observer H- is placed in system S at point O1 
corresponding with t= T0, where the position of H- is employed to 
define spatial point O1. Then, the transformation of event R between 
observers H- and H can be obtained through Equation (3) as follows.

c
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21  					                      (5)

Hence, Equations (3) and (4) can be rewritten as follows.

)(coscos
0 c

U
T
T

+′= ϕϕ  			                   (6)

20 )(cos21

1

c
U

c
UT

T

+′+
=

ϕ
 			                    (7)

We also observe that, for ϕ=π/2, Equations (6) and (7) simplify to 
the following.
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Therefore, based on the above analysis, a simple method for 
determining U can be obtained from Equation (6), given that AH0  (φ) 
is known. 

For the purpose of simplicity, a light source with an equivalent state 
of motion as that of the observers is chosen as the reference frame [2,3]. 
An observer is set in the center of a straight rigid bar in uniform linear 
motion, and light signals from different positions on the bar arrive at 
the observer at different times. The observer detects bar deflection at the 
observer's position with a deflection angle π-2ϕ′ that can be obtained 
from Equation (8).

Through this method, the state of motion of a spacecraft could be 
determined from a closed cabin.

The relativity of length
In the above analysis, two lengths have been introduced, i.e., HH −  

and 
21OO . In this case, we consider the length of a bar that is assumed 

to be a stationary rigid bar of length L within its coordinate system, for 
which L is measured with a stationary staff gauge, and where the bar 
axis is coincident with the x axis of a coordinate system that moves with 
uniform linear motion along the +x direction at an absolute velocity U. 
It is assumed that L is determined by the two operations defined below.
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(a) The observer resides in the same moving coordinate system as 
does the bar and staff gauge, and L is measured by superposing 
the bar and staff gauge [4-6].

(b) By the aid of several clocks positioned in stationary coordinates, 
which move in synchronization, the observer measures the 
positions of the two ends of the bar in stationary coordinates at 
a specific moment t, and the distance between the two positions 
is measured with the stationary staff gauge.

HH −  is the length calculated from operation (a), which is denoted 
herein as the bar length in the moving coordinate. 21OO  is the length 
calculated from operation (b), which is denoted herein as the length of 
a moving bar in the stationary coordinate. It is obvious that HH −  and 

21OO  are different.

We assume that, in system S, observer H- is in the same state 
of motion as H. Then, as shown in Figure 1, H- is at point O1 when 
receiving the light signal at t =T0, and, simultaneously, observer H is 
at point O4. Therefore, 41OO  is the distance between H- and H at t =T0, 
and

041 TtHHOO =
−= . 				                 (10)

24OO  is the distance traveled by observer H in the interval from T0 
to T, such that

)( 024 TTUOO −= . 				                   (11)

21OO  is the distance between H- at t=T0 and H at t = T, such that

)( 021 TTUHHOO −+= − . 			                  (12)

As such, the following expression can be deduced.
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Next, we will consider the coordinate and time transformations 
between two moving coordinate systems, both of which move with 
a uniform linear velocity, which represents a new explanation of the 
Lorentz transformation. 

Assuming that observer H (in system S), observer H' (in system S'), 
and light source A'' (in system S'') all employ calibrated standard clocks 
individually, and, at t=t=t′′′=0, light source A'' emits a light signal, 
denoted as event R'' [7]. At the instant of event R'', A'' is at point O3, 
and observers H and H' are coincident. When observer H receives the 
light signal, the reading of the S clock is T, and H is at point O1. When 
observer H' receives the light signal, the reading of the S' clock is T', 
and H' is at point O2 . Then, the transformation of event R'' between 
observers H' and H can be calculated from Equation (3), where
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Here, u is the relative velocity between observers H' and H, which 
yields the following transformations.
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From ( )H H H H u T T− −′ ′ ′= + − , the following relations can be derived: 
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When 
2
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Therefore, the following transformation relations can be deduced:

2( )uxt t
c
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Moreover, where, u≈0

HHHH ′′= −− , 				                     (23)

and

 t′=t 						                      (24)

 x′=x-ut 					                       (25)

 y=y′ 						                       (26)

z′=z 						                       (27)

Conclusion
The method for measuring the absolute velocity of an observer 

is proposed in the paper, which could be used for determining a 
spacecraft's state of motion from inside a closed cabin. In this study, 
a new explanation of the Lorentz transformation is also introduced.
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