

Open Access

Navier-Stokes Clay Institute Millennium Problem Solution

Cusack P*

Independent Researcher, Canada

Abstract

This paper provides the solution to the Navier-Stokes Clay Institute Problem. The Golden Mean parabola is a solution to this equation. The solution shows that the Navier Stokes Equation is smooth.

Keywords: Quantum physics; Elementary Particle Theory; Navier-Stokes

Introduction

In three space dimensions and time, given an initial velocity field, there exists a vector velocity and a scalar pressure field, which are both smooth and globally defined, that solve the Navier-Stokes equations [1].

Explanation

The Navier Stokes equation:

 $\rho [du/dt+u*\Delta u]=\Delta*\delta+F$

where *p*=density

Du/dt=velocity

U=position

Del=gradient

 $\Delta \delta$ =Shear

F=all other forces

The solution to this equation is the root of the Golden Mean Equation where the variable is t time explained in Figure 1.

G.M=1.618

First, let's break down the components as follows.

Density=p

 $\rho = M/Volume$

For an ellipsoid with axis $1 \times 8 \times 22$ (or $3 \times 24 \times 66$) has a volume of

Mass M=1/c^4 Strain=sigma/E E=1/0.4233=1/(π) $Lim_{x\to 0}$ (Strain) = d Δ /dt D=E*sigma'=1/0.4233*(P'/A") where P is constant A'=circumference=2 π R Let R=1/2 A=(π R^2)'=2 π (R= π) Delta=1/(0.4233) *P/ π P=(2*s)=(2*4/3)=8/3=2.667 Delta=2.022

19905 and a Surface area of 1 shown in Figure 2.

 $Y=e^{-t^*}\cos t=dM/dt$

*Corresponding author: Cusack P, Independent Researcher, Canada, Tel: (506) 214-3313; E-mail: St-Michael@Hotmail.Com

Received February 08, 2016; Accepted April 29, 2016; Published May 05, 2016

Citation: Cusack P (2016) Navier-Stokes Clay Institute Millennium Problem Solution. J Phys Math 7: 176. doi:10.4172/2090-0902.1000176

Copyright: © 2016 Cusack P. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

2.02=e^(-t)(-sin t)

Solving for t:

Sin t=2 rads

T=114.59°

Substituting:

 $E^{(-2)}(\sin 2)=1/81=1/c^4$

Where "c" is a fourth order tensor and is also the gradient or "Del".

Plane ax+by+cz=0

Sin $\theta = c = 2.9979293$

Sin t=3

```
T=171^{\circ}F
```

 $\sin \theta = 0.1411 \ 1/\sin \theta = M = 0.858 = \text{Energy} = \sin 1$

 $E = |s||t|\sin\theta$

 θ =60 degrees for Mohr-Coulomb theory illustrated in Figure 3.

E=(1.334) (1) sin 60°=115.5

F=sin θ =3 rads

 $\theta = 171^{\circ}$

Sin 171°=0.1411 0.858

Sigma=E strain

If Surface Area=1

F=sigma

F=E strain

0.858=115.5 *strain

Strain=1

Now the Polar Moment of Inertia for the cross section of the ellipsoid is shown in Figure 4:

 $J=\pi/2^{*}(c2)^{4}-\pi/2^{*}(c1)^{4}$

 $J=\pi/2(13.622)^{4}-\pi/2^{*}(2668)$

The universe is 13.622 Billion LY across [2]. The Hole in the middle is a=0.2668 Billion LY across.

J = 4672

Now the Shear component, is is given by the equation

Tau max=Tc/J

Tau max=(0.4233)(3)/4672 [MECHANICS OF MATERIALS, BEER ET AL]

=2.718

=base e

Referring to the original equation, we now have the density, the mass, the gradient, the shear, and f=0. All that remains is the acceleration, velocity, and position shown in Figure 5.

Delta=PL/AE [ibid]

Delta' = (dP/dt)(dL/dt)/(dA/dt)(dE/dt)

 $dP/dt=d(\sin \theta)=-\cos \theta)$ dL/dt=velocity $dA/dt=circumference=2\pi R$ dE/dt=1 (Newtonian Fluid) $delta'=\cos theta/(2\pi (1)^* delta')$

Page 3 of 3

 $\cos \theta = 2Pi$

 $\theta = 1 \text{ rad}$

Substituting these parameters in to the original equation:

 $s[(1)-(1/s) *c^{*} (1/s)=Tau \max$

s^3-sc-e=(4/3)-32.718=1.615~1.618=G.M.

=Ln (1/t)=1.615

where Y=0.2018=e^t cos 1 (dampened cosine curve)

T0-t=1-0.9849=0.015=1/6.66=3/2 (Mass Gap)

E^(3/2)=4.4824=Mass

Ln (1/t)=t

Ln y'=y

So the Navier Stokes is solved by the Golden Mean Parabola [3]

t=1/(t-1)

t^2-t-1=0,

Quadratic roots t=1.618

Conclusion

Thus t=Rho[du/dt+u* del u]-Del * sigma -F

where t^2-t-1=0

This parabola is smooth.

The Density=rho/M/Volume is smooth because the Volume of an ellipsoid is smooth. The Mass is smooth because the $M=1/c^{4}$. C⁴ is smooth.

The Velocity du/dt is a parabola so its derivative is smooth. The position u is a scaler. Its derivative is constant.

Del is the gradient which is c^4. Its derivative is the volume of a sphere equation. It is smooth.

The Shear Tau max is smooth since it is Torque *c/J. Torque is the force=sin theta. Its derivative is smooth. C is a constant. Its derivative is a constant. And the Polar Moment of Inertia $\pi/2(c2-c1)^4$. Its derivative is smooth.

So the Navier Stokes Equation is smooth.

Volume of Sphere=4/3 π (2.9978929)^3=112.8

c=2.997929

Sigma/E=strain

Sigma/F/Surface Area

S.A=1

E=1/0.4233=1/cuz

strain=F/E=2.667/1/0.4233=112.8

This means that the forth order tensor, the speed of light, is as smooth as a sphere. That is why the Navier-stokes Equation is smooth.

References

- Dobek S (2012) Fluid dynamics and the Navier-Stokes Equation. A Review of the Universe - Structures, Evolutions, Observations, and Theories.
- 2. Beer FP (2002) Mechanics of materials. (6thedn) McGraw Hill.
- Aris R (1961) Vectors, tensors, and the basic equations of fluid mechanics. Dover Publications.

OMICS International: Publication Benefits & Features

Unique features:

- Increased global visibility of articles through worldwide distribution and indexing
- Showcasing recent research output in a timely and updated manner
 Special issues on the current trends of scientific research

Special features:

- 700+ Open Access Journals
- 50,000+ editorial team
- Rapid review process
- Quality and quick editorial, review and publication processing
 Indexing at major indexing services
- Sharing Option: Social Networking Enabled
- Authors, Reviewers and Editors rewarded with online Scientific Credits

Better discount for your subsequent articles

Submit your manuscript at: http://omicsonline.com/open-access/physical-mathematics.php

Citation: Cusack P (2016) Navier-Stokes Clay Institute Millennium Problem Solution. J Phys Math 7: 176. doi:10.4172/2090-0902.1000176