Navier-Stokes Clay Institute Millennium Problem Solution

Cusack P*

Independent Researcher, Canada

Abstract

This paper provides the solution to the Navier-Stokes Clay Institute Problem. The Golden Mean parabola is a solution to this equation. The solution shows that the Navier Stokes Equation is smooth.

Keywords: Quantum physics; Elementary Particle Theory; NavierStokes

Introduction

In three space dimensions and time, given an initial velocity field, there exists a vector velocity and a scalar pressure field, which are both smooth and globally defined, that solve the Navier-Stokes equations [1].

Explanation

The Navier Stokes equation:

$\rho[\mathrm{du} / \mathrm{dt}+\mathrm{u} * \Delta \mathrm{u}]=\Delta^{*} \delta+\mathrm{F}$
where $\rho=$ density
Du/dt=velocity
U=position
Del=gradient
$\Delta \delta=$ Shear
$\mathrm{F}=$ all other forces
The solution to this equation is the root of the Golden Mean Equation where the variable is t time explained in Figure 1.
G.M=1.618

First, let's break down the components as follows.
Density $=\rho$
$\rho=\mathrm{M} /$ Volume
For an ellipsoid with axis $1 \times 8 \times 22$ (or $3 \times 24 \times 66)$ has a volume of

Figure 1: Ellipsoid with axis $1 \times 8 \times 22$.

19905 and a Surface area of 1 shown in Figure 2.
Mass M=1/c^4
Strain=sigma/E
$\mathrm{E}=1 / 0.4233=1 /(\pi)$
$\operatorname{Lim}_{x \rightarrow 0}($ Strain $)=\mathrm{d} \Delta / \mathrm{dt}$
$\mathrm{D}=\mathrm{E}^{*}$ sigma' $=1 / 0.4233^{*}\left(\mathrm{P}^{\prime} / \mathrm{A}^{\prime \prime}\right)$
where P is constant
$A^{\prime}=$ circumference $=2 \pi R$
Let $\mathrm{R}=1 / 2$
$\mathrm{A}=(\pi \mathrm{R} \wedge 2)^{\prime}=2 \pi(\mathrm{R}=\pi)$
Delta $=1 /(0.4233) * \mathrm{P} / \pi$
$\mathrm{P}=\left(2^{*} \mathrm{~s}\right)=\left(2^{*} 4 / 3\right)=8 / 3=2.667$
Delta $=2.022$
$\mathrm{Y}=\mathrm{e}^{\wedge}-\mathrm{t}^{\star} \cos \mathrm{t}=\mathrm{dM} / \mathrm{dt}$

Figure 2: Illustration of proportionality of strain to sigma.

[^0]$2.02=e^{\wedge}(-t)(-\sin t)$
Solving for t :
Sin $\mathrm{t}=2 \mathrm{rads}$
$\mathrm{T}=114.59^{\circ}$
Substituting:
$\mathrm{E}^{\wedge}(-2)(\sin 2)=1 / 81=1 / \mathrm{c}^{\wedge} 4$
Where "c" is a fourth order tensor and is also the gradient or "Del".
Plane $a x+b y+c z=0$
Sin $\theta=c=2.9979293$
Sin $\mathrm{t}=3$
$\mathrm{T}=171^{\circ} \mathrm{F}$
$\operatorname{Sin} \theta=0.14111 / \sin \theta=M=0.858=$ Energy $=\sin 1$

$\mathrm{E}=|\mathrm{s}||\mathrm{t}| \sin \theta$

$\theta=60$ degrees for Mohr-Coulomb theory illustrated in Figure 3.
$\mathrm{E}=(1.334)(1) \sin 60^{\circ}=115.5$
$\mathrm{F}=\sin \theta=3$ rads
$\theta=171^{\circ}$
$\operatorname{Sin} 171^{\circ}=0.14110 .858$
Sigma $=$ E strain
If Surface Area=1
$\mathrm{F}=$ sigma
$\mathrm{F}=\mathrm{E}$ strain
$0.858=115.5{ }^{*}$ strain
Strain=1
Now the Polar Moment of Inertia for the cross section of the ellipsoid is shown in Figure 4:
$\left.\mathrm{J}=\pi / 2^{\star}(\mathrm{c} 2)^{\wedge} 4-\pi / 2^{\star}(\mathrm{c} 1)^{\wedge} 4\right)$
$\mathrm{J}=\pi / 2(13.622)^{\wedge} 4-\pi / 2^{*}(2668)$
The universe is 13.622 Billion LY across [2]. The Hole in the middle is $\mathrm{a}=0.2668$ Billion LY across.

$$
\mathrm{J}=4672
$$

Now the Shear component, is is given by the equation
Tau $\max =\mathrm{Tc} / \mathrm{J}$
Tau $\max =(0.4233)(3) / 4672$ [MECHANICS OF MATERIALS, BEER ET AL]
$=2.718$
$=$ base e
Referring to the original equation, we now have the density, the mass, the gradient, the shear, and $\mathrm{f}=0$. All that remains is the acceleration, velocity, and position shown in Figure 5.

Delta $=$ PL/AE [ibid]
Delta' $=(\mathrm{dP} / \mathrm{dt})(\mathrm{dL} / \mathrm{dt}) /(\mathrm{dA} / \mathrm{dt})(\mathrm{dE} / \mathrm{dt})$
$\mathrm{dP} / \mathrm{dt}=\mathrm{d}(\sin \theta)=-\cos \theta)$
$\mathrm{dL} / \mathrm{dt}=$ velocity
$\mathrm{dA} / \mathrm{dt}=$ circumference $=2 \pi \mathrm{R}$
$\mathrm{dE} / \mathrm{dt}=1$ (Newtonian Fluid)
delta ${ }^{\prime}=\cos$ theta $/\left(2 \pi(1)^{*}\right.$ delta ${ }^{\prime}$

Figure 3: Illustration of Mohr-Coulomb theory.

Figure 4: Universal Ellipsoid.

STRESS

Figure 5: Polar Moment of Inertia for the cross section of the ellipsoid.
$\cos \theta=2 \mathrm{Pi}$
$\theta=1 \mathrm{rad}$
Substituting these parameters in to the original equation:
$s\left[(1)-(1 / s)^{*} c^{*}(1 / s)=\right.$ Tau max
$\mathrm{s}^{\wedge} 3-\mathrm{sc}-\mathrm{e}=(4 / 3)-32.718=1.615 \sim 1.618=$ G.M.
$=\operatorname{Ln}(1 / t)=1.615$
where $\mathrm{Y}=0.2018=\mathrm{e}^{\wedge} \mathrm{t} \cos 1$ (dampened cosine curve)
T0- $\mathrm{t}=1-0.9849=0.015=1 / 6.66=3 / 2$ (Mass Gap)
$\mathrm{E}^{\wedge}(3 / 2)=4.4824=$ Mass
$\operatorname{Ln}(1 / t)=t$
$\operatorname{Ln} y^{\prime}=y$
So the Navier Stokes is solved by the Golden Mean Parabola [3]
$\mathrm{t}=1 /(\mathrm{t}-1)$
$t \wedge 2-t-1=0$,
Quadratic roots $\mathrm{t}=1.618$

Conclusion

Thus $t=R h o\left[d u / d t+u^{*}\right.$ del $\left.u\right]-D e l *$ sigma $-F$
where $t^{\wedge} 2-\mathrm{t}-1=0$
This parabola is smooth.
The Density=rho/M/Volume is smooth because the Volume of an ellipsoid is smooth. The Mass is smooth because the $M=1 / c^{\wedge} 4 . C \wedge 4$ is smooth.

The Velocity du/dt is a parabola so its derivative is smooth. The position u is a scaler. Its derivative is constant.

Del is the gradient which is $c^{\wedge} 4$. Its derivative is the volume of a sphere equation. It is smooth.

The Shear Tau max is smooth since it is Torque ${ }^{*} \mathrm{c} / \mathrm{J}$. Torque is the force=sin theta. Its derivative is smooth. C is a constant. Its derivative is a constant. And the Polar Moment of Inertia $\pi / 2(\mathrm{c} 2-\mathrm{cl})^{\wedge} 4$. Its derivative is smooth.

So the Navier Stokes Equation is smooth.
Volume of Sphere $=4 / 3 \pi(2.9978929) \wedge 3=112.8$
c=2.997929
Sigma/E=strain
Sigma/F/Surface Area
S.A=1
$\mathrm{E}=1 / 0.4233=1 / \mathrm{cuz}$
strain=F/E=2.667/1/0.4233=112.8
This means that the forth order tensor, the speed of light, is as smooth as a sphere. That is why the Navier-stokes Equation is smooth.

References

1. Dobek S (2012) Fluid dynamics and the Navier-Stokes Equation. A Review of the Universe - Structures, Evolutions, Observations, and Theories.
2. Beer FP (2002) Mechanics of materials. (6thedn) McGraw Hill.
3. Aris R (1961) Vectors, tensors, and the basic equations of fluid mechanics. Dover Publications.

Citation: Cusack P (2016) Navier-Stokes Clay Institute Millennium Problem Solution. J Phys Math 7: 176. doi:10.4172/2090-0902.1000176

OMICS International: Publication Benefits \& Features

Unique features:

- Increased global visibility of articles through worldwide distribution and indexing
- Showcasing recent research output in a timely and updated manner
- Special issues on the current trends of scientific research

Special features:

- 700+ Open Access Journals
- 50,000+ editorial team
- Rapid review process
- Quality and quick editorial, review and publication processing
- Indexing at major indexing services
- Sharing Option: Social Networking Enabled
- Authors, Reviewers and Editors rewarded with online Scientific Credits
- Better discount for your subsequent articles

Submit your manuscript at: http://omicsonline.com/open-access/physical-mathematics.php

[^0]: *Corresponding author: Cusack P, Independent Researcher, Canada, Tel: (506) 214-3313; E-mail: St-Michael@Hotmail.Com

 Received February 08, 2016; Accepted April 29, 2016; Published May 05, 2016
 Citation: Cusack P (2016) Navier-Stokes Clay Institute Millennium Problem Solution. J Phys Math 7: 176. doi:10.4172/2090-0902.1000176

 Copyright: © 2016 Cusack P. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

