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Introduction
Despite the fact that the study of particle dynamics in a viscous 

fluid has a long history, many important problems still remain 
unsolved [1].  This pertains not only to the collective behaviour of 
big particle ensembles, but even to interactions of two particles in 
a complex environment of shear flows or in the presence of solid 
obstacles, walls or free surfaces. Much research efforts have been 
undertaken over the years to elucidate the particle dynamics in various 
situations. Importance of such investigations is backed by many 
practical applications of mixtures of fluids and suspensions; examples 
being particle motions in the cooling systems of nuclear reactors and 
particle-liquid mixtures used for pharmaceutical purposes. Other 
important examples are transport of particles (dusts and aerozoles) in 
the atmosphere and oceans (dynamics of suspensions, sand, biological 
products, etc.).

One of the intriguing problems that has not been solved so far is 
the dynamics of two inter- acting charged particles in viscous fluid. In 
recent years a great interest is observed to micro- and nano-particles 
due to their potential applications in modern biotechnologies and 
other micro-fluid technologies. Quantitative descriptions of such 
systems represent a certain challenge not only from the practical, but 
also from the academic point of view.

In this paper we consider elementary acts of interaction of two 
charged particles moving in a viscous fluid. We consider the interactions 
of non-conducting charged particles, when the electric charges are 
uniformly distributed within the spherical particles, and conducting 
particles, when the charges can freely move within the particles 
enhancing and reducing the Coulomb forces [2]. The equations of 
motion are studied analytically where possible and numerically. The 
particle dynamics is considered in the creeping flow approximation, 
that is under the assumption that the Reynolds number is very small, 

/ 1Re uR ν≡ 

, where u is particle velocity relative to the fluid, R 
is particle radius, and ν is fluid kinematic viscosity. For simplicity, 
we assume that particles are solid and have a spherical shape. We 
study two configurations of particles: i) when they move side-by-side 
perpendicular to the line connecting their centers and ii) when they 
move vertically one after another along the same line.

Equations of Motion and Problem Formulation 
A motion of an individual uncharged particle in a viscous fluid at 

small Reynolds numbers in the creeping regime has been studied [3]. It 
has been demonstrated that in the case of a transient flow the influence 
of Boussinesq–Basset drag (BBD) force [4-6] is very important. It 
provides different character of particle motions in comparison with 
the well-known Stokes drag (SD) force [7,8]. In the present paper we 
consider a motion of two electrically charged particles in different 
setups taking into account gravity/buoyancy force, electrostatic 
force and viscous drag forces. The effect of viscosity is taken into 
consideration through the SD force and BBD force which depends on 
the motion prehistory [4-6,8]. We also take into account a reciprocal 
influence of particles on the drag force which depends on the particle 
configuration [9].  To our best knowledge the combined effect of all 
these factors were not studied thus far.

As a first step we consider two identical metallic particles with 
electric charges of the same absolute value (they can be either of like 
or unlike charges). As has been shown [2], the electrostatic force acting 
on metallic particles deviates from the classical Coulomb law: at small 
distances the force is not inversely proportional to the square of the 
distance between the particle centers. This deviation is important at 
relatively small distances between the particles while at large distances 
the electrostatic force asymptotically approaches the classical Coulomb 
law. An exact expression for the electrostatic force sF as derived [2] 
and its asymptotic Coulomb approximation cF  are as follows,
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where R is the particle  radius, q is the value of the electric charge, ε is 
the permittivity of the medium,
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Abstract
We study the interaction of two charged solid particles in a viscous fluid. It is assumed that the particles move 

either side-by-side or one after another along the same vertical line under the influence of the buoyancy/gravity force, 
Coulomb electrostatic force or its modification, and viscous drag force. The drag force consists of two components: 
the quasi-stationary Stokes drag force and Boussinesq–Basset drag force resulting from the unsteady motion. 
Solutions of the governing equations are analysed analytically and numerically for the cases of perfect fluid and 
viscous fluid; the comparison of these two cases is presented.
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κn=n + 1 for like charged particles and κn=0 for unlike charged particles. 
The physical reason of deviation of electrostatic force from the classical 
Coulomb formula is explained by redistribution of electric charges 
within the conducting spheres as illustrated by Figure 1. When electric 
charges can freely move within conducting spheres they either attract 
to each other if spheres unlikely charged or repeal from each other 
when the spheres likely charged.

Figure 2 shows the dependences of the attractive and repulsive 
electrostatic forces normalized by q2/(16πεR2) as described  by 
Equation (2.1) and the corresponding Coulomb forces under the same 
normalization  as described by Equation (2.2). As one can see from this 
figure, corrections to the Coulomb forces become notable only when 
the distance between the particle centres is less than 4R. The modified 
attractive force infinitely increases when particles approach each other 
(see line1 in the Figure 2).

When a solid particle moves in a viscous fluid, it experiences an 
influence of a drag force [7,8]. In the presence of another particle the 
drag force modifies and depends on many factors, including particle 
shapes, distance between them, their reciprocal orientation and 
velocities [9]. The correction to the quasi-stationary SD force acting on 

particle in the presence of another particle can be taken into account 
through the effective viscosity 1 2 1 2 2( , , , , / )ν ν=eff f R R d dtr r r , where ν is 
the usual coefficient of dynamic viscosity, and f is a rather complicated 
function of its arguments. This function gradually reduces to unity 
when the distance between the particles becomes much greater than 
their radii. 

To the best of our knowledge, modifications of the transient BBD 
force exerting on a particle in the presence of another particle have 
not been studied yet. With this in mind, we can consider two notional 
possibilities: (a) there is no correction to the BBD force due to the 
presence of another particle, so that the BBD force remains the same as 
for a single particle; and (b) the correction to the BBD force is described 
by the same effective viscosity as the SD force. In what follows, both 
these possibilities will be explored and results will be compared.

Consider further two spherical particles moving in a viscous fluid 
in the creeping flow regime. The equation of motion of one spherical 
particle with the added mass effect taken into account is [7,8]:
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where g is the acceleration due to gravity, ρ is the particle density, r 
is the particle-to-fluid  density ratio. The added mass effect is taken 
into account through the coefficient 1/2 in the brackets in the left-hand 
side of the equation, the first term in the right-hand-side describes the 
gravity/buoyancy force, second term describes the electrostatic force 
and the third term describes the total drag force including the SD force 
(the first term in the square brackets) and the BBD force (the second, 
integral, term in the square brackets). Function F ≡ 1 if the correction 
to the BBD force is ignored, or F ≡ f if the correction to the BBD force 
is the same as for the SD force.

The same equation with the indices interchanged holds for the 
second particle.  Subtracting and summing the equations for the 
individual particles, we obtain

2
2 1

12 3
1 ( ) 3 ;
2 2 π ρ

− + = − 
 

Sdr
dt R

Fr r D  		             (2.4)

2
2 1

22
1 ( ) 2( 1) ,
2

+ + = − − − 
 

dr r
dt
r r g D        		              (2.5)

where

1 2 2 1
1 1 2 1 22

2 2
1 2 2 1

1 2 1 22 2

9 , , , , , ,
2

, , , , , , ,

ν

τ τ
πν τ ττ τ−∞ −∞

    = − +    
   

     −     − −     
∫ ∫
t t

d d d df R f R
dt dt dt dtR

d d d dR d dF R F R
dt dtt td d

r r r rD r r r r

r r r rr r r r

 (2.6)

1 2 2 1
2 1 2 1 22

2 2
1 2 2 1

1 2 1 22 2

9 , , , , , ,
2

, , , , , , .

ν

τ τ
πν τ ττ τ−∞ −∞

    = + +    
   

     +     − −     
∫ ∫
t t

d d d df R f R
dt dt dt dtR

d d d dR d dF R F R
dt dtt td d

r r r rD r r r r

r r r rr r r r
 (2.7)

Below we consider two particular cases of particle configuration 
when they move (i) side-by- side as sketched in Figure 3a and (ii) one 
after another as shown in Figure 3b

 

Figure 1: Electric charge redistribution within two conducting unlikely 
charged spheres (a) and two unlikely charged spheres with uniformly 
distributed carges (b).

 

Figure 2: (color online) Normalized electrostatic force versus normalized  
distance, ξ=x/R, between two like (line 1) and unlike (line 2) charged 
particles as per Eq. (2.1). Dashed lines show Coulomb approximations as 
per Eq. (2.2).
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Two particles moving side-by-side
Considering the case of two particle moving side-by-side as shown 

in Figure 3a and assuming that the center of masses of the system 
does not move in the horizontal direction, we write down the scalar 
projections of Equations (2.6) and (2.7) onto the horizontal, x, and 
vertical, z, axes
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Functions f1(ξ), f2(ξ), f3(ξ), as well as F1(ξ), F2(ξ), and F3(ξ) account 
for the reciprocal influence of particles on the drag forces exerted on 
them [9].  Functions f1, f2 and f3  can be presented in terms of ξ1=1/(2ξ) 
as follows.

• In the case when two particles move with equal speeds in the same 
direction along the line connecting their centers:
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• In the case when two particles move with equal speeds on absolute 
value in the opposite directions along the line connecting their centers:
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• In the case when two particles move with equal speed in the 
same direction side-by-side in the direction perpendicular to the line 
connecting their centers and can freely rotate:
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 As have been mentioned  above, expressions for functions F1,2,3(ξ) 
are not known thus far, therefore we will consider  two cases, when 
F1,2,3(ξ) ≡ 1 and when F1,2,3(ξ) ≡ f1,2,3(ξ). Functions f1,2,3(ξ) asymptotically 
approach unity when ξ → ∞, and the corresponding  drag force reduces 
to the drag forces exerted on an isolated particles.  However, when ξ → 
2, which corresponds to the minimum distance between the particle 
centers (when the particles touch each other), functions f1(ξ) and f3(ξ) 
go to the finite limits: f1(2)=0.647 and f3(2)=0.694, whereas function f2(ξ) 
grows infinitely, f2(ξ) → ∞ as ξ → 2+. Physically unacceptable behaviour 
of the drag forces in this case is the consequence of the approximate 
character of the formula. Nevertheless, as noted [9], “Hocking states 
that good agreement on collision efficiencies is obtained with his results 
and experimental  data, so it is apparent that under some conditions 
the approximate treatment is satisfactory”. The dependences f1,2,3(ξ) are 
shown in Figure 4.

Note that in the Coulomb approximation, when the distance 
between the particles is much longer than their radii or when the 
charges of spherical particles are localized in their centers, the first 
term in Eq. (2.6) takes the simple form Ees/ξ

2. We will study the particle 
interaction in both cases, with exact formula for the electrostatic force, 
Fs (2.1), and with the Coulomb approximation for the electrostatic 
force Fc (2.2).

Equation (3.1) is independent of (3.2) and can be investigated 
separately. Once its solution is found and ξ(θ) is determined, Equation 
(3.2) can be solved then (notice that (3.2) contains ξ(θ) via functions 
f3(ξ) and F3(ξ)).

For computations we used the following values of parameters: 
water density ρ=103 kg/m3, water kinematic viscosity ν=6.05 • 10−7 m2/s, 
particle radius R=5 • 10−5 m=50 µ, charge values are equal to q=1.6 • 
10−13C, water permittivity ε=6.954 • 10−10 F/m, particle-to-water density 
ratio r=2.7 (this corresponds to the aluminium mote). Based on these 

 

Figure 3: Two particles moving side-by-side in the direction normal to 
the line connecting their centers (a) and one after another along the line 
connecting their centers (b).

 

Figure 4: (color online) Functions f1,2,3(ξ) versus ξ. Horizontal dashed line 
shows the asymptotic value for both functions when the particles are far 
away from each other. Vertical dashed line shows the minimal distance 
between the particles, ξmin=2.
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parameters, the dimensionless parameters are Ees=3.784 • 10−2 and 
G=8.272 • 10−2.

Particle dynamics in an in viscid fluid

Assuming that two particles with equal charges on absolute value 
are initially in the rest, let us study first the reference case, when the 
fluid is perfect and viscosity is absent (formally we put f1,2,3(ξ)=F1,2,3(ξ) 
≡ 0). Then, Eq. (3.1) in the Coulomb approximation can be solved 
analytically; solutions for the like and unlike charged particles can be 
presented in the implicit forms,
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The former solution corresponds to the repulsive case when ξ > ξ0, 
whereas the latter corresponds to the attractive case when ξ < ξ0.

Solution of Eq. (3.2) without viscosity is trivial – it is simply the 
motion from the rest with the constant acceleration,
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Eliminating θ from the expressions ξ(θ) and ζ(θ), we obtain particle 
trajectories in both cases of particle repulsion or attraction:
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Solution of Equation (3.1) beyond the Coulomb approximation 
can be readily obtained numerically. The equation was integrated 
by the fourth-order Runge–Kutta method with the fixed integration 
step using Mathcad-14 software. The infinite sums in Eq. (3.1) were 
replaced by finite series containing N=200 terms. The results for 
attractive and repulsive particles are shown in Figure 5 by solid lines 

1 and 1′ (trajectories for repulsive particles are labelled by dashed 
numbers and go to the right, whereas trajectories for attractive particles 
to the left). In that figure we also show the analytical results obtained in 
the Coulomb approximation as per Equations. (3.8) and (3.9); they are 
shown by dashed lines 2 and 2′. Lines 3, 3′ and 4, 4′ pertain to the case 
of viscous fluid when both viscosity coefficients, for SDF and BBDF, 
are equally modified by functions f2(ξ) (3.4) for the horizontal motion 
and f3(ξ) (3.5) for the vertical motion (the detailed discussion of the 
viscosity effect will be presented in the next subsection). Lines 3 and 3′ 
pertain to the case of exact electrostatic force, and lines 4 and 4′ pertain 
to the Coulomb approximation. In all cases shown in the figure the 
particles started to move from the rest when the distance between them 
was 4 in the dimensionless units. Attractive particle collision occurs 
when the distance between them ξ=2.

As one can see from this figure, the particles collide in a finite 
time, when they are attracted by each other due to electrostatic force. 
The collision occurs sooner when the exact electrostatic force is taken 
into consideration compared to the case of Coulomb approximation.  
Accordingly, the vertical distance travelled by the particles before they 
collide is less for the former case compared to the latter case (cf. the 
trajectories 1 and 2 and 3 and 4 in Figure 5).

The situation is opposite when the particles repulse each other in 
the perfect fluid: in the case of exact electrostatic force the horizontal 
motion is slower than in the case of Coulomb approximation. Therefore, 
trajectory 1′ in the former case lies below the trajectory 2′ in the latter 
case. The repulsive particles move away from each other to infinity. 
The observed motion is the direct result of the difference between the 
exact electrostatic forces in comparison with the Coulomb force. The 
exact force is larger than the Coulomb force for the attractive particles, 
but smaller than the Coulomb force for the repulsive particles (Figure 2). 
When the distance between particles becomes large, the exact electrostatic 
force quickly reduces to the Coulomb force (Figure 2). However, if particles 
start moving at a relatively small distance between them, the time lag of 
trajectory 2′ relative to trajectory 1′ still occurs.

In the viscous fluid repulsive particles move faster in horizontal 
direction when the Coulomb approximation is used. Therefore, trajectory 
4′ lies below the trajectory 3′ which corresponds to exact electrostatic force. 
This is, apparently, a consequence of a complicated character of modified 
BB drag with the variable viscosity coefficient νef f . We will revert to this 
issue in the next subsection.

Figure 6 illustrates the variation of relative particle velocity in 
horizontal direction with the distance between them. When particles 
attract each other their relative speed at the moment of collision (at 
ξ=2) is higher when the exact electrostatic force is considered then 
in the case of Coulomb approximation (cf. lines 1 and 2 in Figure 6). 
When particles repeal from each other, their relative speed varies with 
distance almost equally both in the case of exact electrostatic force and 
in the Coulomb approximation; therefore lines 1′ and 2′ are practically 
indistinguishable.

In viscous fluid horizontal speed of particles always greater when 
the exact electrostatic force is used in comparison with the Coulomb 
force (cf. lines 3 and 4, as well as lines 3′ and 4′. Notice that the vertical 
scale for the viscous case represented by lines 3, 4, 3′, and 4′ (shown on 
the right) is 20 times greater than in the inviscid case (shown on the 
left) represented by lines 1, 2, 1′, and 2′.

Particle dynamics in viscous fluid

The description of particle dynamics becomes much more 

 

Figure 5: (color online) Particle trajectories: vertical position of particles, ζ, 
against the distance between them, ξ, in the dimensionless variables. For 
explanation see the text.
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complicated when the viscosity is taken into account.  The simplest 
case is the motion of uncharged particles with Ees=0. Consider first 
the case when the initial distance between the particles is so large that 
functions f1,2,3(ξ) and F1,2,3(ξ) can be replaced by unities. In such case 
the set of equations (3.1)–(3.2) can be solved analytically [3], however, 
the solution is quite cumbersome. Here we only present the universal 
asymptotic form of solution for large θ assuming that particles 
commence motion with zero vertical velocities 0(0) / | 0θζ θ =≡ =v d d , 
but with non-zero relative horizontal velocity 0 0(0) / | ,θξ θ =≡ =u d d u

0
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2
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If the distance between the particles is not large enough, then 
functions f1,2,3(ξ) and F1,2,3(ξ) cannot be replaced by unities. None of 
Equations (3.1) and (3.2) is integrable in this case. Equations (3.1) and 
(3.2) were integrated numerically by means of Fortran code using the 
fourth-order Runge–Kutta scheme and the standard RKGS subroutine 
in Gill’s modification. The infinite sums in Equation (3.1) were replaced 

by finite series with N=400 terms. The numerical code has been tested 
against the exact analytical solutions [3] and demonstrated quite 
reliable results. Examples of numerical solutions of Equations (3.1)–
(3.2) with different models of viscosity are presented in Figure 7.

Lines 3, 3′ and 4, 4′ are the same as in Figure 5, i.e. line 3 represents 
the trajectory of attractive particles when exact electrostatic force 
is considered and viscosity coefficients are modified  in accordance 
with Equations (3.4) for the horizontal motion and (3.5) for the 
vertical motion. Line 4 represents the trajectory when the Coulomb 
approximation is used for electrostatic force. Lines 3′ and 4′ represent 
the trajectories for the repulsive particles with exact electrostatic force 
and in the Coulomb approximation correspondingly. As one can see, 
in the repulsive case trajectories 3′ and 4′ are fairly close to each other, 
whereas in the attractive case the difference between them is quite 
noticeable at small distances between the particles.  In what follows we 
consider only exact electrostatic force.

Line 1 (1′) represents particle trajectory in the attractive (repulsive) 
case when only SD force is taken into consideration with the constant 
viscosity, i.e. when the influence of another particle is ignored, as well 
as influence of the BBD force.

Line 5 (5′) represents particle trajectory in the attractive (repulsive) 
case when only SD force is taken into consideration with the modified 
viscosity  as per Equations (3.4) and (3.5) when the influence of the 
BBD force is ignored.

Line 2 (2′) represents particle trajectory in the attractive (repulsive) 
case when the SD force is taken into consideration with the modified 
viscosity as per Equations (3.4) and (3.5), whereas the viscosity 
coefficient for the BBD force is assumed constant F2,3=1.

As one can see from these graphics, the model with only SD force 
with constant viscosity pro-videos the results which significantly differ 
from the results of other models with variable viscosity and BBD 
force. In the meantime, lines 5 and 5′ are very close to lines 3 and 3′ 
correspondingly.

This indicates that the BBD force does not play a significant role 
in comparison with SDF in such motions and hence can be neglected. 
Figure 8 illustrates the variation of relative particle velocity in the 
horizontal direction with a distance between them. Line labels in this 
figure correspond to labels of trajectories in Figure 7. Only the vertical 

 

Figure 6: (color online) Relative horizontal velocity of particles against the 
distance between them in the dimensionless variables. Curve numbering 
corresponds to Figure 5. The vertical scale for the viscous case represented 
by lines 3, 4, 3′, and 4′ is shown on the right.

 

Figure 7: (color online) Particle trajectories in viscous fluid with different 
models of viscosity. For explanations  see the text.

Figure 8: (color online) Relative horizontal velocity of particles against the 
distance between them in the dimension less variables. Curve numbering 
corresponds to Figure 7. The vertical scale for lines 1 and 1′ are shown on 
the right. Labels for lines 2′ and 3′ are not shown; these two lines are very 
close to each other and are disposed between the lines 4′ and 5′.
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scale of line 5 (but not line 5′!) is 10 times compressed in comparison 
to all other lines.

Observe that qualitatively the difference between the exact and 
Coulomb cases is similar to that shown in Figure 5. Namely, for the 
attractive particles the horizontal motion is faster when the exact 
electrostatic force is considered, while for the repulsive particles the 
horizontal motion is a bit faster when the Coulomb electrostatic force 
is used.

It is interesting that at the initial stage of motion the relative 
horizontal  speed increases very rapidly,  then the speed continue 
increasing, but with the moderate rate, and then after reaching a 
maximum value it decreases due to strong influence of drag force 
correction f2(ξ) caused by the close presence of the second particle. 
If such correction is ignored, then the relative horizontal speed 
monotonically increases until particle collision (cf. line 5 with other 
lines 1-4 in Figure 7). 

As have been noted, in the attraction case the relative horizonatl 
speed is high for the case of exact electrostatic force in comparison to 
Coulomb approximation. It is also interesting to note that both the drag-
correction factor f2(ξ) and electrostatic force infinitely increase when 
the attractive particles approach each other (when ξ → 2). However, 
the influence of variable viscous term prevails over electrostatic force 
resulting in the speed deceleration at moment of collision.

Two Particles Moving One After Another
Consider now the case when two particles move one after another 

as shown in Figure 3b). Equations of motion in the scalar dimensionless 
form follow again from Equations (2.3):

2 2

22 2
3(2 1) ( ) ,

2

θξ ξ ξ ηξ
θ π θ ηθ η−∞

+ = − − −
−∫es

n
Ed d d dr S f

dd d
          (4.1)

2 2

12 2
3(2 1) ( 1) ( ) ,

θζ ζ ζ ηξ
θ π θ ηθ η−∞

+ = − − − −
−∫

d d d dr G r f
dd d

        (4.2)

now ζ=(z1 + z2)/2R is the dimensionless coordinate of the mass center, 
and other dimensionless quantities are defined after Equation (3.2). 
Function f1(ξ) is defined in Equations (3.3). Equation (4.1) describes 
time variation of the relative distance between the particles; it is exactly 
the same as Eq. (3.1, whereas Eq. (4.2) slightly differs from Eq. (3.2) 
due to replacement of function f3(ξ) by function f1(ξ). The difference 

between these two functions is not too big, as one can see from Figure 
4, therefore solution of the set (4.1, 4.2) does not differ too much from 
the solution of the set (3.1, 3.2).

In Figure 9 we present a comparison of two trajectories when the 
exact electrostatic force was used with the modified viscosity coefficient 
of SDF only, whereas BBDF was taken with the constant coefficient.  
Lines 5 and 5′ pertain to the case when particles move side-by-side, 
and lines 6 and 6′ pertain to the case when particles move vertically 
one after another.  In the later case the drag force for the motion of 
mass center is less than in the former  case (f1(ξ) < f3(ξ)), therefore the 
traversed path by mass center before the particle collision  in the later 
case (z ≈ −166.5) is a bit greater than in the former  case (z ≈ −148.5).

Due to Equations (3.1) and (4.1) are the same, the relative particle 
velocities are equal in the corresponding cases of side-by-side and 
vertical motions (see lines 5, 5′ and 6, 6′ in Figure 10). But the vertical 
motion of mass centers in these two cases is slightly different due to 
the difference in Equations (3.2) and (4.2) (see lines 7, 7′ and 8, 8′ in 
Figure 10).

Discussion and Conclusion
We have considered the dynamics of two unlike and like charged 

particles in viscous fluid in the creeping flow approximation. Relative 
particle dynamics have been studied under different models of 
electrostatic force acting between the particles:  the force between two 
conducting spheres as derived by Saranin [2] and Coulomb’s force 
between point-like particles. Two types of viscous drag forces were 
taken into consideration: the quasi-stationary Stokes drag force and 
the transient Boussinesq–Basset drag force. Different models of viscous 
drag forces were analysed, when the viscosity coefficient is constant, 
like in the case of a single particle, and when it is modified due to the 
presence of a second particle.  Comparison of particle trajectories 
under the influence of all these forces were studied and compared with 
the case of inviscid fluid.

Using the typical value of parameters (see the paragraph before the 
subsection 3.1.), we obtain that two aluminium micro-particles of a 
radii 50 µ approaching each other from the distance 200 µ traverse 7.5 
mm in the vertical direction before the collision. The maximal relative 

Figure 9: (color online) Particle trajectories moving side-by-side (lines 5 and 
5′) and vertically one after another (lines 6 and 6′) in a viscous fluid. For the 
detailed explanations.

Figure 10: (color online) Relative velocity and the velocity of mass center 
of two particles against the distance between them in the dimensionless 
variables. Lines 5, 6 and 5′, 6′ pertain to the relative velocity of attractive 
and repulsive particles. Lines 7, and 7′ pertain to the side-by-side vertical 
motion of two particles, and lines 8, and 8′ pertain to the vertical motion of 
two particles one after another. For the detailed explanations see the text. 
The vertical scale for lines 7, 8, 7′, and 8′ is shown on the right.
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velocity between the particles is ∼ 0.44 mm/s, and their vertical velocity 
attains ∼ 2.28 cm/s.

Results obtained can be useful for the development of control 
methods of micro- and nano-particle dynamics in viscous fluids in 
application to technological processes and medicine [10].  
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