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Introduction
Whenever we consider mass transport of a dissolved species (solute 

species) or a component in a gas mixture, concentration gradients 
will cause diffusion. If there is bulk fluid motion, convection will also 
contribute to the flux of chemical species. Therefore, we are often 
interested in solving for the combined effect of both convection and 
diffusion.

The convection-diffusion equation is a combination of the 
diffusion and convection (advection) equations, and describes physical 
phenomena where particles, energy, or other physical quantities are 
transferred inside a physical system due to two processes: diffusion and 
convection [1]. 

 The general convection-diffusion equation has the following form 
[2,3]:

(x, ) ( (x, )) ( (x, )) (x, ).ν∂
= ∇ ⋅ ∇ −∇ +

∂
u t D u t u t R t

t

In the above equation, four terms represents transient, convection, 
diffusion and source term respectively. Where u(x, t) is the variable 
of interest (species concentration for mass transfer, temperature for 
heat transfer), D is the diffusivity (also called diffusion coefficient), 
ν is the average velocity that the quantity is moving, R(x, t) is source 
term represents capacity of internal sources, ∇  represents gradient and ∇. 
represents divergence.

This paper is devoted to the numerical computation of the one-
dimension

(1D) convection-diffusion equation:

  t x xxu (x,t) + u (x,t) + u(x,t) = u  + f(x,t), a x b, 0 t,α β ε ≤ ≤ ≤                       (1.1)

With the initial conditions:

  ( ,0) ( ), ,u x h x a x b= ≤ ≤ ,                                                                 (1.2)

And Dirichlet boundary conditions:

0 1( , ) ( ), ( , ) ( ),0 tu a t g t u b t g t= = ≤                                                        (1.3)

Where α, β and ε  are known constant coefficients, h(x) and gi (t) 
(i =0,1) are known continuous functions. 

Recently, much attention has been given to the development, 

analysis, and implementation of stable methods for the numerical 
solution of the convection-diffusion equations (see [4] and the 
reference therein). Jim Douglas, et al. [5] combine definite element 
and finite difference methods based on the method of characteristic 
for solving the convection-diffusion problems. Chen and Hon [6] 
consider the 2D and 3D Helmholtz and convection-diffusion equation 
using boundary knot method. The meshless local Petro-Galerkin 
method for convection-diffusion equation was considered in [7]. A 
new finite difference method described by Ram P. Manohar and John 
W. Stephenson [8].

In this article, we present a numerical scheme to solve the 
convection-diffusion equation using the collocation method with 
Radial Basis Function (RBF). The results of numerical experiments are 
presented, and are compared with analytical solutions to confirm the 
good accuracy of the presented scheme.

In last 25 years, the radial basis functions (RBFs) method is known 
as a powerful tool for scattered data interpolation problem. The use 
of RBFs as a meshless procedure for numerical solution of partial 
differential equations is based on the collocation scheme. Because of 
the collection technique, this method does not need to evaluate any 
integral. The main advantage of numerical procedures which use RBFs 
over traditional techniques is mesh-less property of these methods. 
RBFs are used actively for solving partial differential equations. The 
examples see [9-11]. In the last decade, the development of the RBFs as 
a truly meshless method for approximating the solutions of PDEs has 
drawn the attention of many researchers in science and engineering 
[12-14]. Meshless method has become an important numerical 
computation method, and there are many academic monographs are 
published [15-17].

The layout of the article is as follows: In section 2, we introduce the 
collocation method and apply this method on the convection-diffusion 

*Corresponding author: Ling-De Su, Department of Mathematics, North-Eastern 
Federal University, Belinskogo, Yakutsk, Russia, Tel: +79676245017; E-mail: 
sulingde@gmail.com 

Received February 10, 2015; Accepted April 29, 2015; Published  May 08, 2015

Citation: Su LD, Jiang ZW, Jiang TS (2015) Numerical Method for One-
Dimensional Convection-diffusion Equation Using Radical Basis Functions. J Phys 
Math 6: 136. doi:10.4172/2090-0902.1000136

Copyright: © 2015 Su LD, et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Abstract
In this paper, the meshless method is employed for the numerical solution of the one-dimensional (1D) 

convection-diffusion equation based on radical basis functions (RBFs). Coupled with the time discretization and the 
collocation method, the proposed method is a truly meshless method which requires neither domain nor boundary 
discretization. The algorithm is very simple so it is very easy to implement. The results of numerical experiments 
are presented, and are compared with analytical solutions to confirm the good accuracy of the presented scheme.

Numerical Method for One-Dimensional Convection-diffusion Equation 
Using Radical Basis Functions
Su LD1,2*, Jiang ZW2 and Jiang TS2* 
1North-Eastern Federal University, Belinskogo, Yakutsk, Russia
2Department of Mathematics, Linyi University, Linyi, P.R. China

b
http://dx.doi.org/10.4172/2090-0902.1000136


Citation: Su LD, Jiang ZW, Jiang TS (2015) Numerical Method for One-Dimensional Convection-diffusion Equation Using Radical Basis Functions. 
J Phys Math 6: 136. doi:10.4172/2090-0902.1000136

Page 2 of 5

Volume 6 • Issue 2  • 1000136
J Phys Math
ISSN: 2090-0902 JPM, an open access journal

equation. The results of numerical experiments are presented in section 
3. Section 4 is dedicated to a brief conclusion. Finally, some references 
are introduced at the end.

The Collocation Method with Radical Basis Function
Radial basis function approximation

         The approximation of a distribution u(x), using RBF may be 
written as a linear combination of N radial functions, usually it takes 
the following form:

( ) ( ) ( )
1

, , for
N

d
j j

j

u Rλ φ ψ
=

≈ + ∈Ω⊆∑x x x x x                                     (2.1)

Where N is the number of data points, x=(x1, x2…xd), d is the 
dimension of the problem, the λ’s are coefficients to be determined and 
φ is the radial basis function. Eq. (2.1.1) can be written without the 
polynomial ψ. In that case, φ must be unconditional positive definite 
to guarantee the solvability of the resulting system (e. g. Gaussian or 
Inverse Multi quadrics). However, ψ is usually required when φ is 
conditionally positive definite, i. e, when φ has a polynomial growth 
towards infinity. We will use the Multi quadrics (MQ), which defined as:

MQ: ( ) ( ) 2 2, , 0j j jr r c cφ φ= = + >x x                                              (2.2)

Where jjr xx −= is the Euclidean norm. Since φ given by (2.2) is 
C∞ continuous, we can use it directly. 

If d
qP  denotes the space of d-variate polynomial of order not 

exceeding than q, and letting the polynomials (P1,P2, …, Pm)  be the basis 
of d

qP  in Rd, then the polynomial ψ(x) in Eq. (2.1) is usually written in 
the following form:

( ) ( )
1

m

i i j
i

Pψ ξ
=

=∑x x ,                                                                           (2.3)

Where m = (q-1+d)!/(d!(q-1)!). To get the coefficients x=(λ1, λ2…
λN), and ( )1 2, , , mξ ξ ξ , the collocation method is used. However, in 
addition to the N equations resulting from collecting Eq. (2.1.1) at N  
points and extra m equations are required. This is ensured by the m  
conditions for Eq. (2.1),

( )
1

0, 1,2, .
N

j i j
j

P i mλ
=

= =∑ x                                                               (2.4)

In a similar representation as Eq. (2.1), for any linear partial 
differential operator



, u  can be approximated by:

( ) ( ) ( )
1

,
N

j j
j

u λ φ ψ
=

≈ +∑  x x x x .                                              (2.5)

The convection-diffusion equation

Let us consider the 1D convection-diffusion equation Eq. (1.1), with 
the initial conditions Eq. (1.2) and the Dirichlet boundary conditions 
Eq. (1.3).

First, let us discretize Eq. (1.1) according to the following 
θ-weighted scheme:

( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )( )2 2

, ,
,

, , 1 , , ( , )

u x t u x t
u x t

u x t u x t u x t u x t f x t

τ
α

τ
θ ε τ β τ θ ε β

+ −
+ ⋅∇ =

⋅∇ + − ⋅ + + − ⋅∇ − ⋅ +
,    (2.6)

where 0 1θ≤ ≤ , and τ  is the time step size, and uu
x
∂

∇ =
∂

, using the 
notation ( ),n nu u x t=  where 1n nt t τ−= + , we get:

( )
( )( ) ( )

1 2 1

2

1

1 1 1

n n

n n n n

u u

u u u f

θ β τ θ τ ε

θ β τ θ τ ε α τ τ

+ ++ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅∇ =

− − ⋅ ⋅ ⋅ + − ⋅ ⋅ ⋅∇ − ⋅ ⋅∇ + ⋅
  .                             (2.7)

Assuming that there are 2−N  interpolation points, ( )xu n  can be 
approximated by:

 ( ) ( )
2

1
, 1,2, , 2.

N
n n

j j
j

u x r j Nλ φ
−

=

≈ = −∑ 
                                       (2.8)

To guarantee the positive definition, here we use the following 
approximation:

( ) ( )
2

1
1

N
n n n n

i j ij N i N
j

u x r xλ φ λ λ
−

−
=

≈ + +∑ ,                                             (2.9)

Where j jr = −x x  is the Euclidean norm. The additional 
conditions due to Eq. (2.4) are written as:

 
2 2

1 1

0
N N

n n
j j j

j j

xλ λ
− −

= =

= =∑ ∑ .                                                                   (2.10)

Writing Eq. (2.9) together with Eq. (2.10) in a matrix form we have:

n nu A λ=       ,                                                                                    (2.11)

Where [ ] 1 2 2 0 0
Tn n n n

Nu u u u − =   , 1 2
n n n n

Nλ λ λ λ =      

and , 1 ,ijA a i j N = ≤ ≤   is given by:

( )

( ) ( )( )

11 11 2

22 1 2 2

1 2

1

1

0 0
1 1 0 0

N

NN N N

N

x

xA

x x

φ φ

φ φ

−

−− − −

−

 
 
 
 =  
 
  
 



    







 .                                 (2.12)

Assuming that there are 2p N< −  internal points and 2N p− −  
boundary points, then the N N×  matrix A can be split into: 

d b eA A A A= + + , where

( )
( )
( )

1 ,1 0

1 2,1 0

1 ,1 0

d ij

b ij

e ij

A a for i p j N and elsewhere

A a for p i N j N and elsewhere

A a for N i N j N and elsewhere

 = ≤ ≤ ≤ ≤ 
 = + ≤ ≤ − ≤ ≤ 
 = − ≤ ≤ ≤ ≤ 

.  (2.13)                 

Using the notation A  to designate the matrix of the same 
dimension as A and containing the elements ˆija  where ˆij ija a=  , 
1 ,i j N≤ ≤ , then Eq. (2.2.1) together with the boundary conditions Eq. 
(1.3) can be written in matrix form as:

11 nn n nB C f Gλ λ τ ++ = + ⋅ +   ,                                                            (2.14)

where

 

( )( ) ( )
( )

[ ]

[ ]

2

2

1 1 1
1 2

1

1 1 1 ,

1 ,

0 0 0 0 ,

0 0 .

β θ τ θ τε ατ

βθτ θτε
+ + +

+ −

= − − + − ∇ − ∇

= + − ∇ + +

 =  

 =  

 

 

d d d

d d b e

Tn n n
p N

Tn n n
p

C A A A

B A A A A

G g g

f f f

                        (2.15)

Eq. (2.14) is obtained by combining Eq. (2.6), which applies to the 
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domain points, while Eq. (1.3) applies to the boundary points. Together 
with the initial condition Eq. (1.2) and Eq. (2.14), we can get all λ’s, thus 
we can get the numerical solutions.

Since the coefficient matrix is unchanged in time steps, we use 
the LU factorization to the coefficient matrix only once and use this 
factorization in our algorithm.

Remark: Although Eq. (2.14) is valid for any value of 0,1θ ∈   , we 

will use 1
2

θ =  (The famous Crank-Nicolson scheme).

Numerical Examples
In this section, we present several numerical results to confirm the 

efficiency of our algorithm for solving the 1D convection-diffusion 
equation.

Example 1

In this example, we consider the convection-diffusion Eq. (1.1) in 
0,1    with 0.1α = , 0β = , 0.01ε = , with the boundary conditions:

( ) ( ) ( )0, exp(0.11 ), 1, exp 1 0.11 , 0,= = − + >u t t u t t t

And the initial condition 

( ) ( ),0 exp 0 x,y 1,= − ≤ ≤u x x

Then the analytical solution of the equation is
( ) ( ), exp 0.11= − +u x t x t . The right side functions ( ), 0f x t = .

We use MQ radical basis function for the computation, the L∞ , 2L  
and RMS errors and Root-Mean-Square (RMS) of errors are obtained 
in Table 1 for t = 0.1, 0.3, 0.5, 0.7 and 1.0 with time steps 0.001τ =  and

0.001dx = . 

The space-time graph of analytical and numerical solutions for 
t=1 are given in Figure 1. Note that we cannot distinguish the exact 
solution from the estimated solution in Figure 1.

Example 2

In this example, we consider Eq. (1.1) with 1α = , 0β = , 1ε =  and 
the boundary conditions: 

( ) ( )3 2 30, exp( ), 1, exp ,
4 4

− + = =  
 

t tu t u t

And the analytical solution of the equation is given as:

( ) 2 3x, exp ,
4

− + =  
 

x tu t

We get the initial conditions from the exact solution. The right side 
functions ( ), 0f x t = . 

The L∞ , 2L  and RMS errors and Root-Mean-Square (RMS) of 
errors are obtained in Table 2 for T=0.1, 0.25, 0.5, 0.75 and 1.0 with 
time steps 0.001τ =  and 0.01dx .

Similar to the previous example, the space-time graph of analytical 
and estimated solutions for t=1 are presented in Figure 2.

Example 3

We consider the convection-diffusion equation Eq. (1.1) with
1α = − , 10β = and 1ε =  in the interval 0,1   , the exact solution is 

given as ( ) ( ) ( )2, sin expu x t t x tπ π= − . The boundary conditions are:

 ( ) ( )0, 0, 1, 0, t 0,= = ≥u t u t

The right side functions of ( ) ( ) ( )2, 1 10 sin( ) cos( ) expf x t t x t x tπ π π π = + − −  , and 
we extract the initial conditions from the exact solution. 

These results are obtained with 0.001dx = , 0.001τ = . Similar to 
the previous examples, the L∞ and 2L  error and RMS errors for t =0.5, 
0.75, 1.0, 1.25 and 1.5 are presented in Table 3.

   

 

Figure 1: Space-time graph of the exact and estimated solutions with T=1 for 
Example 1.

   

Figure 2: The space-time graph of exact and numerical solutions with T=1 for 
Example 2.

T 0.1 0.3 0.5 0.7 1.0
L∞ -errors 1.547×10-5 2.371×10-4 3.599×10-4 4.639×10-4 5.909×10-4

L2 -errors 6.788×10-5 1.787×10-4 3.453×10-4 3.453×10-4 4.372×10-4

RMS- errors 6.778×10-5 1.784×10-4 3.448×10-4 3.448×10-4 4.365×10-4

Table 1: For T=0.1, 0.3, 0.5, 0.7 and 1.0 with time steps T=0.001 and dx=0.001.

T 0.1 0.25 0.5 0.75 1.0
L∞ -errors 8.855×10-5 1.031×10-4 1.245×10-4 1.501×10-4 1.811×10-4

L2 -errors 5.929×10-5 6.882×10-5 8.305×10-5 1.002×10-4 1.208×10-4

RMS- errors 5.842×10-5 6.781×10-5 8.183×10-5 9.870×10-5 1.191×10-4

Table 2: Numerical Errors at different times with T=0.001 and dx=0.001 for 
Example 2.
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The space-time graph of analytical and numerical solution for t=1 
is presented in Figure 3. 

Example 4

In this example, we consider the convection-diffusion equation in 
[0,1] has the following form:

( )
2

22 ,u u uu f x t
t x x

∂ ∂ ∂
+ + = +

∂ ∂ ∂

The right side functions ( ) ( ) ( )2, 2 2 expf x t x x t= + − − , with the boundary 
condition:

( ) ( )0, 0, 1, exp( ), t 0= = − >u t u t t

Then the analytical solution of the equation is ( ) ( )2, expu x t x t= − , 
we get the initial conditions from the exact solution. 

In this case, we use the radial basis functions MQ for the discussed 
scheme. These results are obtained for 0.001dx = , 0.001τ = . The 
graph of analytical and numerical solution for t=0.1, 0.2, 0.3, 0.4 and 0.5 

is given in Figure 4. The results obtained show the very good accuracy 
and efficiency of the new approximate scheme. Note that we cannot 
distinguish the exact solution from the estimated solution in Figure 4. 

We also give the difference between exact solutions and numerical 
solutions in Figure 5.

Conclusion
In this paper, the collocation method is employed for the numerical 

solution of convection-diffusion equation based on radical basis 
functions (RBFs). Coupled with the time discretization, the proposed 
method is a truly meshless method which requires neither domain 
nor boundary discretization. The results of numerical experiments are 
presented, and are compared with analytical solutions confirmed the 
good accuracy of the presented scheme.
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