
Research Article Open Access

Journal of Generalized Lie 
Theory and Applications

Zuevsky, J Generalized Lie Theory Appl 2015, S1
http://dx.doi.org/10.4172/1736-4337.S1-005

J Generalized Lie Theory Appl Algebra, Combinatorics and Dynamics ISSN: 1736-4337 GLTA, an open access journal

Hardy Spaces on Compact Riemann Surfaces with Boundary
Zuevsky A*

School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland

*Corresponding author: Zuevsky A, School of Mathematics, Statistics and 
Applied Mathematics, National University of Ireland, Galway, Ireland, Tel: 3531439 
2424; E-mail: zuevsky@mpim-bonn.mpg.de 

Received July 21, 2015; Accepted August 02, 2015; Published August 31, 2015

Citation: Zuevsky A (2015) Hardy Spaces on Compact Riemann Surfaces with 
Boundary. J Generalized Lie Theory Appl S1: 005. doi:10.4172/1736-4337.S1-005

Copyright: © 2015 Zuevsky A. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Abstract
We consider the holomorphic unramified mapping of two arbitrary finite bordered Riemann surfaces. Extending 

the map  to the doubles X1 and X2 of Riemann surfaces we define the vector bundle on the second double as a direct 
image of the vector bundle on first double. We choose line bundles of half-order differentials ∆1 and ∆2 so that the 
vector bundle 2

2 2χ ⊗ ∆XV on X2 would be the direct image of the vector bundle 
1

1
2χ ⊗ ∆XV . We then show that the 

Hardy spaces 
1 12, ( ) 1 1( , )χ ⊗ ∆J pH S V  and 2 22, ( ) 2 2( , )χ ⊗ ∆J pH S V  are isometrically isomorphic. Proving that we construct 

an explicit isometric isomorphism and a matrix representation χ2 of the fundamental group π1(X2, p0) given a matrix 
representation χ1 of the fundamental group π1(X1, p'0). On the basis of the results of Alpay et al. and Theorem 3.1 
proven in the present work we then conjecture that there exists a covariant functor from the category  of finite 
bordered surfaces with vector bundle and signature matrices to the category of Kreĭn spaces and isomorphisms which 
are ramified covering of Riemann surfaces.
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Introduction
It is well known how to study Hardy spaces defined on a finite 

bordered Riemann surface [1-5]. For domains with more than one 
boundary component it is natural to introduce, besides the usual 
positive definite inner product on H2, indefinite inner products. Those 
products may be introduced by picking up different signature matrices 
when integrating over different components of the boundary of the 
Riemann surface. In the paper Alpay et al. [1] a necessary and sufficient 
condition for such an indefinite inner product to be non-degenerate 
was obtained. It was shown that when this condition is satisfied one 
actually gets a Kreĭn space. The result was obtained by using a covering 
map of the surface to the unit disk to construct an isomorphism to a 
Hardy-Kreĭn space over the unit disk. Furthermore, each holomorphic 
mapping of the finite bordered Riemann surface onto the unit disk 
(which maps boundary to boundary) determines an explicit isometric 
isomorphism between this space and a usual vector-valued Hardy 
space on the unit disk with an indefinite inner product defined by an 
appropriate hermitian matrix. The mapping to the unit disk in Alpay et 
al. [1] serves as a tool to study of the Hardy-Kreĭn space over the finite 
bordered Riemann surface which in turn has motivation from the point 
of view of the study of commuting tuples of non-self adjoint operators. 
As it is usual when studying Hardy spaces on a multiply connected 
domain, the elements of the space are sections of a vector bundle rather 
than functions. The main point of the paper by Alpay et al. [1] was to 
construct an appropriate extension of this bundle to the double of the 
finite bordered Riemann surface and to use Cauchy kernels for certain 
vector bundles on a compact Riemann surface. Hardy spaces on a 
finite bordered Riemann surface, including indefinite Hardy spaces, 
are important in the model theory for commuting non-self adjoint 
operators [6].

Half-order differentials play a very important role in the vertex 
opera-tor algebra approach to construction of partition and n-point 
functions for conformal field theories defined on Riemann surfaces [7-
9]. In particular, the Szegӧ kernel [10] turned out to be key object in 
construction of correlation functions in free fermion conformal field 
theories/chiral algebras on a genus two Riemann surface sewed from 
two genus one Riemann surfaces [11].

In this work we replace a holomorphic mapping of a finite bordered 

Riemann surface onto the unit disk by a holomorphic mapping of two 
arbitrary finite bordered Riemann surfaces S1 and S2, which we assume 
however to be unramified. In the spirit of Alpay et al. [1,12] one can 
introduce the extension of the vector bundles on a finite bordered 
Riemann surfaces to the respective doubles. Extending the map F to the 
doubles X1 and X2 of Riemann surfaces S1 and S2 we define the vector 
bundle 

2

2XVχ on X2 as a direct image of the vector bundle 1

1

XVχ  over X1. 
We choose line bundles of half-order differentials (i.e., square roots of 
the canonical bundles ixK , i = 1, 2) ∆1 and ∆2 so that the vector bundle 

2
2

2χ ⊗ ∆XV  on X2 would be the direct image of the vector bundle 
1

1 1χ ⊗ ∆XV . We then show that the Hardy spaces 
1 12, ( ) 1 1( , )χ ⊗ ∆J pH S V

bundle and 2 22, ( ) 2 2( , )χ ⊗ ∆J pH S V  are isometrically isomorphic. 
Proving that we construct a.) an explicit isometric isomorphism; b.) 
a matrix representation χ2 of the fundamental group π1(X2, p0) given 
a matrix representation χ1 of the fundamental group π1(X1, p′0). Using 
results of Alpay et al. [1] and Theorem 3.1 proven in the present 
work we then conjecture that there exists a covariant functor from 
the category  of finite bordered surfaces with vector bundle and 
signature matrices to the category of Kreĭn spaces and isomorphisms 
which are ramified covering of Riemann surfaces.

The isomorphism established in this work has also an operator 
theoretical interpretation, namely, a (ramified) covering F allows us 
to construct a pair of commuting non-self adjoint operators with the 
model space on S2 given a pair of commuting non-self adjoint operators 
with the model space on S1. More generally, one might expect also 
possible connections with vessels construction and Bezoutians [13].
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Preliminaries
As we mentioned in Introduction indefinite Hardy spaces [14-16] 

on a finite bordered Riemann surface were considered in Alpay et al. 
[1].

Definition. Let J be an m x m unitary self-adjoint matrix. Such a 
matrix is usually called a signature matrix. (In fact one may take J to be 
any non-singular self-adjoint matrix). The Hardy space 2

mH on the unit 
disk D endowed with the indefinite inner product

2
*

0

1[ , ] ( ) ( ) ,
2

π

π
= ∫ it it

Jf g g e Jf e dt  

is a Kreĭn space denoted 2
mH ,J .

This space plays an important role in interpolation theory [17] and 
in model theory [18]. For the general theory of Kreĭn spaces[19-21].

Suppose now that we have an open Riemann surface S such that 
S ∪ ∂S is a finite bordered Riemann surface (i.e., a compact Riemann 
surface with boundary), with the boundary ∂S consisting of k ≥ 1 
components 0 1,..., −k  . We consider analytic sections of a rank m 
flat unitary vector bundle Vχ on S corresponding to a homomorphism 
χ from the fundamental group π1(S, p0) into the group U(m) of m × m 
unitary matrices. An analytic section f of Vχ over S is an analytic Cm-
valued function on the universal covering S of S satisfying 

( ) ( ) ( ),χ= f Tp T f p

for all p S∈ 

 and all deck transformations T of S over S, which we 
identify with elements of the fundamental group π1(S, p); f can be 
thought of as a multiplicative multivalued function on S. We consider 
also multiplicative half-order differentials [1], i.e., sections of a vector 
bundle of the form χ ⊗ ∆V ,where χV is a flat unitary vector bundle on 
S as above and ∆ is a square root of the canonical bundle on S: ∆ ⊗ ∆ 
≅ KS

Definition. The Hardy space H2(S, Vχ ⊗ ∆) on a Riemann surface S 
is the set of sections f̂  of a vector bundle Vχ ⊗ ∆ analytic in S satisfying

1
*

( )1 1 0

ˆ ˆsup ( ) ( ) , 
−

− < < =

< ∞∑∫
k

rr i

fp pf
 iX

                 (1)

for some ϵ > 0. In (1) ( )i r denotes smooth simple closed curves in S 
approximating i , i = 0, ..., k - 1 ([1]): if zi is a boundary uniformizer 
near the boundary component i  then ( )i r is given by |zi(p)| = r.

Note that since ˆ ( )f p is a section of Vχ ⊗ ∆, the expression 
*ˆ ˆ( ) ( )pf f p is a section of |KS |, where |KS | is the line bundle with 

transition functions the absolute values of the transition functions of 

KS ; sections of |KS| can be represented locally as η(t)|dt(p)| where t(p) is 
a local parameter. Therefore one can integrate *ˆ ˆ( ) ( )pf f p  over curves 
in S and (1) makes sense.

The space H2(S, Vχ ⊗ ∆) is a Hilbert space with the inner product 

1
*

1 ( )0

ˆ ˆ, lim ( ) (ˆ .ˆ )
−

=
→

〈 〉 = ∑∫i

k

r ri

p fg pgf

For a relation between H2(S, Vχ ⊗ ∆) and Hardy spaces of functions 
on S with respect to a harmonic measure on ∂S, see Alpay et al. [1].

Definition. Denote by H2,J(p)(S, Vχ ⊗ ∆) the analogue of the Kreĭn 
space 2,

m
jH for S which is the Hardy space H2(S, Vχ ⊗ ∆) endowed with 

the indefinite inner product

1
*

( )
0

ˆ ˆˆ ˆ[ , ] ( ) ( ) ( ),
−

=

= ∑∫
i

k

J p
i

f p pg fg J p


                 (2)

where ˆ ( )f p  is the non-tangential boundary values of ˆ ( )f p which exists 
again almost everywhere on ∂S (Alpay  et al.[1]) and ( )J p  is a locally 
constant matrix function on ∂ S  whose values are m x m signature 
matrices, satisfying

*( ) ( ) ( ) ( ),χ χ = T J T p T J p                 (3)

for all ∈∂ p S  and all 1 0( )π∈T S, p . The expression * ˆˆ ( ) ( ) ( )g p J p f p
in (2) means * ˆˆ ( ) ( ) ( )  g p J p f p where ∈∂ p S is over ∈∂p S . It is a well-
defined  section of |KS| because of the transformation property of ( )J p . There 
exists certain freedom in the choice of ( )J p for the given Vχ . Indeed, 
choose points , 0,..., 1∈ = −i ip i k . Let Ci be a path on S linking p0 to 
pi. Set 1

1 0( , )π−= ∈i i i iA C C S p (see Appendix). Then the (homotopy class 
of) Ci determines a component i of ∂ S lying over i , and the constant 
value Ji of ( )J p on i can be an arbitrary m x m signature matrix satisfying

*( ( .) )χ χ =i i i iA J A J

Any other component of ∂ S  lying over i  can be obtained 
from i by some deck transformation R. The value of ( )J p on this 
component is *( ) ( ).χ χiR J R  For the case of the line bundles (i.e., m = 
1), the choice of ( )J p amounts to an arbitrary choice of a sign ±1 for 
each i . We will often assume the choice of components i has been 
made and denote 2, ( ) ( , )χ ⊗ ∆J pH S V by 0 12, ,..., ( , ).χ−

⊗ ∆
kJ JH S V The 

space 0 12, ,..., ( , )χ−
⊗ ∆

kJ JH S V is a natural example of an indefinite inner 
product space. It is related to the model theory of pairs of commuting 
non-selfadjoint operators and interpolation theory on multiply 
connected domains.

In the paper Alpay et al. [1] an appropriate extension of Vχ on S to 
the double X of the Riemann surface S was constructed. Given a flat 
unitary vector bundle on a finite bordered Riemann surface, together 
with a collection of signature matrices, it can be uniquely extended to 
a flat unitary vector bundle on the double satisfying certain symmetry 
properties. Let us recall that construction.

Due to the identification of the boundaries the complex structures 
on two copies of S constituting X are mirror images of each other, i.e., 
there exists an anti-holomorphic involution τ : X → X that maps S to 
S' . Thus X is a compact real Riemann surface, or equivalently Riemann 
surface of a real algebraic curve. The genus g of the double of X of S is g 
= 2s + k − 1, where s is the genus of S. The set Xf  of fixed points of τ (real 
points of X) coincides with the boundary ∂S of S. Furthermore X is a 
real Riemann surface of dividing type: the complement X \ Xf consists 
of two connected components X+ = S and X− = S′ interchanged by τ. 
The converse is also true: any real Riemann surface of dividing type is 
the double of a finite bordered Riemann surface. The anti-holomorphic 
involution τ acts both on the fundamental group π1(X, p0) and on the 
universal covering X of X (recall that the fundamental group π1(X, p0) 
is isomorphic to the group of deck transformations Deck ( X /X). It 
also acts naturally on complex holomorphic vector bundles on X: the 
transition functions for the vector bundle V τ complex conjugates of the 
transition functions for V at the point conjugate under τ.

Consider a vector bundle H on X of rank m with deg H = m(g-1) 
satisfying the condition h0(H) = 0. Such a vector bundle is necessarily of 
the form H ≅ Vχ ⊗ ∆ where Vχ is a rank m flat vector bundle on X and 
∆ is a square root of KX [22]. These vector bundles are closely related 
to determinantal representations of algebraic curves and play an 

http://dx.doi.org/10.4172/1736-4337.S1-005
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important role in the theory of commuting non-self adjoint operators 
and related theory of 2D systems [22-26].

Let H be such that there exists a non-degenerate bilinear pairing H 
× Hτ → KX which is parahermitian. The parahermitian property means 
that 

 

ˆ( , )( ) ( , )( )
τ τ τ=f g p g f p ,

for all local holomorphic sections f̂ and g of H near p and pτ 
respectively. We assume also that the line bundle ∆ has been chosen so 
that ∆ ≅ ∆τ and that the transition functions of ∆ are symmetric with 
respect to τ [27]; Then 

we obtain a parahermitian non-degenerate bilinear pairing
,τ

χ χ⊗ → XV V O or more explicitly an everywhere nonsingular 
holomorphic m x m matrix–valued function G on the universal 
covering X with the property

*( ) ( )τ = G p G p                                     (4)

satisfying the relation 

*( ) ( ) ( ) ( ),τχ χ = T G Tp T G p                   (5)

where T ∈ π1(X, p0). The pairing H × Hτ → KX is then given explicitly by 
*ˆ ˆˆ ˆ( , )( ) ( ) ( ) ( ).τ=   f p p G p f pg g   

Now let us introduce the (in general) indefinite inner product 

*
( )

ˆ ˆˆ, ( ) ( ) ( ), ˆ τ  =  ∫   

f
G p X

g gf p G p f p                 (6)

where f̂ and ĝ  are measurable sections of H over Xf . Here and in 
similar expressions, the integral is computed on X and the integrand 
does not depend on the choice of ∈ 

p X above p ∈ X Since in (6) 
∈ 

p X lies over a point of Xf there exists 1 0( , )π∈
pT X p such that 

τ =


 pp T p . Therefore (6) can be rewritten as 

*
( )

ˆ ˆ, ( ) ( ) ( )ˆ ,ˆ  =  ∫   

f
G p X

g gf p J p f p                  (7)

Where
*( ) ( ) ( ).χ=



 pJ p T G p

Note that *( ) ( )= J p J p and

*( ) ( ) ( ) ( ),χ χ = R J Rp R J p                 (8)

for all ∈ 

p X over Xf  and all R ∈ π1(X, p0). Thus the vector bundle H = 
Vχ ⊗ ∆ on X defines an indefinite inner product on the sections of its 
restriction to Xf = ∂S.

For p lying over a point of i , we have 1τ −=
pT R R for i = 0 and 

1τ −=
p iT R B R for i = 1, . . . , k − 1 where 1( )τ −=i i iB C C are part of the 

generators of the fundamental group π1(X, p0) of X (refer Appendix 
for the relation between generators of the fundamental groups of a 
Riemann surface S and the corresponding double), and R depends only 
on the component of the inverse image of  i in X that p belongs to. 
Restricting p in (7) to belong to a specific component we may write

( ) ( )= J p G p

for i = 0 and
*( ) (B ) ( ),χ= iJ p G p

for i = 1, . . . , k − 1 (refer Appendix). (The specific component depends 
on the choice of the generators Bi, i.e., on the homotopy classes of the 
paths Ci.)

It follows from the conditions deg H = m(g −1) and h0(H) = 0 that 
H is a semi-stable vector bundle. By a theorem of Narasimhan and 
Seshadri [28] H is a direct sum of stable bundles if and only if the flat 
vector bundle Vχ (in H = Vχ ⊗∆) can be taken to be unitary flat. Since 
G is an isomorphism from Vχ to the dual of χ

τV it follows in this case 
that G is constant and unitary. Since it is also selfadjoint, it is a constant 
signature matrix. Thus for analytic sections ĝ  and f̂ of Vχ ⊗ ∆ on S 
that belong to H2(S, Vχ ⊗ ∆) we can rewrite the inner  product (7) as 

2, ,...,0 1

1
*

( )
0

( , )

ˆ ˆ[ , ] ( ) ( )

ˆ

ˆ ˆ

[ ]ˆ, ,
χ

χ

−

−

=

⊗∆

=

=

∑∫  

i

J Jk

k

G p i
i

H S V

f p J fg p

f

g

g

                  (9)

where

J0 = G, Ji = χ(Bi)∗G,

for i = 1, . . . , k−1 and p is restricted to belong to a specific component 
of the inverse image of i in X as explained above. We then obtain 
for the vector bundle H on X the inner product (2) on the Hardy space 
H2,J0,...,Jk−1 (S, Vχ ⊗ ∆). Conversely, every unitary flat vector bundle 
on S with signature matrices J0, . . . , Jk−1 can be obtained from a vector 
bundle H on X as above. Let Ji, i = 0,..., k − 1 be self adjoint matrices and 
let χ : π1(S, p0) → GL(m, C) be a homomorphism satisfying

*( ) ( ) .χ χ =i i i iA J A J

Then by Proposition 2.1 from Alpay et al. [1] there exists a unique 
extension (still denoted by χ) of χ to a homomorphism from π1(X, p0) 
into GL(m, C) satisfying

*
1

*

( ) ( ) , ( ),

( )

τχ χ π

χ

= ∈

=i i

T G T G T X

B G J

where G = J0 (refer Appendix).

If the original flat vector bundle Vχ on S is unitary flat and all the 
matrices Ji are unitary then the extended vector bundle is also unitary 
flat as it is follows form the proof of Proposition 2.1 of Alpay et al. [1]. 
The extension need not satisfy h0(X, Vχ ⊗∆) = 0; i.e., the unitary case, 
this condition will be satisfied ”generically” since flat unitary vector 
bundles Vχ on X with h0(X, Vχ ⊗∆) > 0 form a divisor in the moduli 
space of flat unitary vector bundles (the generalized theta divisor 
[10,29]). It was proven in Proposition 2.2 from Alpay et al. [1] that 
if the indefinite inner product space H2,J0,...,Jk−1 (S, Vχ ⊗ ∆) is non-
degenerate, then

h0(X, Vχ ⊗∆) = 0.                  (10)

It follows that the condition (10) is satisfied automatically in the 
positive definite case (i.e., when Ji > 0 for i = 0, . . . , k − 1); for line 
bundles, this has been obtained in Fay et al. [27,30].

Summing up, we see that the above extension procedure establishes 
a one-to-one correspondence between unitary flat vector bundles on S 
together with a choice of signature matrices satisfying (3) and unitary 
flat vector bundle on X satisfying the symmetry condition (4), (5). Given 
a unitary flat vector bundle on S, the various choices of extension to the 
double X correspond to the various choices of signature matrices. We 
shall occasionally denote the corresponding unitary flat vector bundles 

http://dx.doi.org/10.4172/1736-4337.S1-005
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on S and X by χ
SV and χ

XV respectively.

Under the condition h0(X, Vχ ⊗ ∆) = 0 (i.e., that Vχ ⊗ ∆ has no 
global holomorphic sections), it turns out that Vχ ⊗ ∆ on X admits 
a certain kernel function (which is called the Cauchy kernel) which 

is an analogue of 
−
mI

z w
for the trivial bundle on the complex plane. 

The Cauchy kernel is the reproducing kernel for 
( )

2
,( )χ ⊗∆J p S VH . In the 

case of line bundles the Cauchy kernel can be given explicitly in terms 
of theta functions [27,31]. In Alpay et al. [1] the Cauchy kernel was 
used to construct for any given holomorphic mapping z : S → D an 
explicit isometric isomorphism between H2,J (p)(S, Vχ ⊗ ∆) and 2,

M
JH

for appropriate M and J. In particular this implies that H2,J(p)(S, Vχ ⊗ ∆) 
is indeed non-degenerate (under the condition h0(X, Vχ ⊗ ∆) = 0) and 
actually a Kreĭn space.

Statement of the Main Result 
Suppose that we have two finite bordered Riemann surfaces S1 and 

S2. Let F: S1 → S2 be an analytic mapping continuous up to the boundary.

Equivalently we may take F to be a complex analytic mapping F: X1 
→ X2 between the doubles of S1 and S2 equivariant with respect to the 
action of the anti-holomorphic involutions, i.e., such that the diagram

1 1

2 2

1

2

τ

τ
↓ ↓





X X

F F
X X

is commutative. Notice that F: S1 → S2 is unramified if and only if F: X1 
→ X2 is unramified.

We identify as usual a complex holomorphic vector bundle on a 
complex manifold with a locally free sheaf of its analytic sections. It is 
easily seen that if VX is a complex holomorphic vector bundle of rank 
m on a complex manifold X and F is a n-sheeted unramified covering, 
then the direct image V Y = F∗V X is a complex holomorphic vector 
bundle of rank nm on Y and the fiber of V Y at a given point of Y is the 
direct sum of the fibers of V X at the preimages of this point on X.

The main statement of this work is the following

Theorem 3.1 Let F: S1 → S2 be a map of finite bordered Riemann 
surfaces which is a finite n-sheeted unramified covering (F ; S1, S2), and 
let 1( )J p be signature matrices for a unitary flat vector bundle 

1χV on S1 
of rank m. Consider the corresponding extension of 

1χV to the double X1 
of S1satisfying the symmetry condition 

11
*

11( ) ( ) ( ) ( ),τχ χ = R G Rp R G p

for all R ∈ π1(X1, p′0) and all .∈ 

p X Choose the bundles ∆1 and ∆2 of 
half-order differentials on X1 and X2 respectively, such that

a.) the bundles ∆i, i = 1, 2 are invariant with respect to the 
corresponding anti-holomorphic involutions, i.e., τ∆ = ∆i

ii  and the 
transition functions of ∆1 and ∆2 are symmetric with respect to τ1 and τ2;

b.) the pull–back of ∆2 is equal to ∆1, i.e., ∆1 = F∗∆2.

Then

1) the direct image 2 1
1 1*χ χ=X XV F V is a unitary flat holomorpnic vector 

bundle of rank nm satisfying the symmetry condition

22
*

22( ) ( ) ( ) ( ),τχ χ = T G Tp T G p

for all T ∈ π1(X2, p0) and all ,∈ 

p X  appropriate matrix function 2( )G p
, and representation 2χ of π1(X2 , p0); furthermore 

1 2* 1 2( )χ χ⊗ ∆ = ⊗ ∆F V V ;

2) there exists a canonical isometric isomorphism


1 1 2 12, ( ) 1 1 2, ( ) 2 2: ( , ) (, , ),χ χφ ⊗∆ ⊗ ∆→F J p J pVH VS H S

between Hardy spaces on S1 and S2. 

Now some remarks are in order. By definition the anti-holomorphic 
involutions τ1 and τ2 are related by

F ○ τ1 = τ2 ○ F,

and therefore if we have a line bundle L2 on X2 then its pull-back satisfies

( ) ( ) 12* *
22 .

ττ =F L F L

We fix ∆2 such that 2 2
τ∆ = ∆  and *

1 2∆ = ∆F . Then it follows 
that 1 1

τ∆ = ∆ . We choose ∆2 such that its transition functions are 
symmetrical. Then since F is equivariant with respect to the anti-
holomorphic involution then transition functions of ∆1 are also 
symmetrical.

The isomorphism of the spaces 1 12, ( ) 1 1( , )χ ∆⊗J pH S V and 

2 2 22, ( 2) ( , )χ ∆⊗J pH S V implies that they are degenerate or non-
degenerate simultaneously, i.e.,

21
0 0

1 1 2 2( , ) ( , ) 0χ χ⊗ ∆ = ⊗ ∆ =h X h X VV
which is obvious from the definition of the direct image vector bundle.

We assume that the map F: S1 → S2 is a n-sheeted unramified 
covering (F; S1, S2) of the Riemann surface S2 by S1. On the other hand, 
a result of Alpay et al. [1] mentioned in Introduction is a construction 
of an isometric isomorphism between Hardy spaces when S2 = D but 
F is (usually) ramified (assuming 1 1 112, ( )( , )χ ∆⊗J p S VH is not degenerate, 
i.e., 1

0
1 1( , ) 0χ ⊗ ∆ =h VX . The next natural step would be to consider 

the case when S2 is an arbitrary finite bordered Riemann surface and F 
is a ramified covering. That will be a point of some further publication.

We have introduced the vector bundle 2
2χ

XV  on the double X2 as 

the direct image of the vector bundle 1
1χ
XV on X1 defining the vector 

bundle 2
2χ

sV on S2 and the signature matrices 2( )J p . On the other hand 

one can define the vector bundle 2
2χ

sV to be the direct image F∗ 1
1χ

sV of 

the vector bundle 1
1χ

sV  with signature matrices defined naturally in 

terms of 1( )J p  (as direct sums). Though the main claim of Theorem 
3.1 is formulated for finite bordered Riemann surfaces it seems to us 
that the consideration of the structures involved in its proof is more 
natural (in the sense of the theory of compact Riemann surfaces) 
on the doubles. Furthermore, this approach allows us to construct a 
matrix representation 2χ  of the fundamental group π1(X2, p0) given 
a representation of π1(X1, p′0), and the matrix function 2( )G p . We will 
prove that signature matrices 2( )J p calculated with the help of the 
representation 2χ do coincide with the signature matrices constructed 
directly from the signature matrices 1( )J p . This shows the equivalence 
of those two approaches. From the use of Cauchy kernels in Alpay et 
al. [1]  it seems however that in the ramified case the approach via the 
doubles is the only one possible.

Speaking in more abstract terms we deal in Theorem 3.1 with 
a category which we will denote by . Objects of  are finite 
bordered Riemann surfaces S together with a unitary flat vector 
bundle Vχ and signature matrices ( )J p (or equivalently, compact 
real Riemann surfaces X of dividing type with a vector bundle 

χ
XV ⊗ ∆ on X and a matrix function ( )G p satisfying (4) and 

(5)) such that the space 2, ( ) ( , )χ ⊗ ∆J pH S V is non degenerate, i.e., 
0( , ) 0χ ⊗ ∆ =h VX . A morphism between the objects 1

1
1 1 1( , , )χ ⊗ ∆XX V G  
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and 2
2

2 2 2( , , )χ ⊗ ∆XX V G of  is an analytic map F : X1→X2 of Riemann 
surfaces which is equivariant with respect to anti-holomorphic 

involutions τ1 and τ2, such that  2 1
2 1

2 * 1( )χ χ⊗ ∆ = ⊗ ∆X XV F V  (and 2( )G p
is correspondingly induced by 1( )G p ).

We conjecture that there exists a covariant functor from the 
above men-tioned category  to the category of Krein spaces and 
isomorphisms, asso-ciating to ( , , ( ))χ ⊗ ∆ S V J p  the Hardy space 

2, ( ) ( , )χ ⊗ ∆J pH S V .

Theorem 3.1 proves the conjecture for a subcategory of  whose 
morphisms are unramified coverings. The isometric isomorphism 
established in Alpay et al. [1] proves another special case of the 
conjecture namely for a subcategory whose morphisms are restricted 
to have the unit disk D as a range. Somewhat related considerations of 
categories of functional spaces on Riemann surfaces are contained in 
Alling et al. [32].

Sections of the Vector Bundle 
1* 1( )χ ⊗ ∆F V

In this section we give an explicit construction of a holomorphic 
section 2f̂ of the bundle 

1* 1( )χ ⊗ ∆F V on X2 in terms of a holomorphic 

section 1f̂ of 
1 1χ ⊗ ∆V  on X1. When (F; S1, S2) is an unramified covering 

the doubles X1 and X2 possess the common universal covering X , i.e., 
one has a diagram

1 2

1 2

π π

→

 

X X

 

where π1 and π2 are the covering maps from X  to X1 and X2 respectively.

Let U′ ⊂ X1 be an open set in X1. Suppose f1 is an analytic section 
of the holomorphic vector bundle

1χV  over U′, i.e., an analytic Cm-
valued function on 1

1 ( )π − ′ ⊂ U X  satisfying the relation

1
1 1( ) ( ) ( ).χ= f T p T f p                    (11)

Similarly, a section 1f̂ of the vector bundle 
1χ ⊗ ∆V over U′ 

satisfies

1

1 1

1 1

ˆ ˆ( ) ( )( ) ,
( ) ( ) 

χ=
 

 

f T p f pT
dt T p dt p

for all 1
1 ( )π − ′∈p U , 1 1 0( , )π ′∈T X p , where t1 is a local parameter on X1 

lifted to X . The fundamental group 1 1 0 1( , ),π ′ ′∈X p p X , is a subgroup 
of π1(X2, p0) of index n (here p0′ is a preimage of p0 ∈ X2). Enumerate 
fixed representatives gi, i = 1,..., n of the left cosets 1 1 0{ ( , ) }π ′ iX p g  of 
the group π1(X2, p0) with respect to its subgroup π1(X1, p′). We define 
a sheaf on X2 whose sections over an open set U⊂ X2 are analytic Cmn-
valued functions on 1

1 ( )Uπ − of the vector form
2 1( ) (  ) , =   if p f g p                  (12)

i = 1,…, n, where f1 is a section of the bundle 1χV over F-1(U),i.e., 1( )f p  
is an analytic Cm-valued function on 1

1
1 1

2( ( )) ( )ππ − − −=F U U  satisfying 
(11). It easy to see from the definition that this sheaf on X2 is isomorphic 
to the direct image sheaf of a sheaf on X1 of analytic sections of 

1χV , i.e., 
(12) defines the sheaf of analytic sections of F∗

1
Vχ .

Now let p ∈ X2 and p′1, ..., p′n ∈ X1 be preimages of p. Let t2 and 
t1,i be local parameters near p and p′i, i = 1, ..., n lifted to the common 

universal covering X . Denote by φi the composition 1
2 1,
− ο ο it F t . 

Then a section 2ˆ ( )f p  of a vector bundle 
1

2
* 1( )χ ⊗ ∆XF V is given by

1
2

2
1,

ˆ ( )ˆ ( ) ( ),
( ) ( ) ϕ

 
 =

′  



 

 

i

i i i i

f g pf p dt p
g p dt g p

              (13)

where 1ˆ ( )f p  is a section of the vector bundle 1 1χ ⊗ ∆V  and t1,i, i = 1, 
..., n are local parameters in the vicinity of ig p . Since we have chosen 
the bundles ∆1 and ∆2 of half-order differentials in (13), the ambiguity 
in the sign of the square roots of  ( )ϕ′ ig p in (13) is global and since we 
have assumed that ∆1 = F ∗∆2, the expression (13) does not depend on 
the choice of local parameters.

Representation 2χ of π1(X2, p0) 
In this section we give an explicit formula for a unitary 

representation 2χ of 2 π1(X2, p0) such that 2 1*χ χ=V F V . It follows from 
the previous section that we have to define 2χ so that

2
2 2( ) ( ) ( ), χ= f T p T f p                 (14)

for every f2 given by (12). Let g ∈ π1(X2, p0). Fix a preimage p′0 ∈ X1 of 
p0. The element g belongs to a coset of the fundamental group π1(X2, p0) 
with respect to its subgroup π1(X1, p′0). Then there exist elements h ∈ 

π1(X1, p′0) and ( ) 21 0( , ) σ π∈
g ig X p such that 

( ),σ=
gig g hg i

i.e., g defines a permutation σg of the preimages of p0. We take this as 
a definition of σg. We define the matrix representation 2χ as follows:

[ ] 1
()2 1 )(( ) ( ) .σσχ χ δ−=

gg
k k jkkjg g gg                   (15)

It is immediate that (14) is verified. Taking into account the 
unitarity of 1 )(χ g , it can be seen from (15) that the matrices defining 
the representation of π1(X2, p0) are unitary, i.e.,

2 2
*( ) ( ) .χ χ δ ⋅ = i i kjkj

g g

Now we check that (15) provides a representation π1(X2, p0), i.e.,

2 2 2( ) ( ) ( ), χ χ χ= gg g g

for all 1 2 0, ( , ).π∈g g X p Proving this we used the fact that 1χ  is 
homomorphism and σg is an anti-homomorphism, i.e.,

( ( )) ( ),σ σ σ′ ′′ ′′ ′=g g g gk k

which can be easily verified. In general, the matrix 2χ is given by the 
formula 

[ ] 1
1

2 1,0( ) ( ) ,χ χ δ−
+ − −= k j k i jkjg g gg

where g belongs to i-th coset.

Construction of Pairing and Inner Product 
Suppose that H1 = 1 1χ ⊗ ∆V  is such that there exists a non-degenerate 

bilinear pairing
1

1 1( )τ ×  → XH H K which is parahermitian, i.e.,

  1 1 1 1ˆ, ( ) ,( ) ( ).
τ

τ τ   =       
f g p g f p

We assume that the line bundle ∆1  is such that 1
11

τ∆ ≅ ∆ and the 
transition functions of ∆ are symmetric with respect to τ1. Then we have 
a parahermitian non-degenerate bilinear pairing 1 11

τ
χ χ →⊗ XV V O
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and the matrix function 1( )G p  satisfying (4) and (5). One can 
define a bilinear non-degenerate pairing 

2
2 2( )τ ×  → XH H K where

2
2 1

* 2,χ= = ⊗ ∆H F H V introducing an everywhere nonsingular 
holomorphic mn × mn matrix-valued function G2 on the universal 
covering X of X1 and X2. The matrix 2( )G p should have the property

*
2 2( ) ( ),τ = G p G p                   (16)

and satisfy the symmetry condition, 1 2 0( , )π∈T X p ,
*

2 2 2 2( ) ( ) ( ) ( ).τχ χ = T G T p T G p                (17)

Then the pairing is given by

   2 2 2 * 2
2, ( ) ( ) ( ) ( ) .τ  = 

 
   f g p g p G p f p

Taking into account the explicit form (15) of 2( )χ g one can check 
that the following expression for 2( )G p does satisfies (17)

[ ]2 1 ( ),1( ) ( ) ( ) ,τ
νχ δ= k k k jkjG p G g p h                  (18)

where ν(k) is defined as follows. Consider the action of τ on an element 
g ∈ π1(X2, p0). By definition we have gτ = τgτ−1. For any gk that belongs 
to k-th coset of π1(X2, p) with respect to π1(X1, p′0) there exist hk ∈ π1(X1, 
p′0) and gν(k) ∈ π1(X2, p) such that

( ).
τ

ν=k k kg h g                   (19)

We define ν(k) by (19). One can check directly that (18) does satisfy 
conditions (16) and (17).

We saw in Introduction how to define an indefinite inner product 
(2), (9) on the Hardy space 0 12, ,..., ( , )χ−

⊗ ∆
kJ J VH S using signature 

matrices 0 -1,..., .kJ J  Suppose that we have such an inner product on 

1,0 1, 1 12, ,..., 1 1( , )χ−
⊗ ∆

kJ J VH S

   

2, ,..., 1 1
1,

1,0 1, 1 1

1
1 1 1 * 1

1,
0

( , )[ ,  ] ( ) ( ).
χ−

−

⊗∆
=

= ∑∫  

i
J J k

k

V i
Xi

H Sf g g p J f p

Then we define an indefinite inner product on 
2,0 2, 1 22, ,..., 2( , )χ−

⊗ ∆
kJ J S VH

   

2, ,..., 22,0 2, 1 2
2

2,

2 2 2 * 2
2( , )[ , ] ( ) ( ) ( ).

χ

τ
−

⊗∆ = ∫   

J J k
i

H S V
X

f g g p p f pG     (20)

By the same reasons as in Introduction we can rewrite (20) as

   

2, ,..., 22,0 2, 1 2
2,

( ,
2 2 2 * 2

2)[ , ] ( ) ( ) ( ),
χ−

⊗∆ = ∫   

i
J J k V

X
H Sf g fJg p p p            (21)

Where
*

2 2 2( ) ( ) ( ),χ=


 pJ p T G p

and introduce the matrices
*

2,0 2 2, 2 2,1 2, ( ) ,χ= =iJ G J B G                (22)

where 2,1 2( , )π∈B X p (refer Appendix). As in Alpay  et al. [1] the 

extension of the bundle 2
2χ

sV on the Riemann surface S2 to the double X2 
depends on the choice of the signature matrices J2,0, ..., J2,k−1 given by (22) 
and which satisfies the symmetry condition (8). On the other hand, 
one can define the signature matrix 2( )J p  using the signature matrix

1( )J p . One should have
*

2 2 2 2( ) ( ) ( ) ( ), χ χ = T J T p T J p                  (23)

for all T ∈ π1(X2, p) and

*
2 2( ) ( ),= J p J p                 (24)

for all ∈ 

p X over p ∈ X2,f. The matrix 2( )J p  in the form

[ ]2 1( ) (  ) ,δ= k kjkjJ p J g p                  (25)

satisfies (23) and (24). Then we check the commutativity of the diagram

1 1
1 1

2 2
2

1

2

2

,

* *
,

χ χ

χ χ

→

↓ ↓

→

ext JS X

S

S X

ext J X

V V

F F

V V

Where ext, Ji means the extension of the vector bundle χ
i
i

sV on Si to 
the double Xi . I.e., we will show that the matrix 2( )J p defined by (22) 
coincides with (25). It easy to check that

,τ=
 Rp pT R R T

for all R ∈ π1(X2, p), p ∈ X2,f and 2( , ) π∈
pT X p such that τ =



 pp T p
where p lies over p. Using that we arrive at

[ ] *
2 2 2 1( ) ( ) ( ) ( ) . χ δ= =



  p k kjkjJ p T G p J g p

Proof of the Isometricity 
We have constructed explicitly a section 2f (13) of the bundle 

2 2χ ⊗ ∆V in terms of a section 1f of the bundle
1 1χ ⊗ ∆V . Now we will 

prove that the map  1 2
f f is an isometric isomorphism of the space 

1 1 12, ( 1) ( , )χ ∆⊗J pH S V  on the space 
2 2 22, ( 2) ( , )χ ∆⊗J pH S V . First let us show 

that 


1 1
1

2, ) 1 1( ( , )χ ∆∈ ⊗J pf H S V  if and only if 
2 2

2
2, ) 2 2( ( , ).χ∈ ⊗ ∆J pf H S V

Suppose 1f  is a section of the bundle 1 1χ ⊗ ∆V  and 


1 1
1

2, ) 1 1( ( , )χ ∆∈ ⊗J pf H S V . That means that


11
1

12,( , )χ ∆∈ ⊗f H S V , i.e., 1f
is an analytic in X1 

And

 

1,

1
1 * 1

( )1 1 0

sup ( ( ) , )
−

− < < =

< ∞∑∫
i

k

rr i

f p f p


for some ϵ. Here 1, ( ) i r are smooth simple curves in X1 approximating 
the i-th boundary of the X1. The space 1 1 12, ( 1) ( , )χ ∆⊗J pH S V is the space 

12 1 1( , )χ ∆⊗H S V  endowed with the indefinite inner product (2)

   

2, 1 11,0,..., 1, 1 1
1,

1
1 * 1

, 1,
1

(
0

1
)[ , ] ( ) ( ).

χ
χ

−
∆

−

⊗
=

= ∑∫


 

J J

i
k

k

S V i
i

Hf p J f pg g

Let 2, i  be a boundary component of X2 and 1, ,
ji  j = 1, ..., ni 

be corresponding preimages on X1. The boundary uniformizer z1 
near the boundary component is such that 1 0 2 0′ ′= °z p z Fp . Then the 
approximating curves 2, ( ) i r are mapped to the approximating curves 

1, ( )   1,.. ,, .  =
ji ijr n . Due to the construction given by the formula 

(13) we see that 2f is an analytic and

   

 

2 2

2, 1,

1

1,

1 1
2 * 2 1 * 1

( )0 0 1
1

1 * 1

0

( ) ( ) ( ) ( )

( ) ( . )

χ

− −

= = =

−

=

=

= < ∞

∑ ∑∑∫ ∫

∑∫



 

i

i i j

i

nk k

X ri i j
k

Xi

f p f p f p f p

f p f p
                  (26)
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The summation in (26) with upper limits ni is performed over the 
components 1, ,

ji  j = 1, ..., ni that are preimages of 2, . i  Thus we 
infer that 2f belongs to the space 

22 2 2( , ).χ ⊗ ∆H S V In the previous 
section we have introduced an indefinite inner product in the space 

22 2 2( , ).χ ⊗ ∆H S V Thus we see that a section 2f of xconstructed by the 

formula (13) belongs to the space 2 222, ( 2) ( , ).χ ⊗ ∆J pH S V

Finally, it remains to show that the inner product (21) is isometric, 
i.e., that

 

 

2, 2 22,0,..., 2, 1 2

2, 1 11,0,..., 1, 1 1

( )

2 2

,

1 1

,( )

( ), ( )

( ), ( ) ,

χ

χ

−

−

∆⊗

∆⊗

 
  

 =   

 

 

J J k

J J k

H

H

S V

S V

f p h p

f p h p
                (27) 

where  1 1,f h and  2 2,f h are sections of the vector bundles 
1 1χ ⊗ ∆V

and 
2 2χ ⊗ ∆V  respectively. Indeed, consider the inner product of two 

sections of the bundle 
2 2χ ⊗ ∆V

   

 

 

2, 2 22,0,..., 2,

2

2,

2,

2

2

,

1

1
2 2 2 2

, 0

2 2
2

1 * 1 2
1

1,

( )

, 1

( ), ( ) ( )* ( )

( )* ( ) ( )

( )(( ) )

 

   ( ) )
) )

 ( .
( (

χ χ

τ

χ

τ τ τ τ

χ ϕ

−

−

⊗ =

=

∆

  =  

=

=
′

∑∫

∫

∑∫







   

  



  

 

l

f

J J k

f

k

2,1
S V l

n

i i i
i ii

H

i ij

f p h p f p J h p

f p G p h p

dt pf g p G g p h g p
g p dt g p

 

By the same argument that were used in the formulae (26) the last 
integral is equal to 

   

 

1

1, 1,

2, 1 11,0,..., 1, 1 1

1
1 1 1 1

1

1 1

,(

0

)

( ) * ( ) ( ) ( ) * ( )

( ), ( ) ,
χ

τ

χ χ

−

−

=

⊗∆

=

 =   

∑∫ ∫
 

    

 

l

J

f

J k

k

1,1

VH

l

S

f p G p h p f p J h p

f p h p

where we use the invariance of sections of ∆1 with respect to deck 
transformations and the symmetry of the their transition functions. 
Hence we see that (27) holds. That completes the proof of the 
isometricity.

Appendix: Fundamental groups of S and Double X 
Let us describe explicitly [1] the action of τ on the generators of 

π1(X, p0). Choose points , 0, , 1,∈ = … −ip i k and let Ci be a path on S 
linking p0 to pi. Then π1(S, p0) is generated by

0 1 1 1 1, , , , , , , , ,′ ′ ′ ′
−… …k s sA A A A B A B                  (28)

where 1
0 0, −= = j j j jA A C C for j = 1,…,k - 1 and , , 1, , ,i iA B i s′ ′ = …  

represent a canonical homology basis on S with the intersection matrix 
0

.
0

 
 − 

I
I

 The generators of π1(S, p0) satisfy a single relation

0
1 1

1 1

1.′ ′ ′− ′−

= −

=∏ ∏
s

i i i i i
i k

A B A B A

Now consider the fundamental group π1(X, p0). It is generated by

1 1 1 1 1 1 1 1, , , , , , , , , , , , , , .′ ′ ′ ′ ′′ ′′ ′′ ′′
− −… … …k k s s s sA B A B A B A B A B A B

The generators Aj , A′i, Bi′ are the same as in (28)
1( ) ,τ −=j j jB C C

for j = 1,..., k − 1 and

,

.

τ

τ

′′ ′

′′ ′

=

=

i i

i i

A B

B A

The generators of π1(X, p0) satisfy a single relation by Natanzon et 
al. [33-41]

1 1 1
1 1 1 1 1 1

1 1 1

1.
−

′′ ′′ ′′− ′′− ′ ′ ′− ′− − −

= = = − =

=∏ ∏ ∏ ∏
s k

i i i i i i i i j j j j
i s i j k j

A B A B A B A B A B A B

Note that   

1

1.

τ

τ

−

−

=

=

j j

j j j j

B B

A B A B
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