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Abstract
The nonlinear equations of heat and mass transfer in two-dimensional free-convection, laminar, boundary layer 

flow of a viscous incompressible fluid over a vertical plate with thermophoresis and heat generation effect have been 
considered. We apply Lie-group method for determining symmetry reductions of partial differential equations. Lie-
group method starts out with a general infinitesimal group of transformations under which the given partial differential 
equations are invariant. The determining equations are a set of linear differential equations, the solution of which gives 
the transformation function or the infinitesimals of the dependent and independent variables. After the group has been 
determined, a solution to the given partial differential equations may be found from the invariant surface condition 
such that its solution leads to similarity variables that reduce the number of independent variables of the system. 
The effect of the heat generation parameter He, the Prandtl number Pr, the Schimted number Sc, the thermophoretic 
parameter τ, the solutal Grashof number Gc and the thermal Grashof number Gr on velocity, concentration and 
temperature have been studied and the results are plotted.

Keywords: Lie-group; Similarity solutions; Thermophoresis; Heat 
generation; Free convection

Nomenclature 

 a, b : Constants 

 C  : Concentration of the substance in the fluid inside the boundary layer 

 C∞ : Concentration of the fluid in the free stream air 

 Cw : Concentration of the fluid beside the plate 

 cρ : Specific heat of the fluid 

 D : Diffusion coefficient 

 Gc : Solutal Grashof number 

 Gr : Thermal Grashof number 

 g : Acceleration due to gravity 

 He : Heat generation parameter 

 k : Thermal conductivity of fluid 

 Pr : Prandtl number 

 Q : Heat generation constant 

 Sc : Schimted number 

 T  : Temperature of the fluid inside the boundary layer 

 T∞ : Temperature of the fluid in the free stream air 

 Tr : Some reference temperature 

 Tw : Temperature of the fluid in the plate 

 U1 : Characteristic velocity

 u : Velocity component along x direction

 TV : Thermophoretic velocity

 v  : Velocity component along y  direction

,x y : Space coordinates

Greek symbols 
β * : Coefficient of expansion with concentration

β : Coefficient of thermal expansion

ρ : Density of the fluid

λ : Small parameter

v : Kinematic viscosity of the fluid

k : Thermophoretic coefficient

kv : Thermophoretic diffusivity

τ : Thermophoretic parameter

Introduction
 Thermophoresis is a phenomenon which causes small particles 

to be driven away from a hot surface and towards a cold one. Small 
particles, such as dust, when suspended in a gas with a temperature 
gradient, experience a force in the direction opposite to the temperature 
gradient [1].

The velocity acquired by the particles is called the thermophoretic 
velocity and the force experienced by the suspended particles due to 
the temperature gradient is known as the thermophoretic force. The 
magnitudes of the thermophoretic force and velocity are proportional 
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to the temperature gradient, thermal conductivity of aerosol particles 
and the carrier gas, thermophoretic coefficient and the heat capacity of 
the gas. This phenomenon has many practical applications in removing 
small particles from gas streams, in determining exhaust gas particle 
trajectories from combustion devices, prevention of fouling and 
corrosion in heat exchangers and turbines, semiconductor manufacture 
and ceramic powder production.

Brock [2] explained the disagreement between experimental 
results and aerosol thermal force theories for regimes from continuum 
toward free-molecule through the application of first-order slip-flow 
boundary conditions. In his work, the influence of the convective flow 
on the thermal force is explored through a perturbation technique. He 
developed an expression for the thermophoretic force for continuum 
regime.

 Brock [3] reviewed the theoretical and experimental results for the 
thermal force in the free molecule region. He developed a theory for the 
thermal force for the transition region. Experimental results appear to 
support his developed theory.

A laser-Doppler velocimeter (LDV) has been used by Talbot 
et al. [4] to study of velocity profiles in the laminar boundary layer 
adjacent to a heated flat plate revealed that the seed particles used 
for the LDV measurements were driven away from the plate surface 
by thermophoretic forces, causing a particle-free region within 
the boundary layer of approximately one half the boundary-layer 
thickness. Measurements of the thickness of this region were compared 
with particle trajectories calculated according to several theories for the 
thermophoretic force.

Goren [5] considered theoretically the thermophoresis of aerosol 
particles in the laminar compressible boundary layer on a flat plate is. 
The particles are attracted by a plate colder than the gas and the dust 
concentration drops monotonically as the wall is approached; in the 
absence of Brownian diffusion a nonzero concentration at the wall is 
found. The particles are repelled by a plate hotter than the gas and, in 
the absence of Brownian diffusion, the aerosol concentration profile 
exhibits a singularity at which the concentration rapidly approaches 
zero or infinity. The location of this singularity is taken to be the 
boundary of the dust-free layer found on heated objects.

Chiou [6] analyzed the sub-micron deposition from a laminar free 
convection boundary layer developing on a heated isothermal vertical 
cylinder. In his work, a finite-difference method has been used to 
theoretically calculate the local cumulative particle deposition with the 
thermophoretic velocity. It was demonstrated that the thermophoresis 
has a pronounced effect on the particle transfer but only a slight effect 
on the very smaller particles and that the effect increases with particle 
size and distance along the cylinder. Thermophoresis in natural 
convection for a cold vertical surface has been studied by Epstein et 
al. [7].

 The interaction between radiation and thermophoresis in forced 
convection laminar boundary-layer flow over an impermeable flat plate 
is investigated by Jia et al. [8]. The fluid is a radiatively nonparticipating 
constant-property gas containing emitting, absorbing, and isotropically 
scattering gray aerosol particles.

 Sub-micron deposition from a laminar forced convection 
boundary layer developing on a heated isothermal vertical cylinder 
has been investigated by Chiou and Cleaver [9]. Pseudo-similarity 
solutions have been used to calculate the local cumulative particle 
deposition theoretically; with the thermophoretic velocity.

 Selim et al. [10] investigated the effect of surface mass flux on 
mixed convective flow past a heated vertical flat permeable plate 
with thermophoresis. A non-uniform surface mass flux through the 
permeable surface has been considered. The governing equations, 
reduced to local non-similarity boundary layer equations using suitable 
transformations, have been integrated employing an implicit finite 
difference method together with the Keller-box technique.

Alam et al. [11] studied the problem of steady, two-dimensional, 
laminar, hydromagnetic flow with heat and mass transfer over a semi-
infinite, permeable inclined flat plate in the presence of thermophoresis 
and heat generation is numerically. A similarity transformation is used 
to reduce the governing non-linear partial differential equations into 
ordinary ones. The obtained locally similar equations are then solved 
numerically by applying Nachtsheim-Swigert shooting iteration 
technique with sixth-order Runge-Kutta integration scheme.

This work is concerned with the study of the effect of thermophoresis 
and heat generation on free-convection laminar boundary-layer flow 
over a vertical flat plate. Lie-group method is applied to the equations 
of motion, energy and diffusion for determining symmetry reductions 
of partial differential equations, [12-24]. Exact solutions for the 
temperature have been obtained and we used them to get the velocity 
and the concentration using MATLAP package. 

Mathematical Formulation of the Problem 
Consider the steady, laminar, two-dimensional free-convection 

boundary layer flow of a viscous incompressible fluid over a vertical 
plate placed in the region > 0y  of a Cartesian system of coordinates 
O x y . The plate has a uniform temperature Tw and the free stream 
temperature is T∞ with Tw > T∞ . The species concentration beside 
the plate is maintained uniform at Cw and that of the ambient fluid is 
assumed to be C∞. A heat source is placed within the flow to allow for 
possible heat generation effects. The fluid is assumed to be Newtonian 
and heat generating. The effects of thermophoresis are being taken into 
account (Figure 1).

Under the above assumptions, the governing equations of the mass, 
momentum, energy and concentration for such flow can be written as

Continuity Equation: = 0,u v
x y

∂ ∂
+

∂ ∂
	  		                 (2.1)

Momentum equation: 

 

Figure  1: Physical model and coordinate system.
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( ) ( )
2

*
2= ,u u uu v g T T g C C

x y y
ν β β∞ ∞

∂ ∂ ∂
+ + − + −

∂ ∂ ∂
 	             (2.2)

Energy equation:

( )
2

2= ,T T k T Qu v T T
x y c y cρ ρρ ρ ∞

∂ ∂ ∂
+ + −

∂ ∂ ∂
 		             (2.3)

Diffusion equation: 

( )
2

2= ,T
C C Cu v D C C V
x y y y ∞

∂ ∂ ∂ ∂
+ − −

∂ ∂ ∂ ∂
 		               (2.4)

where, 

= .T
r

TV
T y
κν ∂

−
∂

 					                (2.5)

The boundary conditions are

(i) 1 w wu = 0 , v = bU , T = T C = C a y = 0,and t− 	             (2.6)

(ii) u 0 , T T C C a y .and s∞ ∞→ → → → ∞ 	 	             (2.7)

The variables in equations (2.1) - (2.4) are dimensionless according to

1 1

1 1

= , = , = , = , = , = .
w w

xU yU T T C Cu vx y u v T C
U U T T C Cν ν

∞ ∞

∞ ∞

− −
− −

 (2.8)

Substitution from (5) and (8) into (1) - (4) yields 

= 0,x yu v+  					                  (2.9)

( ) ( )
*

2 2
1 1

= ,x y yy w w
g guu vu u T T T C C C
U U

β β
∞ ∞+ + − + − 	          (2.10)

1 1

= ,x y yy
k QuT vT T T

c U c Uρ ρρ ρ
+ + 			              (2.11)

( )( )
1

= ,x y yy w yy y y
r

D kuC vC C T T CT C T
U T ∞+ + − + 		             (2.12)

where subscripts denote partial derivatives with respect to the indicated 
variables.

The boundary conditions (2.6) and (2.7) will be

 (i) u = 0 , v = b , T = 1 C = 1 a y = 0,and t− 	         (2.13)

 (ii) u 0 , T 0 C 0 a y .and s→ → → → ∞ 	  	           (2.14)

 From the Continuity Equation (2.9), there exists a stream function 
( , )x yψ  such that

( , ) ( , )( , ) = , ( , ) = ,x y x yu x y v x y
y x

ψ ψ∂ ∂
−

∂ ∂
 		            (2.15)

which satisfies equation (2.9) identically. 

Substitution from (2.15) into (2.10) - (2.12) yields 

= ,y xy x yy yyy Gr T Gc Cψ ψ ψ ψ ψ− + + 			              (2.16)

1= ,
Pry x x y yyT T T He Tψ ψ− + 				            (2.17)

( )1= ,y x x y yy yy y yC C C CT C T
Sc

ψ ψ τ− − + 		           (2.18)

where, 

( ) ( ) ( )
*

1 1
2 2

1 1 1

= , = ,Pr = , = , = , = .w w w
r

c U Ug g Q kGr T T Gc C C He Sc T T
U U k c U D T

ρ

ρ

ρβ β τ
ρ∞ ∞ ∞− − − −

The boundary conditions (2.13) and (2.14) will be

(i) 	
y x= 0 , = b , T = 1 C = 1 a y = 0,and tψ ψ 	          (2.19)

(ii) 	 y 0 , T 0 C 0 a y .and sψ → → → → ∞ 	           (2.20)

Solution of the Problem
Firstly, we derive the similarity solutions using Lie-group method 

under which (2.16) - (2.18) and the boundary conditions (2.19) - (2.20) 
are invariant, and then we use these symmetries to determine the 
similarity variables.

Lie point symmetries

Consider the one-parameter (ε) Lie group of infinitesimal 
transformations in (x,y;ψ,T,C) given by 

* 2

* 2

* 2

* 2

* 2

= ( , ; , , ) ( ),
= ( , ; , , ) ( ),
= ( , ; , , ) ( ),
= ( , ; , , ) ( ),
= ( , ; , , ) ( ),

x x x y T C O
y y x y T C O

h x y T C O
T T x y T C O
C C N x y T C O

εϕ ψ ε
ε ξ ψ ε

ψ ψ ε ψ ε
εη ψ ε
ε ψ ε

+ +
+ + 

+ + 
+ + 
+ + 

 		             (3.1)

where “ε” is a small parameter. The partial differential equations (2.16) 
- (2.18) are said to admit a symmetry generated by the vector field

,h N
x y T C

ϕ ξ η
ψ

∂ ∂ ∂ ∂ ∂
Γ ≡ + + + +

∂ ∂ ∂ ∂ ∂
		               (3.2)

if it is left invariant by the transformation (x,y;ψ,T,C) → (x*,y*;ψ*,T*,C*). 
The solutions ψ=ψ (x,y), T=T (x,y) and C=C(x,y), are invariant under 
the symmetry (3.2) if 

( )= ( , ) = 0, = ( , ),x y when x yψ ψ ψ ψ ψΦ Γ − 		               (3.3)

( )= ( , ) = 0, = ( , ),T T T x y when T T x yΦ Γ − 		              (3.4)

 and 

( )= ( , ) = 0, = ( , ).C C C x y when C C x yΦ Γ − 		                (3.5)

 Assume,

1 = ,y xy x yy yyy Gr T Gc Cψ ψ ψ ψ ψ∆ − − − − 		             (3.6)

2
1= ,
Pry x x y yyT T T He Tψ ψ∆ − − − 			              (3.7)

( )3
1= .y x x y yy yy y yC C C CT C T
Sc

ψ ψ τ∆ − − + + 		               (3.8)

A vector Γ given by (3.2), is said to be a Lie point symmetry vector 
field for (2.16)-(2.18) if

( )[3]
=0

= 0 , i = 1 , 2 , 3i
i∆

Γ ∆ 			                (3.9)

where,

[3]

,

x x x

x x x

y y y xy yy

y y y xy yy

yy yy yyy

yy yy yyy

h N h N
x y T C T C

h N h h
T C

N h
T C

ϕ ξ η η
ψ ψ

η
ψ ψ ψ

η
ψ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
Γ ≡ + + + + + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂
+ + + + +

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂
+ +

∂ ∂ ∂

   (3.10)

is the third prolongation of Γ.

To calculate the prolongation of the given transformation, we need 
to differentiate (3.1) with respect to each of the variables x and y. To do 
this, we introduce the following total derivatives
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........,
}.

........

x x x x T x C x x x x T x x C x yx x x y

y y y y T y C y y y y T y y C x yy y y x

D T C T C

D T C T C

ψ ψ ψ

ψ ψ ψ

ψ ψ ψ

ψ ψ ψ

≡ ∂ + ∂ + ∂ + ∂ + ∂ + ∂ + ∂ + ∂ +

≡ ∂ + ∂ + ∂ + ∂ + ∂ + ∂ + ∂ + ∂ +
(3.11)

Equation (3.9) gives the following system of linear partial 
differential equations

= 0,x y xy yy yyy
yy xy y xGr Gc N h h h h hη ψ ψ ψ ψ− − − + + − − 	            (3.12)

1 =0,
Pr

x x y y yy
y y x xHe T h T hη ψ η ψ η η− − + + − − 		              (3.13)

( )1 = 0.x x y y yy yy y y
y y x x yy y yC h N C h N N C T N C T N

Sc
ψ ψ τ η η− + + − − + + + +   (3.14)

The components hx,hy,ηx,ηy,Nx,Ny,hxy,hyy,yyy,ηyy,Nyy and hy yy can be 
determined from the following expressions

= , = ,
= , = ,
= , = ,
= ,

S S
S x S y S S x S y s

s LS L
S x S y S S L x S L y S

LS L LS L
S L x S L y S S L x S L y S

JLS JL
S J x S J y S

h D h D D D T D T D
N D N C D C D h D h D D

D T D T D N D N C D C D
h D h D D

ψ ϕ ψ ξ η η ϕ ξ
ϕ ξ ψ ϕ ψ ξ

η η ϕ ξ ϕ ξ
ψ ϕ ψ ξ

− − − −
− − − − 
− − − − 
− − 

  (3.15)

where S,L and J are standing for x,y. By substituting from (3.15) 
into (3.13) will lead to a large expression, then, equating to zero the 
coefficients of ( )2

, , , , , ,xy y xy y xy y xy y x x y x y y x y yT T T T C T C T C T and T Tψ ψ ψ ψ ψ , 
gives

= = = = = = = = 0.y T C C C Tψ ψϕ ϕ ϕ ϕ η ξ ξ ξ 		              (3.16)

 By substituting (36) into (33) and equating to zero the coefficients 
of , , ,x y x y xT C Tψ ψ , yyψ , y xTψ and 2( )yT we get 

= = = = = 0,y x y ch h ψη η η 				            (3.17)

= ,xhψ ϕ 					               (3.18)

= 0.TTη 					               (3.19)

By substituting (3.16)-(3.19) into (3.12) and (3.14) will lead to a 
system of determining equations. By solving the system of resulting 
determining equations in view of the invariance of the boundary 
conditions (2.19)-(2.20) yields 

1 2 3= , = , = , = = 0.c c h c Nϕ ξ η 			             (3.20)

So, the nonlinear equations (16)-(18) have the three-parameter Lie 
group of point symmetries generated by 

1 2 3, , .
x y ψ

∂ ∂ ∂
Γ ≡ Γ ≡ Γ ≡

∂ ∂ ∂
			            (3.21)

The one-parameter group generated by Γ1, Γ2 and Γ3 consists of 
translation. There aren’t any non-zero commutation relations for these 
symmetries, where the commutation relation is given by [Γi,Γj]=ΓiΓj−
ΓjΓi. The finite transformations corresponding to the symmetries Γ1, Γ2 
and Γ3 are respectively

* * * * *
1 1

* * * * *
2 2

* * * * *
3 3

: = , = , = , = , = ,
: = , = , = , = , = ,
: = , = , = , = , = ,

x x y y T T C C
x x y y T T C C
x x y y T T C C

ε ψ ψ
ε ψ ψ

ψ ψ ε

Γ +
Γ + 
Γ + 

		           (3.22)

where ε1, ε2 and ε3 are the group parameters.

One-dimensional optimal system of subalgebras of the 
symmetry group

Since the symmetry Lie algebra is three-dimensional which given 

by the operators (3.21), we look for solutions invariant under the linear 
combination of these operators. All the possible invariant solutions 
can be obtained by determine the optimal system of one-dimensional 
subalgebras of the given system of partial differential equations. This 
is the most systematic procedure presented by Olver [16]. Following 
Olver’s approach, we compute first the commutators of the symmetry 
Lie algebra (3.17), which is obtained in section 3.1, and then find the 
adjoint representations. The adjoint action on Lie algebras is defined by 
the adjoint operator given by

exp ( ) = ,i i
j ji

Ad e eλ λ
λ

− Γ Γ
Γ 〈Γ 〉 Γ 			              (3.23)

where, λ is a small parameter.

This operator can be rewritten in terms of Lie brackets using 
Campbell–Baker–Hausdorff theorem [25] as

2

exp ( ) = , , , .....................
2!j j i j i i ji

Ad λ
λλΓ

    〈Γ 〉 Γ − Γ Γ + Γ Γ Γ −     	           (3.24)

For our problem, Ω=〈Γ1,Γ2,Γ3〉 is the Lie algebra associated with the 
symmetry group. The calculations of the adjoint action are summarized 
in Table 1.

From Table 1, it is clear that, there are not any nontrivial adjoint 
actions for the Lie symmetry algebra Ω . To construct the one-
dimensional optimal system of Ω , consider a general element of Ω  
given by 

E=a1Γ1 + a2Γ2 + a3Γ3, 				                (3.25)

for some constants a1, a2 and a3 and probe whether E can be transformed 
to a new element E′ under the general adjoint action, where E′ takes a 
simpler form than E, [26]. Let, 

exp ( ) 1 1 2 2 3 3E' = = .
i

Ad E a a aλ Γ ′ ′ ′〈 〉 Γ + Γ + Γ 			            (3.26)

We make appropriate choice of a such that the a′i ’s can be made 
0 or 1. We end up with simpler forms of E that will constitute the 
one-dimensional optimal system. By substituting Γi= Γ1 in (3.26) and 
dropping the primes, we get 

E′=a1Γ1 + a2Γ2 + a3Γ3.				              (3.27)

Now, equation (3.27) allows the consideration of the cases a1 ≠ 0 
and a1= 0. 

Case (I): a1 ≠ 0 

Scaling the resulting operator by a1, equation (3.27) will be

E′=Γ1 + aΓ2 + bΓ3.				               (3.28)

We can further consider the subclasses (i) a=0, b ≠ 0, (ii) a ≠ 0, 
b=0 and (iii) a=b=0. Therefore, an optimal system of one-dimensional 
subalgebra for this case is given by: 

{ }1 2 3 1 3 1 2 1, , ,a b b aΓ + Γ + Γ Γ + Γ Γ + Γ Γ , where, a∈R and b∈R. 

Case (II): a1=0

Using repeatedly the adjoint operation to simplify E, an optimal 

Ad
2Γ 3Γ

1Γ 1Γ 2Γ 3Γ

2Γ 1Γ 2Γ 3Γ

3Γ 1Γ 2Γ 3Γ

Table 1: Table of adjoint representations.
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system of one-dimensional subalgebra for this case is given by{Γ2,Γ3, Γ2 
+ bΓ3}. In summary, the optimal system of one-dimensional subalgebras 
of the symmetry Lie algebra is 

{ }1 2 3 1 2 1 3 2 3 1 2 3= , , , , , , .a b b a bΘ Γ Γ Γ Γ + Γ Γ + Γ Γ + Γ Γ + Γ + Γ      (3.29)

Table 2 shows the solution of the invariant surface conditions (3.3) 
– (3.5) associated with the optimal system. 

(i) ForΓ1, the characteristic

( )= , , ,T CψΦ Φ Φ Φ 				               (3.30)

has the components

= , = , = .x T x C xT Cψ ψΦ − Φ − Φ − 			              (3.31)

 Therefore, the general solutions of the invariant surface condition 
(3.3) - (3.5) are

1 2 3= ( ), = ( ), = ( ).z y T z y C z yψ 			               (3.32)

 Substitution from (3.32) into (2.15) yields

1= , = 0.d zu v
d y

				                              (3.33)

This solution is not a particularly interesting one since it contradicts 
the boundary conditions. So, no solutions are invariant under the 
group generated by Γ1.

 (ii) For Γ2, the characteristic (3.30) has the components

= , = , =y T y C yT Cψ ψΦ − Φ − Φ − 			             (3.34)

 Therefore, the general solutions of the invariant surface condition 
(3.3) - (3.5) are

1 2 3= ( ), = ( ), = ( ).j x T j x C j xψ 			               (3.35)

Substitution from (3.35) into (2.15) yields

1= 0, = .d ju v
d x

− 					               (3.36)

This solution is not a particularly interesting one since it contradicts 
the boundary conditions. So, no solutions are invariant under the 
group generated byΓ2. 

(iii) For Γ3, the characteristic (3.30) has the components 

= 1, = 0, = 0.T CψΦ Φ Φ 			                               (3.37)

So, no solutions are invariant under the group generated by
3Γ . 

(iv) For Γ1+ aΓ2, the characteristic (3.30) has the components

= , = , = .x y T x y C x ya T aT C aCψ ψ ψΦ − − Φ − − Φ − − 	            (3.38)

Therefore, the general solutions of the invariant surface condition 
(3.3) - (3.5) are

1 2 3= ( ), = ( ), = ( ).i y a x T i y a x C i y a xψ − − − 		              (3.39)

Substitution from (3.39) into (2.15) yields

1 1= , = .i iu v b
y x

∂ ∂
−

∂ ∂
				              (3.40)

Practically, Eq. (3.39) is a solution of the equations (2.9) - (2.12), 
even though it is not a particularly interesting one since it contradicts 
the boundary conditions. So, no solutions are invariant under the 
group generated by Γ1+aΓ2. 

(v) For Γ1+bΓ3, the characteristic (50) has the components

= , = , =y T x C xT Cψ ψΦ − Φ − Φ − 			                (3.41)

Therefore, the general solutions of the invariant surface conditions 
(3.3)-(3.5) are 

1 2 3= ( ), = ( ), = ( ).bx f y T f y C f yψ + 			               (3.42)

Substitution from (3.42) into (2.15) yields 

1= , = .d fu v b
d y

− 				     	            (3.43)

Substitution from (3.42) into (2.17) yields to two cases. 

Case (1): 2 4 >0
Pr
Heb −  

= ,m yT e 					                 (3.44)

where, 2Pr Pr 4=
2 2 Pr
b Hem b−

− − . Substitution from (3.44) into (2.18) 

and (2.16), respectively, yields 
2

23 3
32 [ ] =0,m y m yd f d fSc b m e m Sc e f

d y d y
τ τ+ − − 	                           (3.45)

3 2
1 1

33 2 = 0.m yd f d fb Gc f Gre
d y d y

+ + + 			              (3.46)

Case (2): 2 4 <0
Pr
Heb −  

= cos( ),yT e yϑ γ 					                 (3.47)

where, Pr=
2
bϑ −  and 2Pr 4=

2 Pr
He bγ −  .

Substitution from (3.47) into (2.18) and (2.16), respectively, yields

  Generator 
 Characteristic  ( )= , ,T CψΦ Φ Φ Φ  

 Solutions of the invariant surface conditions 

1Γ   = xψ ψΦ − , =T xTΦ − , =C xCΦ − .  1= ( )z yψ , 2= ( )T z y ,
3= ( )C z y . 

2Γ   = yψ ψΦ − , =T yTΦ − , =C yCΦ − .  1= ( )j xψ , 2= ( )T j x ,
3= ( )C j x . 

3Γ   = 1ψΦ , = 0TΦ , = 0CΦ . 
 No solution 

1 2aΓ + Γ = x yaψ ψ ψΦ − − , =T x yT aTΦ − − , =C x yC aCΦ − − . 1= ( )i y a xψ − , 2= ( )T i y a x− , 3= ( )C i a bx− .

1 3bΓ + Γ   = xbψ ψΦ − , =T xTΦ − , =C xCΦ − .  1= ( )bx f yψ + , 2= ( )T f y , 
3= ( )C f y . 

2 3bΓ + Γ   = ybψ ψΦ − , =T yTΦ − , =C yCΦ − .  1= ( )b y h xψ + ,
2= ( )T h x ,

3= ( )C h x . 

1 2 3a bΓ + Γ + Γ = x yb aψ ψ ψΦ − − , =T x yT aTΦ − − , =C x yC aCΦ − − . 1= ( )bx L y a xψ + − ,
2= ( )T L y a x− , 

3= ( )C L y a x− .

Table 2: Solutions of the invariant surface conditions associated with the optimal system.
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( )

( )

2
3 3
2

2 2
3

cos( ) sin( )

cos( ) 2 sin( ) =0,

y

y

d f d fSc b e y y
d y d y

Sc e y y f

ϑ

ϑ

τ ϑ γ γ γ

τ ϑ γ γ ϑγ γ


 + − − −   


 − −   

  (3.48)

3 2
1 1

33 2 cos( ) = 0.yd f d fb Gre y Gc f
d y d y

ϑ γ+ + + 		              (3.49)

(vi) For Γ2+bΓ3, the characteristic (3.30) has the components 

= , = , = .y T y C yb T Cψ ψΦ − Φ − Φ − 			               (3.50)

Therefore, the general solutions of the invariant surface condition 
(3.3) - (3.5) are 

1 2 3= ( ), = ( ), = ( ).b y h x T h x C h xψ + 			             (3.51)

Substitution from (3.51) into (2.15) yields 

1= , = .d hu b v
d x

− 					               (3.52)

This solution is not a particularly interesting one since it contradicts 
the boundary conditions. So, no solutions are invariant under the 
group generated by Γ2+bΓ3.

(vii) For Γ1+aΓ2+bΓ3, the characteristic (3.30) has the components

= , = , = .x y T x y C x yb a T aT C aCψ ψ ψΦ − − Φ − − Φ − − 	             (3.53)

Therefore, the general solutions of the invariant surface condition 
(3.3) - (35) are

1 2 3= ( ), = ( ), = ( ).bx L y a x T L y a x C L y a xψ + − − − 		         (3.54)

Substitution from (3.54) into (2.15) yields 

1 1= , = .L Lu v b
y x

∂ ∂
− −

∂ ∂
				               (3.55)

Practically, Eq. (3.54) is a solution of the equations (2.9) - (2.12), 
even though it is not a particularly interesting one since it contradicts 
the boundary conditions. So, no solutions are invariant under the 
group generated by Γ1+aΓ2+bΓ3.

Results and Discussion 
The effect of the heat generation parameter He 

Figures 2 and 3 illustrate the horizontal velocity u, temperature T 
and concentration C profiles for Gc=1, Gr=1, Pr=1, Sc=0.22 and τ=1 
over a range of the heat generation parameter He, for cases (1) and 
(2), respectively. For case (1), it is observed that the fluid temperature 
increases with the increase in the heat generation parameter He. Also 
the velocity boundary layer thickness increases with the increase in the 
thermal boundary layer, therefore the fluid velocity increases (Figure 2).

For case (2), the fluid temperature decreases with the increase in the 
heat generation parameter He. The velocity boundary layer thickness 
decreases with the decrease in the thermal boundary layer which result 
in less induced flow along the plate therefore the fluid velocity decreases 
(Figure 3). A slight variation in the rate of increase of the concentration 
appears in both cases, as the heat generation parameter increases. 

The effect of Prandtl number Pr 

 Figures 4 and 5 illustrate the horizontal velocity, temperature and 
concentration profiles for Gc=1, Gr=1, Sc=0.22 and τ=1 over a range 
of the Prandtl number Pr, case (1) for He=0.2 and case (2) for He=1.5, 
respectively. As seen, the temperature decreases as Pr  increases. 

 
 
                                 (a)        (b)  
 

 
(c) 

Figure 2: Effect of the heat generation parameter He on: (a) Horizontal 
velocity, (b) Temperature and (c) Concentration, for Gc=1, Gr=1, Pr=1, 
Sc=0.22, and τ =1for case (1). 

 

(a) (b) 
 

 

(c)  

Figure 3: Effect of the heat generation parameter He on: (a) Horizontal 
velocity, (b) Temperature and (c) Concentration, for Gc=1, Gr=1, Pr=1, 
Sc=0.22, b=2, and τ =1 for case (2). 

 

(a)                                                                      (b) 

 
(c)

Figure 4: Effect of the Prandtl number Pr on: (a) Horizontal velocity, (b) 
Temperature and (c) Concentration, for Gc=1, Gr=1, Pr=1, Sc=0.22, b=3 and 
τ =1 for case (1) at He=0.2. 
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Physically Pr characterizes the ratio of thicknesses of the viscous 
and thermal boundary layers. The thermal boundary layer thickness 
decreases sharply with the increase in Pr which causes the fluid 
temperature to decrease. Also the velocity boundary layer thickness 
decreases with the decrease in the thermal boundary layer which 
result in less induced flow along the plate therefore the fluid velocity 
decrease. In both cases, a slight variation in the rate of decrease of the 
concentration appears as the Prandtl number Pr increases. 

The effect of Schimted number Sc 

 Figures 6 and 7 illustrate the horizontal velocity and the 
concentration profiles for Gc=1, Gr=1, Pr=1 and τ=1 over a range of 
the Schmited number Sc, case (1) for He=0.2 and case (2) for He=1.5, 
respectively. The concentration decreases as Sc increases. Physically Sc 
characterizes the ratio of thicknesses of the viscous and concentration 
boundary layers. The concentration boundary layer thickness decreases 
as the Sc increases therefore the fluid velocity decreases. 

The effect of thermo-phoretic parameter τ 

Figures 8 and 9 illustrate the horizontal velocity and the 
concentration profiles for Gc=1, Gr=1, Pr=1 and Sc=0.22 over a range 
of the thermo-phoretic parameter τ, case (1) for He=0.2 and case (2) for 
He=1.5, respectively. It is observed that the velocity and concentration 
of the fluid decrease with increase of τ. In particular, the effect of 

increasing the parameter is limited to be increasing slightly the wall 
slope of the concentration profiles but decreasing the concentration.

The effect of the solutal Grashof number Gc

Figure 10 illustrates the horizontal velocity profiles for Gr=1, Pr=1, 
Sc=0.22 and τ=1, over a range of the solutal Grashof number Gc, case 
(1) for He=0.2 and case (2) for He=1.5, respectively. As seen from both 
cases, the horizontal velocity increases as Gc increases. The Solutal 
Grashof number represents the relative importance of the buoyancy 
force to the viscous force. The increasing value of Gc implies the 
increasing strength of the flow which increase the velocity. 

The effect of thermal Grashof number Gr 

Figure 11 illustrates the horizontal velocity profiles for Gc=1, Pr=1, 
Sc=0.22 and τ=1, over a range of the thermal Grashof number Gr, case 
(1) for He=0.2 and case (2) for He=1.5, respectively. We observe that, 
the velocity increases as Gr increases. 

Conculsion

 
                                        (a)                                                                                    (b) 

 

(c) 

Figure 5: Effect of the Prandtl number Pron: (a) Horizontal velocity, (b) 
Temperature and (c) Concentration, for Gc=1, Gr=1,Sc=0.22, b=2 and τ =1 
for case (2) at He=1.5. 

 
                                                    (a)                                                                                 (b)  

Figure 6: Effect of the Schmited number Scon: (a) Horizontal velocity and (b) 
Concentration, for Gc=1, Gr=1, Pr=1, b=3, and τ =1 for case (1) at He=0.2. 

 
                                                       (a)                                                                         (b)  

Figure 7: Effect of the Schmited number Scon: (a) Horizontal velocity and 
(b) Concentration, for Gc=1, Gr=1, Pr=1, Sc=0.22 and τ =1 for case (2) at 
He=1.5. 

 

(a)                                                                    (b) 

Figure 8: Effect of the thermo-phoretic parameter τ on: (a) Horizontal velocity 
and (b) Concentration, for Gc=1, Gr=1, Pr=1, Sc=0.22 and b =3 for case (1) 
at He=0.2. 

 
                                             (a)                                                                    (b)  

Figure 9: Effect of the thermo-phoretic parameter τ on: (a) Horizontal velocity 
and (b) Concentration, for Gc=1, Gr=1, Pr=1, Sc=0.22 and b =2 for case (2) 
at He=1.5.  
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The steady, laminar, two-dimensional free-convection boundary 
layer flow of a viscous incompressible fluid over a vertical plate with the 
effect of thermophoresis and heat generation has been investigated. The 
system of non-linear partial differential equations is solved using Lie-
group method. The resulting ordinary differential equation from the 
energy equation is solved analytically and we have got exact solutions 
for the temperature of the fluid for two cases. The resulting ordinary 
differential equations obtained from the momentum and diffusion 
equations were solved numerically using using MATLAP package. 
The product of the manufacturing processes is affected by increasing 
or decreasing the physical parameters which appear in the governing 
equations that describe the physical phenomenon, which gives the 
significance of our results. It was found that the horizontal velocity 
decreased due to increases in the Prandtl number, Schimted number 
and thermo-phoretic parameter and it increased due to increases in the 
solutal Grashof number, thermal Grashof number. As increases in the 
heat generation parameter, the horizontal velocity increased in case (1) 
and it decreased in case (2). In addition, the temperature decreased due 
to increases in the Prandtl number. As increases in the heat generation 
parameter, the temperature increased in case (1) and it decreased in 
case (2). It was found that the particle concentration level as well as 
the concentration boundary layer thickness decreased due to increases 
Prandtl number, Schimted number and thermo-phoretic parameter. A 
slight variation in the rate of increase of the concentration appears as 
the heat generation parameter increases.
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