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Abstract
Given an associative graded algebra equipped with a degree +1 differential ∆ we define an A∞-structure that 

measures the failure of ∆ to be a derivation. This can be seen as a non-commutative analog of generalized BV-
algebras. In that spirit we introduce a notion of associative order for the operator ∆ and prove that it satisfies properties 
similar to the commutative case. In particular when it has associative order 2 the new product is a strictly associative 
product of degree +1 and there is compatibility between the products, similar to ordinary BV-algebras. We consider 
several examples of structures obtained in this way. In particular we obtain an A∞-structure on the bar complex of an 
A∞-algebra that is strictly associative if the original algebra is strictly associative. We also introduce strictly associative 
degree +1 products for any degree +1 action on a graded algebra. Moreover, an A∞-structure is constructed on the 
Hochschild cocomplex of an associative algebra with a non-degenerate inner product by using Connes’ B-operator.

Keywords: A∞-Algebras; Hochschild cocomplex; BV-algebra; 
coassociative coalgebra

Introduction 
Consider a graded commutative algebra equipped with a degree +1 

differential ∆. There is an L∞-structure measuring the failure of ∆ to be 
a derivation. The L∞-operations are called the Koszul hierarchy [1,2], 
and are defined as 

11( , , ) [[[ , ], ], ](1)… = ∆ …
nn n a ab a a L L c  where the brackets 

are commutators of operators and La is the operator multiplying by 
a from the left. Unwrapping this compact definition we see that the 
first few operations are: 1( ) ( )= ∆b a a , | |

2 ( , ) ( ) ( ) ( 1) ( )= ∆ − ∆ − − ∆ab a b ab a b a b and 
| | (| | 1)| | | |

3
| | | |

( , , ) ( ) ( ) ( 1) ( ) ( 1) ( ) ( ) ( 1)

( ) ( 1) ( )

+

+

= ∆ − ∆ − − ∆ − − ∆ + ∆ + −

∆ + − ∆

a a b a

a b

b a b c abc ab c a bc b ac a bc

a b c ab c

Disregarding signs from element degrees; the operations are a sum 
over all different ways of applying ∆ to a subset of the inputs with 
minus signs if there is an odd number of an element outside ∆.The data 
of the commutative product and the operator ∆ is called a generalized 
BV-algebra. Note that no compatibility is assumed and that there is 
no explicit mention of Lie brackets. If we require that b3=0 we obtain 
the definition of an ordinary BV-algebra. Put differently, that b3 =0 
is equivalent to that ∆ is a second order operator or that b2 is a strict 
degree +1 Lie bracket. Saying that bn+1 =0 is equivalent to ∆ being of 
n:th order. However, if the algebra is not graded commutative the 
operations bn does not form an L∞-structure, [3] for one approach to 
repair this. In this note we define a set of operations mn for an arbitrary 
graded associative algebra with a degree +1 differential ∆. We prove 
that these operations form an A∞-structure measuring the failure of 
∆ to be a derivation. In analogy with the commutative case we define 
a notion of associative order of the operator ∆ by saying that it has 
associative order n if mn+1=0. In case ∆ has associative order 2 or 
equivalently that m3=0, the operation m2is a strict degree +1 graded 
associative algebra and it turns out that there is extra compatibility 
between the products. We consider the combined structure of the two 
different degree products and ∆ as a non-commutative analog of BV-
algebras. Forgetting the operator ∆ yields a non-commutative analog of 
Gerstenhaber algebras. Note that it does not reduce to the usual notion 
of BV- algebra in the case the starting algebra is commutative. It should 
perhaps rather be seen as a BV-algebra in the “associative world” in the 
sense of [4].

Any A∞-algebra determines and is determined by the bar differential 

on the tensor (co)-algebra of the underlying complex. The bar 
differential is a coderivation of the coproduct but it is not a derivation 
with respect to the tensor product. We apply our construction in this 
case and obtain an A∞-structure on the tensor module that is strict in 
case the original A∞-structure is strict.

Consider an odd element and a degree 0 graded associative 
multiplications on a complex V. As an easy example we obtain a degree 
+1 graded associative algebra structure from our construction by letting 
∆ be the left multiplication of the odd element. The same construction 
yields a strict degree +1 associative product from any degree +1 left 
action on an associative algebra.

Consider the Hochschild cocomplex of an associative algebra with 
an invariant non-degenerate bilinear form. The form allows us to move 
Connes’ B-operator from the complex to the cocomplex. Applying 
our construction with this operator and the cup product yields an A∞-
structure. It turns out that m2 is (up to a sign) the Gerstenhaber bracket.

Conventions
Definition 1. Let A be a graded associative (not necessarily unital) 

algebra over a field  of characteristic zero, such that the underlying 
 -graded vector space is a complex, that is, it has a degree +1 linear 
operator ∆ such that ∆2 =0. We call this an algebra with differential.

Remark 1. Note that we do not require any compatibility between 
∆ and the multiplication. The symbol ∆ is chosen to remind of the odd 
Laplacian operator in a BV-algebra structure.

Remark  2. We work in the symmetric monoidal category of 
complexes, thus we employ the Koszul sign rule.That is, when we 
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permute two homogeneous odd elements we multiple the result by -1.

Definition 2. Let A be an algebra with differential ∆ and product
2: ⊗ →m A A . Suppose that ( ) ( ) ( ) 0.∆ − ∆⊗ − ⊗∆ =m m id m id  Then 

we call ∆a derivation and A a differential graded algebra.

Definition 3. Suppose C is a graded vector space. Now let 
1( ) .∞ ⊗
==⊕ n

nT C C

T(C) is an associative algebra with the product given by 
concatenation of tensor words. It is also a coassociative coalgebra 
given by the sum over all ways to split a tensor word in two without 
permuting any elements.

Definition 4. Suppose A is a  -graded vector space with a degree 
+1 differential ∆.An A∞-structure on A is a collection 2{ } ≥n na of degree 
2 − n maps

: ⊗ →n
na A A

such that the following identity is satisfied for every n (where we 
put a1=∆).

1

1, , 0

( 1) ( ) 0+ ⊗ ⊗
+ +

= + +
≥ ≥

− ⊗ ⊗ =∑ i jk i j
i j k

n i j k
k i j

a id a id

Equivalently, we can define the structure on the shifted space A[1] 
(where (A[1])i=Ai−1).

An A∞-structure on A [1] is a collection {mn}n≥2of degree +1 maps

: ⊗ →n
nm A A

such that the following identity is satisfied for every n (where we 
put m1=∆).

1

1, , 0

( ) 0⊗ ⊗
+ +

= + +
≥ ≥

⊗ ⊗ =∑ i j
i j k

n i j k
k i j

m id m id

Remark  3. An A∞-structure on A where ak vanishes for k≠2 is an 
ordinary graded associative product on A. An A∞-structure on A where 
ak vanishes for k>2 is a differential graded algebra. An A∞-structure 
on A[1] with mk=0 for k≠2 is an associative algebra with product of 
degree +1 on A. Since the main construction of this note deals with 
the interplay of products of different degrees we cannot regrade to 
get rid of the products with odd degree. No matter how we choose it 
some product will be more complicated. We prefer to construct an A∞- 
structure on A[1] to avoid the presence of too complicated signs in the 
identities we have to check

A∞-Structure from Non-Derivation Differential
Theorem 1. Let A be a graded associative algebra with differential ∆. 

Denote multiplication of n ordered elements by the map :γ ⊗ →n
n A A . There 

is an A∞-structure on A[1] given by

m1=∆,

2 2 2 2( ) ( ) ( ),γ γ γ= ∆ − ∆⊗ − ⊗∆m id id

and

2 1 2 1 3 2( ) ( ( ) ) ( ( )) ( ( ) )γ γ γ γ γ γ γ− − −= ∆ − ∆ ⊗ − ⊗∆ + ⊗∆ ⊗n n n n nm id id id id ,

For n ≥ 3.

Actually the proof gives a bit more. We have the following a bit more 
elegant and general results. Looking at the associators of operations 
mn can be seen as taking a kind of square. The theorem says that this 

operation yields the same result as squaring the operator ∆ first. In 
the case ∆2=0 it reduces to the previous theorem. This formulation is 
analogous to a result in the commutative case, see Theorem 2 [5].

Theorem 2. Let A be a graded associative algebra with a degree +1 
operator ∆, not necessarily satisfying ∆2=0. Denote multiplication of n 
ordered elements by the map :γ ⊗ →n

n A A . Define maps

,1 ,∆ = ∆m                    (1)

,2 2 2 2( ) ( ) ( ),γ γ γ∆ = ∆ − ∆⊗ − ⊗∆m id id                 (2)

and

, 2 1 2 1 3 2( ) ( ( ) ) ( ( )) ( ( ) ),γ γ γ γ γ γ γ∆ − − −= ∆ − ∆ ⊗ − ⊗∆ + ⊗∆ ⊗n n n n nm id id id id     (3)

for n ≥ 3. Now let

Associator , , 1 ,

1, , 0

: ( ).
∆

⊗ ⊗
∆ + + ∆

= + +
≥ ≥

= ⊗ ⊗∑ i j
m n i j k

n i j k
k i j

m id m id

Then we have the identity

Associator 2, ,
.

∆ ∆
=m n n

m

Proof. For every n we have to check the identity

2, 1 , ,

1, , 0

( ) .⊗ ⊗
∆ + + ∆ ∆

= + +
≥ ≥

⊗ ⊗ =∑ i j
i j k n

n i j k
k i j

m id m id m

Every term is either of the form (Case 1)

1 1 ( ( ) ( ) )γ γ γ⊗ ⊗ ⊗
+ + + + ⊗ ∆ ⊗ ⊗∆ ⊗



i k m
i k m jid id id

Or of the form (Case 2)

1 1( ( ( ( ) )) ).γ γ γ⊗ ⊗ ⊗ ⊗
+ + + +⊗ ∆ ⊗∆ ⊗ ⊗



i j m
i m j kid id id id

We will prove the identity by checking that the coefficient in front 
of every type of term not containing ∆2vanishes and that the coefficients 
of the terms with ∆2 agree.

Case 1
We look at the coefficient in front of

1 1 ( ( ) ( ) )γ γ γ⊗ ⊗ ⊗
+ + + + ⊗ ∆ ⊗ ⊗∆ ⊗



i k m
i k m jid id id

for fixed , , , , .i j k m  In the definition of the product there are no non-
zero terms where there are more than one id in front or more than 
id one id behind ∆.From this we see that the coefficient in front of 

1 1 ( ( ) ( ) )γ γ γ⊗ ⊗ ⊗
+ + + + ⊗∆ ⊗ ⊗∆ ⊗



i k m
i k m jid id id vanishes unless i, k, m ≤ 1.

Therefore it remains to check the following terms: 2 ( ( ) ( ))γ γ γ∆ ⊗∆
j ,

3 3 3

4 4

4 5

( ( ) ( )), ( ( ) ( ) ), ( ( ) ( )),

( ( ) ( )), ( ( ) ( ) ),

( ( ) ( ) ), ( ( ) ( ) ).

γ γ γ γ γ γ γ γ γ

γ γ γ γ γ γ

γ γ γ γ γ γ

⊗ ∆ ⊗∆ ∆ ⊗∆ ⊗ ∆ ⊗ ⊗∆

⊗∆ ⊗ ⊗∆ ∆ ⊗ ⊗∆ ⊗

⊗∆ ⊗∆ ⊗ ⊗∆ ⊗ ⊗∆ ⊗

  

 

 

j j j

j j

j j

id id id
id id id id
id id and id id id

The term 2 ( ( ) ( ))γ γ γ∆ ⊗∆
j has contributions from , 1 ,( , )⊗

∆ + ∆


 jm m id
and , 1 ,( , )⊗

∆ + ∆ 
j

jm id m .They contribute +1 and −1 respectively; they 
have different signs because the ∆:s pass each other when calculating 
one of the terms.

The term ( ( ) ( ))γ γ γ⊗ ∆ ⊗∆id  has contributions from 
1

, 2 ,( , )⊗ +
∆ + ∆ 

j
jm id m and , 1 , 1( , )⊗

∆ + ∆ +


 jm m id . They contribute with 
opposite signs; again using the Koszul sign rule.

The term 3( ( ) ( ) )γ γ γ∆ ⊗∆ ⊗
j id vanishes similarly.

The term 3( ( ) ( )),γ γ γ∆ ⊗ ⊗∆
j id  has contributions from 
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, 1 , 1( , )⊗
∆ + ∆ +



 jm m id  and , 1 , 1( , )⊗
∆ + ∆ +

j
jm id m , again canceling.

The term 4 ( ( ) ( ))γ γ γ⊗ ∆ ⊗ ⊗∆
jid id  has contributions by 

1
, 2 , 1( , )⊗ +

∆ + ∆ +
j

jm id m and , 1 , 2( , )⊗
∆ + ∆ +



 jm m id . These cancel by the Koszul 

sign rule.

The term 4 ( ( ) ( ) )γ γ γ∆ ⊗ ⊗∆ ⊗
j id id vanishes similarly.

The term 4 ( ( ) ( ) )γ γ γ⊗∆ ⊗∆ ⊗
jid id  has contributions from 

1
, 2 , 1( , )⊗ +

∆ + ∆ +
j

jm id m  and 1
, 2 , 1( , )⊗ +

∆ + ∆ +


 jm m id , also  vanishing. The term 

5 ( ( ) ( ) )γ γ γ⊗∆ ⊗ ⊗∆ ⊗
jid id id  has contributions from 1

, 2 , 2( , )⊗ +
∆ + ∆ +



 jm m id  and 
1

, 2 , 2( , )⊗ +
∆ + ∆ +

j
jm id m  thus also vanishes by the Koszul rule.

Case 2
We now look at the coefficient in front of 

1 1( ( ( ( ) )) ),γ γ γ⊗ ⊗ ⊗ ⊗
+ + + +⊗∆ ⊗∆ ⊗ ⊗



i j m
i m j kid id id id

Where either j or l is non-zero. Changing I or m only multiplies it 
with1, −1 or 0 so it is enough to check the vanishing of coefficient for 
cases of the form 1( ( ( ) )).γ γ⊗ ⊗

+ +∆ ⊗ ∆ ⊗ 



j
j kid id

The term 2( ( ( )))γ γ∆ ⊗∆ kid  has contributions from ,1 , 1( )∆ ∆ +km m and 
from ,2 ,( , )∆ ∆ km id m which vanishes by equation1and 2.

The term 2( ( ( ) ))γ γ∆ ∆ ⊗k id vanishes similarly.

For j, l ≥1 the term 1( ( ( ) ))γ γ⊗ ⊗
+ +∆ ⊗∆ ⊗ 



j
j kid id has contributions from

,1 , 2( )∆ ∆ +km m , ,2 , 1( , )∆ ∆ +km id m , ,2 , 1( , )∆ ∆ +km m id  and from ,3 ,( , , ).∆ ∆ km id m id  

The sum of the contributing coefficients vanishes by equation1,2and3.

When j=l=0 it does not necessarily vanish. We want to prove that 
the coefficient from

, 1 ,

1, , 0

( )⊗ ⊗
∆ + + ∆

= + +
≥ ≥

⊗ ⊗∑ i j
i j k

n i j k
k i j

m id m id

Is the same as the coefficient from 2 ,
.

n
m

∆ But in this case there is 
only one contributing term on both sides, the coefficient comes from 
the definition of m∗,I which is the same in both cases.

Failure of Being A Derivation and Associative Order of 
Operators

Lemma 1. Suppose A is a graded associative algebra with a 
differential ∆ and let mn be a sin Theorem1.If mn =0 then mi=0 for i >n.

Proof. Suppose m1=∆=0, then it is clear that all mn vanishes since all 
terms use ∆.Suppose instead that 2 2 2 2( ) ( ) ( ) 0.γ γ γ= ∆ − ∆⊗ − ⊗∆ =m id id

We want to show that

3 3 2 2 2 2 3( ) ( ( ) ) ( ( )) ( ( ) ) 0.γ γ γ γ γ γ= ∆ − ∆ ⊗ − ⊗∆ + ⊗∆ ⊗ =m id id id id id

By writing 3 2 2( ) ( ( ))γ γ γ∆ = ∆ ⊗ id  and using that m2 =0, we see that m3 
vanishes. Now suppose n≥4 and that mn−1 vanishes. We want to show 
that 2 1 2 1 3 2( ) ( ( ) ) ( ( )) ( ( ) ) 0γ γ γ γ γ γ γ− − −= ∆ − ∆ ⊗ − ⊗∆ + ⊗∆ ⊗ =n n n n nm id id id id .

Similarly to the previous case we rewrite 3
1 2( ) ( ( ))γ γ γ ⊗ −
−∆ = ∆ ⊗ ⊗ n

n n id id  

and use that mn−1 =0 to see that mn also vanishes. Now the lemma 

follows by induction.

This lemma motivates the following definition inspired by the 
commutative case.

Definition 5. Suppose A is a graded associative algebra with a 
differential ∆. We say that ∆ has associative ordern if mn+1 vanishes.

Remark 4. In the case of a unital algebra A, Definition 
5 has to be tweaked in some way to get the right notion. 
Suppose that mn=0 for some n>3, then we see that

1 1| | | |
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 30 ( , ,1, ,1, ) ( ) ( ) ( 1) ( ) ( 1) ( ) ( , , ).= … = ∆ − ∆ − − ∆ + − ∆ =a a

nm a a a a a a a a a a a a a a a m a a a

Thus if mn vanishes for some n, then we obtain a dg algebra. Note 
that we still obtain an on-trivial A∞-structure in the unital case, however 
the notion of order has to be modified.

Remark  5. An operator of associative order1 is the same thing as 
a derivation, thus we can look at the A∞-structure as measuring the 
failure of ∆ to be a derivation.

The next theorem shows that there is compatibility in the case when 
the operator has associative order2. This is analogous to an ordinary 
BV-algebra and the Gerstenhaber part of it.

Theorem 3. Suppose A is a graded associative algebra with 
multiplication γ2 and differential ∆ of associative order 2. Then the 
identities

2 2 2 2( , ) ( , )γ γ=id m m id

and

2 2 2 2( , ) ( , ),γ γ=m id m id

hold.

Proof. That ∆ has associative order 2 is equivalent to the identity

3 2 2 2 2 3( ) ( ( ), ) ( , ( )) ( , ( ), ).γ γ γ γ γ γ∆ = ∆ + ∆ − ∆id id id id id

Now we have

2 2 3 2 2 2 2

2 2 2 2 3 2 2 2 2

2 2 3 2 2 2 2

( , ) ( ) ( ( ), ) ( , ( ))
( ( ), ) ( , ( )) ( , ( ), ) ( ( ), ) ( , ( ))
( , ( )) ( , ( ), ) ( , ( )) ( , ).

γ γ γ γ γ γ
γ γ γ γ γ γ γ γ γ
γ γ γ γ γ γ

= ∆ − ∆ − ∆ =

= ∆ + ∆ − ∆ − ∆ − ∆ =

= ∆ − ∆ − ∆ =

m id id id
id id id id id id id

id id id id id id m

The other identity is proved in the same way.

Triviality on ∆-Cohomology
Given an A∞-algebra one has an induced structure on cohomology. 

The structure from Theorem 1 measures the incompatibility of ∆ with 
an associative product.  Since passing to cohomology kills ∆ one can 
guess that the induced structure is trivial. This is indeed the case and is 
analogous to the commutative case.

Theorem 4. Let A and ∆ be as in Theorem 1 .The operations mk are 
trivial on ∆-cohomology.

Proof. On cohomology every element in the image of ∆ is zero. But 
every term in the definition of mk contains images of ∆.

Triangular Matrices and Odd Actions
As a first very concrete example we consider the algebra of upper 

triangular matrices.

Example 1. Let A be the algebra of upper triangular 2×2-matrices. 

This has a grading where we consider matrices of the form
0

0
 
 
 

a
b  

as degree 0 and matrices of the form
0
0 0
 
 
 

c
as degree 1. Now let us 

consider the differential given by
0

0 0 0
   

∆ =   
   

a c b
b . It is easy to check 
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that the multiplication and differential respect the grading. We will 
determine the structure given by Theorem 1 in this case. By definition 
m1 is exactly ∆. Note that the mk : s all raise the degree by one, because 
of this all multiplications involving elements of degree 1 will vanish 
since case. 

we have nothing in degree 2. Thus we only need to compute the mk : s 
on diagonal matrices. The defining formula gives

2

0 0 0 0 0 0 0
,

0 0 0 0 0 0 0 0 0
            

= ∆ − −            
            

a c ac b c a d
m

b d bd d b

0 0 0 0
.

0 0 0 0 0 0 0 0
−       

= − − =       
       

bd bd ad ad

Similarly to determine m3 we apply the definition to obtain

3

0 0 0 0
, ,

0 0 0 0
        

= ∆        
        

a c e ace
m

b d f bdf

0 0 0 0 0 0 0
0 0 0 0 0 0 0

                  
−∆ − ∆ + ∆                  

                  

ac e a ce a c e
bd f b df b d f

0 0 0 0
0.

0 0 0 0 0 0 0 0
       

= − − + =       
       

bdf bdf adf adf

By Lemma 1 we can now see that mk vanishes for all higher k.

Remark 6. Note that there is nothing really special about this 
example except that is small and easily computable. We could have 
chosen any graded associative algebra with any differential.

The next example creates a degree +1 associative algebra from any 
graded associative algebra with a choice of degree +1 left action (for 
example left multiplication with a degree +1 element).

Example 2. Consider a dg algebra A with multiplication γ and 
a degree +1 element ξ . Denote left multiplication with ξ  by Lξ . It 
is a degree +1 endomorphism of A satisfying ( ( , )) ( ( ), ).ξ ξγ γ=L a b L a b
Consider the construction in Theorem 2 applied to Lξ∆ = . We see that 

| | | |
2 ( , ) ( 1) ( , ( )) ( 1)ξγ ξ= − = −a am a b a L b a b and that

2 2 2 2 2 2 2 2
3 ( , , ) ( ) ( ) ( ) ( ) 0.ξ ξ ξ ξ ξ ξ ξ ξ= − − + = − − + =m a b c L abc L ab c aL bc aL b c abc abc a bc a bc

Now consider an arbitrary degree +1 endomorphism  satisfying 
( ( , )) ( ( ), ).γ γ=a b a b  This also induces a strict degree +1 associative 

algebra structure since m3 vanishes by applying ( ( , )) ( ( ), ).γ γ=a b a b 

A∞-structure on the Bar Complex
An alternative characterization of A∞-structure is the following.

Theorem 5. An A∞-structure on A is equivalent to a degree +1 
square-zero coderivation of the reduced tensor coalgebra on A [1]. An 
A∞-structure { }nm correspond to the coderivation

1 0
.

−
⊗ ⊗ − −

= =

∆ = ⊗ ⊗∑∑
n n i

j n i j
i

i j
id m id

Proof. See for example, Section 9.2.1 in [6].

This coderivation is however not necessarily a derivation with 
respect to the tensor product, enabling us to apply Theorem 1.

Theorem 6. Given an A∞-structure { }nm on A[1] there is an A∞-

structure { }it on the shifted reduced tensor algebra T(A)[1]. We have

1 1( )⊗…⊗ =nt v v

1| | | |
1 1 1

1 0
( 1) ( ) ,

−
+…+

+ + + +
= =

− ⊗… ⊗ ⊗…⊗ ⊗ ⊗…⊗∑∑ j
n n i

v v
j i j j i j i n

i j
v v m v v v v

2 1 1( )⊗…⊗ ⊗…⊗ =⊗n mt v v w w  

1| | | |
1 1 1( 1) ( )+…+

+ − − + − − +
<
<

− ⊗… ⊗ ⊗…⊗ ⊗ ⊗…⊗∑ iv v
i n m i j i m j m j m

i n
j m

v v m v w w w

And for k ≥ 3 we have

11 1

1
1

| | | |
11 1 1( ) ( 1) +…+

<
<

⊗…⊗ … ⊗…⊗ = −⊗ ⊗ ∑ i

k

k

u u
k n k kn

i n
j n

t u u u u

11 1 # 1( 1) ( ) ( 1)( ) .− − + − − +⊗… ⊗ ⊗…⊗ ⊗ ⊗…⊗
k k ki inputs i j i k n j k n j knu u m u u u u

Proof.  By definition t1 is just application of∆ , the signs originate 
from the Koszul sign rule. The defnition of t2 is

2 1 1 1 1( ) ( )⊗…⊗ ⊗…⊗ = ∆ ⊗…⊗ ⊗…⊗ −⊗ ⊗n m n mt v v w w v v w w  
1| | | |

1 1 1 1( ) ( 1) ( ).+…+∆ ⊗…⊗ ⊗…⊗ − − ⊗…⊗ ∆ ⊗…⊗⊗ ⊗nv v
n m n mv v w w v v w w

By the definition of ∆ we see that the first term consists of all the 
way we can contract using the multiplication and the other terms 
are contractions using only elements from the first respectively the 
second tensor word. The remaining terms are thus the contractions 
involving elements from both words. This can be written as

2 1 1( )⊗…⊗ ⊗…⊗ =⊗n mt v v w w

1| | | |
1 1 1( 1) ( ) .+…+

+ − − + − − +
<
<

− ⊗… ⊗ ⊗…⊗ ⊗ ⊗…⊗∑ iv v
i n m i j i m j m j m

i n
j m

v v m v w w w

The definition of tk for k ≥ 3 is
111 1 1( )⊗…⊗ … ⊗…⊗ =⊗ ⊗

kk n k knt u u u u

1

1

11 1 1

1

11 1 1

1

11 1 1

11 1 1

| | | |
11 1 1

| | | |
11 1 1

( )

( )

( 1) ( )

( 1) ( ) .

+…+

+…+

∆ ⊗…⊗ … ⊗…⊗ −

∆ ⊗…⊗ … ⊗…⊗

− − ⊗…⊗ ∆ … ⊗…⊗

+ − ⊗…⊗ ∆ … ⊗…⊗

⊗ ⊗
⊗ ⊗

⊗ ⊗
⊗ ⊗

k

k

n

k

n

k

n k kn

n k kn

u u
n k kn

u u
n k kn

u u u u

u u u u

u u u u

u u u u

Similarly to the previous case we see that the first term corresponds 
to any contractions, the second term corresponds to contractions not 
involving the last tens or word, the third corresponds to contractions 
not involving the first word and the fourth to contractions not involving 
the first or last word. Thus we see that the remaining terms are only the 
contractions involving elements both from the first and the last tensor 
word. Alternatively this can be written as

11 1

1
1

| | | |
11 1 1( ) ( 1) +…+

<
<

⊗…⊗ … ⊗…⊗ = −⊗ ⊗ ∑ i

k

k

u u
k n k kn

i n
j n

t u u u u

11 1 # 1( 1) ( ) ( 1)( )− − + − − +⊗… ⊗ ⊗…⊗ ⊗ ⊗…⊗
k k ki inputs i j i k n j k n j knu u m u u u u

Remark 7. Note that t1 is the differential of the bar construction. If 
mi=0 for i ≥ 3 we see that ti vanishes for i ≥ 3 making the bar resolution 
complex into a dg algebra (with odd degree). In this case the product is 
easily described by 

2 1 1( )⊗…⊗ ⊗…⊗ =⊗n mt v v w w 1 1| | | |
1 1 2 1 2( 1) ( )−+…+

−− ⊗… ⊗ ⊗ ⊗ ⊗…⊗nv v
n n mv v m v w w w
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and Theorem 3 says that there is a compatibility with the tensor product 
(which is also easy to prove directly).

Hochschild Cocomplex and the Dualized Connes’ 
B-Operator 

For and introduction to Hoschild cohomology, see for example 
[7]. Consider a finite- dimensional associative unital algebra A with 
a symmetric, invariant non-degenerate inner product <,>. In [8], a 
degree -1 differential ∆ is considered on Hochschild cochains • ( , )C A A
defined by

( 1)
1 1 1 1 1

1
( , , ), ( 1) ( , , , , , , ),1 .−

− − −
=

< ∆ … >= − < … … >∑
n

i n
n n i n n i

i
f a a a f a a a a a

This operator is Connes' B-operator transferred from chains 
to cochains by using the inner product. The following is shown in 
Theorem 1 of [8].

Theorem 7. ∆ is a chain map with respect to the Hochschild 
differential and ∆2 = 0. Furthermore, on Hochschild cohomology the 
following identity holds

( )(| | 1)| | 1 | |[ , ] ( 1) ( ) ( ) ( 1) ( ) ,− += − − ∆ − ∆ − − ∆  

a b aa b a b a b a b

Where [,] is the Grestenhaber bracket and   is the cup product as 
defined in [9].

Proof. [8].

It is clear that the construction in Theorem 1 works if we reverse 
gradings and in that case we obtain a homologically graded A∞-
structure. We can therefore apply that machinery to • ( , )C A A equipped 
with the cup product and the differential∆. Doing this we obtain an A∞-
structure on the chain level.

Theorem 8. There is a homologically graded A1-structure on 
• ( , )[ 1]−C A A such that it induces an A∞-structure given by maps {mn}

n>1 on the cohomology • ( , )[ 1]HH A A such that m1 = ∆ and m2 is the 
Gerstenhaber bracket up to a sign.

Proof. The A∞-structure is built from the operator ∆and the cup 
product  .Since both are compatible with the Hochschild coboundary 
δ , the A∞-structure is well defined on the cohomology. By definition 
m1 is given by ∆ and by unwinding the definition of m2 we see that 
Theorem 7 shows that m2 is the Gerstenhaber bracket up to a sign. 
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