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Abstract. In his classical work, Pinkham discovered a beautiful theorem on the moduli space of pointed
algebraic curves with a fixed Weierstrass gap sequence at the marked point. Namely, the complement of a Weierstrass
gap sequence in the set of non-negative integers is a numerical semigroup, and he described such a moduli space in
terms of the negative part of the miniversal deformation space of the monomial curve of this semigroup.

Unfortunately, his theorem holds only in characteristic 0 and does not hold in positive characteristic in general.
In this paper, we will study his theorem in positive characteristic, and give a fairly sharp condition for his theorem
to hold in positive characteristic up to genus 4. As an application, we present a complete analysis of his theorem in
positive characteristic in the low genus case.

1. Introduction

In [10], Pinkham developed a beautiful theory on the moduli space of pointed algebraic
curves with a given Weierstrass gap sequence at the marked point in characteristic 0. More
precisely, let (C, P ) (P ∈ C) be a pointed smooth projective curve of genus g with a Weier-
strass gap sequence J = {j1, . . . , jg } ⊂ N0 := {0, 1, 2, . . . } at P . Then the complement
N = N0 \ J is a numerical semigroup of genus g .

Let N be any numerical semigroup of genus g and MN
g,1 the moduli space of pointed

smooth projective curves with a Weierstrass gap sequence N0 \ N at the marked point. Let

XN be the affine monomial curve defined by N . Pinkham showed that MN
g,1 is described by the

negative part of miniversal deformation space of the monomial curve XN if the general fiber
of this deformation is smooth. Unfortunately, Pinkham’s theorem holds only in characteristic
0 and he said little about positive characteristic case except two short comments (see Remark
3).

With the advance of computer algebra, the algorithm and programs for computing the
miniversal deformation of an affine variety have been developed ([5], [6]), and Pinkham’s

theory has revived as a computational tool for MN
g,1. Indeed, in the previous papers under the
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same title [7], [8], we computed MN
g,1 explicitly and showed their rationality up to genus 6 in

the case where N is generated by 4 or less elements in characteristic 0.
The computation of miniversal deformation spaces needs some hard Groebner bases cal-

culation, and sometimes the appearance of huge coefficients is the obstruction to complete
it. Thus in the positive characteristic p case, where huge coefficients do not appear if p is

relatively small, we may have a good chance of computing MN
g,1 if Pinkham’s theorem is

available in positive characteristic.
The purpose of this paper is to study Pinkham’s theorem in positive characteristic. Our

main result is Theorem 4, which gives a fairly sharp sufficient condition for Pinkham’s theo-
rem to hold in positive characteristic up to genus 4. Though we have not succeeded in proving
a general result which hold for a numerical semigroup of any genus, we present a candidate
for the general statement in positive characteristic (Remark 2).

The contents of this paper are as follows. In Section 2, we review the part of Pinkham’s
theorem which holds in any characteristic. Namely, the definition of Pinkham’s map Π and
the surjectivity of Π hold in any characteristic, and we will review them in detail.

On the other hand, the injectivity of Π does not hold in positive characteristic in general.
Thus, in Section 3, we will study the injectivity of Π in positive characteristic and prove our
main results. More precisely, we first present a general guiding problem for the injectivity
of Π in positive characteristic (Problem 1). We then show that Problem 1 is affirmatively
solved if the numerical semigroup is generated by 2 elements, which is the simplest case
(Theorem 3). We next reduce Problem 1 to the inductive assumption of the triviality of the
automorphism and the transformation of the generators (Lemma 1). Using Lemma 1, we
prove our main result (Theorem 4).

In Section 4, we work out the low genus case (g = 1, 2) completely and determine
in which characteristic Pinkham’s map is bijective. Finally, in Section 4.3, we will report
that in the case of semigroup N = N(4)7, which is the semigroup of an ordinary point of

a genus 4 curve, we have succeeded in computing the equation of the moduli space MN
4,1 in

characteristic 7. This is an exciting result for us since, in characteristic 0, the computation of

MN
4,1 is far beyond our computational capability.

2. Review and confirmation of Pinkham’s theorem in any characteristic

In this section, we review Pinkham’s theorem on the moduli space of pointed algebraic
curves with a given Weierstrass gap sequence at the marked point ([10, Theorem (13.9)]).
Pinkham’s theorem consists of 3 parts: the definition of Pinkham’s map Π , the surjectivity
of Π and the injectivity of Π . The definition and the surjectivity of Π in characteristic 0
works also in positive characteristic, whereas the injectivity of Π does not hold in positive
characteristic in general. We will recall and confirm the definition and the surjectivity of Π in
any characteristic here.
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2.1. Monomial Curves of numerical semigroups. Let N0 := {0, 1, 2, . . . } be the
semigroup of non-negative integers with respect to addition. We call a subsemigroup N ⊂
N0 a numerical semigroup of genus g if the compliment N0 \ N is finite and consists of
g elements. A numerical semigroup N is always finitely generated as a semigroup and we
write N = 〈a1, . . . , an〉 = ∑n

j=1 N0aj for a generating set {a1, . . . , an} of N . In this note,

we always take the minimal canonical generators of N . Namely, a1 is the least element of
N \ {0}, and a2 is the least element of N \ 〈a1〉 and so forth.

Let K be an algebraically closed field of any characteristic p = char(K) ≥ 0 and we
work over K throughout this note. Let K[t] be a univariate polynomial ring over K with
an indeterminate t . For a given numerical semigroup N , we denote by K[tN ] ⊂ K[t] the

subalgebra generated by {tj | j ∈ N} and call K[tN ] the monomial ring of N . In case N =
〈a1, . . . , an〉, we have K[tN ] = K[ta1, . . . , tan ]. We call the affine curve XN := Spec K[tN ]
the monomial curve of N . Since a monomial ring K[tN ] has a natural grading, a monomial
curve XN has an induced K×-action, where K× is a 1-dimensional algebraic torus.

Let N = 〈a1, . . . , an〉 be a numerical semigroup and K[x] = K[x1, . . . , xn] a polyno-
mial ring over K with n indeterminates. Consider a surjective homomorphism ϕ : K[x] →
K[tN ] defined by ϕ(xi) := tai . By giving weights w(xi) := ai (1 ≤ i ≤ n) and w(t) := 1,
ϕ is homogeneous of degree 0. We call the kernel IN of ϕ the defining ideal of the mono-
mial curve XN since K[x]/IN

∼= K[tN ]. By defining a K×-action on An = Spec K[x] by
λ ◦ (x1, . . . , xn) := (λa1x1, . . . , λ

anxn) (λ ∈ K×), the closed embedding XN ↪→ An induced
by K[x] → K[tN ] is K×-equivariant.

On the other hand, let (C, P ) (P ∈ C) be a pointed smooth projective curve of genus g
over K and set

NP := {j ∈ N0 | ∃ a rational function f on C which has a pole of order j at P } .
Then NP is a numerical semigroup of genus g and N0 \ NP is the Weierstrass gap sequence
at P .

Let Mg,1 be the coarse moduli space of pointed smooth projective curves of genus g . For
a given numerical semigroup N of genus g , we set

MN
g,1 := {(C, P ) ∈ Mg,1 | NP = N} ⊂ Mg,1.

For a given g , let {N1, . . . , Nl} be the set of all the numerical semigroups of genus g (there

exist only a finite number of them). Then Mg,1 is decomposed as Mg,1 =⋃l
j=1 M

Nj

g,1 (disjoint

union) where M
Nj

g,1 is a locally closed subset of Mg,1.

2.2. Deformation of monomial curves. Pinkham’s theorem describes MN
g,1 for a

semigroup N of genus g by the negative miniversal deformation space of the monomial curve
XN .

Let N be a semigroup of genus g and X := XN its monomial curve. Since X has a
unique singularity at the origin, we have a formal miniversal deformation Φ : χ → S of X.
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We may set

χ = Spec K[[x1, . . . , xn, s1, . . . , sτ ]]/〈F 〉, S = Spec K[[s1, . . . , sτ ]]/〈J 〉 ,
and Φ is a projection map where F = (F1, . . . , Fk) ∈ K[[x, s]]k, J = (J1, . . . , Jl) ∈
K[[s]]l , and 〈F 〉 (resp. 〈J 〉) is the ideal generated by F (resp. J ) in the formal power series
ring K[[x, s]] (resp. K[[s]]) . Thus we have the following commutative diagram:

X ∼= Φ−1(O) ↪→ χ

↓ ↓ Φ

O = Spec K ↪→ S

where O ∈ S is the origin. We note that, since X has a K×-action, we have an induced K×-
action on χ and S such that Φ is K×-equivariant ([10, Proposition (2.3)]). We may suppose
K× acts on χ and S by λ ◦ xi = λai xi, λ ◦ sj = λ−ej sj (ai, ej ∈ Z). The ideals 〈F 〉 and 〈J 〉
are K×-invariant (namely homogeneous) ideals.

Pinkham uses the negative weight part of the base space S. Namely, let {j1, . . . , jm} ⊂
{1, 2, . . . , τ } be the set of indices such that the weight ejk > 0 and set S(−) := {sj1 = · · · =
sjm = 0} ∩ S. By restricting Φ to S(−), we have an induced deformation Φ(−) : χ− → S(−)

of X, which we call the negative miniversal deformation of X.
The negative miniversal deformation Φ− can be constructed directly starting from the

tangent space of S− at the origin by Schlessinger’s method [11] as follows.
Let I = IN be the defining ideal of X and f = (f1(x), . . . , fk(x)) ∈ K[x]k a set of

minimal generators of I so that X = V(f ) ⊂ An (V(f ) is the affine variety defined by

f ). Then the embedded deformation of X ⊂ An over the double point T = Spec K[t]/〈t2〉 is
classified by the normal module NorAn(X) := HomK[x](I,K[x]/I) of X. We note an element

n ∈ NorAn(X) is given by n = (n1, . . . , nk) ∈ (K[x]/I)k such that
∑k

j=1 rknk = 0 for any

relation r = (r1, . . . , rk) of f = (f1, . . . , fk). We can give a natural grading to NorAn(X) as
follows: n = (n1, . . . , nk) is homogeneous of degree d if and only if each nj is homogeneous
of deg nj = deg fj + d .

Let Θn :=
{∑n

j=1 cj
∂

∂xj
| cj ∈ K[x]} be the module of derivations on An. Then

we have a natural map Θn → NorAn(X), Θ � θ �→ (f �→ θ(f )). We define T 1(X) :=
coker(Θn → NorAn(X)), which is finite-dimensional and classifies the deformations of X

over the double point.

Since NorAn(X) is graded and the map Θn → NorAn(X) is homogeneous, T 1(X) has

an induced grading and is decomposed as T 1(X) = ⊕∞j=−∞T 1
j (X), where T 1

j (X) is the j -th

homogeneous part. The subspace T 1
j (X) is the eigenspace of weight j with respect to the

K×-action on T 1(X). Further we set T 1−(X) := ⊕j≤0T
1
j (X) (we have T 1

0 (X) = {0}). We

note that T 1−(X) is naturally isomorphic to the Zariski tangent space of S− at the origin. More

precisely, let {g1, . . . , gp} be the K-basis of T 1−(X) where gj ∈ K[x]k and gj is the class of gj
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in T 1−(X). Then the defining equation F of χ− satisfies F(x, s) = f +∑p

j=1 sj gj (mod s2).

Starting from this, we can construct F(x, s) degree by degree in s taking obstructions into
account (see [10, (2.9)] for a summary). This construction of Φ− : χ− → S− comes to
an end in finitely many steps since everything is homogeneous. Thus the formal negative
miniversal deformation Φ− : χ− → S− is actually given by polynomials and we can set

Φ− : χ− = Spec K[x, s]/〈F 〉, S− = Spec K[s]/〈J 〉 ,
F = (F1, . . . , Fk) ∈ K[x, s]k, J = (J1, . . . , Jl) ∈ K[s]l , x = (x1, . . . xn), s = (s1, . . . , sp).

We assume K× acts on xi with weight ai and on sj with weight −ej > 0.

2.3. Definition of Pinkham’s map Π . We finally projectivize each fiber of Φ− by
adding a point. More precisely, introduce a new indeterminate xn+1 with weight 1. Then,

for each Fi(x, s) ∈ F , replace sj by sj x
−ej

n+1 to get Fi = Fi(x1, . . . , xn, xn+1, s1, . . . , sp) ∈
K[x, xn+1, s]. Set F = (F1, . . . , Fk) and A := K[x, xn+1, s]/〈F 〉. We define

Φ− : χ− := Proj (A)→ S− ,

which is a one-point projectivization of Φ−. The fiber space Φ− is a family of projective

curves and {xn+1 = 0} is a section of Φ− whose intersection with each fiber is a point.

THEOREM 1 (Definition of Pinkham’s map). Suppose the smooth locus U := {Q ∈
S− | Φ−1− (Q) is smooth} of Φ− is non-empty. Then for any Q ∈ U , (Φ−

−1
(Q),Φ−

−1
(Q) ∩

{xn+1 = 0}) is a pointed smooth projective curve of genus g with a numerical group N at the

marked point. Thus the restriction of Φ− to U is a family of pointed smooth projective curves
of genus g with a numerical semigroup N at the point. Since all the fibers are isomorphic

over a K×-orbit in U , we have a morphism Π : U/K× → MN
g,1, which we call Pinkham’s

map in this note.

The proof of Theorem 1 in characteristic 0 ([10, Theorem (13.10)]) works without any
change in positive characteristic. Since we need some key point in the proof of this theorem
later, we outline the proof below.

PROOF OF THEOREM 1. Let O(Q) ⊂ U be the K×-orbit of Q and μ : T = A1 →
O(Q) the normalization of the closure O(Q) of O(Q). Suppose K× acts on T = A1 with
weight w > 0. Let ν : A1 → A1, t �→ tw be a branched covering. We take the pull-back of

χ− → S− by μ ◦ ν to get a one parameter deformation Ω → A1 of X such that K× acts on

the base A1 with weight 1.
On the other hand, consider the affine fiber space

Φ−
aff : W = Spec A→ S− (A = K[x, xn+1, s]/〈F 〉) ,

whose fiber is an affine surface.
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A key observation is that the fiber WQ of Φ−
aff

over Q is isomorphic to Ω , where

Ω → A1 is the one-parameter deformation of X constructed in the previous paragraph. From
this, it follows that WQ is a normal affine surface with a K×-action and has a unique singular
point at the origin.

Then we take a canonical equivariant resolution Z → WQ, which works in any char-
acteristic by [9]. The affine surface Z is a blow-up of WQ at the origin and turns out to
be smooth. Further Z is a total space of a line bundle L over the smooth projective curve

E = Φ−
−1

(Q). In fact, let P = Φ−
−1

(Q) ∩ {xn+1 = 0} be the marked point of E. Then
L = OE(−P) and by contracting the zero-section of L, we get WQ. From this description, it
follows that E has genus g and the semigroup at P is N . Thus the proof is done. �

2.4. Surjectivity of Π . We here discuss the surjectivity of Π in detail. The proof of
surjectivity of Π in characteristic 0 given in [10, (13.11)] works also in positive characteristic.
However, since the proof there is too sketchy to confirm that it works in positive characteristic,
we will give a detailed proof here for confirmation.

THEOREM 2 (Surjectivity of Π). Let Φ− : χ− → S− be the negative miniversal de-
formation of a monomial curve X = XN . Suppose the smooth locus U of Φ− is non-empty so

that Pinkham’s map Π is defined. Then Π : U/K× → MN
g,1 is surjective.

PROOF. Let (C, P ) be a pointed smooth projective curve with a numerical semigroup
N = NP at P . Let L := OC(P) be the line bundle associated to the one-point divisor P and

set B := ⊕∞j=0Γ (C,Lj ) where Γ (C,Lj ) is the vector space of sections of Lj . Since L is

ample, B is a graded normal domain of dimension 2.
Suppose N = 〈a1, . . . , an〉. Then it is easy to show there exists xi ∈ Γ (X,Lai ) (1 ≤

i ≤ n) and xn+1 ∈ Γ (X,L) with div(xn+1) = P such that B = K[x1, . . . , xn+1], where
div(xn+1) is the divisor associated to the section xn+1 of L.

Set V := Spec B, which is a normal affine surface. From the ring homomorphism
K[xn+1] ↪→ K[x1, . . . , xn+1] = B, we have a K×-equivariant projection π : V = Spec B →
Spec K[xn+1] = A1. Since V is irreducible and π is surjective, π is flat by [3, Proposition
9.7].

We first show that π−1(O) ∼= X, where O ∈ A1 is the origin. Indeed, consider the

injective linear map xn+1· : Γ (C,Lj−1) → Γ (C,Lj ), u �→ xn+1u (u ∈ Γ (C,Lj−1)) for
any j > 0. Then, by the definition of the semigroup N at P , we have

Γ (C,Lj ) =
{

xn+1 · Γ (C,Lj−1) if j ∈ N0 \ N

xn+1 · Γ (C,Lj−1)⊕K · uj if j ∈ N

for some uj ∈ Γ (C,Lj ) \ xn+1 · Γ (C,Lj−1). Let uj ∈ B/〈xn+1〉 be the class of uj . Then
we have

π−1(O) = Spec (B/〈xn+1)〉 ∼= Spec (⊕j∈NK · uj ).
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By the correspondence uj ↔ tj ∈ K[t], we get an isomorphism

π−1(O) ∼= Spec (⊕j∈NK · tj ) = X .

We next show that for any Q ∈ A1 \ {O}, π−1(Q) is isomorphic to the affine curve

C \ {P }. Since K× acts on A1 \ O transitively, we may take a point Q = 1 ∈ K = A1.
Suppose V = Spec B is defined by g = (g1(y, yn+1), . . . , gm(y, yn+1)) ∈ K[y, yn+1]m so
that V = V(g), where y = (y1, . . . , yn). Then π−1(Q) ⊂ An is defined by g(y, 1) =
(g1(y, 1), . . . , gm(y, 1)). We have

π−1(Q) = Spec (K[y]/〈g(y, 1)〉) ∼= Spec K

[
x1

x
a1
n+1

, . . . ,
xn

x
an

n+1

]

,

where the right-hand isomorphism is given by yi ←→ xi

x
ai
n+1

. Since K
[

x1

x
a1
n+1

, . . . , xn

x
an
n+1

]
is the

coordinate ring of the affine curve C \ {P }, we have π−1(Q) ∼= C \ {P } as desired.

Thus we have shown that π : V → A1 is a K×-equivariant negative smooth 1-parameter
deformation of X. Since Φ− : χ− → S− is negative miniversal, we have a K×-equivariant

morphism g : A1 → S− such that the pull-back of Φ− by g is isomorphic to π . Let D =
im(g) \ O be the orbit. Then as explained in the proof of Theorem 1, π : V → A1 is

isomorphic to the affine surface WR , which is a fiber of Φ−
aff : W = Spec A → S− over

R ∈ D. Since C ∼= Proj B, this orbit D goes to (C, P ) by Pinkham’s map. �

3. Main results

In this section, we will study the injectivity of Π and prove our main results.

3.1. Formulation of injectivity of Π . Let N be a numerical semigroup of genus g
and Φ− : χ− → S−, χ− = V(F ), F = (F1, . . . , Fk) ∈ K[x, s]k the negative miniversal

deformation of X = XN . Suppose Π : U/K× → MN
g,1 is defined. We will formulate the

injectivity of Π .
Suppose there are two points u = (u1, . . . , up), v = (v1, . . . , vp) ∈ U ⊂ S− ⊂ Kp such

that Π(u) = Π(v) = (C, P ). Let hi : A1 → Kp (i = 1, 2) be a homogeneous morphism
defined by h1(t) = (u1t

e1 , . . . , uptep ), h2(t) = (v1t
e1 , . . . , vptep ) where ei = w(si) > 0

(in Section 2, we set −ei = w(si) > 0 so we change the sign of ei from now on). Then
Im(h1)\ {O} (resp. Im(h2)\ {O}) is the K×-orbit O(u) of u (resp. O(v) of v). The pull-back

ζi : Di → A1 of χ− → S− by hi (i = 1, 2) are both isomorphic to π : V = Spec B →
Spec K[xn+1] = A1, where B = ⊕∞j=0Γ (C,Lj ), L = OC(P) (see the proof of Theorem 2).

We note ζ1 : D1 → A1 is defined by G1(x, t) := F(x1, . . . , xn, u1t
e1 , . . . , uptep ) ∈ K[x, t]k

so that D1 = V(G1) ⊂ An+1. The same holds for ζ2.
Thus we have two isomorphic 1-parameter deformations ζi of X over A1 defined by

Gi (i = 1, 2). Then there exist a homogeneous polynomial map φ : K[x, t] → K[x, t]
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and a homogeneous polynomial matrix Λ(x, t) ∈ Mk×k(K[x, t]) such that [φ(xj )]t=0 = xj

(1 ≤ j ≤ n), φ(t) = t and [Λ]t=0 = Ek(= the identity matrix of degree k), which satisfy the
following fundamental equation ([1, Remark 10.2.11]):

F(φ(x1), . . . , φ(xn), u1t
e1 , . . . , uptep ) = F(x, v1t

e1 , . . . , vptep )Λ .

Here the polynomial map φ describes the relative automorphism over A1 and Λ is the trans-
formation of the generators of the defining ideal. The homogeneity of φ means φ(xj ) is
homogeneous of degree aj = w(xj ), and the homogeneity of Λ means that each i-th element
of the row vector FΛ is homogeneous of degree equal to deg Fi .

We now consider the following problem:

PROBLEM 1. Let Φ− : χ− → S−, χ− = V(F ), F = (F1, . . . , Fk) ∈ K[x, s]k be the
negative miniversal deformation of X = XN . Suppose the following equation holds:

F(φ(x1), . . . , φ(xn), u1t
e1 , . . . , uptep ) = F(x, v1t

e1 , . . . , vptep )Λ (1)

where u = (u1, . . . , up), v = (v1, . . . , vp) ∈ Kp, φ : K[x, t] → K[x, t] is a homogeneous
polynomial map such that [φ]t=0(x) = x and φ(t) = t , Λ(x, t) ∈ Mk×k(K[x, t]) is a
homogeneous polynomial matrix such that [Λ]t=0 = Ek .

Suppose p := char(K) does not divide any exponent of the monomials appearing in F

(we call this the exponent assumption on F). Then is it true that u = v and φ,Λ are trivial
(namely, φ(xj ) = xj (1 ≤ j ≤ n), Λ = Ek) ? If this is true, then, in particular, Pinkham’s
map Π is injective.

The exponent assumption on F guarantees that Taylor’s expansion is available for F just
as in characteristic 0.

3.2. Two generators case. The following result assures that Problem 1 is affirma-
tively solved in the simplest case where the numerical semigroup is generated by 2 elements.

THEOREM 3. Let N be a numerical semigroup generated by 2 elements so that the
monomial curve X = XN is a plane curve defined by one equation f (x) = x

a2
1 − x

a1
2 ,

x = (x1, x2), (w(x1),w(x2)) = (a1, a2). We consider the equation (1) under the exponent
assumption on F . Then it holds that u = v and φ,Λ are trivial. In particular, Π is injective.

PROOF. We first note that Λ = 1 by homogeneity. We may assume a1 < a2 (a1 >

1) and e1 ≤ · · · ≤ ep. Then φ must be of the form φ(x1) = x1 + bta1, φ(x2) = x2 +
∑a2

j=1 cj (x1)t
j , where b ∈ K and cj (x1) is a monomial in x1 of degree a2 − j .

Thus our equation is

F(φ(x1), φ(x2), u1t
e1 , . . . , uptep ) = F(x1, x2, v1t

e1 , . . . , vptep ) . (2)

We will show u = v, b = 0 and cj (x1) = 0 (1 ≤ j ≤ a2). First consider the equation (2)

modulo t2. Then we have (mod t2)

F(x1, x2 + c1(x1)t, u1t, . . . , ul t, 0, . . . , 0) = F(x1, x2, v1t, . . . , vl t, 0, . . . , 0) , (3)
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where we assume e1 = · · · = el = 1 < el+1. By Tailor’s expansion of (3) at (x, 0), we have

(mod t2)

F(x, 0)+ ∂F

∂x2
(x, 0)c1(x1)t +

l∑

j=1

∂F

∂sj
(x, 0)uj t = F(x, 0)+

l∑

j=1

∂F

∂sj
(x, 0)vj t .

We take a K-basis {g1, . . . , gp} of T 1(X) = coker(Θn → NorAn(X)) (gj ∈ K[x]k). Recall F

satisfies F(x, s) = f +∑p

j=1 sj gj (mod s2). Thus it follows that F(x, 0) = f , ∂F
∂x2

(x, 0) =
∂f
∂x2

and ∂F
∂sj

(x, 0) = gj . Hence we have in K[x]

∂f

∂x2
c1(x1)+

l∑

j=1

ujgj =
l∑

j=1

vj gj .

Modulo ∂f
∂x2

, we have in T 1(X),
∑l

j=1 ujgj = ∑l
j=1 vj gj . Since {g1, . . . , gl} is linearly

independent, we have uj = vj (1 ≤ j ≤ l). Then we have ∂f
∂x2

c1(x1) = 0. Since ∂f
∂x2
=

−a1x2
a1−1 �= 0, we have c1(x1) = 0 (note that a1 �= 0 by the exponent assumption on F ).

Suppose next e = a1 and assume that for any ej < e, uj = vj holds, and for any j < e,

cj (x) = 0 holds. Then we have mod te+1

F(x1 + bte, x2 + ce(x1)t
e, u1t

e1 , . . . , umtem, um+1t
e . . . , uqte, 0, . . . , 0)

= F(x1, x2, u1t
e1 , . . . , umtem, vm+1t

e, . . . , vq te, 0, . . . , 0) . (4)

By Tailor’s expansion of (4) at (x, 0), we have (mod te+1)

F(x, 0)+ ∂F

∂x1
(x, 0)bte + ∂F

∂x2
(x, 0)ce(x1)t

e +
{ m∑

j=1

∂F

∂sj
(x, 0)uj t

ej + higher terms

}

+
q∑

j=m+1

∂F

∂sj
(x, 0)uj t

e

= F(x, 0)+
{ m∑

j=1

∂F

∂sj
(x, 0)uj t

ej + higher terms

}

+
q∑

j=m+1

∂F

∂sj
(x, 0)vj t

e. (5)

From (5), we have in K[x]
∂f

∂x1
b + ∂f

∂x2
ce(x1)+

q∑

j=m+1

ujgj =
q∑

j=m+1

vj gj .

Thus modulo 〈 ∂f
∂x1

,
∂f
∂x2
〉, we have uj = vj (m+1 ≤ j ≤ q). Then we have ∂f

∂x1
b+ ∂f

∂x2
ce(x1) =

0. Set ce(x1) = αxa2−a1 (α ∈ K). Then it follows that ba2x
a2−1
1 + (−a1x

a1−1
2 )αx

a2−a1
1 = 0.

Thus we have b = α = 0 since a1, a2 are not zero in K .
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For e in the range of 1 < e < a1 or a1 < e, the same proof works with b = 0. Thus by
induction on e, we are done. �

3.3. Main theorem. We next analyze the equation (1) under the exponent assumption
on F , and reduce Problem 1 to the inductive assumption of the triviality of φ and Λ. We
assume a1 < · · · < an and e1 ≤ · · · ≤ ep.

Set (φ(x1), . . . , φ(xn)) = x +∑
j≥1 cj (x)tj , cj (x) ∈ K[x]n and Λ = ∑

j≥0 Λj(x)tj ,

Λj (x) ∈ Mk×k(K[x]) (Λ0 = Ek).

Then the equation (1) mod t2 gives

F(x + c1(x)t, u1t, . . . , ul t, 0, . . . , 0) = F(x, v1t, . . . , vl t, 0, . . . , 0)(Ek +Λ1(x)t) . (6)

By Taylor’s expansion of (6), we get the following equation by a similar computation as in
Theorem 2.

n∑

j=1

c1,j (x)
∂f

∂xj

+
l∑

i=1

uigi (x) = fΛ1(x)+
l∑

i=1

vigi (x) ,

where c1(x) = (c1,1(x), . . . , c1,n(x)) ∈ K[x]n. Modulo f , ∂f
∂xj

(1 ≤ j ≤ n), we have in

T 1(X),
∑l

i=1 uigi =∑l
i=1 vigi . Since {g1, . . . , gp} is a basis of T 1(X), ui = vi (1 ≤ i ≤ l)

holds. Then we have

n∑

j=1

c1,j (x)
∂f

∂xj

= f Λ1(x) . (7)

We here assume that from the equation (7), we can deduce c1(x) = 0 and Λ1(x) = Ok

(= the zero matrix of degree k). We call this the inductive assumption for the triviality (IAT
for short) of c(x) and Λ(x) at order e = 1.

Suppose we have uj = vj , cj (x) = 0 and Λj(x) = Ok up to order te−1. Then

mod te+1, we have

F(x + ce(x)te, u1t
e1 , . . . , ul t

el , ul+1t
e, . . . , umte, 0, . . . , 0)

= F(x, u1t
e1, . . . , ul t

el , vl+1t
e, . . . , vmte, 0, . . . , 0)(Ek +Λe(x)te) , (8)

where ej < e for 1 ≤ j ≤ l. By Taylor’s expansion of (8), we have

n∑

j=1

ce,j (x)
∂f

∂xj

+
m∑

i=l+1

uigi (x) = fΛe(x)+
m∑

i=l+1

vigi (x) .

Hence we have in T 1(X) (namely mod f ,
∂f

∂xj

),
∑m

i=l+1 uigi =∑m
i=l+1 vigi so that ui = vi
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(l + 1 ≤ i ≤ m) holds. Then we have the equation:

n∑

j=1

ce,j (x)
∂f

∂xj

= f Λe(x) . (9)

If we can deduce ce(x) = 0 and Λe(x) = 0 from the equation (9) (the IAT of φ and Λ at
order e), then by induction, Problem 1 is affirmatively solved.

Summarizing, we have the following:

LEMMA 1. Suppose, in the equation (1), the exponent assumption on F is satisfied.
If the IAT for c(x) and Λ(x) holds at any order e ≥ 1, then u = v and φ,Λ are trivial. In
particular, Π is injective.

Now we will show that Problem 1 is affirmatively solved for a numerical semigroup of
low genus. The following theorem is the main result of this paper. In this theorem, N(4)7 =
〈5, 6, 7, 8, 9〉 is a numerical semigroup of genus 4, which is the semigroup at an ordinary point
(non-Weierstrass point) of a genus 4 curve. For the strange exceptional condition on N(4)7,
see the last part of the proof.

THEOREM 4. Problem 1 is affirmatively solved for any numerical semigroup of genus
g ≤ 4 except N(4)7. In the case of N(4)7, under the additional condition p = char K �= 5,
Problem 1 is affirmatively solved.

Thus Pinkham’s map Π is bijective if p = char(K) does not divide any exponent of the
monomials appearing F in case g ≤ 4 (in the case of N(4)7, the additional condition p �= 5
is required).

PROOF. For genus 1 ≤ g ≤ 4, we have 14 numerical semigroups (see [8, Appendix
A, Table 1]). Among them, 6 semigroups are generated by 2 elements so that we are done by
Theorem 3 in these cases. For the remaining 8 cases, we check the IAT of φ and Λ at any
order in each case. Then by Lemma 1, we are done.

We choose N = N(2)2 = 〈3, 4, 5〉 as a typical case and check the IAT of φ and Λ. The
minimal generators f of the ideal IN are

f = (f1, f2, f3) = (xz− y2, x3 − yz, x2y − z2) ,

where the weights of (x, y, z) are (3, 4, 5) and the degrees of f are (8, 9, 10). We have

∂f

∂x
= (z, 3x2, 2xy) ,

∂f

∂y
= (−2y,−z, x2) ,

∂f

∂z
= (x,−y,−2z) .

(i) Suppose e = 1. Since the equation (7) is homogeneous, we can set

c1(x) = (0, α1x, α2y),Λ1(x) =
⎛

⎝
0 δ1 0
0 0 δ2

0 0 0

⎞

⎠
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for some α1, α2, δ1, δ2 ∈ K (note w(t) = 1). Thus we have by (7)

α1x(−2y,−z, x2)+ α2y(x,−y,−2z) = (0, δ1(xz− y2), δ2(x
3 − yz)) .

From this, if p �= 3, then α1 = α2 = δ1 = δ2 = 0 follows immediately. Thus the IAT of φ

and Λ holds at e = 1 if p �= 3. We note that p = 3 is excluded by the exponent assumption
on F since the exponent 3 appears in the monomials of f (thus of F ).

(ii) Suppose e = 2. Then we can set

c2(x) = (0, 0, cx),Λ2(x) =
⎛

⎝
0 0 δ

0 0 0
0 0 0

⎞

⎠

for some c, δ ∈ K . Thus we have by (9)

cx(x,−y,−2z) = (0, 0, δ(xz− y2)) .

From this c = δ = 0 follows. Thus the IAT of φ and Λ holds at e = 2.
(iii) Suppose e = 3. We have c3(x) = (c, 0, 0) (c ∈ K) and Λ3(x) = O3 by homogene-

ity. Then we have c(z, 3x2, 2xy) = (0, 0, 0). Thus c = 0 follows and the IAT of φ and Λ

holds at e = 3.
(iv) Suppose e = 4. We have c4(x) = (0, c, 0) (c ∈ K) and Λ4(x) = O3 by homogene-

ity. Then we have c(−2y,−z, x2) = (0, 0, 0). Thus c = 0 follows and the IAT of φ and Λ

holds at e = 4.
(v) Suppose e = 5. We have c5(x) = (0, 0, c) (c ∈ K) and Λ5(x) = O3 by homogene-

ity. Then we have c(x,−y,−2z) = (0, 0, 0). Thus c = 0 follows and the IAT of φ and Λ

holds at e = 5.
(vi) Suppose e ≥ 6. Then we have ce(x) = (0, 0, 0) and Λe(x) = O3.
Therefore, in the case of N(2)2, we are done. Note that in this case, we need p �= 3 for

the IAT of φ and Λ to hold. In the following table, we summarize the characteristic condition
necessary for the IAT of φ and Λ to hold for the numerical semigroups of genus g ≤ 4 with
more than 2 generators.

semigroups N(2)2 N(3)2 N(3)4 N(4)2 N(4)4 N(4)5 N(4)6 N(4)7

char. cond. p �= 3 p �= 3 p �= 2 p �= 3 p �= 2 none p �= 2 p �= 5

These characteristic conditions in this table are included in the exponent assumption on
F except N(4)7. In the case of N(4)7, no monomials of f have an exponent divisible by 5,
and we have to assume p �= 5 additionally for the IAT of φ and Λ to hold. �.

COROLLARY 1. Let N be a numerical semigroup of genus g ≤ 4 and IN ⊂ K[x] the
ideal of the monomial curve XN . Let {f1, . . . , fk} be a minimal set of generators of IN and
set l := max{deg(fj ) | 1 ≤ j ≤ k}. If p := char(K) > l, then Pinkham’s map Π is bijective
in case it is defined.
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PROOF. Let Φ− : χ− → S−, χ− = V(F ), F = (F1, . . . , Fk) ∈ K[x, s]k be the
negative miniversal deformation of XN . Since deg Fj = deg fj (1 ≤ j ≤ k), if p > l, then
the exponent assumption on F in Theorem 4 is satisfied. We note that, in the case of N(4)7,
we do not need to assume p �= 5 since l = 18 > 5 in this case. �

REMARK 1. The converse assertion of Theorem 4 does not hold. For instance, in the
case of g = 2, N = N(2)2 = 〈3, 4, 5〉 and p = 2, some monomial appearing in f (thus in F )
has an exponent divisible by 2, but Π is injective (see 4.2).

REMARK 2. We believe that Theorem 4 and Corollary 1 hold for any numerical semi-
group of any genus, some characteristic condition being required for the generalization of
Theorem 4. However, we have not succeeded in proving this conjecture yet.

REMARK 3. At the end of Introduction of [10, (1.20)], Pinkham stated that if p =
char(K) is sufficiently large compared to g , then Π is injective without proofs. He also stated
in the footnote on p.107: “This argument (= the proof of injectivity of Π) breaks down in
characteristic p > 0.” These two are the only comments on positive characteristic in [10].

4. Curves of genus 1 and 2

In this section, we analyze in which characteristic Pinkham’s map Π is bijective com-
pletely for the genus 1 and 2 cases. For the computation of the miniversal deformation of
monomial curves, we use “deform.lib” running on the computer algebra system Singular ([2],
[6]), though, in the case of a hypersurface singularity, the miniversal deformation can be com-
puted easily by hands (see [1, Theorem 10.1.7]).

We also note that, in characteristic 0, it is known that for any numerical semigroup of
genus≤ 7, Pinkham’s map Π is defined (namely U �= φ) by [4]. Since we have not confirmed
that this holds in positive characteristic, we will check that U �= φ for each case to be cautious.

4.1. Elliptic curves. Let N be a numerical semigroup of genus g = 1. Then there
is only one such semigroup N = {0, 2, 3, 4, . . . } = N0 \ {1} = 〈2, 3〉. The ideal IN ⊂
K[x, y] of the monomial curve XN is IN = 〈x3 − y2〉 where w(x) = 2, w(y) = 3. Since
deg(x3 − y2) = 6, we know if p = char(K) > 5, then Pinkham’s map Π is bijective (when
defined) by Corollary 1.

Let us see what happens in the case p = 2, 3, 5. Suppose p = 2. The miniversal
deformation of XN is given by

Φ : χ = Spec K[x, y, a, b, c, d]/〈F 〉 → Spec K[a, b, c, d] = A4

where F := x3 + y2 + axy + by + cx + d . The weights of the variables (x, y, a, b, c, d)

are (2, 3, 1, 3, 4, 6) so that F is homogeneous and Φ is K×-equivariant. In this case, all
the weights of the base space are positive so that the negative miniversal deformation Φ−
coincides with Φ.
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The singular locus Z of Φ− is given by Z = {b4 + a3b3 + a4c2 + a5bc + a6d = 0} ⊂
S− = A4 and thus the smooth locus U = S− \ Z is non-empty. Thus Π : U/K× → MN

1,1 is

defined and surjective by Theorem 2. We note MN
1,1 is isomorphic to A1 via the j -invariant of

the elliptic curves. Since U/K× is a non-empty Zariski open subset of the weighted projective

space P3
(1,3,4,6), dim U/K× = 3 and Π is not bijective.

Suppose p = 3. The miniversal deformation of XN is given by

Φ : χ = Spec K[x, y, a, b, c]/〈F 〉 → Spec K[a, b, c] = A3

where F := x3−y2+ax2+bx+c. The weights of the variables (x, y, a, b, c) are (2, 3, 2, 4, 6)

so that F is homogeneous and Φ is K×-equivariant. We have Φ− = Φ.

The singular locus Z of Φ− is given by Z = {b3 − a2b2 + a3c = 0} ⊂ S− = A3. Thus

the smooth locus U = A3\Z is non-empty and we have a surjective morphism Π : U/K× →
MN

1,1
∼= A1. Since U/K× is a non-empty Zariski open subset of the weighted projective plane

P2
(2,4,6), dim U/K× = 2 and Π is not bijective.

Suppose p = 5. The miniversal deformation is given by

Φ : χ = SpecK[x, y, a, b]/〈F 〉 → Spec K[a, b] = A2

where F := −y2 + x3 + ax + b. The weights of the variables (x, y, a, b) are (2, 3, 4, 6) so
that F is homogeneous and Φ is K×-equivariant. We have Φ− = Φ.

The singular locus Z of Φ− is given by Z = {b2 + 2a3 = 0} ⊂ S− = A2. Hence

the smooth locus U = A2 \ Z is non-empty and Π : U/K× → M1,1 ∼= A1 is defined and
surjective. Since p = 5 does not divide any exponent of the monomials appearing in F ,

Π : U/K× → A1 is bijective by Theorem 4.
For any p > 5 and p = 0, the negative miniversal deformation of XN is given by

Φ− : χ− = Spec K[x, y, a, b]/〈F 〉 → Spec K[a, b] = A2

where F := −y2 + x3 + ax + b. The weights of the variables (x, y, a, b) are (2, 3, 4, 6) so
that F is homogeneous and Φ is K×-equivariant. The singular locus Z of Φ− = Φ is given

by Z = {4a3+ 27b2 = 0} (mod p), which is a discriminant of the equation x3+ ax+ b = 0.

Thus U = A2 \ Z is always non-empty. Therefore Π is defined and bijective by Theorem 4.
Summarizing, we have the following:

THEOREM 5. For an elliptic curve, Pinkham’s map Π is defined in any characteristic.
Further, Π is bijective if and only if p = char(K) > 3.

COROLLARY 2. For any elliptic curve, if p = 0 or p > 3, then the moduli space

M1,1 = MN
1,1 is isomorphic to U/K× ⊂ P1

(4,6), U := {4a3 + 27b2 �= 0} (mod p). Further

the pointed elliptic curve C(a,b) corresponding to (a, b) ∈ U/K× ⊂ P1
(4,6) is given by

C(a,b) = Proj K[x, y, z]/〈F 〉 ⊂ P2
(2,3,1)
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where F := −y2 + x3 + axz4 + bz6 and the marked point is defined by {z = 0}.
4.2. g = 2 case. Let N be a numerical semigroup of genus 2. Then N is one of the

following two semigroups N1, N2:

N1 = N0 \ {1, 3} = 〈2, 5〉 , N2 = N0 \ {1, 2} = 〈3, 4, 5〉 .
N2 is the semigroup at the ordinary (non-Weierstrass) point. Now, let IN2 be the ideal of

the monomial curve of N2. Then IN2 = 〈x3−yz, x2y−z2, xz−y2〉where w(x) = 3, w(y) =
4, w(z) = 5. The degrees of the 3 generators of IN2 are (9, 10, 8). Thus if p > 7, Pinkham’s
map Π is bijective in case it is defined by Corollary 1.

Let us see what happens in the case p = 2, 3, 5, 7. Suppose p = 2. Then the miniversal
deformation of XN2 is given by

Φ : Spec K[x, y, z, a, b, c, d, e]/〈F 〉 → Spec (K[a, b, c, d, e]) = A5

where F = (F1, F2, F3), F1 := yz+ x3 + bxy + cx2 + dx, F2 := z2 + x2y + az+ by2 +
cxy+dy+ex2+bey+cex+de, F3 := y2+xz+ax+ey. Since the weights of the variables
(a, b, c, d, e) are (5, 2, 3, 6, 4), we have Φ− = Φ. The singular locus Z of Φ− is given by

Z = {a6 + a5bc + a4b2d + a3c3d + c4d3 + a4c2e + a3c5 + a2bc4d + ac5de + a2c4e2 +
abc5e2 + b2c4de2 + c6e3 = 0} so that U = A5 \ Z is non-empty.

Thus Pinkham’s map Π : U/K× → M
N2
1,1 is defined and surjective, and dim U/K× =

dim M
N2
1,1 = 4. Thus we cannot determine if Π is bijective or not by Theorem 4 or by counting

the dimensions since some monomials in F have an exponent divisible by 2. In this case, by
using the equation (1) and an explicit formula for F , we can show Π is injective by direct
computations. Since this computation is simple but too tedious, we omit the details.

Suppose p = 3. Then the miniversal deformation of XN2 is given by

Φ : Spec K[x, y, z, a, b, c, d, e, f ]/〈F 〉 → Spec K[a, b, c, d, e, f ] = A6

where F = (F1, F2, F3), F1 := −yz + x3 + bxz + cxy + dx2 + ex, F2 := −z2 + x2y −
az+ byz+ cy2 + dxy + ey − f x2 − bf z− cfy − df x − ef , F3 := −y2 + xz+ ax + fy.
The weights of the variables (a, b, c, d, e, f ) are (5, 1, 2, 3, 6, 4). Thus Φ− = Φ in this case.
The smooth locus U of Φ− is non-empty (we omit the equation of the singular locus since it

is lengthy) and Π : U/K× → M
N2
1,1 is surjective. Since dim U/K× = 5 and dim M

N2
1,1 = 4,

Π is not bijective in this case.
Suppose p > 3 or p = 0. In this case, the miniversal deformation of XN2 is given by

Φ : Spec K[x, y, z, a, b, c, d, e]/〈F 〉 → Spec K[a, b, c, d, e] = A5

where F = (F1, F2, F3), F1 = −yz+ x3 + bxy+ cx2+ dx, F2 = −z2 + x2y − az+ by2+
cxy + dy − ex2 − bey − cex − de, F3 = −y2 + xz + ax + ey (mod p). The weights of
the variables (a, b, c, d, e) are (5, 2, 3, 6, 4) so that Φ− = Φ. U is non-empty and thus Π
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is defined and surjective. Since no exponent of the monomials appearing in F is divisible by
p > 3, Π is bijective.

We analyze the N1 = 〈2, 5〉 case similarly, and we have the following:

THEOREM 6. For g = 2, we have two numerical semigroups N1 = 〈2, 5〉 and N2 =
〈3, 4, 5〉, where N2 is the semigroup at an ordinary point.

(i) Suppose N = N1. Then Π is defined in any characteristic and Π is bijective if and
only if p �= 2, 5.

(ii) Suppose N = N2. Then Π is defined in any characteristic and Π is bijective if and
only if p �= 3.

COROLLARY 3. Suppose g = 2.

(i) Suppose N = N1 and p �= 2, 5. Then the moduli space MN
2,1
∼= U/K× is a non-empty

Zariski open subset of P3
(4,6,8,10). The pointed algebraic curve C(a,b,c,d) corresponding to

(a, b, c, d) ∈ U/K× ⊂ P3
(4,6,8,10) is given by

C(a,b,c,d) = Proj K[x, y, z]/〈F 〉 ⊂ P2
(2,5,1)

where F := −y2+ x5+ ax3z4+ bx2z6+ cxz8+ dz10 (mod p). The marked point is defined
by z = 0.

(ii) Suppose N = N2 and p �= 3. Then the moduli space MN
2,1
∼= U/K× is a non-empty

Zariski open subset of P4
(5,2,3,6,4). The pointed algebraic curve C(a,b,c,d,e) corresponding to

(a, b, c, d, e) ∈ U/K× ⊂ P4
(5,2,3,6,4) is given by

C(a,b,c,d,e) = Proj K[x, y, z,w]/〈F 〉 ⊂ P3
(3,4,5,1)

where F = (F1, F2, F3),

F1 =−yz+ x3 + bxyw2 + cx2w3 + dxw6 ,

F2 =−z2 + x2y−azw5 + by2w2 + cxyw3 + dyw6−ex2w4−beyw6−cexw7−dew10 ,

F3 =−y2 + xz+ axw5 + eyw4 (mod p) .

The marked point is given by w = 0.

REMARK 4. (i) As Corollary 2 and 3 show, the utmost advantage of Pinkham’s the-

orem is that we can describe the moduli space MN
g,1 and the pointed algebraic curve corre-

sponding to a point on it explicitly by equations.

(ii) Since MN
g,1 is given as a locally closed subset in a weighted projective space, the

closure MN
g,1 in it gives a natural projectivization (compactification) of MN

g,1. The (singular)

pointed algebraic curve corresponding to a boundary point in MN
g,1\MN

g,1 gives a degeneration

of the family of pointed smooth projective curves of genus g with a given Weierstrass gap
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sequence, and the study of these degenerations would be an interesting research object in the
future.

4.3. An interesting example of genus 4. We finally refer to the case of the numerical
semigroup N(4)7 = 〈5, 6, 7, 8, 9〉 of genus 4. This is the numerical semigroup at an ordinary
point of a genus 4 curve. In this case, we have not yet succeeded in computing the equations

of the moduli space M
N(4)7
4,1 in characteristic 0. Indeed, as reported in [8], in the case of

the numerical semigroups with more than 4 generators, the computation of the miniversal
deformation space in characteristic 0 is very hard and seems almost impossible without a
super computer. The reason for this difficulty is probably the appearance of huge coefficients
in the Groebner bases computation.

The semigroup N(4)7 is the only one with 5 generators up to genus 4. We have succeeded

in computing the equations of M
N(4)7
4,1 in characteristic 7 by Theorem 4, which is an exciting

result for us.

THEOREM 7. Suppose p = char(K) = 7. Then for N = N(4)7, Π is defined and Π :
U/K× → MN

4,1 is a bijective morphism. The moduli space MN
4,1
∼= U/K× is a Zariski open

subset of a 10-dimensional variety V(J ) ⊂ P18
(9,8,7,2,3,4,5,10,7,6,7,6,8,6,5,4,5,4,3). The defining

equations J of the base space S− consist of 20 equations, and the defining equations F of the
total space χ− consist of 10 equations. We omit the precise form of the equations F, J since
they are too lengthy.

Using the defining equations J of MN
4,1, we might get a computational proof of the ratio-

nality of MN
4,1, which we will discuss elsewhere. Thus, as we have expected, in the positive

characteristic, we have much more possibility for successfully computing MN
g,1 in the case of

the numerical semigroups with more than 4 generators.
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