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Abstract. Let E(α) ⊂ Cm+1 and E(β) ⊂ Cn+1 be generalized pseudoellipsoids. Assume that the inequality
m < n holds. They are parametrized by N -tuples of positive integers α = (α1, . . . , αN ) and β = (β1, . . . , βN ).
(See introduction for the definition of a generalized pseudoellipsoid) Assume that there exists a proper holomorphic
mapping between them. In this article, two facts are proved. Firstly, under the assumptions of the existence of such
a mapping, certain nondegeneracy conditions of a submatrix of the Jacobian matrix and additional inequalities on
dimensions, the parameters (α1, . . . , αN ) and (β1, . . . , βN ) coincide; α1 = β1, . . . , αN = βN after re-ordering if
necessary. Secondly, such a proper holomorphic mapping is a linear embedding up to automorphisms of a source and
a target domains.

1. Introduction

Let E(m; m1, . . . ,mN ; α1, . . . , αN ) be a bounded domain in Cm+1 with real analytic
boundary defined by

E(m; m1, . . . ,mN ; α1, . . . , αN ) = {(z,w1, . . . , wN) ∈ C × Cm1 × · · · × CmN ;
|z|2 + ||w1||2α1 + · · · + ||wN ||2αN − 1 < 0} (1)

where α1, . . . , αN ∈ N, α1, . . . , αN ≥ 2, m1 +· · ·+mN = m and ||wj ||2αj = (|w1
j |2 +· · ·+

|wmj

j |2)αj for wj = (w1
j , . . . , w

mj

j ) ∈ Cmj . This is called a generalized pseudoellipsoid with

N blocks. See Remark 2 in §2 for the case of α1 = 1, namely there are some square norm
terms. We say that N is the number of the block of w. When we write (α) = (α1, . . . , αN )

and (m) = (m1, . . . ,mN), we denote this domain by E(m; (m); (α)). It is biholomorphically
equivalent to its unbounded representation

Ω(m; (m); (α)) = {(z,w1, . . . , wN) ∈ C × Cm1 × · · · × CmN ;
Im z > ||w1||2α1 + · · · + ||wN ||2αN } (2)
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via a mapping

Ψ1 : Ω(m; (m); (α)) � (z,w1, . . . , wN)

�→ (
i − z

i + z
,

21/α1w1

(i + z)1/α1
, . . . ,

21/αN wN

(i + z)1/αN
) ∈ E(m; (m); (α)) . (3)

Let E(n; (n); (β)) be another generalized pseudoellipsoid. We denote by Ω(n; (n); (β)) the
unbounded representation of E(n; (n); (β)) via the mapping Ψ2 defined in the same manner
as in (2) and (3). Let (F ,G) = (F ,G1, . . . ,GN) be a proper holomorphic mapping be-
tween E(m; (m); (α)) and E(n; (n); (β)). Here, F(z,w1, . . . , wN ) is a C-valued function
and Gj (z,w1, . . . , wN) is a mapping into the j -th block in E(n; (n); (β)). Then we have a
proper holomorphic mapping

(F,G) = Ψ −1
2 ◦ (F ,G) ◦ Ψ1 : Ω(m; (m); (α)) → Ω(n; (n); (β)) . (4)

We call the mapping (F,G) = (F,G1, . . . ,GN) the unbounded representation of (F ,G).

We need the Jacobian matrix of Gk = (G1
k, . . . ,G

nk

k )

⎛
⎜⎜⎜⎜⎜⎜⎝

∂G1
k

∂z

∂G1
k

∂w1
1

. . .
∂G1

k

∂w
mN

N
...

...
. . .

...

∂G
nk

k

∂z

∂G
nk

k

∂w1
1

. . .
∂G

nk

k

∂w
mN

N

⎞
⎟⎟⎟⎟⎟⎟⎠

(5)

to state the main theorem. This is a submatrix of the Jacobian matrix of (F,G) and we call
this matrix the k-th block row in the Jacobian matrix of (F,G). In the main theorem below,
we give a certain condition on this matrix. See Remark 1 (3) bellow about this condition. For
given domains D1 ⊂ CL and D2 ⊂ CM , we say that a mapping f : D1 → D2 is equivalent
to a mapping g : D1 → D2 if there exist automorphisms φ1 of D1 and φ2 of D2 such that
f = φ2 ◦ g ◦ φ1.

The following is the main theorem in this article.

MAIN THEOREM. Let E(m; (m); (α)) and E(n; (n); (β)) be generalized pseudoellip-
soids with N blocks. Suppose that 2 < mj, 3 < nj and that n − m < min{n1, . . . , nN }. Let
(F ,G1, . . . ,GN) : E(m; (m); (α)) → E(n; (n); (β)) be a proper holomorphic mapping that
is holomorphic up to the boundary. Assume that non-zero columns of any block row in the
Jacobian matrix of the unbounded representation of (F ,G) are linearly independent. Then
we have the following:

(1) There exists a permutation σ of {1, . . . , N} such that Gj |wσ(j)=0 = 0 for every j .

(2) If the permutation σ in (1) satisfies the inequality mσ(j) ≤ nj < 2mσ(j) − 1 for
every j , then ασ(j) = βj for all j and the proper holomorphic mapping (F ,G1, . . . ,GN) is

equivalent to (F̃ , G̃1, . . . , G̃N) of the form

F̃(z,w1, . . . , wN) = z , G̃j (z,w1, . . . , wN ) = (wσ(j), 0) , 1 ≤ j ≤ N . (6)
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REMARK 1. (1) The condition n − m < min{n1, . . . , nN } is needed to prove that
the preimage of the set of weakly pseudoconvex points is contained in the set of weakly
pseudoconvex points. This condition may be omitted.

(2) The condition mσ(j) ≤ nj < 2mσ(j) − 1 is needed to use a gap theorem for balls.
(3) About the assumption of the block row in the Jacobian matrix, we refer to the pa-

per by X. Huang [4]. First he extends a proper holomorphic mapping between balls to their
boundaries, and makes a composite function of the extended proper holomorphic mapping
and a defining function of a target ball. The function is a defining function of a source ball.
He applies CR vector fields and their complex conjugates one by one to the resulted defining
function at a reference point. Then he obtains some linearly independent vectors which de-
rived from once differentiation of the mapping. Those vectors are constituents of columns in
the Jacobian matrix of the mapping under consideration. The reason why he can obtain the
linearly independent vectors in this way is that all exponents in the defining function of a ball
are two. Since exponents in the defining function of a generalized pseudoellipsoid are not
necessarily two, we have no guarantee of obtaining the linearly independent vectors by once
differentiation of the mapping, in general. Therefore we need to assume the existence of the
linearly independent vectors in the Jacobian matrix.

The main theorem is a kind of a rigidity or a gap theorem. Typical gap theorem for
balls is stated as follows. Let F : Bn → BN be a proper holomorphic mapping which has
certain regularity up to the boundary. Then there exist k ∈ N with n ≤ k ≤ N , an interval

I ⊂ N and a proper holomorphic mapping G : Bn → Bk such that F is equivalent to
(G, 0, . . . , 0) provided that N ∈ I . If all αj = 1, then E(m; (m); (1)) is a ball, and this
case is well understood. For example, S. Webster [9] proved that if a proper holomorphic

mapping f : Bn → Bn+1, n > 2, extends to a C3 mapping up to the boundary, then it
is equivalent to a linear embedding. In the case of n = 2, J. Faran [2] proved that, under
the same assumption as in Webster’s theorem, such a mapping is classified into four cases.
J. Faran [3] also proved that any proper holomorphic mapping between Bn and BN, n < N ,
which is holomorphic up to the boundary is equivalent to the linear embedding given by
z �→ (z, 0) provided that 3 < N < 2n − 1. X. Huang [4] obtained the same conclusion

under the assumption that the mapping is only C2 up to the boundary. If the codimension
N − n is higher, more is known. X. Huang, S. Ji, and D. Xu [5] proved that if a proper

holomorphic mapping F between Bn and BN that is C3 up to the boundary is equivalent to
the mapping z �→ (Fθ (z), 0, . . . , 0) provided that 4 ≤ n ≤ N ≤ 3n − 4, where Fθ (z) =
(z1, . . . , zn−1, zn cos θ, z1zn sin θ, . . . , zn−1zn sin θ, z2

n sin θ) for some θ with 0 ≤ θ ≤ π/2.
The paper by X. Huang, S. Ji and W. Yin [6] is a good survey of this topics.

The rigidity theorem for ellipsoids is obtained by P. Ebenfelt and D. N. Son in [1]. They
studied the germs of holomorphic mappings at the origin between pseudoellipsoidal real hy-
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persurfaces in different dimensions

H :
{
(z,w) ∈ C × Cn : Im z =

n∑
j=1

|wj |2pj

}

→
{
(z,w) ∈ C × CN : Im z =

N∑
j=1

|wj |2qj

}
(7)

and gave a classification of local holomorphic mappings between them under the condition of
N < 2n − 1. As far as the author knows, this is the only one rigidity theorem for pseudoel-
lipsoids.

The organization of this article is the following. In §2, we pose some lemmas needed
later. Main purpose of this section is to study the behavior of a proper holomorphic mapping
on the weakly pseudoconvex set. In §3 and §4, we consider the generalized pseudoellipsoids
with one block. In §3, we give a relation between the exponents which appear in the defining
function. The ratio of the exponents α1 and β1 in the source and the target defining functions
respectively is an integer. In §4, we expand the components of the mapping and show that the
ratio α1/β1, which is an integer, is actually equal to one. In §5, we study the general case, that
is, generalized pseudoellipsoids with N blocks. In the last section, we obtain the general form
of the proper holomorphic mapping (F ,G1, . . . ,GN) between generalized pseudoellipsoids
and compare it with Kodama’s result [7]. Two conjectures are posed.

We use the following notation in this paper. Let w = (w1, . . . , wN) ∈ Cm1 ×
· · · × CmN , wj = (w1

j , . . . , w
mj

j ) and p = (p1, . . . , pN ) ∈ Nm1 × · · · × NmN , pj =
(p1

j , . . . , p
mj

j ), qj = (q1
j , . . . , q

mj

j ) ∈ Nmj , and α = (α1, . . . , αN) ∈ NN .

• The multi-index notation; (wj )
pj = (w1

j )
p1

j · · · (wmj

j )
p

mj
j and (w)p = (w1)

p1 ×
· · · × (wN)pN .

• The norms; ||wj ||2αj = (|w1
j |2 + · · · + |wmj

j |2)αj , |||w|||2α = ||w1||2α1 + · · · +
||wN ||2αN and |α| = α1 + · · · + αN .

• The total degree; For a monomial (wj )
pj × (w̄j )

qj , the total degree of wj and w̄j is
the sum |pj | + |qj |.

• The variety; 
j = {(z,w1, . . . , wN) ∈ C × Cm1 × · · · × CmN ; wj = 0}.
• Re z = x

• ∂Ω is the boundary of Ω .

We define an inner product < w, z >= w1z̄1 + · · · + wkz̄k for (w1, . . . , wk) ∈ Ck and

(z1, . . . , zk) ∈ Ck . When we need to distinguish the notation of source and target objects, we
add ‘tilde’ on the target objects.
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2. Image and preimage of weakly pseudoconvex set and expansions of mappings

For simplicity, we use the notation E(m; (m); (α)) (resp. E(n; (n); (β))) instead of
E(m; m1, . . . ,mN ; α1, . . . , αN ) (resp. E(n; n1, . . . , nN ; β1, . . . , βN)). In order to classify
the mapping (F ,G) up to biholomorphic mappings, we classify its unbounded representation
(F,G).

LEMMA 2.1. If the j -th block Gj in the unbounded representation (F,G) vanishes on
wk = 0, then Gj also vanishes there.

PROOF. We restrict Ψ2 ◦ (F,G)(z,w) = (F ,G) ◦ Ψ1(z,w) to wk = 0. Note that Ψ1

and Ψ2 have the forms (3). Pick up the j -th block components of Ψ2 and (F ,G) from the
restricted equation. Then we get the result. �

The Levi degenerate sets in ∂Ω(m; (m); (α)) and ∂Ω(n; (n); (β)) are of the forms⋃N
k=1(
k ∩ ∂Ω(m; (m); (α))) and

⋃N
i=1(
̃i ∩ ∂Ω(n; (n); (β))) respectively. For simplic-

ity, we use the notation 
k instead of 
k ∩ ∂Ω(m; (m); (α)).
Now we show that the preimage of the weakly pseudoconvex set is in the weakly pseu-

doconvex set. This is well known result for equi-dimensional case, but in general it does
not hold. Let ∂∗Ω(m; (m); (α)) and ∂∗Ω(n; (n); (β)) be the strictly pseudoconvex sets in
∂Ω(m; (m); (α)) and in ∂Ω(n; (n); (β)) respectively.

LEMMA 2.2. Assume that the inequality n−m < min{n1, . . . , nN } is fulfilled and that
non-zero columns of any block row in the Jacobian matrix of (F,G) are linearly independent.

Then, for any k (k = 1, . . . , N), there exists j (j = 1, . . . , N) such that (F,G)(
j ) ⊂ 
̃k .

PROOF. Let us denote

Z = {(z,w) ∈ ∂Ω(m; (m); (α)) | rank of the Jacobian matrix of (F,G)

is not maximal at (z,w)} . (8)

We divide the proof into three parts.

CLAIM 1. Assume that the preimage under (F,G) of the weakly pseudoconvex set is
not empty. Then it is in the weakly pseudoconvex set.

To prove this, we show that any strictly pseudoconvex point is mapped to a strictly
pseudoconvex point. Assume that there exists a strictly pseudoconvex point whose im-
age is a weakly pseudoconvex point. We may assume that, after reordering, there exists

p ∈ ∂∗Ω(m; (m); (α))\Z such that (F,G)(p) = q ∈ 
̃1 ∩ · · · ∩ 
̃k . The transposition of
the Jacobian matrix of (F,G) at p, which is denoted by (F ′,G′)t (p), can be expressed as

(F ′,G′)t (p) = R
(
0 Em+1

)
V , (9)
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where R and V are (m+1)× (m+1) and (n+1)× (n+1) nonsingular matrices respectively,
Em+1 is the (m + 1) × (m + 1) unit matrix. Let

V =
(

V1 V2

V3 V4

)
, (10)

where V1 is an (n − m) × 1 matrix and V4 is an (m + 1) × n matrix. Set η′ =
(ηn−m+1, . . . , ηn+1) ∈ Cm+1, η = (0, . . . , 0, η′) ∈ Cn+1, η′V3 = c0 and η′V4 =
(c1, . . . , cN ) for cj ∈ Cnj , j = 1, . . . , N . Define ξ as

ξ = η

(
0

Em+1

)
R−1 ∈ Cm+1 (11)

and give conditions on ξ to satisfy a system of equations:
{

< grad(−Im F + |||G|||2β), ξ̄ > (p) = 0 ,

ck+1 = 0, . . . , cN = 0 .
(12)

Here, differentials in gradient are with respect to the holomorphic differentials

∂/∂z, ∂/∂w1
1, . . . , ∂/∂w

mN

N . Then the vector ξ ∈ Cm+1 satisfies 1 + nk+1 + · · · + nN equa-
tions. By the assumption, we have n − m < min{n1, . . . , nN } < n1 + · · · + nk , which means
that 1 + nk+1 + · · · + nN = 1 + n − (n1 + · · · + nk) < m + 1. Therefore the system of
equations (12) has non trivial solutions. Since ∂Ω(m; (m); (α)) is strictly pseudoconvex at p,

the Levi form of −Im z + ∑
j=1,...,N ||wj ||2αj at p in the ξ -direction is strictly positive. In

the following, we use the notation

Lj(p) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂2||wj ||2αj

∂w1
j ∂w̄1

j

. . .
∂2||wj ||2αj

∂w1
j ∂w̄

mj

j
...

. . .
...

∂2||wj ||2αj

∂w
mj

j ∂w̄1
j

. . .
∂2||wj ||2αj

∂w
mj

j ∂w̄
mj

j

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(p) . (13)

This is the notation for the source Levi form. When we treat the target Levi form, we use
L̃j . In this case, we change the exponents αj to βj , mj to nj and wλ

j to w̃λ
j . Note that

−Im F + |||G|||2β is a defining function of the source domain and that, therefore, the Levi
form of it at p in the ξ -direction must be positive. Since we have

ξ(F ′,G′)t (p) = (η′V3, η
′V4) = (c0, c1, . . . , ck, 0, . . . , 0) , (14)
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the Levi form of −Im F + |||G|||2β at p in the ξ -direction is calculated as

ξ((F ′,G′)(p))t

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

. . .

0
L̃k+1(q)

. . .

L̃N (q)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(F ′,G′)(p)ξ̄ t ≡ 0 . (15)

This contradicts the positivity. This proves Claim 1.
Next, we shall show that the image of 
j is in only one 
̃k , not in two or more 
̃k’s.

CLAIM 2. There does not exist j such that (F,G)(
j ) ⊂ 
̃k1 ∪ · · · ∪ 
̃k� ,
(F,G)(
j ) ∩ 
̃k1 �= ∅, . . . , (F,G)(
j ) ∩ 
̃k� �= ∅ for some � ≥ 2.

We show the case of � = 2. The case of � ≥ 3 is done by the same argument. Assume that

there exists j such that (F,G)(
j ) ⊂ 
̃k1 ∪ 
̃k2 , (F,G)(
j ) ∩ 
̃k1 �= ∅ and (F,G)(
j ) ∩

̃k2 �= ∅. Denote by 
j,(k1) and 
j,(k2) the subsets of 
j such that

(F,G)(
j,(k1)) ⊂ 
̃k1, (F,G)(
j,(k2)) ⊂ 
̃k2 . (16)

Assume that Gk2 |
j �≡ 0. Then it follows from Gk2 |
j,(k2) ≡ 0 that the inclusions


j,(k2) ⊂ Zj(G
1
k2

, . . . ,G
nk2
k2

) � 
j (17)

hold. Here, Zj(G
1
k2

, . . . ,G
nk2
k2

) is the set of common zeros of G1
k2

, . . . ,G
nk2
k2

in 
j . These

inclusions imply the following inequalities:

dimR
j,(k2) ≤ dimRZj(G
1
k2

, . . . ,G
nk2
k2

)

< dimR
j (= max{dimR
j,(k1), dimR
j,(k2)}) . (18)

Thus we have

dimR
j,(k2) < dimR
j = dimR
j,(k1) (19)

and this implies that 
j,(k2) is nowhere dense in 
j . Since 
j,(k1) is closed in 
j , we have
equalities


j = 
j\
j,(k2) = 
j,(k1) = 
j,(k1) . (20)

Therefore we conclude that 
j = 
j,(k1), which implies (F,G)(
j ) ⊂ 
̃k1 . This completes
the proof of Claim 2.

Finally, we shall show that the preimage of any weakly pseudoconvex set is not empty.
This may complete the proof of Lemma 2.2.
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CLAIM 3. There does not exist k such that (F,G)(
1 ∪ · · · ∪ 
N) ∩ 
̃k = ∅.

Assume that there exists such k. Then we may assume that

(F,G)(
1 ∪ · · · ∪ 
N) ⊂ 
̃1 ∪ · · · ∪ 
̃� , (21)

(F,G)(
1 ∪ · · · ∪ 
N) ∩ (
̃�+1 ∪ · · · ∪ 
̃N) = ∅ . (22)

This means that there exist a point Q = (x, 0, . . . , 0) ∈ ∂Ω(m; (m); (α)) and a point Q̃ =
(z̃, 0, . . . , 0, w̃�+1, . . . , w̃N ) ∈ ∂Ω(n; (n); (β)) such that (F,G)(Q) = Q̃. Let ξ be a CR

vector at Q. The Levi form of −Im F + |||G|||2β at Q in the ξ -direction is calculated as

ξ((F ′,G′)(Q))t

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

. . .

0
L̃�+1(Q̃)

. . .

L̃N (Q̃)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(F ′,G′)(Q)ξ
t
. (23)

This is essentially the same as the Levi form of

−Im z̃ +
N∑

j=�+1

||w̃j ||2βj (24)

at (z̃, w̃�+1, . . . , w̃N ). By assumption, for any k (k = 1, . . . , N), non-zero columns in (5) are
linearly independent. Thus, for any ξ , there exists at least one non-zero component from the
(n1 + · · · + n� + 1)-st component to the (n1 + · · · + nN)-th component in ξ((F ′,G′)(Q))t ∈
Cn+1. Therefore the Levi form (23) is positive. This is a contradiction. Therefore we conclude
that there do not exist Q and Q̃, which proves Claim 3, and therefore Lemma 2.2 is proved.

�

The next lemma shows that the index j appearing in Lemma 2.2 is unique.

LEMMA 2.3. Let (F,G1, . . . ,GN) : Ω(m; (m); (α)) → Ω(n; (n); (β)) be a
proper holomorphic mapping. Then there exists a permutation σ of {1, . . . , N} such that
Gk|wσ(k)=0 = 0 for every k = 1, . . . , N .

PROOF. We denote by Prop(N − μ,N − ν) a following proper holomorphic mapping:

(F,G1, . . . ,GN)|
j1 ∩···∩
jμ :
{

Im z >
∑

1≤j≤N
j �=j1,...,jμ

||wj ||2αj

}

→
{

Im z >
∑

1≤k≤N
k �=k1,...,kν

||wk||2βk

}
. (25)
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By Lemma 2.2, if we have Prop(N −μ,N −ν), then, for any k (1 ≤ k ≤ N, k �= k1, . . . , kν),
there exists j (1 ≤ j ≤ N, j �= j1, . . . , jμ) such that

(F,G1, . . . ,GN)|
j1 ∩···∩
jμ (
j ) ⊂ 
̃k . (26)

We denote by J (N − μ,N − ν) this correspondence k �→ j . First of all, as proved in
Lemma 2.2, for any k, there exists j such that (F,G)(
j ) ⊂ 
̃k . Thus we have J (N,N).
We shall assert that J (N,N) is injective; and hence, it is a permutation of indices. To this end,
suppose that it is not injective. Then there would exist k1 and k2 such that J (N,N)(k1) =
J (N,N)(k2)(= j1) and k1 �= k2. Then there exists a proper holomorphic mapping Prop(N −
1, N − 2):

(F,G1, . . . ,GN)|
j1 :
{

Im z >
∑

1≤j≤N
j �=j1

||wj ||2αj

}
→

{
Im z >

∑
1≤k≤N
k �=k1,k2

||wk||2βk

}
. (27)

By applying the same argument to this mapping, there exists a correspondence J (N − 1, N −
2). If it is injective, we have Prop(N − 2, N − 3) and if it is not injective, we have Prop(N −
2, N − 4). Repeat this process. Then finally we obtain Prop(N − N0, 0) for some N0, which
is a contradiction; proving our assertion. �

On the boundary of Ω(m; (m); (α)), we employ the usual coordinates (x,w) ∈ R×Cm,

that is, we identify naturally (x,w) with (x + i|||w|||2α,w) throughout this paper. Using this
coordinate, we define CR vector fields Lλ

j by

Lλ
j = ∂

∂wλ
j

+ iαj ||wj ||2(αj−1)w̄λ
j

∂

∂x
, j = 1, . . . , N , λ = 1, . . . ,mj . (28)

Extend F and G holomorphically past the boundary and we use the same symbol (F,G) for
the extended mapping. Expand the mapping (F,G) as

F =
∑

|p|+q≥0

ap,q(w)pzq , (29)

Gλ
j =

∑
|p|+q≥0

bλ
j ;p,q(w)pzq , j = 1, . . . , N , λ = 1, . . . , nj . (30)

We obtain the CR mapping by restricting them to the boundary and their expansions are the
following

F =
∑

|p|+q≥0

ap,q(w)p(x + i|||w|||2α)q , (31)

Gλ
j =

∑
|p|+q≥0

bλ
j ;p,q(w)p(x + i|||w|||2α)q , j = 1, . . . , N , λ = 1, . . . , nj . (32)

We use the notation (F,G) as the extended holomorphic mapping and also as the CR mapping
induced on the boundary.
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LEMMA 2.4. We have an expansion

F(x,w) =
∑
q≥0

aq(x + i|||w|||2α)q , aq ∈ R . (33)

PROOF. By making use of Lemma 2.3, we have (F,G)(
1∩· · ·∩
N) = 
̃1∩· · ·∩
̃N .

This means that G(x, 0) = 0. We substitute (31) and (32) into Im F = |||G|||2β and apply

CR vector fields to it. Then L
λk

jk
. . . L

λ1
j1

|||G|||2β is a summation of the terms which contain

L
μk

ik
. . . L

μ�+1
i�+1

Gλ
j · L

μ�

i�
. . . L

μ1
i1

G
λ

j for suitable indices j, λ, �, and i1, . . . , ik, μ1, . . . , μk . If

k = � (resp. � = 0), then L
μk

ik
. . . L

μ�+1
i�+1

Gλ
j (resp. L

μ�

i�
. . . L

μ1
i1

G
λ

j ) is understood to be

Gλ
j (resp. G

λ

j ). The terms with � = 0 vanish at (x, 0). The terms with � �= 0 contain

L
μ�

i�
. . . L

μ1
i1

G
λ

j and we show that they vanish at (x, 0) as follows. Since we have

L
μ�

i�
. . . L

μ1
i1

= ∂�

∂w
μ�

i�
. . . ∂w

μ1
i1

+ w̄
μ1
i1

P1 + · · · + w̄
μ�

i�
P�, (34)

where P1, . . . , P� are differential operators with order less than or equal to �, we calculate

L
μ�

i�
. . . L

μ1
i1

G
λ

j (x, 0) as follows.
(
L

μ�

i�
. . . L

μ1
i1

G
λ

j

)
(x, 0)

=
(

∂�

∂w
μ�

i�
. . . ∂w

μ1
i1

G
λ

j

)
(x, 0)

=
( ∑

|p|+q≥0

bλ
j ;p,q(w)p

∂�

∂w
μ�

i�
. . . ∂w

μ1
i1

(x − i|||w|||2α)q
)

(x, 0)

=
∑
q≥0

b̄λ
j ;0,q

(
∂�

∂w
μ�

i�
. . . ∂w

μ1
i1

(x − i|||w|||2α)q
)

(x, 0)

= 0 . (35)

Now we have
(
L

λk

jk
. . . L

λ1
j1

|||G|||2β
)
(x, 0) = 0. Therefore we see that

0 =
(
L

λk

jk
. . . L

λ1
j1

|||G|||2β
)
(x, 0)

=
(
L

λk

jk
. . . L

λ1
j1

Im F
)
(x, 0)

= 1

2i

(
L

λk

jk
. . . L

λ1
j1

F
)
(x, 0) .

= 1

2i

∂kF

∂w
λk

jk
. . . ∂w

λ1
j1

(x, 0) . (36)
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Here, in order to derive the third equality, we have used the same calculation as in (35). This
implies that ap,q = 0 for |p| > 0. We replace a0,q by aq . The fact that F(x, 0) is real implies
that aq ∈ R. �

REMARK 2. If there are some square norm terms in |||w|||2α, say α1 = 1 for instance,
then this proof does not work. If α1 = 1, then Lemma 2.3 holds for σ(i) = 2, . . . , N , not
σ(i) = 1, . . . , N . Therefore we do not have G(x, 0) = 0.

3. Relation between the exponents α1 and β1

From here to the next section, we assume that N = 1, namely, the number of the block
of w is one.

LEMMA 3.1. If α1 > β1, then there exists M ∈ N such that α1 = Mβ1.

PROOF. Suppose fails. Then there exists M0 ∈ N such that M0β1 < α1 < (M0 +1)β1.
First we claim that the following equality holds

(L
λk

1 · · ·Lλ1
1 )G1

1(x, 0) = · · · = (L
λk

1 · · · Lλ1
1 )G

n1
1 (x, 0) = 0 (37)

for any k = 1, . . . ,M0 and λ1, . . . , λk ∈ {1, . . . ,m1}. This is proved by induction on k as
follows. From Lemma 2.4, we obtain the following equation:

(L
λk

1 )β1 · · · (Lλ1
1 )β1F =

kβ1∑
�=1

∑
q≥�

(non-zero constant)||w1||2(�α1−kβ1)

× (w̄
λ1
1 )β1 · · · (w̄λk

1 )β1(x + i||w1||2α1)q−� . (38)

The lowest degree of w̄1 in the equation (38) is �α1, which is greater than M0β1. Therefore

by applying (L
λk

1 )β1 · · · (Lλ1
1 )β1 to this equation and by evaluating at (x, 0), we obtain

(L
λk

1 )β1 · · · (Lλ1
1 )β1(L

λk

1 )β1 · · · (Lλ1
1 )β1F(x, 0) = 0 (39)

for k = 1, . . . ,M0. Applying (L
λ1
1 )β1(L

λ1
1 )β1 to the equation Im F = ||G1||2β1 , we get the

relation

(L
λ1
1 )β1(L

λ1
1 )β1F

= (positive constant)

( n1∑
λ=1

|Lλ1
1 Gλ

1|2
)β1

+ {the terms containing ||G1||} . (40)

By evaluating at (x, 0), this together with (39) and G1(x, 0) = 0, we obtain (37) for k = 1.
Now we assume that (37) holds for k = k0. We apply CR vectors and their complex conjugate

(L
λk0+1

1 )β1 · · · (Lλ1
1 )β1(L

λk0+1

1 )β1 · · · (Lλ1
1 )β1 to Im F = ||G1||2β1 and evaluate at (x, 0). Then

we get

0 = (L
λk0+1

1 )β1 · · · (Lλ1
1 )β1(L

λk0+1

1 )β1 · · · (Lλ1
1 )β1F(x, 0)
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= (positive constant)

( n1∑
λ=1

|Lλk0+1

1 · · ·Lλ1
1 Gλ

1(x, 0)|2
)β1

, (41)

which implies (37) for k = k0 + 1. This process continues up to k = M0. This proves (37).
By (37), Gλ

1 can be expanded as

Gλ
1 =

∑
|p|≥M0+1

q≥0

bλ
1;p,q(w1)

p(x + i||w1||2α1)q . (42)

Substitute (33) and (42) into Im F = ||G1||2β1 and pick up the ||w1||2α1 terms. Then we
obtain the following equation

∑
q≥1

aqqxq−1||w1||2α1 = 0 , (43)

which implies F = a0. This is a contradiction. �

LEMMA 3.2. Assume that α1 ≤ β1. Then we have α1 = β1.

PROOF. Assume that the equality does not hold. Substitute (32) and (33) into Im F =
||G1||2β1 and pick up the terms without w1 or w̄1. Then we have

0 =
∣∣∣∣
∑
q≥0

b1
1;0,qx

q

∣∣∣∣
2

+ · · · +
∣∣∣∣
∑
q≥0

b
n1
1;0,qx

q

∣∣∣∣
2

, (44)

which implies bλ
1;0,q

= 0 for λ = 1, . . . , n1 and q ≥ 0. Plug these into Im F = ||G1||2β1

and pick up the terms of total degree 2α1 in w1 and w̄1. Noting α1 < β1, we have aq = 0 for
q ≥ 1. This implies F = a0; a contradiction. Now we have α1 = β1. �

From Lemmas 3.1 and 3.2, in any case, there exists M ∈ N such that α1 = Mβ1.

4. Expansions of F and G (one block case)

In this section, we still continue to assume N = 1. We shall obtain expansions of F and
G1 for α1 = Mβ1 and conclude that M = 1 if 3 < n1 < 2m1 − 1.

Substituting (32) and (33) into Im F = ||G1||2β1 and comparing the terms of total degree
0, 2β1, 4β1, . . . , 2(M − 1)β1 of w1 and w̄1 in the both sides, we obtain the expansion

Gλ
1 =

∑
|p|≥M
q≥0

bλ
1;p,q(w1)

p(x + i||w1||2Mβ1)q . (45)

LEMMA 4.1. Assume that a1 = a2 = · · · = a2(k−1)β1+1 = 0 in (33). Then we have
expansions

F = a0 +
∑

q≥2kβ1+1

aq(x + i||w1||2Mβ1)q, (46)
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Gλ
1 =

∑
|p|=M
q≥k

bλ
1;p,q(w1)

p(x + i||w1||2Mβ1)q

+
∑

|p|≥M+1
q≥0

bλ
1;p,q(w1)

p(x + i||w1||2Mβ1)q . (47)

PROOF. We use the expansions (33) and (45). First we assume that a1 = 0. Pick up the

terms of total degree 2Mβ1 of w1 and w̄1 and degree zero in x from Im F = ||G1||2β1 . Then

we have bλ
1;p,0 = 0 for |p| = M . Substituting them into Im F = ||G1||2β1 and comparing the

terms of total degree 2Mβ1 of w1 and w̄1, we obtain aq = 0 for q = 2, . . . , 2β1. This proves
the case of k = 1. Suppose that lemma holds for k = k0. Assume that a1 = a2 = · · · =
a2k0β1+1 = 0. We substitute (46) and (47) with k = k0 into Im F = ||G1||2β1 and pick up the
terms of w1 and w̄1 with total degree 2Mβ1. Then we obtain the equation∑

q≥2k0β1+2

aqqxq−1||w1||2Mβ1

=
(∣∣∣∣

∑
|p|=M
q≥k0

b1
1;p,q(w1)

pxq

∣∣∣∣
2

+ · · · +
∣∣∣∣

∑
|p|=M
q≥k0

b
n1
1;p,q

(w1)
pxq

∣∣∣∣
2)β1

, (48)

which implies that bλ
1;p,k0

= 0 for |p| = M and λ = 1, . . . , n1. Substituting them into

Im F = ||G1||2β1 and comparing the terms of w1 and w̄1 with total degree 2Mβ1, we obtain
aq = 0 for q = 2k0β1 + 2, . . . , 2(k0 + 1)β1. This completes the proof. �

From this lemma, we assume that there exists k such that a1 = a2 = · · · =
a2(k−1)β1+1 = 0 and a2kβ1+1 �= 0. Then we have expansions (46) and (47). The coefficients

of |w1
1|2Mβ1x2kβ1, . . . , |wm1

1 |2Mβ1x2kβ1 and (wi
1w̄

j
1 )Mβ1x2kβ1 for i �= j in Im F = ||G1||2β1

satisfy

(2kβ1 + 1)a2kβ1+1 = (|b1
1;(M,0,...,0),k|2 + · · · + |bn1

1;(M,0,...,0),k
|2)β1

...

= (|b1
1;(0,...,0,M),k|2 + · · · + |bn1

1;(0,...,0,M),k|2
)β1 , (49)

and

0 = b1
1;(0,...,M,...,0),kb̄

1
1;(0,...,M,...,0),k + · · · + b

n1
1;(0,...,M,...,0),k

b̄
n1
1;(0,...,M,...,0),k

. (50)

Here, in the lower indices of bλ
1;(0,...,M,...,0),k

(resp. b̄λ
1;(0,...,M,...,0),k

) in (50), M appears in the

i-th (resp. j -th) component and the other components are zero. Therefore the vectors

Uj =
(

b1
1;(0,...,M,...,0),k

{(2kβ1 + 1)a2kβ1+1}1/2β1
, . . . ,

b
n1
1;(0,...,M,...,0),k

{(2kβ1 + 1)a2kβ1+1}1/2β1

)
, (51)
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for j = 1, . . . ,m1, satisfy < Ui,Uj >= δ
j

i . Here, in the lower indices (0, . . . ,M, . . . , 0)

appearing in Uj , M appears in the j -th component. Therefore we can find vectors
Um1+1, . . . , Un1 such that the matrix

U =
⎛
⎜⎝

U1
...

Un1

⎞
⎟⎠ (52)

is unitary.

Define (F ∗,G1∗
1 , . . . ,G

n1∗
1 ) as

(F ∗,G1∗
1 , . . . ,G

n1∗
1 )

= (F,G1
1, . . . ,G

n1
1 )

⎛
⎜⎜⎝

1

(2kβ1 + 1)a2kβ1+1
0

0
1

{(2kβ1 + 1)a2kβ1+1}1/2β1
U

t

⎞
⎟⎟⎠ . (53)

Then the expansions of F ∗,G1∗
1 , . . . ,G

n1∗
1 are of the forms

F ∗ = a0

(2kβ1 + 1)a2kβ1+1
+ 1

2kβ1 + 1
(x + i||w1||2Mβ1)2kβ1+1

+
∑

q≥2kβ1+2

a∗
q(x + i||w1||2Mβ1)q , (54)

Gλ∗
1 = (wλ

1 )M(x + i||w1||2Mβ1)k +
∑

|p|=M
one of pj =M

q≥k+1

bλ∗
1;p,q(w1)

p(x + i||w1||2Mβ1)q

+
∑

|p|=M
p1,...,pm1 �=M

q≥k

bλ∗
1;p,q(w1)

p(x + i||w1||2Mβ1)q

+
∑

|p|≥M+1
q≥0

bλ∗
1;p,q(w1)

p(x + i||w1||2Mβ1)q, λ = 1, . . . ,m1, (55)

Gλ∗
1 =

∑
|p|=M

one of pj =M

q≥k+1

bλ∗
1;p,q(w1)

p(x + i||w1||2Mβ1)q

+
∑

|p|=M
p1,...,pm1 �=M

q≥k

bλ∗
1;p,q(w1)

p(x + i||w1||2Mβ1)q
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+
∑

|p|≥M+1
q≥0

bλ∗
1;p,q(w1)

p(x + i||w1||2Mβ1)q , λ = m1 + 1, . . . , n1 . (56)

If M = 1, we understand that the third (resp. second) term on the right hand side in (55) (resp.

in (56)) is vacuum. Next steps are to simplify the coefficients of F ∗,G1∗
1 , . . . ,G

n1∗
1 and to

determine M . In the following, we drop ∗ in (54), (55) and (56).

LEMMA 4.2. We have k = 0, α1 = β1. The mapping (F,G1) is equivalent to
(z,w1, 0).

PROOF. Substitute the expansions (54), (55) and (56) into Im F = ||G1||2β1 and
put x = 0. The minimal value of the total degree of w1 and w̄1 on the left hand side is
2Mβ1(2kβ1 + 1), which comes from

Im
1

2kβ1 + 1
(x + i||w1||2Mβ1)2kβ1+1 . (57)

Therefore the terms of total degrees 2β1(M + 1), 2β1(M + 2), . . . , 2β1(M + 2Mβ1k − 1) of
w1 and w̄1 on the right hand side, which come from

∑
|p|≥M+1

q≥0

bλ
1;p,q(w1)

p(i||w1||2Mβ1)q , (58)

are zero. Hence, the ranges of the indices (p, q) in the summation (58) become

|p| ≥ M + 2Mβ1k , q ≥ 0 , (59)

|p| = M + 2Mβ1(k − 1), . . . ,M + 2Mβ1k − 1, q ≥ 1 , (60)

|p| = M + 2Mβ1(k − 2), . . . ,M + 2Mβ1(k − 1) − 1 , q ≥ 2 , (61)

...

|p| = M + 2Mβ1 · 2, . . . ,M + 2Mβ1 · 3 − 1 , q ≥ k − 2 , (62)

|p| = M + 2Mβ1, . . . ,M + 2Mβ1 · 2 − 1 , q ≥ k − 1 (63)

|p| = M + 1, . . . ,M + 2Mβ1 − 1 , q ≥ k . (64)

Assume that k �= 0. Plug these indices into (58) and restrict Im F = ||G1||2β1 to x = 0.
Collect the terms of total degree 2Mβ1(2kβ1 + 1) of w1 and w̄1 in the restricted equation.
Among these terms, we compare the degree of ||w1||. Since the degree of ||w1|| on the left

hand side is 2Mβ1(2kβ1 + 1), the coefficients of ||w1||0, ||w1||4Mβ2
1 , . . . , ||w1||4Mβ2

1 (k−1) are
zero. Therefore in the summation (58) with indices from (59) to (64), the terms with indices

(|p|, q) = (M + 2Mβ1k, 0), (M + 2Mβ1(k − 1), 1), (M + 2Mβ1(k − 2), 2), . . . ,

(M + 2Mβ1 · 2, k − 2), (M + 2Mβ1, k − 1) (65)
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do not appear. Consequently, the indices in (58) become

|p| ≥ M + 2Mβ1k + 1 , q ≥ 0 , (66)

|p| = M + 2Mβ1(k − 1) + 1, . . . ,M + 2Mβ1k , q ≥ 1 , (67)

|p| = M + 2Mβ1(k − 2) + 1, . . . ,M + 2Mβ1(k − 1) , q ≥ 2 , (68)

...

|p| = M + 2Mβ1 · 2 + 1, . . . ,M + 2Mβ1 · 3 , q ≥ k − 2 , (69)

|p| = M + 2Mβ1 + 1, . . . ,M + 2Mβ1 · 2 , q ≥ k − 1 , (70)

|p| = M + 1, . . . ,M + 2Mβ1 , q ≥ k . (71)

Plug these into (58) and pick up the terms of total degree 2Mβ1(2kβ1 + 1) of w1 and w̄1 from

the equation Im F = ||G1||2β1 which is restricted to x = 0. Divide them by ||w1||4Mβ2
1k and

take β1-th root. Then we get

Im
1

(2kβ1 + 1)1/β1
||w1||2Mi(2β1k+1)/β1

=
∣∣∣∣(w1

1)
M +

∑
|p|=M

p1,...,pm1 �=M

b1
1;p,k(w1)

p

∣∣∣∣
2

+ . . .

+
∣∣∣∣(wm1

1 )M +
∑

|p|=M
p1,...,pm1 �=M

b
m1
1;p,k

(w1)
p

∣∣∣∣
2

+
∣∣∣∣

∑
|p|=M

p1,...,pm1 �=M

b
m1+1
1;p,k (w1)

p

∣∣∣∣
2

+ · · · +
∣∣∣∣

∑
|p|=M

p1,...,pm1 �=M

b
n1
1;p,k(w1)

p

∣∣∣∣
2

. (72)

Comparing the coefficients of (w1
1)

M, . . . , (w
m1
1 )M , we conclude that the summations

∑
|p|=M

p1,...,pm1 �=M

b1
1;p,k(w1)

p, . . . ,
∑

|p|=M
p1,...,pm1 �=M

b
m1
1;p,k

(w1)
p (73)

do not appear and

1

(2kβ1 + 1)1/β1
= 1 , (74)
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namely, we have k = 0. This means that the mapping

ΦM(w1) =
(

(w1
1)

M, . . . , (w
m1
1 )M,

∑
|p|=M

p1,...,pm1 �=M

b
m1+1
1;p,0 (w1)

p, . . . ,

∑
|p|=M

p1,...,pm1 �=M

b
n1
1;p,0(w1)

p

)
(75)

is a proper holomorphic mapping ΦM : Bm1 → Bn1 of homogeneous degree M . By the gap
theorem for balls with 3 < nj < 2mj − 1, we can find Φm1 ∈ Aut(Bm1) and Φn1 ∈ Aut(Bn1)

such that Φn1 ◦ (w1, 0) ◦ Φm1(w1) = ΦM(w1). Therefore the proper holomorphic mapping
ΦM : Bm1 → Bn1 is injective and its Jacobian matrix, denoted by MΦM (w1), has maximal
rank at every point w1 ∈ Bm1 , especially, we have rank MΦM (0) = m1. By (75), the Jacobian
matrix MΦM (w1) can be written in the form

MΦM (w1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M(w1
1)

M−1 0 . . . 0
0 M(w2

1)
M−1 . . . 0

...
...

. . .
...

0 0 . . . M(w
m1
1 )M−1

∗ ∗ . . . ∗
...

...
. . .

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (76)

Note that the components from the (m1 + 1)-st row to the n1-th row are not necessarily zero.
Assume that M > 1. Then we have the following inequalities:

rank MΦM (0) = rank

⎛
⎜⎜⎜⎜⎜⎜⎝

0 . . . 0
...

. . .
...

0 . . . 0
∗ . . . ∗
...

. . .
...

⎞
⎟⎟⎟⎟⎟⎟⎠

≤ n1 − m1 < (2m1 − 1) − m1

= m1 − 1 . (77)

This is a contradiction. Therefore we have M = 1, which means that α1 = β1. From now on,
we use α1 instead of β1. Next we shall show that F is equivalent to z and G1 = (w1, 0). Note
that since M = 1, the third (resp. second) term on the right hand side in (55) (resp. in (56)) is
vacuum. Let

gλ
1;1(x,w1) = wλ

1 +
∑
|p|=1
q≥1

bλ
1;p,q(w1)

pxq , λ = 1, . . . ,m1 , (78)
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gλ
1;1(x,w1) =

∑
|p|=1
q≥1

bλ
1;p,q(w1)

pxq , λ = m1 + 1, . . . , n1 , (79)

gλ
1;�(x,w1) =

∑
|p|=�
q≥0

bλ
1;p,q(w1)

pxq , λ = 1, . . . , n1, � ≥ 2 , (80)

and

Gλ
1(x,w1) =

∑
�≥1

gλ
1;�(x + i||w1||2α1, w1) , λ = 1, . . . , n1 . (81)

Denote by g̃λ
1;� = gλ

1;�(0, w1). In our following argument, we pick up the terms with certain

degree from Im F(x + i||w1||2α1, w1) = ||G1(x + i||w1||2α1, w1)||2α1 . We shall omit the
variables if there is no confusion. The terms of total degree 2α1 of w1 and w̄1 in Im F =
||G1||2α1 satisfy

||w1||2α1 = (|g1
1;1(x,w1)|2 + · · · + |gn1

1;1(x,w1)|2
)α1 . (82)

Differentiate it by x once and twice. Then we have

0 = Re

(
g1

1;1(x,w1)
∑
|p|=1
q≥1

b1
1;p,q

(w1)p
(

q

1

)
xq−1 + · · ·

+ gn1
1;1(x,w1)

∑
|p|=1
q≥1

b
n1
1;p,q(w1)p

(
q

1

)
xq−1

)
(83)

and

0 =
∣∣∣∣
∑
|p|=1
q≥1

b1
1;p,q(w1)

p

(
q

1

)
xq−1

∣∣∣∣
2

+ · · · +
∣∣∣∣
∑
|p|=1
q≥1

b
n1
1;p,q(w1)

p

(
q

1

)
xq−1

∣∣∣∣
2

+ 2Re

(
g1

1;1
∑
|p|=1
q≥2

b1
1;p,q(w1)p

(
q

2

)
xq−2 + · · ·

+ g
n1
1;1

∑
|p|=1
q≥2

b
n1
1;p,q(w1)p

(
q

2

)
xq−2

)
. (84)

Since the total degrees of w1 and w̄1 on the left hand side of Im F = ||G1||2α1 are
2α1, 6α1, . . . , the terms of total degrees 2α1 + 1, . . . , 6α1 − 1 of them on the right hand
side must be zero. First, we compare the total degrees of w1 and w̄1 from 2α1 + 1 to 4α1 − 1.



RIGIDITY THEOREM FOR PROPER MAPPINGS 407

The total degree 2α1 + 1 terms satisfy
(|g1

1;1|2 + · · · + |gn1
1;1|2

)α1−1Re (g1
1;1ḡ

1
1;2 + · · · + gn1

1;1ḡ
n1
1;2) = 0 , (85)

which means that g1
1;1ḡ

1
1;2 + · · · + gn1

1;1ḡ
n1
1;2 = 0. The total degree 2α1 + 2 terms satisfy

(|g1
1;1|2 + · · · + |gn1

1;1|2
)α1−1

× {|g1
1;2|2 + · · · + |gn1

1;2|2 + 2Re (g1
1;1ḡ

1
1;3 + · · · + gn1

1;1ḡ
n1
1;3)

} = 0 , (86)

which implies gλ
1;2 = 0, λ = 1, . . . , n1, and g1

1;1ḡ
1
1;3 +· · ·+gn1

1;1ḡ
n1
1;3 = 0. Repeat this process

up to total degree 4α1 − 1. By induction (we omit the proof), we obtain

g1
1;� = · · · = gn1

1;� = 0 , � = 2, . . . , α1 , (87)

g1
1;1ḡ

1
1;� + · · · + g

n1
1;1ḡ

n1
1;� = 0 , � = 2, 3, . . . , 2α1 . (88)

The total degree 4α1 terms in Im F = ||G1||2α1 satisfy
(|g1

1;1|2 + · · · + |gn1
1;1|2

)α1−1

×
{
|g1

1;α1+1|2 + · · · + |gn1
1;α1+1|2 + 2Re (g1

1;1ḡ
1
1;2α1+1 + · · · + gn1

1;1ḡ
n1
1;2α1+1)

− 2Re

(
g1

1;1
∑
|p|=1
q≥1

b1
1;p,q

(w1)p
(

q

1

)
xq−1i||w1||2α1 + · · ·

+ gn1
1;1

∑
|p|=1
q≥1

b
n1
1;p,q

(w1)p
(

q

1

)
xq−1i||w1||2α1

)}
= 0 . (89)

Making use of (83), we obtain the relations (87) for � = α1 + 1 and (88) for � = 2α1 + 1.
Analogously, by picking up the terms of total degree 4α1 + 1, we get the relation (88) for
� = 2α1 + 2. We proceed this process degree from 4α1 + 1 to 6α1 − 1. Then we obtain (87)
for � = α1 + 2, . . . , 2α1 and (88) for � = 2α1 + 2, . . . , 4α1.

Assume a3 �= 0. The total degree 6α1 terms in Im F = ||G1||2α1 satisfy the relation:

−
∑
q≥3

aq

(
q

3

)
xq−3||w1||6α1

= (|g1
1;1|2 + · · · + |gn1

1;1|2
)α1−1

×
{
|g1

1;2α1+1|2 + · · · + |gn1
1;2α1+1|2 + 2Re (g1

1;1ḡ
1
1;4α1+1 + · · · + gn1

1;1ḡ
n1
1;4α1+1)

+
∣∣∣∣
∑
|p|=1
q≥1

b1
1;p,q(w1)

p

(
q

1

)
xq−1||w1||2α1

∣∣∣∣
2

+ · · ·
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+
∣∣∣∣
∑
|p|=1
q≥1

b
n1
1;p,q(w1)

p

(
q

1

)
xq−1||w1||2α1

∣∣∣∣
2

− 2Re

(
g1

1;1
∑
|p|=1
q≥2

b1
1;p,q

(w1)p
(

q

2

)
xq−2||w1||4α1 + · · ·

+ gn1
1;1

∑
|p|=1
q≥2

b
n1
1;p,q

(w1)p
(

q

2

)
xq−2||w1||4α1

)}
. (90)

Plug the relation (84) into the right hand side and put x = 0. From (78), (79) and (80), we get
the relation

−a3||w1||4α1+2 = |g̃1
1;2α1+1|2 + · · · + |g̃n1

1;2α1+1|2 , (91)

which means that
(
g̃1

1;2α1+1

(−a3)1/2 , . . . ,
g̃n1

1;2α1+1

(−a3)1/2

)
: Bm1 → Bn1 (92)

is a proper holomorphic mapping. We apply the same argument we used to conclude M = 1
to the mapping (92). In the argument, replace ΦM by the mapping (92) and calculate the rank
of the Jacobian matrix of it at the origin. Then we reach the contradiction. Therefore we
conclude that a3 = 0.

Assume that a3 = . . . aq0−1 = 0 and aq0 �= 0 for q0 ≥ 4. From the relation (90), we
obtain

−
∑
q≥q0

aq

(
q

3

)
xq−3||w1||6α1

= (|g1
1;1|2 + · · · + |gn1

1;1|2
)α1−1(|g1

1;2α1+1|2 + · · · + |gn1
1;2α1+1|2

)
. (93)

Since the lowest degree of x on the right hand side of (93) is even, we may assume the
following:

• q0 − 3 = 2q̃0,

• the lowest degree of x in g1
1;2α1+1, . . . , g

λ0
1;2α1+1 are q̃0 and that of x in

g
λ0+1
1;2α1+1, . . . , g

n1
1;2α1+1 is greater than q̃0.

Divide (93) by x2q̃0 and we get

−
∑
q≥q0

aq

(
q

3

)
xq−q0||w1||6α1
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= (|g1
1;1|2 + · · · + |gn1

1;1|2
)α1−1

(∣∣∣∣
g1

1;2α1+1

xq̃0

∣∣∣∣
2

+ · · · +
∣∣∣∣
gn1

1;2α1+1

xq̃0

∣∣∣∣
2)

. (94)

Taking x = 0 in (94), we obtain

−aq0

(
q0

3

)
||w1||4α1+2 =

∣∣∣∣
∑

|p|=2α1+1

b1
1;p,q̃0

(w1)
p

∣∣∣∣
2

+ · · · +
∣∣∣∣

∑
|p|=2α1+1

b
λ0
1;p,q̃0

(w1)
p

∣∣∣∣
2

, (95)

which means that

(∑
|p|=2α1+1 b1

1;p,q̃0
(w1)

p

(
− aq0

(
q0

3

) )1/2 , . . . ,

∑
|p|=2α1+1 b

λ0
1;p,q̃0

(w1)
p

(
− aq0

(
q0

3

) )1/2

)
: Bm1 → Bλ0 (96)

is a proper holomorphic mapping. If the inequality m1 > λ0 holds, then this mapping can not
be defined as a proper holomorphic mapping. Therefore aq0 = 0, which is a contradiction.
Assume that m1 ≤ λ0. Then we have m1 ≤ λ0 (< n1) < 2m1 − 1. Therefore by the same
argument which is used to get M = 1, we must have 2α1 +1 = 1. This is also a contradiction.
In any case, there does not exist q0 ≥ 4 with aq0 �= 0. Therefore we obtain aq = 0 for q ≥ 3.
Repeat to compare the terms whose total degree of w1 and w̄1 is bigger than 6α1, we conclude
that gλ

1;� = 0 for λ = 1, . . . , n1 and � ≥ 2. Pick up the terms whose total degree of w1 and

w̄1 is 2α1 from Im F = ||G1||2α1 . Then we have

1 + 2a2x = 1

||w1||2α1

{|g1
1;1|2 + · · · + |gn1

1;1|2
}α1 . (97)

Divide this by x and take x to be infinity. Then we conclude
∑
|p|=1
q≥1

bλ
1;p,q(w1)

pxq = 0 , λ = 1, 2, . . . , n1 . (98)

Therefore G1 is normalized to be (w1, 0) and a2 = 0. Now the expansion of F , as
a component of the holomorphic mapping, becomes F = a0/a1 + z. Apply the shift
(z̃, w̃) �→ (z̃−a0/a1, w̃) to (F,G). Since a0/a1 is a real number, the shift is an automorphism
of Ω(n; (n), (β)). By this automorphism, F is normalized to F = z. �

REMARK 3. From this lemma, we conclude that α1 = β1 and that (F,G1) is equiv-
alent to (z,w1, 0). These are the conclusions of the main theorem for N = 1. Note that
(F,G1) and (z,w1, 0) are equal up to the relation (53) and the shift. This fact is used in the
proof of Lemma 5.2.
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5. The relation among the exponents and normalization of the mapping (N block
case)

We return to the general situation, namely, we assume that the number of the block of w

is N .

LEMMA 5.1. Let σ be the permutation of N-indices in Lemma 2.3. Then we have
ασ(i) = βi .

PROOF. Take any i and fix it. We restrict the mapping

(F,G) : Ω(m; (m); (α)) → Ω(n; (n); (β)) (99)

to the variety
⋂

j=1,...,N
j �=σ(i)

{wj = 0}. (100)

Then we have a proper holomorphic mapping

(F, 0, . . . , 0,Gi, 0, . . . , 0) : {Im z > ||wσ(i)||2ασ(i)} → {Im z > ||wi||2βi } . (101)

It follows from Lemma 4.2 that we have ασ(i) = βi . Since i is arbitrary, the result holds. �

After reordering the variables, we may assume that σ is identity, and therefore from now
on, we use α instead of β.

Next, we normalize F .

LEMMA 5.2. Let (F,G1, . . . ,GN) : Ω(m; (m); (α)) → Ω(n; (n); (α)) be a proper
holomorphic mapping. Then there exists an automorphism Φn of Ω(n; (n); (α)) such that F

can be normalized to be z by Φn, namely the first component of Φn ◦ (F,G) is z.

PROOF. Since we have Gj |wj =0 = 0, the restriction (F,G) : Ω(m; (m); (α)) →
Ω(n; (n); (α)) to w2 = · · · = wN = 0 is a proper holomorphic mapping of one block.
So, expanding the functions F(z,w1, 0, . . . , 0), Gλ

1(z,w1, 0, . . . , 0) as (46) and (47) in the
previous section, we obtain the unitary matrix U as in (52). Here β1 in (46) and (47) should be

replaced by α1. Let us now define an automorphism Φn = (Φ0
n, . . . , ΦN

n ) of Ω(n; (n); (α))

by

Φ0
n(z̃, w̃1, . . . , w̃N ) = z̃

(2kα1 + 1)a2kα1+1
+ a, a ∈ R (102)

Φ1
n(z̃, w̃1, . . . , w̃N ) = 1

{(2kα1 + 1)a2kα1+1}1/2α1
(w̃1

1, . . . , w̃
n1
1 )U

t
, (103)

Φ
j
n(z̃, w̃1, . . . , w̃N ) = 1

{(2kα1 + 1)a2kα1+1}1/2αj
(w̃1

j , . . . , w̃
nj

j ) , j = 2, . . . , N . (104)
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Then, by applying the same argument as in the proof of Lemma 4.2, it can be verified that

Φn ◦ (F,G)(z,w1, 0, . . . , 0) = (z,w1, 0, . . . , 0) (105)

for (z,w1, 0, . . . , 0) ∈ Ω(m; (m); (α)) and a suitable a ∈ R. As we saw in Lemma 2.4, the
first component of any proper holomorphic mapping from Ω(m; (m); (α)) to Ω(n; (n); (α))

does not depend on the variable w = (w1, . . . , wN). Hence we conclude that the first compo-
nent, say F̃ , of Φn ◦ (F,G) is just of the form F̃ (z,w) = z on Ω(m; (m); (α)). This proves
the lemma. �

From now on, we assume that F = z. Therefore we shall use |||w|||2α = |||G|||2α

instead of Im F = |||G|||2α on Im z = |||w|||2α.
Next, we normalize the homogeneous polynomials in w of degree one in G1, . . . ,GN .

We order the exponents of Ω(m; (m); (α)) and Ω(n; (n); (α)) as

α1 = · · · = α�1 <α�1+1 = · · · = α�1+�2 (106)

<α�1+�2+1 = · · · = α�1+�2+�3

<α�1+�2+�3+1 = · · · = α�1+�2+�3+�4

...

<α�1+···+�λ+1 = · · · = α�1+···+�λ+1

...

<α�1+···+�p−1+1 = · · · = α�1+···+�p ,

and α�1+···+�λ + γλ = α�1+···+�λ+1 . Here we assume that N = �1 + · · · + �p. Expand Gλ
j in

homogeneous polynomials of w as

Gλ
j =

∑
�≥1

gλ
j ;� , gλ

j ;� =
∑
|p|=�
q≥0

bλ
j ;p,q(w)pzq . (107)

Denote by ĝλ
j ;� the restriction of gλ

j ;� to z = x:

ĝλ
j ;� =

∑
|p|=�
q≥0

bλ
j ;p,q(w)pxq . (108)

Let us denote gj ;� = (g ′
j ;�, g

′′
j ;�) for g ′

j ;� = (g1
j ;�, . . . , g

mj

j ;�) and g ′′
j ;� = (g

mj +1
j ;� , . . . , g

nj

j ;�).
Pick up the terms of total degree 2α1 = · · · = 2α�1 of w and w̄ from |||w|||2α = |||G|||2α.
They satisfy the relation

||w1||2α1 + · · · + ||w�1||2α�1 = ||ĝ1;1||2α1 + · · · + ||ĝ�1;1||2α�1 . (109)
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It follows from Gj |wj =0 = 0 that gj ;1 is a linear mapping in wj = (w1
j , . . . , w

mj

j ), which

implies that ||ĝj ;1(x,wj )||2 = ||wj ||2 for any x. Consider two proper holomorphic mappings

(g1
j ;1, . . . , g

nj

j ;1)(z,wj ) and (wj , 0) between Bmj and Bnj . Here (g1
j ;1, . . . , g

nj

j ;1)(z,wj ) is

considered as a mapping with a variable wj ∈ Cmj and with a parameter z ∈ C. Then we can
find the nj × nj unitary matrix Uj(z) depending on z such that

gj ;1(z,wj ) = Uj(z)

(
wj

0

)
. (110)

Note that since gj ;1 is expanded as (107), the components of Uj (z) are holomorphic functions

of z. Let Φ
nj
n (z̃, w̃j ) be a mapping defined by

Φ
nj
n (z̃, w̃j ) = U−1

j (z̃)w̃j , (z̃, w̃j ) ∈ C × Cnj , (111)

where Uj(z) is a unitary matrix as in (110). Then we can calculate as follows:

Φ
nj
n ◦ (z, g1

j ;1(z,wj ), . . . , g
nj

j ;1(z,wj )) = (wj , 0) , j = 1, . . . , �1 . (112)

Note that this normalization does not depend on z. Next lemma is used to prove Lemma 5.4
as an induction assumption.

LEMMA 5.3. There exist an automorphism Φn of Ω(n; (n); (α)) such that

Φn ◦ (F,G)(z,w1, . . . , wN ) =
(

z,w1 +
∑

�≥γ1+2

g ′
1;�,

∑
�≥γ1+2

g ′′
1;�, . . . , w�1 +

∑
�≥γ1+2

g ′
�1;�,

∑
�≥γ1+2

g ′′
�1;�,

w�1+1 +
∑
�≥2

g ′
�1+1;�,

∑
�≥2

g ′′
�1+1;�, . . . , w�1+�2 +

∑
�≥2

g ′
�1+�2;�,

∑
�≥2

g ′′
�1+�2;�,

G�1+�2+1, . . . ,GN

)
. (113)

PROOF. Note that F is already normalized to be z. Take Φn(z̃, w̃) =
(z̃, Φ

n1
n (z̃, w̃1), . . . , Φ

n�1
n (z̃, w̃�1), w̃�1+1, . . . , w̃N ). Here Φ

nj
n is the mapping of the form

(111). Note that Φ
nj
n does not depend on z̃. Indeed, this can be seen as follows. Let

Φ
nj
n (z̃, w̃j ) = (φ1(z̃, w̃j ), . . . , φnj (z̃, w̃j )). Then we have

nj∑
k=1

|φk(z̃, w̃j )|2 = ||Φnj
n (z̃, w̃j )||2

= ||Uj(z̃)
−1w̃j ||2

= ||w̃j ||2 (114)



RIGIDITY THEOREM FOR PROPER MAPPINGS 413

for any (z̃, w̃j ). Differentiate (114) with respect to z̃ and ¯̃z and we have

nj∑
k=1

∣∣∣∣
∂φk(z̃, w̃j )

∂z̃

∣∣∣∣
2

= 0 . (115)

Since the domain is connected, Φ
nj
n (z̃, w̃j ) does not depend on z̃ and therefore Φn is an

automorphism of Ω(n; (n); (α)). Denote Φ
nj
n = U−1

j w̃j . We calculate the terms from the

second to the (n1 + 1)-st components of Φn ◦ (F,G) to normalize G1.

Φn1
n ◦ G1 = U−1

1

⎛
⎜⎝

∑
�≥1 g

1
1;�

...∑
�≥1 g

n1
1;�

⎞
⎟⎠

= U−1
1

⎛
⎜⎝
g1

1;1
...

gn1
1;1

⎞
⎟⎠ + (the terms which contain g1;�, � ≥ 2) . (116)

Since g1;1 is a mapping of z and w1, we see that g1;1(z,w) = g1;1(z,w1). As we saw in (112),
G1 is normalized as follows:

Φn1
n ◦ G1(z,w1, . . . , wN)

= Φn1
n ◦ (g1

1;1, . . . , g
n1
1;1)(z,w1) + (the terms which contain g1;�, � ≥ 2)

= (w1
1, . . . , w

m1
1 , 0 , . . . , 0) + (the terms which contain g1;�, � ≥ 2) . (117)

Using G2, . . . ,G�1 and Φ
n2
n , . . . , Φ

n�1
n instead of G1 and Φ

n1
n , we can normalize the homo-

geneous polynomials of degree one g2;1, . . . , g�1;1 as (w2, 0), . . . , (w�1, 0) respectively.
Next we normalize the homogeneous polynomials of degree one in G�1+1, . . . ,G�1+�2 .

Assume that γ1 �= 1. Since the terms of total degree 2α1 + 2 = · · · = 2α�1 + 2 of w and w̄ in

|||w|||2α = |||G|||2α satisfy

0 = α1||w1||2(α1−1)
{
||ĝ1;2||2+ < w1, ĝ

′
1;3 > +< w1, ĝ

′
1;3 >

}

+ α1(α1 − 1)||w1||2(α1−2)
{
< w1, ĝ

′
1;2 > +< w1, ĝ

′
1;2 >

}2

+ . . .

+ α�1 ||w�1||2(α�1−1)
{
||ĝ�1;2||2+ < w�1, ĝ

′
�1;3 > +< w�1, ĝ

′
�1;3 >

}

+ α�1(α�1 − 1)||w�1||2(α�1−2)
{
< w�1, ĝ

′
�1;2 > +< w�1, ĝ

′
�1;2 >

}2
, (118)

we get ĝ1;2 = · · · = ĝ�1;2 = 0, or equivalently, g1;2 = · · · = g�1;2 = 0. By picking up
the terms of total degrees from 2α1 + 4 = · · · = 2α�1 + 4 to 2α1 + 2(γ1 − 1) = · · · =
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2α�1 + 2(γ1 − 1), the similar argument implies the following:

g1;3 = · · · = g1;γ1 = 0 , (119)

...

g�1;3 = · · · = g�1;γ1 = 0 . (120)

Plug them into |||w|||2α = |||G|||2α and pick up the terms of total degree 2α1 + 2γ1 = · · · =
2α�1 + 2γ1 = 2α�1+1 = · · · = 2α�1+�2 . Then we get the relation:

||w�1+1||2α�1+1 + · · · + ||w�1+�2 ||2α�1+�2

= α1||w1||2(α1−1)
{
||ĝ1;γ1+1||2+ < w1, ĝ

′
1;2γ1+1 > +< w1, ĝ

′
1;2γ1+1 >

}

+ α1(α1 − 1)||w1||2(α1−2)
{
< w1, ĝ

′
1;γ1+1 > +< w1, ĝ

′
1;γ1+1 >

}2

+ . . .

+ α�1 ||w�1 ||2(α�1−1)
{
||ĝ�1;γ1+1||2+ < w�1, ĝ

′
�1;2γ1+1 > +< w�1, ĝ

′
�1;2γ1+1 >

}

+ α�1(α�1 − 1)||w�1||2(α�1−2)
{
< w�1, ĝ

′
�1;γ1+1 > +< w�1, ĝ

′
�1;γ1+1 >

}2

+ ||ĝ�1+1;1||2α�1+1 + · · · + ||ĝ�1+�2;1||2α�1+�2 . (121)

Since we have Gj = 0 for wj = 0, the homogeneous polynomial of degree one ĝj ;1 is linear
in wj . By putting w1 = · · · = w�1 = 0 in (121), we get

||w�1+1||2α�1+1 = ||g�1+1;1||2α�1+1, . . . , ||w�1+�2 ||2α�1+�2 = ||g�1+�2;1||2α�1+�2 (122)

for each fixed z. Applying the same argument which we have used to get the normalization
(112) to (122), we can normalize the homogeneous degree one parts of G�1+1, . . . ,G�1+�2 to
be (w�1+1, 0), . . . , (w�1+�2, 0). From (121) and (122), we obtain ĝ1;γ1+1 = · · · = ĝ�1;γ1+1=0,
or equivalently, g1;γ1+1 = · · · = g�1;γ1+1 = 0. Consequently, G1, . . . ,G�1+�2 are normalized

by Φ
n1
n , . . . , Φ

n�1+�2
n as follows:

G1 =
(

w1 +
∑

�≥γ1+2

g ′
1;�,

∑
�≥γ1+2

g ′′
1;�

)
, (123)

...

G�1 =
(

w�1 +
∑

�≥γ1+2

g ′
�1;�,

∑
�≥γ1+2

g ′′
�1;�

)
, (124)

G�1+1 =
(

w�1+1 +
∑
�≥2

g ′
�1+1;�,

∑
�≥2

g ′′
�1+1;�

)
, (125)
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...

G�1+�2 =
(

w�1+�2 +
∑
�≥2

g ′
�1+�2;�,

∑
�≥2

g ′′
�1+�2;�

)
. (126)

In the case of γ1 = 1, we obtain (121) with γ1 = 1 instead of (118). We proceed the
same argument to get (123), (124), (125) and (126) with γ1 = 1. �

As the following lemma shows, we can proceed this process to normalize the homoge-
neous polynomials of degree one in G.

LEMMA 5.4. There exists an automorphism Φn of Ω(n; (n); (α)) such that

Φn ◦ (F,G)(z,w) =
(

z,w1 +
∑

�≥γ1+···+γp−1+2

g ′
1;�,

∑
�≥γ1+···+γp−1+2

g ′′
1;�, . . . ,

w�1 +
∑

�≥γ1+···+γp−1+2

g ′
�1;�,

∑
�≥γ1+···+γp−1+2

g ′′
�1;�, . . . ,

w�1+···+�p−1+1 +
∑
�≥2

g ′
�1+···+�p−1+1;�,

∑
�≥2

g ′′
�1+···+�p−1+1;�, . . . ,

w�1+···+�p +
∑
�≥2

g ′
�1+···+�p;�,

∑
�≥2

g ′′
�1+···+�p;�

)
. (127)

PROOF. We prove the following claim by induction, which completes the proof of this
lemma.

CLAIM 4. For any λ, we have

Φn ◦ (F,G)(z,w)

=
(

z,w1 +
∑

�≥γ1+···+γλ−1+2

g ′
1;�,

∑
�≥γ1+···+γλ−1+2

g ′′
1;�, . . . ,

w�1 +
∑

�≥γ1+···+γλ−1+2

g ′
�1;�,

∑
�≥γ1+···+γλ−1+2

g ′′
�1;�, . . . ,

w�1+1 +
∑

�≥γ2+···+γλ−1+2

g ′
�1+1;�,

∑
�≥γ2+···+γλ−1+2

g ′′
�1+1;�, . . . ,

w�1+�2 +
∑

�≥γ2+···+γλ−1+2

g ′
�1+�2;�,

∑
�≥γ2+···+γλ−1+2

g ′′
�1+�2;�, . . . ,

w�1+···+�λ−1+1 +
∑
�≥2

g ′
�1+···+�λ−1+1;�,

∑
�≥2

g ′′
�1+···+�λ−1+1;�, . . . ,

w�1+···+�λ +
∑
�≥2

g ′
�1+···+�λ;�,

∑
�≥2

g ′′
�1+···+�λ;�,
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G�1+···+�λ+1, . . . ,G�1+···+�p

)
. (128)

Since we classify (F,G) up to automorphisms, we sometimes use the notation (F,G)

instead of Φn ◦ (F,G) in the proof. By Lemma 5.3, Claim 4 holds for λ = 2. Assume that
Claim 4 holds for λ. Assume that γλ �= 1. Plug (128) into |||w|||2α = |||G|||2α and pick up
the terms of total degree

2α1 + 2(γ1 + · · · + γλ−1) + 2 = · · · = 2α�1 + 2(γ1 + · · · + γλ−1) + 2

= 2α�1+1 + 2(γ2 + · · · + γλ−1) + 2 = · · · = 2α�1+�2 + 2(γ2 + · · · + γλ−1) + 2

= · · · = 2α�1+···+�λ−1+1 + 2 = · · · = 2α�1+···+�λ + 2 . (129)

Then we get the following λ relations:

α1||w1||2(α1−1)
{
||ĝ1;γ1+···+γλ−1+2||2

+ < w1, ĝ
′
1;2(γ1+···+γλ−1)+3 > +< w1, ĝ

′
1;2(γ1+···+γλ−1)+3 >

}

+ α1(α1 − 1)||w1||2(α1−2)

{
< w1, ĝ

′
1;γ1+···+γλ−1+2 > +< w1, ĝ

′
1;γ1+···+γλ−1+2 >

}2

+ . . .

+ α�1 ||w�1 ||2(α�1−1)
{
||ĝ�1;γ1+···+γλ−1+2||2

+ < w�1, ĝ
′
�1;2(γ1+···+γλ−1)+3 > +< w�1, ĝ

′
�1;2(γ1+···+γλ−1)+3 >

}

+ α�1(α�1 − 1)||w�1||2(α�1−2)

{
< w�1, ĝ

′
�1;γ1+···+γλ−1+2 > +< w�1, ĝ

′
�1;γ1+···+γλ−1+2 >

}2 = 0 , (130)

...

α�1+···+�λ−1+1||w�1+···+�λ−1+1||2(α�1+···+�λ−1+1−1)

{
||ĝ�1+···+�λ−1+1;2||2+ < w�1+···+�λ−1+1, ĝ

′
�1+···+�λ−1+1;3 >

+ < w�
1+···+�λ−1+1, ĝ

′
�1+···+�λ−1+1;3 >

}

+ α�1+···+�λ−1+1(α�1+···+�λ−1+1 − 1)||w�1+···+�λ−1+1||2(α�1+···+�λ−1+1−2)

{
< w�1+···+�λ−1+1, ĝ

′
�1+···+�λ−1+1;2 >

+ < w�1+···+�λ−1+1, ĝ
′
�1+···+�λ−1+1;2 >

}2
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+ . . .

+α�1+···+�λ ||w�1+···+�λ ||2(α�1+···+�λ
−1)

{
||ĝ�1+···+�λ;2||2+ < w�1+···+�λ, ĝ

′
�1+···+�λ;3 >

+ < w�1+···+�λ, ĝ
′
�1+···+�λ;3 >

}

+ α�1+···+�λ(α�1+···+�λ − 1)||w�1+···+�λ ||2(α�1+···+�λ
−2)

{
< w�1+···+�λ, ĝ

′
�1+···+�λ;2 > +< w�1+···+�λ, ĝ

′
�1+···+�λ;2 >

}2 = 0 . (131)

These relations imply that

g1;γ1+···+γλ−1+2 = · · · = g�1;γ1+···+γλ−1+2 = 0 , (132)

...

g�1+···+�λ−1+1;2 = · · · = g�1+···+�λ;2 = 0 . (133)

Plugging them into (128) and comparing the terms in the both sides of |||w|||2α = |||G|||2α

of total degrees from

2α1 + 2(γ1 + · · · + γλ−1) + 4 = · · · = 2α�1 + 2(γ1 + · · · + γλ−1) + 4

= 2α�1+1 + 2(γ2 + · · · + γλ−1) + 4 = · · · = 2αl�1+�2 + 2(γ2 + · · · + γλ−1) + 4

= · · · = 2α�1+···+�λ−1+1 + 4 = · · · = 2α�1+···+�λ + 4 (134)

to

2α1 + 2(γ1 + · · · + γλ) − 2 = · · · = 2α�1 + 2(γ1 + · · · + γλ) − 2

= 2α�1+1 + 2(γ2 + · · · + γλ) − 2 = · · · = 2α�1+�2 + 2(γ2 + · · · + γλ) − 2

= · · · = 2α�1+···+�λ−1+1 + 2γλ − 2 = · · · = 2α�1+···+�λ + 2γλ − 2 , (135)

we obtain

g1;γ1+···+γλ−1+3 = · · · = g1;γ1+···+γλ
= 0 , (136)

...

g�1;γ1+···+γλ−1+3 = · · · = g�1;γ1+···+γλ
= 0 , (137)

...

g�1+···+�λ−1+1;3 = · · · = g�1+···+�λ−1+1;γλ
= 0 , (138)

...

g�1+···+�λ;3 = · · · = g�1+···+�λ;γλ
= 0 (139)
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by the same argument as to get (132) and (133). Next pick up the terms of total degree

2α1 + 2(γ1 + · · · + γλ) = · · · = 2α�1 + 2(γ1 + · · · + γλ)

= 2α�1+1 + 2(γ2 + · · · + γλ) = · · · = 2α�1+�2 + 2(γ2 + · · · + γλ)

= · · · = 2α�1+···+�λ−1+1 + 2γλ = · · · = 2α�1+···+�λ + 2γλ

= 2α�1+···+�λ+1 = · · · = 2α�1+···+�λ+1 . (140)

We get the analogous, but containing more terms, equation (121) and obtain

g1;γ1+···+γλ+1 = · · · = g�1;γ1+···+γλ+1 = 0 , (141)

...

g�1+···+�λ−1+1;γλ+1 = · · · = g�1+···+�λ;γλ+1 = 0 , (142)

and a proper holomorphic mapping

(g1
j ;1, . . . , g

nj

j ;1) : Bmj → Bnj , j = �1 + · · · + �λ + 1, . . . , �1 + · · · + �λ+1 (143)

for fixed z. By the same argument as in Lemma 5.3, the homogeneous polynomials of degree
one in G�1+···+�λ+1, . . . ,G�1+···+�λ+1 are normalized to be

(g ′
�1+···+�λ+1;1, g

′′
�1+···+�λ+1;1) = (w�1+···+�λ+1, 0) , (144)

...

(g ′
�1+···+�λ+1;1, g

′′
�1+···+�λ+1;1) = (w�1+···+�λ+1, 0) . (145)

This means that (128) holds for λ + 1.
In the case of γλ = 1, we can proceed the same argument to get (141), (142) with γλ = 1

and (144) and (145).
Taking λ = p, we complete the proof. �

LEMMA 5.5. All g ′
j ;l and g ′′

j ;l appearing in (127) vanish.

PROOF. Among the degrees of w1, . . . , wN appearing on the left hand side of
|||w|||2α = |||G|||2α, the highest degree is 2α�1+···+�p−1+1 = · · · = 2α�1+···+�p . By pick-

ing up the terms of degree bigger than them from |||G|||2α, we conclude the result. �

Now we have proved that gj ;� = 0 for � ≥ 2; thereby, completing the proof of the main
theorem.

6. The mappings between generalized pseudoellipsoids and assumptions on di-
mensions

6.1. The mappings between generalized pseudoellipsoids. In this sub-section, we
compare Kodama’s result [7] with our result. According to the proof of the main theorem, any
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proper holomorphic mapping

(F ,G1, . . . ,GN) : E(m; (m); (α)) → E(n; (n); (β)) (146)

is equivalent to (F̃ , G̃1, . . . , G̃N) of the form

F̃(z,w1, . . . , wN) = z , G̃j (z,w1, . . . , wN) = (wσ(j), 0) , 1 ≤ j ≤ N (147)

via the transformations Ψ1, Ψ2 (see (3)) and the following:

φa : (z̃, w̃) �→ (z̃ + a, w̃) , (148)

φŨ : (z̃, w̃) �→ (z̃, Ũ1w̃1, . . . , ŨN w̃N) , (149)

φA : (z̃, w̃) �→ (Az̃,A
1

2α1 w̃1, . . . , A
1

2αN w̃N) , (150)

φσ : (z̃, w̃) �→ (z̃, w̃σ (1), . . . , w̃σ (N)) , (151)

for a,A ∈ R, Ũ1, . . . , ŨN being unitary and σ being a permutation of {1, . . . , N}. Therefore
(F ,G1, . . . ,GN) is a composite mapping of these mappings.

(F ,G1, . . . ,GN)

= Ψ2 ◦ φσ ◦ φA ◦ φŨ ◦ φa ◦ (z,w1, 0, w2, 0, . . . , wN, 0) ◦ Ψ −1
1 (z,w)

=
(

z(i + Ai − aA) + (i − Ai − aA)

z(i − Ai + aA) + (i + Ai + aA)
,

( −4A

{z(i − Ai + aA) + (i + Ai + aA)}2

) 1
2ασ(1)

Ũσ (1)(wσ(1), 0), . . . ,

( −4A

{z(i − Ai + aA) + (i + Ai + aA)}2

) 1
2ασ(N)

Ũσ (N)(wσ(N), 0)

)
. (152)

Put

c = −−i + Ai + aA

−i − Ai + aA
, eiθ = −i − Ai + aA

i + Ai + aA
, Uj = exp

(
i
θ − π

2αj

)
Ũj (153)

then, by calculation, the mapping (152) is re-written as

(F ,G1, . . . ,GN) =
(

eiθ z − c

c̄z − 1
,

{
1 − |c|2
(1 − c̄z)2

} 1
2ασ(1)

Uσ(1)(wσ(1), 0), . . . ,

{
1 − |c|2
(1 − c̄z)2

} 1
2ασ(N)

Uσ(N)(wσ(N), 0)

)
. (154)

From this expression, we conclude that if mσ(j) = nj and a proper holomorphic mapping

(F ,G1, . . . ,GN) : E(m; (m); (α)) → E(n; (n); (β)) (155)
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exists, then the equality ασ(j) = βj holds and any such mapping is a biholomorphic mapping.
That is, any proper self mapping of E(m; (m); (α)) is a holomorphic automorphism.

A. Kodama [7] obtained the holomorphic automorphism group of a generalized complex
ellipsoid

E(n0, . . . , nK ; p0, . . . , pK)

=
{
(z0, . . . , zK) ∈ Cn0 × · · · × CnK ;

K∑
k=0

||zk||2pk < 1

}
, (156)

where n0, . . . , nK are positive integers and p0, . . . , pK are positive real numbers. Let n0 +
· · · + nK = N . The special case of Kodama’s domain E(1, n1, . . . , nK ; 1, p1, . . . , pK) for
positive integers p1, . . . , pK coincides with our domain E(N; n1, . . . , nK ; p1, . . . , pK) and,
in this setting, our mapping (154) with mσ(j) = nj coincides with the Kodama’s result [7].

6.2. Assumptions on dimensions. In this sub-section, we discuss about the assump-
tions on dimensions. About the inequality mσ(j) ≤ nj < 2mσ(j) − 1 in (2) of the main
theorem, we used it to get M = 1, a3 = 0 and non-existence of q0 in Lemma 4.2. The key of
the argument is to prove the injectivity of ΦM in (75). Therefore if we know that any proper
homogeneous holomorphic mapping f : Bm → Bn for any m,n with m < n is injective, our
argument may work. This leads to the conjecture.

CONJECTURE 6.1. Let m and n be integers with 2 < m < n. If any proper homoge-
neous holomorphic mapping f : Bm → Bn is injective, then the conclusion (2) of the main
theorem holds without the assumption mσ(j) ≤ nj < 2mσ(j) − 1.

This conjecture excludes the case m = 2 and n = 3. In the main theorem, we assume
that mj > 2 and nj > 3 for all j . As stated in the introduction, any proper holomorphic
mapping between balls of dimensions two and three which is twice differentiable up to the
boundary is equivalent to one of the following four mappings:

(z,w) �→ (z,w, 0) , (z2,
√

2zw,w2) , (z, zw,w2) , (z3,
√

3zw,w3) . (157)

Note that while the first two mappings satisfy

||(z,w, 0)||2 = ||(z,w)||2 , ||(z2,
√

2zw,w2)||2 = ||(z,w)||4 , (158)

the last two mappings do not, namely, there do not exist positive integers α and β such that

||(z, zw,w2)||2 = ||(z,w)||2α , ||(z3,
√

3zw,w3)||2 = ||(z,w)||2β . (159)

Therefore we have the conjecture.

CONJECTURE 6.2. In the main theorem, if there exist j such that nj = 3 and mσ(j) =
2, say, j = 1, . . . , j0, then G1, . . . ,Gj0 are equivalent to one of two:

(w1
j , w

2
j , 0) , ((w1

j )
2,

√
2w1

jw
2
j , (w

2
j )

2) . (160)
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If Gj is equivalent to the former, then ασ(j) = βj , and equivalent to the later, then ασ(j) =
2βj .
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