Nested Square Roots and Poincaré Functions

Noboru AOKI and Shota KOJIMA
Rikkyo University
(Communicated by M. Tsuzuki)

Abstract

We are concerned with finitely nested square roots which are roots of iterations of a real quadratic polynomial $x^{2}-c$ with $c \geq 2$, and the limits of such nested square roots. We investigate how they are related to a Poincaré function $f(x)$ satisfying the functional equation $f(s x)=f(x)^{2}-c$, where $s=1+\sqrt{1+4 c}$. Our main theorems can be viewed as a natural generalization of the work of Wiernsberger and Lebesgue for the case $c=2$. The key ingredients of the proof are some analytic properties of $F(x)$, which have been intensively studied by the second author using infinite compositions.

1. Introduction

Let c be a real number with $c \geq 2$ and $\varepsilon_{1}, \varepsilon_{2}, \ldots$ an infinite sequence consisting of ± 1. In this paper we are concerned with nested square roots of the form

$$
\begin{equation*}
R_{c}\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \ldots, \varepsilon_{m}\right)=\varepsilon_{1} \sqrt{c+\varepsilon_{2} \sqrt{c+\varepsilon_{3} \sqrt{c+\cdots+\varepsilon_{m} \sqrt{c}}}} \tag{1}
\end{equation*}
$$

and infinite nested square roots

$$
\begin{equation*}
R_{c}\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \ldots\right):=\lim _{m \rightarrow \infty} R_{c}\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \ldots, \varepsilon_{m}\right) \tag{2}
\end{equation*}
$$

The existence of the limit (2) is proved in §7. In the case of $c=2$, it is known that the nested root (1) can be expressed by the sine function:

$$
\begin{equation*}
R_{2}\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \ldots, \varepsilon_{m}\right)=2 \sin \frac{\pi}{2}\left(\frac{\varepsilon_{1}}{2}+\frac{\varepsilon_{1} \varepsilon_{2}}{2^{2}}+\cdots+\frac{\varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{m}}{2^{m}}\right) \tag{3}
\end{equation*}
$$

This formula may be rewritten as

$$
\begin{equation*}
R_{2}\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \ldots, \varepsilon_{m}\right)=2 \cos \pi\left(\frac{a_{1}}{2}+\frac{a_{2}}{2^{2}}+\cdots+\frac{a_{m}}{2^{m}}+\frac{1}{2^{m+1}}\right) \tag{4}
\end{equation*}
$$

Received March 18, 2015; revised January 15, 2016
Mathematics Subject Classification: 97I70, 30D05, 33B10
Key words and phrases: Nested square roots, Poincaré functions
where

$$
a_{i}=\frac{1-\varepsilon_{1} \cdots \varepsilon_{i}}{2}= \begin{cases}0 & \left(\text { if } \varepsilon_{1} \cdots \varepsilon_{i}=1\right) \\ 1 & \left(\text { if } \varepsilon_{1} \cdots \varepsilon_{i}=-1\right)\end{cases}
$$

Taking $\lim _{m \rightarrow \infty}$ of (4), we obtain a simple formula for the infinite nested square root:

$$
\begin{equation*}
R_{2}\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \ldots\right)=2 \cos \alpha \pi \tag{5}
\end{equation*}
$$

where α is a real number defined by the 2 -adic expansion

$$
\alpha=\frac{a_{1}}{2}+\frac{a_{2}}{2^{2}}+\frac{a_{3}}{2^{3}}+\cdots .
$$

These formulas were proved by Wiernsberger [10] in 1905, and about thirty years later Lebesgue [7] (see also [8]) independently found the same formulas.

The purpose of this paper is to give a generalization of the formulas (4) and (5) to the case $c \geq 2$. To accomplish the task, we need a suitable function which will take the place of $\cos x$. In the proof of the formulas (4) and (5), the duplication formula

$$
2 \cos 2 x=(2 \cos x)^{2}-2
$$

was crucial. It is therefore natural to seek for a function $f(x)$ satisfying the functional equation

$$
\begin{equation*}
f(s x)=f(x)^{2}-c, \tag{6}
\end{equation*}
$$

where s is a constant depending only on c. Such functional equations were studied by Poincaré, who showed that there exists an entire function $f(x)$ satisfying (6). In [4], [5] and [6] the second author of the present paper studied intensively analytic properties of such functions using a technique of infinite compositions.

In $\S 2$ and $\S 3$ we define an infinite composition $F(x)$ of a family of certain quadratic functions and study its analytic properties. We refer the reader to [1], [4], [5] and [6] for more details. In $\S 4$ we study the function $f(x):=s(F(x)+1 / 2)$, which is the main object of the present paper. In particular, the zero sets of $f(x)$ and $f^{\prime}(x)$ are crucial in studying nested square roots of the form (1) and its limit (2). In $\S 5$ we study the zero set of $F(x)$. Most results in $\S 4$ and $\S 5$ were proved by the second author in his master thesis [4]. Our main results (Theorem 6.7 and Theorem 7.3) give explicit descriptions of finite or infinite nested square roots in terms of special values of $f(x)$. As an application of Theorem 6.7, we compute the zeros of $f(x)$ and $F(x)$ (Theorem 6.10).

Another aspect of nested square roots in the case of $c=2$ is a famous formula due to Viéta:

$$
\begin{equation*}
\frac{2}{\pi}=\frac{\sqrt{2}}{2} \frac{\sqrt{2+\sqrt{2}}}{2} \frac{\sqrt{2+\sqrt{2+\sqrt{2}}}}{2} \cdots \tag{7}
\end{equation*}
$$

In the final section we prove a formula on an infinite product involving nested square roots (Theorem 8.2), which may be regarded as a generalization of (7).

2. Infinite compositions of quadratic functions

For any two \mathbb{C}-valued functions $u(x), v(x)$ on \mathbb{C}, we write

$$
u(x) \circ v(x)=u(v(x)) .
$$

In this notation, for any complex number α, we can write $u(\alpha)=u(x) \circ \alpha$. More generally, if $\left\{u_{n}(x)\right\}_{n=1}^{\infty}$ is a sequence of \mathbb{C}-valued functions on \mathbb{C}, we write

$$
u_{1}(x) \circ u_{2}(x) \circ \cdots \circ u_{N}(x)=u_{1}\left(u_{2}\left(\cdots u_{N}(x) \cdots\right)\right) .
$$

We also adopt the following notation used in [4], [5] and [6]:

$$
\begin{aligned}
& \stackrel{\underset{n=1}{\mathcal{R}} u_{n}(x)=u_{1}(x) \circ u_{2}(x) \circ \cdots \circ u_{N}(x),}{\underset{n=1}{\mathcal{R}} u_{n}(x)=\lim _{N \rightarrow \infty} \underset{n=1}{\mathcal{R}} u_{n}(x)} .
\end{aligned}
$$

In the following we will study the infinite composition of quadratic functions

$$
\begin{equation*}
F(x, s):=\underset{n=1}{\mathcal{R}}\left(x+\frac{x^{2}}{s^{n}}\right) \tag{8}
\end{equation*}
$$

where $s \in \mathbb{C}$ is a constant such that $|s|>1$. By the definition, the function $F(x, s)$ is the limit of

$$
F_{N}(x, s):=\underset{n=1}{\mathcal{R}}\left(x+\frac{x^{2}}{s^{n}}\right) .
$$

If no confusion arises, we simply write $F(x)=F(x, s)$ and $F_{N}(x)=F_{N}(x, s)$. The existence of the limit is proved in [6, Proposition 1.2] (see also [4] and [5]). It is clear from the definition that $F(0)=0$ and $F^{\prime}(0)=1$. When $s=2,4,-2$, the function $F(x, s)$ is an elementary function (see [1] and [6]). More precisely we have

$$
\begin{aligned}
F(x, 2) & =\frac{1}{2}\left(e^{2 x}-1\right) \\
F(x, 4) & =\frac{1}{2}(\cos \sqrt{-4 x}-1) \\
F(x,-2) & =\sin \left(\frac{2 x}{\sqrt{3}}+\frac{\pi}{6}\right)-\frac{1}{2}
\end{aligned}
$$

for any $x \in \mathbb{C}$. These are shown by the following:

Proposition 2.1. If $|s|>1$, then the function $F(x)$ defined by (8) satisfies the functional equation

$$
\begin{equation*}
F(s x)=s\left(F(x)^{2}+F(x)\right) . \tag{9}
\end{equation*}
$$

Conversely, if a complex valued function $H(x)$ differentiable at $x=0$ satisfies the functional equation (9) together with $H(0)=0, H^{\prime}(0)=1$, then $H(x)=F(x)$.

Proof. Let $N>1$ be an integer. Note that $F_{N}(s x) / s$ and $x+x^{2} / s^{n-1}$ are "conjugate" to $F_{N}(x)$ and $x+x^{2} / s^{n}$ respectively in the following sense:

$$
\begin{aligned}
\frac{F_{N}(s x)}{s} & =\frac{x}{s} \circ F_{N}(x) \circ(s x) \\
x+\frac{x^{2}}{s^{n-1}} & =\frac{x}{s} \circ\left(x+\frac{x^{2}}{s^{n}}\right) \circ(s x)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\frac{F_{N}(s x)}{s} & =\frac{x}{s} \circ F_{N}(x) \circ(s x) \\
& =\frac{x}{s} \circ\left(\underset{n=1}{\mathcal{R}}\left(x+\frac{x^{2}}{s^{n}}\right)\right) \circ(s x) \\
& =\underset{n=1}{\mathcal{R}}\left(\frac{x}{s} \circ\left(x+\frac{x^{2}}{s^{n}}\right) \circ(s x)\right) \\
& =\underset{n=1}{\mathcal{R}}\left(x+\frac{x^{2}}{s^{n-1}}\right) \\
& =\left(x+x^{2}\right) \circ F_{N-1}(x) \\
& =F_{N-1}(x)+F_{N-1}(x)^{2} .
\end{aligned}
$$

Taking the limit $N \rightarrow \infty$, we obtain the functional equation

$$
\frac{F(s x)}{s}=F(x)+F(x)^{2}
$$

This proves the first part of the proposition.
In order to prove the second part of the proposition, let $H(x)$ be a complex valued function defined on \mathbb{C} that is differentiable at $x=0$ and satisfies the functional equation

$$
H(s x)=s\left(x+x^{2}\right) \circ H(x) \quad(x \in \mathbb{C})
$$

with the initial condition $H(0)=0, H^{\prime}(0)=1$. Then we have

$$
\begin{aligned}
H(x) & =\left(x+\frac{x^{2}}{s}\right) \circ s H\left(\frac{x}{s}\right) \\
& =\left(x+\frac{x^{2}}{s}\right) \circ s^{2}\left(x+x^{2}\right) \circ \frac{x}{s^{2}} \circ s^{2} x \circ H\left(\frac{x}{s^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(x+\frac{x^{2}}{s}\right) \circ\left(x+\frac{x^{2}}{s^{2}}\right) \circ s^{2} H\left(\frac{x}{s^{2}}\right) \\
& =\cdots \\
& =\left(\underset{k=1}{\mathcal{R}}\left(x+\frac{x^{2}}{s^{k}}\right)\right) \circ s^{n} H\left(\frac{x}{s^{n}}\right) .
\end{aligned}
$$

Since $H(0)=0, H^{\prime}(0)=1$ and $|s|>1$,

$$
\lim _{n \rightarrow \infty} s^{n} H\left(\frac{x}{s^{n}}\right)=x \lim _{n \rightarrow \infty} \frac{H\left(x / s^{n}\right)}{x / s^{n}}=x H^{\prime}(0)=x \quad(\text { if } x \neq 0)
$$

If $x=0$, then the equality is trivial. Therefore

$$
\lim _{n \rightarrow \infty} s^{n} H\left(\frac{x}{s^{n}}\right)=x
$$

for any x. Moreover the sequence $\left\{\mathcal{R}_{k=1}^{n}\left(x+\frac{x^{2}}{s^{k}}\right)\right\}$ is equicontinuous on every compact subset of \mathbb{C}. (For a proof of the equicontinuity of the sequence, see [6].) Hence

$$
\begin{aligned}
H(x) & =\lim _{n \rightarrow \infty}\left(\left(\underset{\mathcal{R}}{\mathcal{R}}\left(x+\frac{x^{2}}{s^{k}}\right)\right) \circ s^{n} H\left(\frac{x}{s^{n}}\right)\right) \\
& =\underset{k=1}{\mathcal{R}}\left(x+\frac{x^{2}}{s^{k}}\right) \circ \lim _{n \rightarrow \infty} s^{n} H\left(\frac{x}{s^{n}}\right) \\
& =\underset{k=1}{\mathcal{R}}\left(x+\frac{x^{2}}{s^{k}}\right) \circ x=\underset{k=1}{\mathcal{R}}\left(x+\frac{x^{2}}{s^{k}}\right)=F(x) .
\end{aligned}
$$

Therefore

$$
H(x)=F(x)
$$

for any $x \in \mathbb{C}$.

REMARK 2.2. For a given function $h(x)$, the functional equation of the form

$$
\begin{equation*}
P(s x)=h(P(x)) \tag{10}
\end{equation*}
$$

has been studied by several mathematicians. Suppose that $|s| \neq 0,1$. Koenigs [3] proved that if $h(x)$ is analytic at the origin and $h(0)=0, h^{\prime}(0)=s$, then the functional equation (10) has a unique solution $P(x)$ which is analytic at $x=0$ and $P(0)=0, P^{\prime}(0)=1$. This kind of function is called a Poincaré function. For example, $F(x)$ defined by (8) is a Poincaré function since it satisfies the functional equation (10) with $h(x)=s\left(x+x^{2}\right)$. For more details, see [2] or [9].

3. $F(x)$ as a real-valued function

From now on, s stands for a real number such that $s>2$. Thus the function $F(x)$ defined in the previous section is a real valued function on \mathbb{R}.

THEOREM 3.1. If $s>2$, then the following statements hold.
(i) $F(\mathbb{R})=\left[-\frac{s}{4}, \infty\right)$.
(ii) Let $\omega \in \mathbb{R}$ be the maximal value such that $F(\omega)=-s / 4$. Then $F^{\prime}(x)>0$ for any $x>\omega$ and $F^{\prime}(\omega)=0$.

Before giving the proof of Theorem 3.1, we prove two lemmas.
Lemma 3.2. $F^{\prime}(x) \geq 1$ for any $x \in[0, \infty)$.
Proof. It is easy to see that the Taylor expansion of $F_{n}(x)$ at $x=0$ is of the form

$$
F_{n}(x)=x+\sum_{r=2}^{\infty} c_{n, r} x^{r}
$$

where the coefficients $c_{n, r}$ are non-negative real numbers. Therefore $F_{n}^{\prime}(x) \geq 1$ for any $x \geq 0$.

In order to state the next lemma, we need some notation. For each positive integer n, consider a real valued function

$$
\varphi_{n}(x)=\frac{-1+\sqrt{1+4 s^{-n} x}}{2 s^{-n}}
$$

defined on the interval $\left[-s^{n} / 4, \infty\right)$. Note that

$$
\varphi_{n}\left(\left[-\frac{s^{n}}{4}, \infty\right)\right)=\left[-\frac{s^{n}}{2}, \infty\right) \subset\left[-\frac{s^{n+1}}{4}, \infty\right)
$$

for any $n \geq 1$. Thus we can define composite functions

$$
G_{n}(x):=\varphi_{n}(x) \circ \varphi_{n-1}(x) \circ \cdots \circ \varphi_{1}(x)
$$

on the interval $[-s / 4, \infty)$. For convenience, we put

$$
G_{0}(x)=x .
$$

Note that $\varphi_{n}(x)>0$ for any $x>0, \varphi_{n}(0)=0$, and $\varphi_{n}(x)<0$ for any $x<0$, hence $G_{n}(x)>0$ for any $x>0, G_{n}(0)=0$, and $G_{n}(x)<0$ for any $x \in[-s / 4,0)$. Moreover, since

$$
\left(x+\frac{x^{2}}{s^{n}}\right) \circ \varphi_{n}(x)=x
$$

we have

$$
\begin{equation*}
F_{n}(x) \circ G_{n}(x)=x \tag{11}
\end{equation*}
$$

for any $x \in[-s / 4, \infty)$.
Lemma 3.3. Let the notation be as above and suppose $s>2$. Then:
(i) The sequence $G_{n}(x)$ converges uniformly on every compact subset of $[-s / 4, \infty)$, and define a function

$$
G(x)=\lim _{n \rightarrow \infty} G_{n}(x)
$$

on $[-s / 4, \infty)$ which is real analytic on $(-s / 4, \infty)$.
(ii) For any $x \in[-s / 4, \infty)$, it holds that $F(x) \circ G(x)=x$.
(iii) The function $G(x)$ is strictly increasing on $[-s / 4, \infty)$.
(iv) If we set $\omega_{0}=G(-s / 4)$, then the function $F(x)$ is strictly increasing on $\left[\omega_{0}, \infty\right)$.

Proof. (i) It follows from the definition of $G_{n}(x)$ that

$$
\left(x+\frac{x^{2}}{s^{n}}\right) \circ G_{n}(x)=G_{n-1}(x) \quad(n \geq 1)
$$

that is,

$$
G_{n}(x)\left(1+\frac{G_{n}(x)}{s^{n}}\right)=G_{n-1}(x) \quad(n \geq 1) .
$$

Therefore

$$
\begin{equation*}
G_{n}(x)=\frac{x}{\prod_{r=1}^{n}\left(1+s^{-r} G_{r}(x)\right)} \tag{12}
\end{equation*}
$$

for any $n \geq 1$. Here note that from the definition of $G_{r}(x)$ we have $G_{r}(x) \geq-\frac{s^{r}}{2}$, so $1+s^{-r} G_{r}(x) \geq \frac{1}{2}$. Hence the denominators of the right hand side of (12) never vanish for any $r \in \mathbb{N}$.

Now, by the definition of $G_{r}(x)$, we have

$$
\begin{aligned}
G_{r}(x) & =\frac{-1+\sqrt{1+4 s^{-r} x}}{2 s^{-r}} \circ G_{r-1}(x) \\
& =\frac{2 x}{1+\sqrt{1+4 s^{-r} x}} \circ G_{r-1}(x) \\
& =\frac{2 G_{r-1}(x)}{1+\sqrt{1+4 s^{-r} G_{r-1}(x)}} .
\end{aligned}
$$

Since $G_{0}(x)=x$, it follows that

$$
G_{n}(x) \leq|x| \prod_{r=1}^{n} \frac{2}{1+\sqrt{1+4 s^{-r} G_{r-1}(x)}} \leq 2^{n}|x| .
$$

Therefore

$$
s^{-n}\left|G_{n}(x)\right| \leq\left(\frac{2}{s}\right)^{n}|x| .
$$

This implies that if $s>2$, then the infinite series

$$
\sum_{n=1}^{\infty} s^{-n}\left|G_{n}(x)\right|
$$

is convergent, hence the infinite product

$$
\prod_{n=1}^{\infty}\left(1+s^{-n} G_{n}(x)\right)
$$

is also convergent. Therefore, the limit $\lim _{n \rightarrow \infty} G_{n}(x)$ exists by (12), which proves (i).
(ii) The second assertion follows from the relation (11) and the equicontinuity of the sequence $\left\{F_{n}(x)\right\}$ on every compact subset of $[-s / 4, \infty)$.
(iii) First we prove that the inequality

$$
\begin{equation*}
G_{n}(x)-G_{n}(y) \geq x-y \tag{13}
\end{equation*}
$$

holds for any $x, y \in[-s / 4,0]$ with $x>y$ by induction on n.
In the case of $n=0,(13)$ is trivial. Suppose $n>0$ and the inequality

$$
\begin{equation*}
G_{n-1}(x)-G_{n-1}(y) \geq x-y \tag{14}
\end{equation*}
$$

holds for any $x, y \in[-s / 4,0]$ with $x>y$. Since $G_{n-1}(x) \leq 0$ for any $x \in[-s / 4,0]$, we have

$$
\sqrt{1+4 s^{-n} G_{n-1}(x)} \leq 1 .
$$

Therefore

$$
G_{n}(x)-G_{n}(y)=\frac{2\left(G_{n-1}(x)-G_{n-1}(y)\right)}{\sqrt{1+4 s^{-n} G_{n-1}(x)}+\sqrt{1+4 s^{-n} G_{n-1}(y)}} \geq x-y .
$$

Thus (13) holds for any $n \geq 0$.
Now, taking the limit $n \rightarrow \infty$ of (13) yields the inequality

$$
G(x)-G(y) \geq x-y .
$$

In particular, $G(x)$ is strictly increasing on $[-s / 4,0]$.

It remains to show that $G(x)$ is strictly increasing on $(0, \infty)$. Since $F(G(x))=x$ and $F^{\prime}(x) \neq 0$ on $(0, \infty)$ by Lemma 3.2, it follows from the implicit function theorem that $G(x)$ is differentiable and the formula

$$
\begin{equation*}
F^{\prime}(G(x)) G^{\prime}(x)=1 \tag{15}
\end{equation*}
$$

holds on $(0, \infty)$. Since $F^{\prime}(x)>0$ for any $x>0$ by Lemma 3.2 again and $G(x)>0$ for any $x>0$, the formula (15) shows that $G^{\prime}(x)>0$, hence $G(x)$ is strictly increasing on $(0, \infty)$.
(iv) This is an immediate consequence of (ii) and (iii).

We can now prove Theorem 3.1.
Proof of Theorem 3.1. (i) Since $y^{2}+y \geq-1 / 4$ for any $y \in \mathbb{R}$, the functional equation (9) shows that $F(x) \geq-s / 4$ for any $x \in \mathbb{R}$. If $x \geq 0$, then $x+x^{2} / s^{n} \geq 0$ for any $n \geq 1$, hence $F(x) \geq 0$ for any $x \geq 0$. Moreover, if we set $\omega_{0}=G(-s / 4)<0$, then

$$
F\left(\omega_{0}\right)=F\left(G\left(-\frac{s}{4}\right)\right)=-\frac{s}{4}
$$

by Lemma 3.3 (ii). Hence $F(x)$ actually attains the minimal value $-s / 4$ at $x=\omega_{0}$. Therefore $F(\mathbb{R})=[-s / 4, \infty)$.
(ii) Let ω_{0} be as in (i) and $\omega \in \mathbb{R}$ the maximal value such that $F(\omega)=-s / 4$. As we have seen in (i), $F(x) \geq 0$ if $x \geq 0$, so ω is negative. Since $F\left(\omega_{0}\right)=-s / 4$, this shows that ω_{0} is the maximal real number attaining the minimal value of $F(x)$, hence $\omega=\omega_{0}$. It follows that $F^{\prime}(\omega)=0$ since $F(x)$ attains the minimal value.

It remains to show that $F^{\prime}(x)>0$ for any $x>\omega$. To see this, let ω_{1} be the maximal real zero of $F^{\prime}(x)$. If $\omega_{1}>\omega$, then $\omega_{1} / s>\omega / s$, so $F\left(\omega_{1} / s\right)+1 / 2>0$ since $F(x)$ is strictly increasing on $[\omega, \infty)$. But

$$
F^{\prime}\left(\frac{\omega_{1}}{s}\right)\left(1+2 F\left(\frac{\omega_{1}}{s}\right)\right)=F^{\prime}\left(\omega_{1}\right)=0
$$

hence $F^{\prime}\left(\omega_{1} / s\right)=0$, which contradicts the maximality of ω_{1}. Therefore ω must be the maximal real zero of $F^{\prime}(x)$. In other words, $F^{\prime}(x)>0$ for any $x>\omega$. This completes the proof.
4. The zeros of $f(x)$ and $f^{\prime}(x)$

Throughout this section we assume that $s \geq 4$. Let

$$
c=\frac{s^{2}}{4}-\frac{s}{2} .
$$

Obviously, we have $c \geq 2$, and $c=2$ if and only if $s=4$. Let $F(x, s)$ be the function defined by (8) and put

$$
\begin{equation*}
f(x, s)=s\left(F(x, s)+\frac{1}{2}\right) . \tag{16}
\end{equation*}
$$

Then the following proposition shows that $f(x):=f(x, s)$ is the desired function mentioned in the introduction.

Proposition 4.1. The function $f(x)$ and its derivative $f^{\prime}(x)$ satisfy the following functional equations:

$$
\begin{align*}
f(s x) & =f(x)^{2}-c \tag{17}\\
s f^{\prime}(s x) & =2 f(x) f^{\prime}(x) \tag{18}
\end{align*}
$$

Proof. It follows from (9) that

$$
\begin{aligned}
f(s x) & =s\left(F(s x)+\frac{1}{2}\right) \\
& =s^{2}\left(F(x)^{2}+F(x)\right)+\frac{s}{2} \\
& =\left\{s\left(\left(F(x)+\frac{1}{2}\right)\right\}^{2}-\frac{s^{2}}{4}+\frac{s}{2}\right. \\
& =f(x)^{2}-c .
\end{aligned}
$$

Thus (17) holds. Differentiating the functional equation (17) yields (18).
Proposition 4.2. Let ω be as in Theorem 3.1. Then $f(x) \geq-c$ for any $x \in \mathbb{R}$ and $f(\omega)=-c$. Moreover, $f^{\prime}(x)>0$ for any $x>\omega$.

Proof. Since $F(x) \geq-s / 4$ for any $x \in \mathbb{R}$, we have $f(x) \geq-c$. Moreover, since $F(x)$ attains the minimal value $-s / 4$ at $x=\omega, f(x)$ also attains the minimal value at $x=\omega$ and

$$
f(\omega)=s\left(F(\omega)+\frac{1}{2}\right)=s\left(-\frac{s}{4}+\frac{1}{2}\right)=-\frac{s^{2}}{4}+\frac{s}{2}=-c .
$$

The last statement follows from Theorem 3.1 (ii).
As we will see later, the zeros of $f(x)$ and $f^{\prime}(x)$ will play an important role in this paper. First note that $f(x)$ has at least one negative real zero. Indeed, since $f(0)=s(F(0)+1 / 2)=$ $s / 2>0$ and $f(\omega)=-c<0$, it follows that $f(x)$ has a real zero in the interval $(\omega, 0)$.

Proposition 4.3. If ρ is a zero of $f(x)$, then the following statements hold.
(i) $f(s \rho)=-c$. In particular, $f(s \rho)<0$.
(ii) $f\left(s^{i} \rho\right) \geq c$ for any $i \geq 2$, and the equality $f\left(s^{i} \rho\right)=c$ holds if and only if $c=2$. In particular, $f\left(s^{i} \rho\right)>0$ for any $i \geq 2$.
(iii) $f^{\prime}\left(s^{i} \rho\right)=0$ for any $i \geq 1$.

Proof. (i) The functional equation (17) shows that

$$
f(s \rho)=f(\rho)^{2}-c=-c
$$

which proves (i).
(ii) Suppose $\left|f\left(s^{i} \rho\right)\right| \geq c$ for some $i \geq 1$. Then

$$
f\left(s^{i+1} \rho\right)=f\left(s^{i} \rho\right)^{2}-c \geq c^{2}-c=c(c-1)
$$

Since $c \geq 2$, we have $c(c-1) \geq c$, hence $f\left(s^{i+1} \rho\right) \geq c$. Clearly the equality holds if and only if $c=2$. Since $|f(s \rho)|=c$, this implies that $f\left(s^{i} \rho\right) \geq c$ for any $i \geq 2$.
(iii) From the functional equation (18), we have

$$
s^{i} f^{\prime}\left(s^{i} x\right)=2^{i} f\left(s^{i-1} x\right) \cdots f(s x) f(x) f^{\prime}(x)
$$

for any $i \geq 1$. Therefore, $f^{\prime}\left(s^{i} \rho\right)=0$, which proves (iii).
COROLLARY 4.4. The function $f(x)$ has infinitely many negative real zeros, and the same holds for $f^{\prime}(x)$.

PROOF. If ρ is a negative real zero of $f(x)$, then $f(s \rho)<0$ and $f\left(s^{2} \rho\right)>0$ by Proposition 4.3. Hence there exists at least one zero ρ^{\prime} of $f(x)$ such that $s^{2} \rho<\rho^{\prime}<s \rho$. In particular, $\rho^{\prime}<\rho$. Therefore $f(x)$ has infinitely many real negative zeros. The second statement of the corollary is then clear from this, or directly follows from Proposition 4.3 (iii).

Proposition 4.5. Suppose $s \geq 4$. Then:
(i) Every zero of $f(x)$ is a negative real number.
(ii) Every zero of $f^{\prime}(x)$ is of the form $s^{i} \rho$, where ρ is a zero of $f(x)$ and i is a positive integer.
(iii) $f(x)$ and $f^{\prime}(x)$ have no common zero.
(iv) Every zero of $f(x) f^{\prime}(x)$ is simple.

PROOF. (i) It is proved in [1, Theorem 1.1, (ii)] that if $s \geq 4$ then $F^{-1}([-s / 4,0]) \subset$ $(-\infty, 0]$. Since $s \geq 4$, we have $-1 / 2 \in[-s / 4,0]$, and so $F^{-1}(-1 / 2) \subset(-\infty, 0]$. Since $f^{-1}(0)=F^{-1}(-1 / 2)$ and $f(0)=s / 2 \neq 0$, it follows that $f^{-1}(0) \subset(-\infty, 0)$, which proves (i).
(ii) Let X denote the set of zeros of $f(x)$ and Y the set of zeros of $f^{\prime}(x)$. Then (18) shows that $Y=s X \cup s Y$. Since $0 \notin Y$ and Y has no accumulation points, this implies that

$$
Y=\bigcup_{i=1}^{\infty} s^{i} X
$$

which proves (ii).
(iii) Proposition 4.3 shows that $X \cap s^{i} X=\emptyset$ for any $i \geq 1$, hence $X \cap Y=\emptyset$ by (ii). This proves (iii).
(iv) It follows from (iii) that every zero of $f(x)$ is simple. Since $f(x)$ and $f^{\prime}(x)$ have no common zeros, we have only to show that $f^{\prime}(x)$ has no zero of order ≥ 2.

Suppose $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ have a common zero, and let α be the maximum of such zeros. By (18), we have

$$
0=s f^{\prime}(\alpha)=2 f\left(\frac{\alpha}{s}\right) f^{\prime}\left(\frac{\alpha}{s}\right)
$$

and exactly one of $f(\alpha / s)$ and $f^{\prime}(\alpha / s)$ is zero by (iii). Differentiating (18), we get

$$
s^{2} f^{\prime \prime}(s x)=2\left\{f^{\prime}(x)^{2}+f(x) f^{\prime \prime}(x)\right\}
$$

It follows that

$$
\begin{equation*}
0=s^{2} f^{\prime \prime}(\alpha)=2\left\{f^{\prime}\left(\frac{\alpha}{s}\right)^{2}+f\left(\frac{\alpha}{s}\right) f^{\prime \prime}\left(\frac{\alpha}{s}\right)\right\} \tag{19}
\end{equation*}
$$

If $f(\alpha / s)=0$, then (19) implies that $f^{\prime}(\alpha / s)=0$, which is impossible since $f(x)$ and $f^{\prime}(x)$ have no common zero. Hence $f(\alpha / s) \neq 0$ and $f^{\prime}(\alpha / s)=0$. It then follows from (19) again that $f^{\prime \prime}(\alpha / s)=0$, which contradicts the choice of α since $\alpha<\alpha / s$. Therefore $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ have no common zero, and so $f^{\prime}(x)$ has only simple zeros. This proves (iv).

Recall that both $f(x)$ and $f^{\prime}(x)$ have infinitely many zeros by Corollary 4.4, all of which are negative real numbers by Proposition 4.5. Numbering the zeros of $f(x)$ and $f(x) f^{\prime}(x)$ in descending order, respectively, we write

$$
(0>) \rho(1)>\rho(2)>\rho(3)>\cdots,
$$

and

$$
(0>) \tau(1)>\tau(2)>\tau(3)>\cdots .
$$

For convenience, we set $\tau(0)=\tau(-1)=\infty$.
Recall that we have defined ω to be the maximal zero of $F^{\prime}(x)$. Then ω is also the maximal zero of $f^{\prime}(x)$.

Proposition 4.6. Notation being as above, we have $\tau(1)=\rho(1)$ and $\tau(2)=\omega=$ $s \rho(1)$.

Proof. Note that $f^{\prime}(x)>0$ for any $x>\omega$ and $f(\omega)=-c<0$ by Proposition 4.2. This implies that $\tau(1)=\rho(1)$ and $\rho(1)$ is the unique zero of $f(x)$ in the interval $(\omega, 0)$. Moreover, since $f^{\prime}(\omega)=0$, it follows that $\tau(2)=\omega$.

To see that $\omega=s \rho(1)$, note that $\omega<\omega / s<0$, hence $f^{\prime}\left(\frac{\omega}{s}\right) \neq 0$. But

$$
2 f\left(\frac{\omega}{s}\right) f^{\prime}\left(\frac{\omega}{s}\right)=s f^{\prime}(\omega)=0
$$

hence $f(\omega / s)=0$. This implies that $\omega / s=\rho(1)$, so $\omega=s \rho(1)$.
Proposition 4.6 can be generalized as follows.
Theorem 4.7. Let n be a positive integer. Then

$$
\begin{equation*}
\tau(2 n-1)=\rho(n), \quad \tau(2 n)=s \tau(n) . \tag{20}
\end{equation*}
$$

In particular, $f(\tau(n))=0$ if n is odd and $f^{\prime}(\tau(n))=0$ if n is even.
Although this theorem is proved in [4], we give a slightly simplified proof here for the sake of the reader. In the proof of the theorem we need the following notation: For a real number x, define

$$
\operatorname{sgn}(x)= \begin{cases}1 & (\text { if } x>0) \\ 0 & (\text { if } x=0) \\ -1 & (\text { if } x<0)\end{cases}
$$

Proof of Theorem 4.7. First, note that the statement for $n=1$ is nothing but Proposition 4.6. For each $n \geq 1$, consider the open interval $I_{n}=(s \tau(n), s \tau(n-1))$. In particular, $\rho(1) \in I_{1}=(s \tau(1), \infty)$.

Let $k \geq 1$ be an integer and assume that (20) holds for any n with $1 \leq n \leq k$. In order to show that the assertion of the theorem for $n=k+1$ is true, we first prove that $f(x)$ has a unique zero in I_{n} for any integer n with $1 \leq n \leq 2 k$. For such an integer n, take arbitrary $x \in I_{n}$. Then $\tau(n)<x / s<\tau(n-1)$, hence neither $f(x / s)$ nor $f^{\prime}(x / s)$ vanishes. Since

$$
\operatorname{sgn}\left(f^{\prime}(x)\right)=\operatorname{sgn}\left(f\left(\frac{x}{s}\right) f^{\prime}\left(\frac{x}{s}\right)\right)
$$

by (18), $\operatorname{sgn}\left(f^{\prime}(x)\right)$ is constant on I_{n}. Hence $f(x)$ is either monotonously increasing or monotonously decreasing on the interval I_{n}. Moreover, if n is even, say $n=2 l$ with $1 \leq l \leq$ k, then

$$
s \tau(n)=s \tau(2 l)=s^{2} \tau(l)
$$

by the inductive hypothesis. Hence $f(s \tau(n))>0$ by Proposition 4.3 (ii). If n is odd, say $n=2 l-1$ with $1 \leq l \leq k$, then

$$
s \tau(n)=s \tau(2 l-1)=s \rho(l)
$$

by the inductive hypothesis. Then $f(s \tau(n))<0$ by Proposition 4.3 (i). Therefore, $f(x)$ has a unique zero in I_{n} for any integer n with $1 \leq n \leq 2 k$. In particular, there exists a unique zero
in $I_{k+1}=(s \tau(k+1), s \tau(k))=(s \tau(k+1), \tau(2 k))$, namely, there exists a unique positive integer u such that

$$
\begin{equation*}
s \tau(k+1)<\rho(u)<\tau(2 k)(<\tau(2 k-1)=\rho(k)) . \tag{21}
\end{equation*}
$$

On the other hand, in the notation of the proof of Proposition 4.5 (ii), we have

$$
\begin{equation*}
Y=s(X \cup Y)=\{s \tau(n) \mid n=1,2,3, \ldots\} . \tag{22}
\end{equation*}
$$

From (21), (22), we find that $\rho(u)=\tau(2 k+1)$ and $s \tau(k+1)=\tau(2 k+2)$. In particular, $\rho(u)$ is the maximal zero of $f(x)$ less than $\rho(k)$, so $u=k+1$. Therefore $\tau(2 k+1)=\rho(k+1)$ and $\tau(2 k+2)=s \tau(k+1)$. This proves that the theorem holds for $n=k+1$. Thus the theorem holds for any positive integer n.

For each positive integer n, define a nonnegative integer $v(n)$ and a positive integer $n^{\#}$ by the rule

$$
\begin{equation*}
n=2^{v(n)}\left(2 n^{\#}-1\right) \tag{23}
\end{equation*}
$$

Obviously, both $v(n)$ and $n^{\#}$ are uniquely determined by n. The following corollary is an immediate consequence of Theorem 4.7.

Corollary 4.8. Notation being as above, we have

$$
\tau(n)=s^{v(n)} \rho\left(n^{\#}\right) .
$$

THEOREM 4.9. Let n be a non-negative integer. Then

$$
\begin{array}{ll}
f(x)>0 & \text { if } \tau(4 n+1)<x<\tau(4 n-1), \\
f(x)<0 & \text { if } \tau(4 n+3)<x<\tau(4 n+1),
\end{array}
$$

and

$$
\begin{array}{ll}
f^{\prime}(x)>0 & \text { if } \tau(4 n+2)<x<\tau(4 n), \\
f^{\prime}(x)<0 & \text { if } \tau(4 n+4)<x<\tau(4 n+2) .
\end{array}
$$

Proof. Theorem 4.7 shows that the set of zeros of $f(x)$ is $\{\tau(2 m-1) \mid m \in \mathbb{N}\}$, and so $\operatorname{sgn}(f(x))$ is constant on the open interval $(\tau(2 m+1), \tau(2 m-1))$ for any $m \in \mathbb{N}$. Therefore $\operatorname{sgn}(f(x))=\operatorname{sgn}(f(\tau(2 m)))$ for any $x \in(\tau(2 m+1), \tau(2 m-1))$. Moreover, combining Theorem 4.7 with Proposition 4.3, we see that

$$
\operatorname{sgn}(f(\tau(2 m)))=(-1)^{m}
$$

This proves the first statement of the theorem.
For the second statement, recall that we have seen in the proof of Theorem 4.7 that $\operatorname{sgn}\left(f^{\prime}(x)\right)$ is constant on the interval $(\tau(2 m+2), \tau(2 m))$ for any $m \in \mathbb{N}$. Since

$$
\operatorname{sgn}\left(f^{\prime}(\tau(2 m+1))\right)=\operatorname{sgn}\left(f^{\prime}(\rho(m+1))\right)=(-1)^{m}
$$

for any $m \geq 0$, we have $\operatorname{sgn}\left(f^{\prime}(x)\right)>0$ if and only if $x \in(\tau(4 n+2), \tau(4 n))$ for some $n \geq 0$. This completes the proof.

Now, for an integer n, define $a_{0}(n), a_{1}(n) \in\{0,1\}$ by the rule

$$
n \equiv a_{0}(n)+2 a_{1}(n) \quad(\bmod 4) .
$$

Corollary 4.10. If $x \in(\tau(n+1), \tau(n))$, then

$$
\begin{align*}
\operatorname{sgn}\left(f^{\prime}(x)\right) & =(-1)^{a_{1}(n)}, \tag{24}\\
\operatorname{sgn}(f(x)) & =(-1)^{a_{0}(n)+a_{1}(n)} . \tag{25}
\end{align*}
$$

Proof. Note that the following equivalence holds:

$$
\begin{aligned}
a_{1}(n) \equiv 0 \quad(\bmod 2) & \Longleftrightarrow n \equiv 0,1 \quad(\bmod 4), \\
a_{0}(n)+a_{1}(n) \equiv 0 \quad(\bmod 2) & \Longleftrightarrow n \equiv 0,3 \quad(\bmod 4) .
\end{aligned}
$$

Therefore, the corollary immediately follows from Theorem 4.9.
COROLLARY 4.11. The function $f(x)$ takes extreme values at $x=\tau(2 n)$ for any $n \in \mathbb{N}$. If n is odd, then

$$
f(\tau(2 n))=-c,
$$

which is independent of n. On the other hand, if n is even, then

$$
f(\tau(2 n))=\left(\underset{\substack{v(2 n) \\ \mathcal{R}}}{\stackrel{1}{2}}\left(x^{2}-c\right)\right) \circ 0,
$$

all of which are positive.
REMARK 4.12. Corollary 4.11 shows that $f(x)$ takes local maximums at $x=\tau(2 n)$ for even integers $n>0$ and they depend only on $v(2 n)$. For positive integers v, let $M_{v}=$ $f\left(\tau\left(2^{v+1}\right)\right)$. If $s=4$, then $M_{v}=2$ for any $v \geq 1$. On the contrary, if $s>4$, then M_{v} becomes arbitrarily large as $v \rightarrow \infty$ (see Figure 1.). For example, one can easily see that

$$
\begin{equation*}
M_{v} \geq c(c-1)^{2^{v}-1} \tag{26}
\end{equation*}
$$

Indeed, this holds for $v=1$ since $M_{1}=c(c-1)$. If $M_{v} \geq c(c-1)^{2^{v}-1}$, then

$$
\begin{aligned}
M_{v+1} & =\left(x^{2}-c\right) \circ M_{v} \\
& =M_{v}^{2}-c \\
& \geq c^{2}(c-1)^{2\left(2^{v}-1\right)}-c \\
& =c\left\{c(c-1)^{2^{v+1}-2}-1\right\} \\
& =c\left\{(c-1)(c-1)^{2^{v+1}-2}+(c-1)^{2^{v+1}-2}-1\right\}
\end{aligned}
$$

Figure 1. The graph of $f(x)$ for $s=4.05$

$$
>c(c-1)^{2^{v+1}-1}
$$

The last inequality holds since $c-1>1$. This proves that the inequality (26) holds for any $v \geq 1$.

5. The zeros of $F(x)$

In this section we assume that $s>4$. From the definition of $f(x)$ we deduce that

$$
F(x)=\frac{f(x)}{s}-\frac{1}{2} .
$$

Since $f^{\prime}(\tau(2 n))=0$ for any integer $n>0$ by Theorem 4.7, we have

$$
F^{\prime}(\tau(2 n))=0
$$

To study the distribution of the zeros of $F(x)$ we start with the following lemma.
LEmma 5.1. For any integer $n \geq 0$, there exists a unique zero of $F(x)$ in every open interval $(\tau(2 n+2), \tau(2 n))$. Here, we set $\tau(0)=\infty$ for convenience.

Proof. First suppose n is odd, say $n=2 k-1$. Then Proposition 4.3 shows that

$$
F(\tau(2 n))=\frac{f(\tau(2 n))}{s}-\frac{1}{2}=\frac{-c}{s}-\frac{1}{2}=-\frac{s}{4}<0 .
$$

On the other hand, we have $2 n+2=4 k$, so $\tau(2 n+2)=s^{2} \tau(k)$. Hence Proposition 4.3 again shows that

$$
F(\tau(2 n+2))=\frac{f(\tau(2 n+2))}{s}-\frac{1}{2}>\frac{c}{s}-\frac{1}{2}=\frac{s}{4}-1>0 .
$$

Moreover, since $F^{\prime}(x)<0$ for any $x \in(\tau(2 n+2), \tau(2 n))$ by Theorem 4.9, this shows that there is a unique zero of $F(x)$ in the interval $(\tau(2 n+2), \tau(2 n))$. The proof of the case n even is quite similar.

For each $n \geq 0$, we denote by $\mu(n)$ the unique zero of $F(x)$ in the interval ($\tau(2 n+$ 2), $\tau(2 n)$). Thus,

$$
0=\mu(0)>\mu(1)>\mu(2)>\cdots .
$$

Proposition 5.2. For any $n \in \mathbb{N}$, we have

$$
\tau(4 n+1)<\mu(2 n)<\tau(4 n)<\mu(2 n-1)<\tau(4 n-1) .
$$

Proof. Theorem 4.9 shows that $F^{\prime}(x)<0$ for any
$x \in(\tau(4 n), \tau(4 n-1))$. Since

$$
F(\tau(4 n-1))=F(\rho(2 n))=-\frac{1}{2}<0, \quad F(\tau(4 n))>0
$$

we find that

$$
\tau(4 n)<\mu(2 n-1)<\tau(4 n-1)
$$

which proves the half of the proposition. The proof of the remaining part of the proposition is quite similar.

REMARK 5.3. If $s=4$, then $c=2$ and

$$
\begin{aligned}
& f(x)=f(x, 4)=2 \cos \sqrt{-4 x}= \begin{cases}2 \cos (2 \sqrt{-x}) & (x \leq 0), \\
2 \cosh (2 \sqrt{x}) & (x>0),\end{cases} \\
& F(x)=F(x, 4)=\frac{\cos \sqrt{-4 x}}{2}-\frac{1}{2}=\left\{\begin{array}{cc}
-\sin ^{2}(\sqrt{-x}) & (x \leq 0), \\
\sinh ^{2}(\sqrt{x}) & (x>0) .
\end{array}\right.
\end{aligned}
$$

It follows that $\tau(n)=-\pi^{2} n^{2} / 4^{2}$ for any positive integer n, so $F(\tau(4 n))=F^{\prime}(\tau(4 n))=0$. Therefore, the case $s=4$ can be regarded as a degenerate case where " $\mu(2 n)=\mu(2 n-1)$ ". This is the reason why we have excluded the case $s=4$.

Now, the functional equation of $F(x)$ shows that $s \mu(n)$ is a zero of $F(x)$ for any $n \geq 0$. Thus, given $n \geq 0$, we have $s \mu(n)=\mu\left(n^{\prime}\right)$ for some $n^{\prime} \geq 0$. The following theorem gives an explicit relationship between n and n^{\prime}. To state it, for any integer $n>0$, we define an odd integer n^{*} by

$$
\begin{equation*}
n=2^{v(n)} n^{*}, \tag{27}
\end{equation*}
$$

where $v(n) \geq 0$ is the integer defined in (23). Thus, $n^{*}=2 n^{\#}-1$ in the notation of (23).
Theorem 5.4. Let $s>4$. Then the following hold for any $n \geq 1$.

$$
\begin{align*}
\mu(2 n) & =s^{v(n)} \mu\left(2 n^{*}\right) \tag{28}\\
\mu(2 n-1) & =s^{v(n)} \mu\left(2 n^{*}-1\right) \tag{29}
\end{align*}
$$

Proof. It suffices to prove that

$$
\begin{equation*}
s \mu(2 n)=\mu(4 n), \quad s \mu(2 n-1)=\mu(4 n-1) \tag{30}
\end{equation*}
$$

for any $n \geq 1$. To prove the first equation of (30), note that the inequalities

$$
\tau(4 n+1)<\mu(2 n)<\tau(4 n)
$$

hold by Proposition 5.2. Hence

$$
s \tau(4 n+1)<s \mu(2 n)<s \tau(4 n) .
$$

Since $s \tau(4 n+1)=\tau(8 n+2)$ and $s \tau(4 n)=\tau(8 n)$, it follows that

$$
\begin{equation*}
\tau(8 n+2)<s \mu(2 n)<s \tau(8 n) . \tag{31}
\end{equation*}
$$

Since $\mu(4 n)$ is the unique zero of $F(x)$ in the interval $(\tau(8 n+2), \tau(8 n)$), it follows from (31) that $s \mu(2 n)=\mu(4 n)$.

On the other hand Proposition 5.2 shows that

$$
\tau(4 n)<\mu(2 n-1)<\tau(4 n-1),
$$

ands so

$$
s \tau(4 n)<s \mu(2 n-1)<s \tau(4 n-1) .
$$

Since $s \tau(4 n)=\tau(8 n)$ and $s \tau(4 n-1)=\tau(8 n-2)$, it follows that

$$
\begin{equation*}
\tau(8 n)<s \mu(2 n-1)<s \tau(8 n-2) . \tag{32}
\end{equation*}
$$

Note that $\mu(4 n-1)$ is the unique zero of $F(x)$ in the interval $(\tau(8 n), \tau(8 n-2))$ by Proposition 5.2. Therefore we see that $s \mu(2 n-1)=\mu(4 n-1)$ by (32).

6. Finite nested square roots

From now on, we assume that $s \geq 4$. Let m be a positive integer. Given a finite sequence $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{m}\right) \in\{ \pm 1\}^{m}$, consider a real valued function

$$
R_{c}\left(\varepsilon_{1}, \ldots, \varepsilon_{m} ; x\right)=\varepsilon_{1} \sqrt{c+\varepsilon_{2} \sqrt{c+\varepsilon_{3} \sqrt{c+\cdots+\varepsilon_{m} \sqrt{c+x}}}}
$$

defined for $x \geq-c$. This can be written as

$$
R_{c}\left(\varepsilon_{1}, \ldots, \varepsilon_{m} ; x\right)=\underset{k=1}{m} \varepsilon_{k} \sqrt{c+x} .
$$

Proposition 6.1. Let $\alpha \in \mathbb{R}$. If we set $\varepsilon_{k}=\operatorname{sgn}\left(f\left(\alpha / s^{k}\right)\right)$ for $k=1,2, \ldots$, , then

$$
f\left(\frac{\alpha}{s^{m}}\right)=R_{c}\left(\varepsilon_{m}, \varepsilon_{m-1}, \ldots, \varepsilon_{1} ; f(\alpha)\right) .
$$

Proof. The functional equation $f(s x)=f(x)^{2}-c$ shows that

$$
f(x)=\operatorname{sgn}(f(x)) \sqrt{c+f(s x)} .
$$

Hence

$$
f\left(\frac{\alpha}{s^{m}}\right)=\varepsilon_{m} \sqrt{c+f\left(\frac{\alpha}{s^{m-1}}\right)} .
$$

Repeating this process yields the proposition.
For any integer $m \geq 0$, define $a_{k}(m) \in\{0,1\}(k=0,1, \ldots)$ by the 2 -adic expansion of m :

$$
m=a_{0}(m)+2 a_{1}(m)+2^{2} a_{2}(m)+\cdots .
$$

If $\tau(m+1)<x<\tau(m)$, then $\operatorname{sgn}(f(x))=(-1)^{a_{0}(m)+a_{1}(m)}$ by Corollary 4.10. The following theorem determines $\operatorname{sgn}\left(f\left(x / s^{k}\right)\right)$ for $k \geq 1$.

Theorem 6.2. If $\tau(2 m+2)<x<\tau(2 m)$, then

$$
\operatorname{sgn}\left(f\left(\frac{x}{s^{k}}\right)\right)=(-1)^{a_{k-1}(m)+a_{k}(m)}
$$

for any integer $k \geq 1$.
Proof. Put $B_{k}(m)=2^{k} a_{k}(m)+2^{k+1} a_{k+1}(m)+\cdots$. Then

$$
2^{k-1} a_{k-1}(m)+B_{k}(m) \leq m<m+1 \leq 2^{k-1}\left(1+a_{k-1}(m)\right)+B_{k}(m),
$$

hence

$$
2^{k} a_{k-1}(m)+2 B_{k}(m) \leq 2 m<2 m+2 \leq 2^{k}\left(1+a_{k-1}(m)\right)+2 B_{k}(m) .
$$

Therefore

$$
\begin{aligned}
& \tau\left(2^{k}\left(1+a_{k-1}(m)\right)+2 B_{k}(m)\right) \leq \tau(2 m+2) \\
& <\tau(2 m) \leq \tau\left(2^{k} a_{k-1}(m)+2 B_{k}(m)\right)
\end{aligned}
$$

which implies that

$$
\tau\left(1+a_{k-1}(m)+2 B_{k}(m) / 2^{k}\right)<\frac{x}{s^{k}}<\tau\left(a_{k-1}(m)+2 B_{k}(m) / 2^{k}\right) .
$$

Thus, if we put $n=a_{k-1}(m)+2 a_{k}(m)+\cdots$, then $\tau(1+n)<x / s^{k}<\tau(n)$. Hence

$$
\operatorname{sgn}\left(f\left(\frac{x}{s^{k}}\right)\right)=(-1)^{a_{0}(n)+a_{1}(n)}
$$

by Corollary 4.10. But $a_{0}(n)+a_{1}(n)=a_{k-1}(m)+a_{k}(m)$, and so the theorem holds.
Remark 6.3. For any real number x, let $[x]$ denote the largest integer not greater than x. Then

$$
a_{k-1}(m)+a_{k}(m) \equiv\left[\frac{m}{2^{k}}+\frac{1}{2}\right] \quad(\bmod 2)
$$

Corollary 6.4. Let k be an integer with $k \geq 1$. Then

$$
\operatorname{sgn}\left(f\left(\frac{\rho(m+1)}{s^{k}}\right)\right)=(-1)^{a_{k}(m)+a_{k-1}(m)} .
$$

Proof. Since $\rho(m+1)=\tau(2 m+1)$, it follows that

$$
\tau(2 m+2)<\rho(m+1)<\tau(2 m) .
$$

Hence, applying Theorem 6.2 with $x=\rho(m+1)$, we obtain the corollary.
Theorem 6.5. If $\tau(2 m+2)<\alpha<\tau(2 m)$, then

$$
f\left(\frac{\alpha}{s^{N}}\right)=\left(\underset{n=1}{\underset{R}{\mathcal{R}}}(-1)^{a_{N+1-n}(m)+a_{N-n}(m)} \sqrt{c+x}\right) \circ f(\alpha)
$$

for any $N \geq 1$.
Proof. For simplicity we put $a_{k}=a_{k}(m)$. Then Proposition 6.1 gives

$$
\begin{equation*}
f\left(\frac{\alpha}{s^{N}}\right)=\left(\underset{n=1}{\stackrel{N}{\mathcal{R}}} \operatorname{sgn}\left(f\left(\frac{\alpha}{s^{N+1-n}}\right)\right) \sqrt{c+x}\right) \circ f(\alpha) . \tag{33}
\end{equation*}
$$

From Theorem 6.2, we deduce that

$$
\begin{equation*}
\operatorname{sgn}\left(f\left(\frac{\alpha}{s^{N+1-n}}\right)\right)=(-1)^{a_{N+1-n}+a_{N-n}} . \tag{34}
\end{equation*}
$$

Then the theorem follows from (33) and (34).
Taking $\alpha=\rho(m+1), \alpha=\mu(m)$ in Theorem 6.5, we obtain the following corollary.
Corollary 6.6. For any integer $N \geq 1$, we have

$$
\begin{aligned}
f\left(\frac{\rho(m+1)}{s^{N}}\right) & =\left(\underset{n=1}{N}(-1)^{a_{N+1-n}(m)+a_{N-n}(m)} \sqrt{c+x}\right) \circ 0 \quad(s \geq 4) . \\
f\left(\frac{\mu(m)}{s^{N}}\right) & =\left(\underset{{ }_{n=1}^{N}}{\mathcal{R}}(-1)^{a_{N+1-n}(m)+a_{N-n}(m)} \sqrt{c+x}\right) \circ \frac{s}{2}(s>4) .
\end{aligned}
$$

Now we can state one of our main theorems.
THEOREM 6.7. Given $\varepsilon_{1}, \ldots, \varepsilon_{k} \in\{ \pm 1\}$, let

$$
a_{i}=\frac{1-\varepsilon_{1} \cdots \varepsilon_{i}}{2} \in\{0,1\}
$$

for $i=1, \ldots, k$ and put $A_{k}=2^{k-1} a_{1}+2^{k-2} a_{2}+\cdots+2 a_{k-1}+a_{k}$. Then

$$
\begin{align*}
R_{c}\left(\varepsilon_{1}, \ldots, \varepsilon_{k}\right) & =f\left(\frac{\rho\left(A_{k}+1\right)}{s^{k}}\right) \quad(s \geq 4) \tag{35}\\
R_{c}\left(\varepsilon_{1}, \ldots, \varepsilon_{k} ; \frac{s}{2}\right) & =f\left(\frac{\mu\left(A_{k}\right)}{s^{k}}\right) \quad(s>4) \tag{36}
\end{align*}
$$

Proof. Applying Corollary 6.6 with $m=A_{k}$ and $N=k$, we get

$$
\begin{equation*}
f\left(\frac{\rho\left(A_{k}+1\right)}{s^{k}}\right)=\left(\underset{n=1}{\mathcal{R}}(-1)^{a_{n}+a_{n-1}} \sqrt{c+x}\right) \circ 0 \tag{37}
\end{equation*}
$$

where we put $a_{0}=0$ for convenience. From the definition of a_{n}, we have

$$
\varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{n}=1-2 a_{n}=(-1)^{a_{n}}
$$

for any $n \geq 1$, which implies that

$$
\begin{equation*}
\varepsilon_{n}=(-1)^{a_{n}+a_{n-1}} \tag{38}
\end{equation*}
$$

Therefore, from (37) and (38), we conclude that

$$
f\left(\frac{\rho\left(A_{k}+1\right)}{s^{k}}\right)=\left(\underset{n=1}{\mathcal{R}} \varepsilon_{n} \sqrt{c+x}\right) \circ 0=R_{c}\left(\varepsilon_{1}, \ldots, \varepsilon_{k}\right)
$$

which proves (35). The same argument gives (36).
REMARK 6.8. As we have seen in Remark 5.3, if $s=4$, then $f(x)=2 \cos \sqrt{-4 x}$ and $\rho(n)=-\pi^{2}(2 n-1)^{2} / 4^{2}$ for any positive integer n, hence

$$
\frac{\rho\left(A_{k}+1\right)}{s^{k}}=-\frac{\pi^{2}\left(2 A_{k}+1\right)^{2}}{4^{k+2}}
$$

Therefore

$$
\begin{aligned}
f\left(\frac{\rho\left(A_{k}+1\right)}{s^{k}}\right) & =2 \cos \frac{\pi\left(2 A_{k}+1\right)}{2^{k+1}} \\
& =2 \cos \pi\left(\frac{a_{1}}{2}+\cdots+\frac{a_{k}}{2^{k}}+\frac{1}{2^{k+1}}\right)
\end{aligned}
$$

From this and Theorem 6.7 we obtain

$$
2 \cos \pi\left(\frac{a_{1}}{2}+\cdots+\frac{a_{k}}{2^{k}}+\frac{1}{2^{k+1}}\right)
$$

$$
=(-1)^{a_{1}} \sqrt{2+(-1)^{a_{1}+a_{2}} \sqrt{2+(-1)^{a_{2}+a_{3}} \sqrt{2+\cdots+(-1)^{a_{k-1}+a_{k} \sqrt{2}}}}, \text { }}
$$

which is the formula (4) in the introduction.
COROLLARY 6.9. Let a, a^{\prime} be positive integers such that $a+a^{\prime}=2^{m}+1$. Then

$$
f\left(\frac{\rho(a)}{s^{m}}\right)=-f\left(\frac{\rho\left(a^{\prime}\right)}{s^{m}}\right)
$$

Proof. Let $a_{i}, a_{i}^{\prime}(i=1, \ldots, m)$ be the coefficients of the 2 -adic expansion of $a-$ $1, a^{\prime}-1$ respectively, that is,

$$
\begin{aligned}
a-1 & =2^{m-1} a_{1}+2^{m-2} a_{2}+\cdots+2 a_{m-1}+a_{m} \\
a^{\prime}-1 & =2^{m-1} a_{1}^{\prime}+2^{m-2} a_{2}^{\prime}+\cdots+2 a_{m-1}^{\prime}+a_{m}^{\prime}
\end{aligned}
$$

Since $(a-1)+\left(a^{\prime}-1\right)=2^{m}-1$, we have $a_{i}+a_{i}^{\prime}=1$ for any $i=1, \ldots, m$. Let $a_{0}=a_{0}^{\prime}=0$ and $\varepsilon_{i}=(-1)^{a_{i}+a_{i-1}}, \varepsilon_{i}^{\prime}=(-1)^{a_{i}^{\prime}+a_{i-1}^{\prime}}$. Then

$$
\varepsilon_{i} \cdot \varepsilon_{i}^{\prime}=(-1)^{\left(a_{i}+a_{i}^{\prime}\right)+\left(a_{i-1}+a_{i-1}^{\prime}\right)}=\left\{\begin{aligned}
1 & (i=2, \ldots, m) \\
-1 & (i=1)
\end{aligned}\right.
$$

Hence $R_{c}\left(\varepsilon_{1}, \ldots, \varepsilon_{m}\right)=-R_{c}\left(\varepsilon_{1}^{\prime}, \ldots \varepsilon_{m}^{\prime}\right)$. The corollary is then an immediate consequence of Theorem 6.7.

Solving (35) and (36) for $\rho\left(A_{k}+1\right)$ and $\mu\left(A_{k}\right)$ respectively, we obtain the following theorem.

THEOREM 6.10. Given a positive integer m, let

$$
m=2^{k-1} a_{1}+2^{k-2} a_{2}+\cdots+2 a_{k-1}+a_{k} \quad\left(k \geq 1, a_{i} \in\{0,1\}\right)
$$

be the 2-adic expansion of m and define $\varepsilon_{1}, \ldots, \varepsilon_{k} \in\{ \pm 1\}$ by

$$
\varepsilon_{i}=(-1)^{a_{i}+a_{i-1}} \quad(i=1, \ldots, k)
$$

with $a_{0}=0$. Then

$$
\begin{equation*}
\rho(m+1)=s^{k} G\left(\frac{x}{s}-\frac{1}{2}\right) \circ R_{c}\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k}\right) . \tag{39}
\end{equation*}
$$

Moreover, if $s>4$, then

$$
\begin{equation*}
\mu(m)=s^{k} G\left(\frac{x}{s}-\frac{1}{2}\right) \circ R_{c}\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k} ; \frac{s}{2}\right) . \tag{40}
\end{equation*}
$$

Proof. Observe that

$$
\left(\frac{x}{s}-\frac{1}{2}\right) \circ s x \circ\left(x+\frac{1}{2}\right)=x
$$

and

$$
s x \circ\left(x+\frac{1}{2}\right) \circ F(x)=f(x) .
$$

Since $G(x) \circ F(x)=x$ for any $x \geq s \rho(1)$, combining these formulas, we conclude that

$$
G\left(\frac{x}{s}-\frac{1}{2}\right) \circ f(x)=x
$$

for any $x \geq s \rho(1)$. Then (39) follows from (35) if we prove that

$$
\begin{equation*}
s \rho(1) \leq \frac{\rho\left(A_{k}+1\right)}{s^{k}} . \tag{41}
\end{equation*}
$$

The inequality (41) can be proved as follows:

$$
s^{k+1} \rho(1)=\tau\left(2^{k+1}\right)<\tau\left(2^{k+1}-1\right)=\rho\left(2^{k}\right) \leq \rho\left(A_{k}+1\right)
$$

Consequently we get (41). This proves (39). The proof of (40) is quite similar.
Using formulas (39) and (40), we can compute $\rho(m+1)$ and $\mu(m)$ for any $m \in \mathbb{N}$ if we know the value of $G(t)$ for $-1 \leq t \leq 0$:

EXAMPLE 6.11. The 20-th zero $\rho(20)$ can be computed using the formula (39) as follows. Since $20-1=19=2^{4}+2+1$, we take $a_{1}=1, a_{2}=0, a_{3}=0, a_{4}=1, a_{5}=1$ and $\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}, \varepsilon_{5}\right)=(-1,-1,1,-1,1)$. Thus

$$
R_{c}(-1,-1,1,-1,1)=-\sqrt{c-\sqrt{c+\sqrt{c-\sqrt{c+\sqrt{c}}}}}
$$

and if we set $t=R_{c}(-1,-1,1,-1,1) / s-1 / 2$, then we get $\rho(20)=s^{5} G(t)$ from (39).
Now, let us study the behavior of the root $\rho\left(2^{m}\right)$ as $m \rightarrow \infty$. As for the roots of $F(x)$, we have $\mu\left(2^{m}\right)=\mu(2) s^{m-1}$ for any positive integer m by (28). Although $\rho\left(2^{m}\right)$ does not have such a simple formula, we can prove the following estimate of $\rho\left(2^{m}\right)$ when m is sufficiently large.

Theorem 6.12. Suppose $s>4$. Then

$$
\rho\left(2^{m}\right)=\mu(1) s^{m-1}+\frac{\rho(1)}{F^{\prime}(\mu(1))}+O\left(s^{-m}\right)
$$

as $m \rightarrow \infty$

Proof. Applying Corollary 6.9 with $a=2^{m}$ and $a^{\prime}=1$, we have

$$
f\left(\frac{\rho\left(2^{m}\right)}{s^{m}}\right)=-f\left(\frac{\rho(1)}{s^{m}}\right) .
$$

Since $F(x)=f(x) / s-1 / 2$, it follows that

$$
F\left(\frac{\rho\left(2^{m}\right)}{s^{m}}\right)=-1-F\left(\frac{\rho(1)}{s^{m}}\right)
$$

and so

$$
\begin{equation*}
\frac{\rho\left(2^{m}\right)}{s^{m}}=G\left(F\left(\frac{\rho\left(2^{m}\right)}{s^{m}}\right)\right)=G\left(-1-F\left(\frac{\rho(1)}{s^{m}}\right)\right) . \tag{42}
\end{equation*}
$$

The function $G(x)$ is infinitely many times differentiable at any $x \in(-s / 4, \infty)$ since $F(G(x))=x$ and $F^{\prime}(G(x))>0$ holds for $-s / 4<x$. Hence

$$
G(-1-x)=G(-1)-G^{\prime}(-1) x+O\left(x^{2}\right)
$$

as $x \rightarrow 0$. From $F^{\prime}(0)=1$, we find that $F(x)=x+O\left(x^{2}\right)$, so from (42) we obtain an estimate

$$
\frac{\rho\left(2^{m}\right)}{s^{m}}=G(-1)-G^{\prime}(-1) \frac{\rho(1)}{s^{m}}+O\left(s^{-2 m}\right)
$$

as $m \rightarrow \infty$. Since

$$
s F\left(\frac{\mu(1)}{s}\right)\left\{F\left(\frac{\mu(1)}{s}\right)+1\right\}=F(\mu(1))=0
$$

we have $F(\mu(1) / s)=-1$, and so $G(-1)=\mu(1) / s$. Moreover, using the formula $F^{\prime}(s x)=$ $(1+2 F(x)) F^{\prime}(x)$, we see that

$$
G^{\prime}(-1)=\frac{1}{F^{\prime}(G(-1))}=\frac{1}{F^{\prime}(\mu(1) / s)}=-\frac{1}{F^{\prime}(\mu(1))}
$$

Therefore

$$
\frac{\rho\left(2^{m}\right)}{s^{m}}=\frac{\mu(1)}{s}+\frac{\rho(1)}{F^{\prime}(\mu(1))} s^{-m}+O\left(s^{-2 m}\right)
$$

which completes the proof.

7. Infinite nested square roots

In this section, we prove that if $c \geq 2$ then the infinite nested square roots

$$
R\left(\varepsilon_{1}, \varepsilon_{2}, \ldots\right):=R_{c}\left(\varepsilon_{1}, \varepsilon_{2}, \ldots\right)
$$

have a definite value for any $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots\right) \in\{ \pm 1\}^{\mathbb{N}}$ and express it as special values of the function $f(x)$.

We begin with a lemma.
Lemma 7.1. For any integers $m>1$, we have

$$
\prod_{k=1}^{m}\left|R\left(\varepsilon_{k}, \ldots, \varepsilon_{m}\right)\right| \geq \frac{2 c}{s}
$$

Proof. Since $c^{2}-c \geq c$, we have

$$
\begin{aligned}
& \left|R\left(\varepsilon_{1},-\varepsilon_{2}, \varepsilon_{3}, \ldots, \varepsilon_{m}\right) R\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3} \ldots, \varepsilon_{m}\right)\right| \\
& \quad=\sqrt{c^{2}-R\left(\varepsilon_{2}, \ldots, \varepsilon_{m}\right)^{2}} \\
& \quad=\sqrt{c^{2}-c-R\left(\varepsilon_{3}, \ldots, \varepsilon_{m}\right)} \\
& \quad \geq \sqrt{c-R\left(\varepsilon_{3}, \ldots, \varepsilon_{m}\right)} \\
& \quad=\left|R\left(\varepsilon_{2},-\varepsilon_{3}, \varepsilon_{4}, \ldots, \varepsilon_{m}\right)\right|
\end{aligned}
$$

Repeating this argument, we obtain

$$
\left|R\left(\varepsilon_{1},-\varepsilon_{2}, \ldots, \varepsilon_{m}\right)\right| \prod_{k=1}^{m-1}\left|R\left(\varepsilon_{k}, \ldots, \varepsilon_{m}\right)\right| \geq\left|R\left(\varepsilon_{m}\right)\right|=\sqrt{c} .
$$

Since $\left|R\left(\varepsilon_{1},-\varepsilon_{2}, \ldots, \varepsilon_{m}\right)\right| \leq \frac{s}{2}$, the lemma holds.
Proposition 7.2. For any $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots\right) \in\{ \pm 1\}^{\mathbb{N}}$, the sequence $\left\{R\left(\varepsilon_{1}, \ldots, \varepsilon_{m}\right)\right\}_{m=1}^{\infty}$ converges.

Proof. It suffices to show that $\left\{R\left(\varepsilon_{1}, \ldots, \varepsilon_{m}\right)\right\}_{m=1}^{\infty}$ is a Cauchy sequence. To see this, note that

$$
\left|R\left(\varepsilon_{1}, \ldots, \varepsilon_{m}\right)-R\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)\right| \leq \sum_{k=n}^{m-1}\left|R\left(\varepsilon_{1}, \ldots, \varepsilon_{k+1}\right)-R\left(\varepsilon_{1}, \ldots, \varepsilon_{k}\right)\right|
$$

for any positive integers m, n with $m>n$. Here we have

$$
\begin{aligned}
& \left|R\left(\varepsilon_{1}, \ldots, \varepsilon_{k+1}\right)-R\left(\varepsilon_{1}, \ldots, \varepsilon_{k}\right)\right| \\
& \quad=\frac{\left|R\left(\varepsilon_{1}, \ldots, \varepsilon_{k+1}\right)^{2}-R\left(\varepsilon_{1}, \ldots, \varepsilon_{k}\right)^{2}\right|}{\left|R\left(\varepsilon_{1}, \ldots, \varepsilon_{k+1}\right)+R\left(\varepsilon_{1}, \ldots, \varepsilon_{k}\right)\right|} \\
& \quad=\frac{\left|R\left(\varepsilon_{2}, \ldots, \varepsilon_{k+1}\right)-R\left(\varepsilon_{2}, \ldots, \varepsilon_{k}\right)\right|}{\left|R\left(\varepsilon_{1}, \ldots, \varepsilon_{k+1}\right)+R\left(\varepsilon_{1}, \ldots, \varepsilon_{k}\right)\right|} \\
& \quad \vdots \\
& =\frac{\sqrt{c}}{\prod_{i=1}^{k}\left|R\left(\varepsilon_{i}, \ldots, \varepsilon_{k+1}\right)+R\left(\varepsilon_{i}, \ldots, \varepsilon_{k}\right)\right|} .
\end{aligned}
$$

As for the denominator, using Lemma 7.1, we obtain

$$
\begin{aligned}
& \prod_{i=1}^{k}\left|R\left(\varepsilon_{i}, \ldots, \varepsilon_{k+1}\right)+R\left(\varepsilon_{i}, \ldots, \varepsilon_{k}\right)\right| \\
& \quad \geq 2^{k} \prod_{i=1}^{k}\left|R\left(\varepsilon_{i}, \ldots, \varepsilon_{k+1}\right) R\left(\varepsilon_{i}, \ldots, \varepsilon_{k}\right)\right|^{1 / 2} \\
& \quad=2^{k}\left|R\left(\varepsilon_{k+1}\right)\right|^{-\frac{1}{2}}\left(\prod_{i=1}^{k+1}\left|R\left(\varepsilon_{i}, \ldots, \varepsilon_{k+1}\right)\right|\right)^{\frac{1}{2}}\left(\prod_{i=1}^{k}\left|R\left(\varepsilon_{i}, \ldots, \varepsilon_{k}\right)\right|\right)^{\frac{1}{2}} \\
& \quad \geq 2^{k} \cdot c^{-\frac{1}{4}} \cdot\left(\frac{2 c}{s}\right)^{\frac{1}{2}} \cdot\left(\frac{2 c}{s}\right)^{\frac{1}{2}} \\
& \quad=\frac{2^{k+1} c^{\frac{3}{4}}}{s}
\end{aligned}
$$

Therefore

$$
\left|R\left(\varepsilon_{1}, \ldots, \varepsilon_{m}\right)-R\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)\right| \leq \sum_{k=n}^{m-1} \frac{s}{2^{k+1} c^{1 / 4}}<\frac{s}{2^{n} c^{1 / 4}}
$$

for any $m>n$. This implies that $\left\{R\left(\varepsilon_{1}, \ldots, \varepsilon_{m}\right)\right\}_{m=1}^{\infty}$ is a Cauchy sequence.
Now, recall that $f(x)$ is a monotonously increasing continuous function on $[\omega, \infty)$ and $f(\omega)=-c$. Note that $-c \leq-s / 2$ and

$$
R_{c}(\mathbf{e}) \leq R_{c}(1,1, \ldots)=\frac{s}{2}
$$

for any $\mathbf{e} \in\{ \pm 1\}^{\mathbb{N}}$. Therefore for any $\mathbf{e} \in\{ \pm 1\}^{\mathbb{N}}$ there exists a unique real number $\lambda(\mathbf{e}) \in$ $[\omega, \infty)$ such that $f(\lambda(\mathbf{e}))=R\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{i}, \ldots\right)$.

THEOREM 7.3. Given an infinite sequence $\mathbf{e}=\left(\varepsilon_{1}, \varepsilon_{2}, \ldots\right) \in\{ \pm 1\}^{\mathbb{N}}$, define integers A_{m} as in Theorem 6.7. Then

$$
\lim _{m \rightarrow \infty} \frac{\rho\left(A_{m}+1\right)}{s^{m}}=\lambda(\mathbf{e})
$$

PRoof. Since $A_{m}+1 \leq 2^{m}$, we have

$$
\rho\left(A_{m}+1\right) \geq \rho\left(2^{m}\right)=\tau\left(2^{m+1}-1\right)>\tau\left(2^{m+1}\right)=s^{m} \tau(2)=s^{m} \omega
$$

Hence $\omega<\rho\left(A_{m}+1\right) / s^{m}<0$. Then by Theorem 6.7 we have

$$
\lim _{m \rightarrow \infty} f\left(\frac{\rho\left(A_{m}+1\right)}{s^{m}}\right)=\lim _{m \rightarrow \infty} R_{c}\left(\varepsilon_{1}, \ldots, \varepsilon_{m}\right)=f(\lambda(\mathbf{e}))
$$

This implies that

$$
\lim _{m \rightarrow \infty} \frac{\rho\left(A_{m}+1\right)}{s^{m}}=\lambda(\mathbf{e}),
$$

which completes the proof.

8. A generalization of Viéta's formula

In this section we give a generalization of Viéta's formula (7). Let us start with a proposition.

Proposition 8.1. Let s be a complex number with $|s|>1$. Then

$$
f(x)-f(y)=s(x-y) \prod_{n=1}^{\infty} \frac{1}{s}\left(f\left(\frac{x}{s^{n}}\right)+f\left(\frac{y}{s^{n}}\right)\right)
$$

for any $x, y \in \mathbb{C}$.
Proof. Using the functional equation

$$
f(s x)=f(x)^{2}-c,
$$

we have

$$
\begin{aligned}
& f(x)-f(y)=f\left(\frac{x}{s}\right)^{2}-f\left(\frac{y}{s}\right)^{2} \\
& \quad=s\left(f\left(\frac{x}{s}\right)-f\left(\frac{y}{s}\right)\right) \frac{1}{s}\left(f\left(\frac{x}{s}\right)+f\left(\frac{y}{s}\right)\right) \\
& \quad=s\left(f\left(\frac{x}{s^{2}}\right)^{2}-f\left(\frac{y}{s^{2}}\right)^{2}\right) \frac{1}{s}\left(f\left(\frac{x}{s}\right)+f\left(\frac{y}{s}\right)\right) \\
& \quad=s^{2}\left(f\left(\frac{x}{s^{2}}\right)-f\left(\frac{y}{s^{2}}\right)\right) \frac{1}{s}\left(f\left(\frac{x}{s}\right)+f\left(\frac{y}{s}\right)\right) . \\
& \frac{1}{s}\left(f\left(\frac{x}{s^{2}}\right)+f\left(\frac{y}{s^{2}}\right)\right) \\
& \quad=\cdots \\
& \quad=s^{m}\left(f\left(\frac{x}{s^{m}}\right)-f\left(\frac{y}{s^{m}}\right)\right) \prod_{n=1}^{m} \frac{1}{s}\left(f\left(\frac{x}{s^{n}}\right)+f\left(\frac{y}{s^{n}}\right)\right) .
\end{aligned}
$$

Since the Taylor expansion of $f(x)$ at $x=0$ is

$$
f(x)=\frac{s}{2}+s x+\cdots,
$$

the limit

$$
\lim _{m \rightarrow \infty} s^{m}\left(f\left(\frac{x}{s^{m}}\right)-f\left(\frac{y}{s^{m}}\right)\right) \prod_{n=1}^{m} \frac{1}{s}\left(f\left(\frac{x}{s^{n}}\right)+f\left(\frac{y}{s^{n}}\right)\right)
$$

exists and equals

$$
s(x-y) \prod_{n=1}^{\infty} \frac{1}{s}\left(f\left(\frac{x}{s^{n}}\right)+f\left(\frac{y}{s^{n}}\right)\right) .
$$

This proves the proposition.
Theorem 8.2. Suppose $s \geq 4$. Then

$$
\begin{equation*}
\frac{1}{2|\rho(k)|}=\prod_{n=1}^{\infty} \frac{1}{s}\left(f\left(\frac{\rho(k)}{s^{n}}\right)+\frac{s}{2}\right) . \tag{43}
\end{equation*}
$$

Proof. Setting $x=\rho(k), y=0$ in Proposition 8.1, we have

$$
-\frac{s}{2}=s \rho(k) \prod_{n=1}^{\infty} \frac{1}{s}\left(f\left(\frac{\rho(k)}{s^{n}}\right)+\frac{s}{2}\right) .
$$

Since $\rho(k)<0$, we obtain the theorem.
We should remark that the formula (43) can be viewed as a generalization of Viéta's formula. To see this, note that the quantity $f\left(\rho(k) / s^{n}\right)$ in the product of the right hand side of (43) is a nested square root by Corollary 6.6. For example, if $k=1$, then

$$
\begin{equation*}
\frac{1}{2|\rho(1)|}=\frac{1}{s}\left(\frac{s}{2}+\sqrt{c}\right) \frac{1}{s}\left(\frac{s}{2}+\sqrt{c+\sqrt{c}}\right) \cdots . \tag{44}
\end{equation*}
$$

If $k=2$, then

$$
\frac{1}{2|\rho(2)|}=\frac{1}{s}\left(\frac{s}{2}-\sqrt{c}\right) \frac{1}{s}\left(\frac{s}{2}+\sqrt{c-\sqrt{c}}\right) \cdots .
$$

If we set $s=4$ (i.e. $c=2$) in (44), then $\rho(1)=-\pi^{2} / 16$ by Remark 6.8 . Hence (44) reduces to Viéta's formula

$$
\frac{2}{\pi}=\frac{\sqrt{2}}{2} \frac{\sqrt{2+\sqrt{2}}}{2} \frac{\sqrt{2+\sqrt{2+\sqrt{2}}}}{2} \cdots .
$$

References

[1] N. Aoki and S. Kojima, Infinite compositions of quadratic polynomials, Comm. Math. Univ. Sancti Pauli 59 (2010), 119-143.
[2] M. AsCHENBRENNER and W. BERGWELLER, Julia's equation and differential transcendence, arXiv:1307.6381
[3] G. Koenigs, Recherches sur les intégrales de certaines équations fonctionnelles, Ann. Sci. Ec. Norm. Sup. (3) 1 (1884), Supplement, 3-41.
[4] S. Kojima, A generalization of trigonometric functions by infinite compositions of functions (in Japanese), Master Thesis at Rikkyo Univerity 2009.
[5] S. Kojima, On the infinite compositions of functions, Doctor Thesis at Rikkyo University 2011.
[6] S. Kojima, On the convergence of infinite compositions of entire functions, Arch. Math. 98 (2012), 453-465.
[7] H. Lebesgue, Sur certaines expressions irrationelles illimités, Bull. Calcatta Math. Soc. 29 (1937), 17-28.
[8] H. Lebesgue, Sur certaines expressions irrationelles illimités, Bull. Calcatta Math. Soc. 30 (1938), 9-10.
[9] H. Shapiro, Composition operators and Schröder's functional equation, Contemp. Math. 213 (1998), 213228.
[10] M. P. WIERNSBERGER, Sur les polygones et les radicaux carrés superposés, Journal Reine Angew. Math. 130 (1905), 144-152.

Present Addresses: Noboru Aoki Department of Mathematics, RikKyo University, Nishi-Ikebukuro, Toshima-Ku, Tokyo 171-8501, Japan. e-mail: aoki@rikkyo.ac.jp Shota Kojima Department of Mathematics, Rikkyo University, Nishi-IKEBuKURo, TOSHIMA-KU, TOKYo 171-8501, JAPAN. e-mail: kojimash@rikkyo.ac.jp

