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The Dual Jacobian of a Generalised Hyperbolic Tetrahedron,
and Volumes of Prisms
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Abstract. We derive an analytic formula for the dual Jacobian matrix of a generalised hyperbolic tetrahedron.
Two cases are considered: a mildly truncated and a prism truncated tetrahedron. The Jacobian for the latter arises
as an analytic continuation of the former, that falls in line with a similar behaviour of the corresponding volume
formulae.

Also, we obtain a volume formula for a hyperbolic n-gonal prism: the proof requires the above mentioned
Jacobian, employed in the analysis of the edge lengths behaviour of such a prism, needed later for the Schläfli
formula.

1. Introduction

Let T be a generalised hyperbolic tetrahedron (in the sense of [19, 22]) depicted in Fig. 1.
If the truncating planes associated with its ultra-ideal vertices do not intersect, we call such
a tetrahedron mildly truncated, otherwise we call it intensely truncated. If only two of them
intersect, we call such a tetrahedron prism truncated [12]. Let us note that a prism truncated
orthoscheme is, in fact, a Lambert cube [11].

The volumes of the tetrahedron and its truncations are of particular interest, since they are
the simplest representatives of hyperbolic polyhedra. Over the last decade an extensive study
produced a number of volume formulae suitable for analytic and numerical exploration [3, 5,
11, 12, 20, 22]. A similar study was done for the spherical tetrahedron [14, 17], which can be
viewed as a natural counterpart of the hyperbolic one. Many analytic properties of the volume
formula for a hyperbolic tetrahedron came into view concerning the Volume Conjecture [10,
18].

However, other geometric characteristics of a generalised hyperbolic tetrahedron T are
also important and bring some useful information. In particular, Jac(T ), the Jacobian of T ,
which is the Jacobian matrix of the edge length with respect to the dihedral angles, is such.
This matrix enjoys many symmetries [15] and can be computed out of the Gram matrix of
T [7].

In the present paper, we consider Jac�(T ), the dual Jacobian of a generalised hyperbolic
tetrahedron T . By the dual Jacobian of T we mean the Jacobian matrix of the dihedral angles
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FIGURE 1. Generalised hyperbolic tetrahedron

with respect to the edge length. Such an object behaves nicely when T undergoes both mild
and intense truncation: the dual Jacobian of a prism truncated tetrahedron is an analytic con-
tinuation for that of a mildly doubly truncated one. Let us mention, that the respective volume
formulae are also connected by an analytic continuation, in an analogous manner [12, 19].

As an application of our technique, we give a volume formula for a hyperbolic n-gonal
prism, c.f. [4].
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2. Preliminaries

Let T be a mildly truncated hyperbolic tetrahedron with vertices vk , k ∈ {1, 2, 3, 4},
edges eij (connecting the vertices vi and vj ) with dihedral angles aij and lengths �ij , i, j ∈
{1, 2, 3, 4}, i < j .

Depending on whether the vertex vk is proper (vk ∈ H3), ideal (vk ∈ ∂H3) or ultra-ideal
(vk defines a polar hyperplane as described in [21, Section 3], c.f. Theorem 3.2.12), let us set
the quantity εk to be +1, 0 or −1, respectively.

For each vertex vi of T let us consider the face Fjkl opposite to it, where {i, j, k, l} =
{1, 2, 3, 4}. The link L(vl) of the vertex vl is either a spherical triangle (εl = +1), a Euclidean
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triangle (εl = 0) or a hyperbolic triangle (εl = −1). Let us define the quantity bi
jk as follows:

bi
jk :=

⎧⎪⎪⎨
⎪⎪⎩

the plane angle of Fjkl opposite to the edge ejk , if εl = +1;
zero, if εl = 0;
the length of the common perpendicular to the edges ejl

and ekl of Fjkl , if εl = −1 .

Here, we consider the face Fjkl as a generalised hyperbolic triangle, for which the
trigonometric laws hold as described in [2, 9].

Let us also define a quantity μi
jk by means of the formula

μi
jk :=

∫ bi
jk

0
cos(

√
εls)ds .

Let μ′i
jk denote the derivative of μi

jk with respect to bi
jk, which means that

μ′i
jk = cos(

√
εlb

i
jk) .

Let σkl denote the following quantity associated with an edge ekl , k, l ∈ {1, 2, 3, 4},
k < l,

σkl := 1

2
e�kl − 1

2
εkεle

−�kl .

Let σ ′
kl denote the derivative of σkl with respect to �kl , so we have that

σ ′
kl = 1

2
e�kl + 1

2
εkεle

−�kl .

Let us define the momentum Mi of the vertex vi opposite to the face Fjkl , {i, j, k, l} =
{1, 2, 3, 4} by the following equality (c.f. [6, VII.6]):

Mi := μi
jk μi

jl σkl .

The quantity above is well defined grace to the following theorem.

THEOREM 1 (The Sine Law for faces). Let Fjkl be the face of T opposite to the vertex
vi , {i, j, k, l} = {1, 2, 3, 4}. Then Fjkl is a generalised hyperbolic triangle and the following
equalities hold:

μi
jk

σjk

= μi
jl

σjl

= μi
kl

σkl

.

Let us also define the momentum Mjkl of the face Fjkl opposite to the vertex vi ,
{i, j, k, l} = {1, 2, 3, 4} by setting (c.f. [6, VII.6])

Mjkl := μ
j
kl sin aik sin ail .
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The quantity above is well defined, according to the following theorem.

THEOREM 2 (The Sine Law for links). Let vi be the vertex of T opposite to the face
Fjkl , {i, j, k, l} = {1, 2, 3, 4}. Then L(vi ) is either a spherical, a Euclidean or a hyperbolic
triangle and the following equalities hold:

sin aij

μ
j
kl

= sin aik

μk
jl

= sin ail

μl
jk

.

Both Theorem 1 and Theorem 2 are paraphrases of the spherical, Euclidean or hyperbolic
sine laws (for a generalised hyperbolic triangle, see [9]). The following theorems are the
cosine laws for a generalised hyperbolic triangle adopted to the notation of the present paper.

THEOREM 3 (The first Cosine Law for faces). Let Fjkl be the face of T opposite to
the vertex vi , {i, j, k, l} = {1, 2, 3, 4}. Then Fjkl is a generalised hyperbolic triangle and the
following equality holds:

σ ′
kl = μ′i

kl + μ′i
jk μ′i

j l

μi
jk μi

jl

.

THEOREM 4 (The second Cosine Law for faces). Let Fjkl be the face of T opposite
to the vertex vi , {i, j, k, l} = {1, 2, 3, 4}. Then Fjkl is a generalised hyperbolic triangle and
the following equality holds:

μ′i
jk = −εlσ

′
jk + σ ′

j lσ
′
kl

σjlσkl

.

THEOREM 5 (The Cosine Law for links). Let vi be the vertex of T opposite to the face
Fjkl , {i, j, k, l} = {1, 2, 3, 4}. Then L(vi ) is either a spherical, a Euclidean or a generalised
hyperbolic triangle and the following equality holds:

μ′j
kl = cos aij + cos aik cos ail

sin aik sin ail

.

3. Auxiliary lemmata

In the present section we shall consider various partial derivatives of certain geomet-
ric quantities associated with either the faces or the vertex links of a generalised hyperbolic
tetrahedron T . These derivatives will be used later on in the computation of the entries of
Jac�(T ).

LEMMA 1. For {i, j, k, l} = {1, 2, 3, 4} we have

∂�kl

∂bi
kl

= −εj

μi
kl

Mi
,
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∂�kl

∂bi
jk

= −σ ′
j l

μi
kl

Mi
,

∂�kl

∂bi
j l

= −σ ′
jk

μi
kl

Mi
.

PROOF. According to the definition of σkl , we have σkl = 0 only in the following two
cases: εk = εl = +1 and �kl = 0, or εk = εl = −1 and �kl = 0. In the former case, we have a
degenerate tetrahedron with two proper vertices collapsing to one point. In the latter case the
tetrahedron has two ultra-ideal vertices, whose polar planes are tangent at a point on the ideal

boundary ∂H3. This is a limiting case, since in a generalised (mildly truncated) tetrahedron
two polar planes never intersect or become tangent. Thus, we suppose that σkl �= 0.

By taking derivatives on both sides of the first Cosine Law for faces, we get the following
formulae:

σkl
∂�kl

∂bi
kl

= ∂σ ′
kl

∂bi
kl

= 1

μi
jkμ

i
jl

∂μ′i
kl

∂bi
kl

= −εj

μi
kl

μi
jkμ

i
jl

,

since

∂σ ′
kl

∂bi
kl

= σkl
∂�kl

∂bi
kl

and
∂μ′i

kl

∂bi
kl

= −εj μi
kl

by a direct computation. This implies the first identity of the lemma.
Now we compute

σkl
∂�kl

∂bi
jk

= ∂σ ′
kl

∂bi
jk

= − ((μ′i
jk)

2 + εl(μ
i
jk)

2)μi
jlμ

′i
j l + μi

jlμ
′i
jkμ

′i
kl

(μi
jkμ

i
jl)

2

= −μ′i
j l + μ′i

jkμ
′i
kl

μi
jkμ

i
kl

· μi
kl

μi
jkμ

i
jl

= −σ ′
j l

μi
kl

μi
jkμ

i
jl

.

where we use the identity (μ′i
jk)

2+εl(μ
i
jk)

2 = 1 and, as before, the fact that
∂μ′i

jk

∂bi
jk

= −εlμ
i
jk .

Then the second identity follows. The third one is analogous to the second one under the
permutation of the indices k and l. �

LEMMA 2. For {i, j, k, l} = {1, 2, 3, 4} we have

∂b
j
kl

∂aij

= εi

sin aij

Mjkl

∂b
j
kl

∂aik

= εi

sin aij

Mjkl

μ′l
jk,

∂b
j
kl

∂ail

= εi

sin aij

Mjkl

μ′k
j l .

PROOF. By taking derivatives on both sides of the Cosine Law for links, we get the
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following formulae:

−εi μ
j

kl

∂b
j

kl

∂aij

= ∂μ′j
kl

∂aij

= − sin aij

sin aik sin ail

.

The first identity of the lemma follows.
Then we subsequently compute

−εi μ
j
kl

∂b
j
kl

∂aik

= ∂μ′j
kl

∂aik

= −cos ail + cos aij cos aik

sin aij sin aik

sin aij

sin aik sin ail

= μ′l
jk

sin aij

sin aik sin ail

.

The second identity follows. The third one is analogous under the permutation of the indices
k and l. �

Now we shall prove several identities that relate the principal minors Gii , i ∈ {1, 2, 3, 4}
of the Gram matrix G := G(T ) of the tetrahedron T with its face or vertex momenta.

LEMMA 3. For {i, j, k, l} = {1, 2, 3, 4}, we have that

det Gii = εi M2
jkl .

PROOF. Let us perform the computation for G11 and other cases will follow by anal-
ogy. We have that

det

⎛
⎝ 1 − cos a14 − cos a13

− cos a14 1 − cos a12
− cos a13 − cos a12 1

⎞
⎠

= det

⎛
⎜⎝ 1 − cos a14 − cos a13

0 sin2 a14 −μ′2
34 sin a13 sin a14

0 −μ′2
34 sin a13 sin a14 sin2 a13

⎞
⎟⎠

= (1 − (μ′2
34)

2) sin2 a13 sin2 a14 = ε1 (μ2
34)

2 sin2 a13 sin2 a14 = ε1 M2
234 .

By permuting the set {i, j, k, l} = {1, 2, 3, 4}, one gets all other identities of the lemma. �

LEMMA 4. For {i, j, k, l} = {1, 2, 3, 4}, we have that

− det G = sin2 ajk sin2 ajl sin2 akl (M
i)2 .
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PROOF. Let us subsequently compute

det G = det

⎛
⎜⎜⎝

1 − cos a34 − cos a24 − cos a23

− cos a34 1 − cos a14 − cos a13

− cos a24 − cos a14 1 − cos a12

− cos a23 − cos a13 − cos a12 1

⎞
⎟⎟⎠

= det

⎛
⎜⎜⎜⎝

1 − cos a34 − cos a24 − cos a23

0 sin2 a34 −μ′1
23 sin a24 sin a34 −μ′1

24 sin a23 sin a34

0 −μ′1
23 sin a24 sin a34 sin2 a24 −μ′1

34 sin a23 sin a24

0 −μ′1
24 sin a23 sin a34 −μ′1

34 sin a23 sin a24 sin2 a23

⎞
⎟⎟⎟⎠

= sin2 a23 sin2 a24 sin2 a34 det

⎛
⎜⎝ 1 −μ′1

23 −μ′1
24

−μ′1
23 1 −μ′1

34

−μ′1
24 −μ′1

34 1

⎞
⎟⎠

= sin2 a23 sin2 a24 sin2 a34 det

⎛
⎝ 1 −μ′1

23 −μ′1
24

0 ε4(μ
1
23)

2 −σ ′
34μ

1
23μ

1
24

0 −σ ′
34μ

1
23μ

1
24 ε3(μ

1
24)

2

⎞
⎠

= sin2 a23 sin2 a24 sin2 a34 (ε3ε4 − (σ ′
34)

2)(μ1
23μ

1
24)

2

= − sin2 a23 sin2 a24 sin2 a34 (M1)2 .

Here we used the Cosine Law for links in the second equality and the first Cosine Law for
faces in the fourth equality. Also, we used the fact that for {i, j, k, l} = {1, 2, 3, 4} one has

1 − εl(μ
i
jk)

2 = (μ′i
jk)

2 (in the third equality) and σ 2
ij − (σ ′

ij )2 = εiεj (in the sixth equality).

All other identities of the lemma follow by permuting the set {i, j, k, l} = {1, 2, 3, 4}. �

4. Dual Jacobian of a generalised hyperbolic tetrahedron

In this section we shall compute the entries of the dual Jacobian matrix Jac�(T ) of a
generalised hyperbolic tetrahedron T .

THEOREM 6. Let T be a generalised hyperbolic tetrahedron. Then

Jac�(T ) := ∂(�12, �13, �14, �23, �24, �34)

∂(a12, a13, a14, a23, a24, a34)
= −η DS D ,
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where

η :=
(

�4
i=1εi det Gii

(− det G)3

)1/2

, D :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

σ12

σ13

σ14

σ23

σ24

σ34

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and

S :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ω12 ε1σ
′
14 ε1σ

′
13 ε2σ

′
24 ε2σ

′
23 1

ε1σ
′
14 ω13 ε1σ

′
12 ε3σ

′
34 1 ε3σ

′
23

ε1σ
′
13 ε1σ

′
12 ω14 1 ε4σ

′
34 ε4σ

′
24

ε2σ
′
24 ε3σ

′
34 1 ω23 ε2σ

′
12 ε3σ

′
13

ε2σ
′
23 1 ε4σ

′
34 ε2σ

′
12 ω24 ε4σ

′
14

1 ε3σ
′
23 ε4σ

′
24 ε3σ

′
13 ε4σ

′
14 ω34

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where

ωkl := σ ′
ikσ

′
j l + εlσ

′
ilσ

′
j lσ

′
kl + σ ′

ilσ
′
jk + εkσ

′
ikσ

′
jkσ

′
kl

σ 2
kl

.

PROOF. We compute the respective derivatives, that constitute the entries of Jac�(T ).
Suppose that εi �= 0, i ∈ {1, 2, 3, 4}, since the cases when εj = 0 for some j ∈ {1, 2, 3, 4}
can be dealt with in an analogous manner. Then for {i, j, k, l} = {1, 2, 3, 4}, one has

∂�kl

∂aij

= ∂�kl

∂b
j

kl

∂b
j
kl

∂aij

= −εi

μ
j
kl

Mj
· εi

sin aij

Mjkl

(1)︷︸︸︷= − 1

Mj

sin aij

sin aik sin ail

= − 1

Mj

sin aij

sin aik sin ail

1

σij

1

σkl
σij σkl

(2)︷︸︸︷= − 1

Mj

sin aij

sin aik sin ail
σij σkl

μi
jkμi

jl

Mi

μl
ikμl

jk

Ml

(3)︷︸︸︷= −MijkMiklMijlMjkl√
(− det G)3

σij σkl

(4)︷︸︸︷= −
√

�4
i=1εi det Gii

(− det G)3 σij σkl = −η σij σkl .

Here we used the definitions of vertex and face momenta, as well as Lemmata 1 and 4. Indeed,

in (1) we have that Mijk = μ
j
kl sin aik sin ail and in (2) we use the fact that σij = μl

ik μl
jk

Ml ,

σkl = μi
jk μi

jl

Mi . In (3) we use

μi
jk = Mijk

sin ajl sin akl

, μl
ik = Mikl

sin aij sin ajk

,
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μi
jl = Mijl

sin ajk sin akl

, μl
jk = Mjkl

sin aij sin aik

,

together with the identities of Lemma 4. In (4) we use Lemma 3.
Analogous to the above, we compute for {i, j, k, l} = {1, 2, 3, 4},

∂�kl

∂aik

= ∂�kl

∂bi
jk

∂bi
jk

∂aik

= −εk
sin aik

Mijl

μi
kl

Mi
σ ′

jk

= −εk

√
εj det Gjj

Mi sin ajk sin ajl

sin aik√
εk det Gkk

1

σikσkl

σikσkl σ
′
jk

= −εk

√
εj det Gjj

Mi sin ajk sin ajl

sin aik√
εk det Gkk

μi
jkμ

i
jl

Mi

μ
j
ilμ

j
kl

Mj
σikσkl σ

′
jk

= −εk

√
εj det Gjj√
εk det Gkk

√
εl det Gll

√
εk det Gkk

√
εk det Gkk

√
εi det Gii√

(− det G)3
σikσkl σ

′
jk

= −εk

√
�4

i=1εi det Gii

(− det G)3
σikσkl σ

′
jk = −εk η σikσkl σ

′
jk .

Finally, for {i, j, k, l} = {1, 2, 3, 4}, we compute the derivative

∂�kl

∂akl

= ∂�kl

∂bi
jk

∂bi
jk

∂akl

+ ∂�kl

∂bi
j l

∂bi
j l

∂akl

.

Since the two terms of the above sum are symmetric under the permutation of k and l, we may
compute only the first one. The second one will be analogous. By Lemmata 1 and 2, we get

∂�kl

∂bi
jk

∂bi
jk

∂akl

= −εl

μi
kl

Mi

sin ail

Mijk

σ ′
j l μ

′j
ik

(5)︷︸︸︷= −(σ ′
ikσ

′
j l + εlσ

′
ilσ

′
j lσ

′
kl)

μi
kl

Mi

sin ail

Mijk

1

σilσkl

(6)︷︸︸︷= −(σ ′
ikσ

′
j l + εlσ

′
ilσ

′
j lσ

′
kl)

√
εj det Gjj

Mi sin ajk sin ajl

sin ail√
εl det Gll

μi
jkμ

i
jl

Mi

μ
j

ikμ
j

kl

Mj

(7)︷︸︸︷= −(σ ′
ikσ ′

jl + εlσ
′
il σ

′
jlσ

′
kl )

√
εj det Gjj

(− det G)3

√
εl det Gll

√
εk det Gkk

√
εl det Gll

√
εi det Gii√

εl det Gll
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= −(σ ′
ikσ

′
j l + εlσ

′
ilσ

′
j lσ

′
kl)

√
�4

i=1εi det Gii

(− detG)3 = −η (σ ′
ikσ

′
j l + εlσ

′
ilσ

′
j lσ

′
kl) .

Here, in (5) we used the second Cosine Law for faces and in (6) we used the equality Mikl =
μi

kl sin ajk sin ajl together with Lemma 3. In (7) we perform a computation analogous to (3).
Thus, we obtain

∂�kl

∂akl

= ∂�kl

∂bi
jk

∂bi
jk

∂akl

+ ∂�kl

∂bi
j l

∂bi
j l

∂akl

= −η (σ ′
ikσ

′
j l + εlσ

′
ilσ

′
j lσ

′
kl) − η (σ ′

ilσ
′
jk + εkσ

′
ikσ

′
jkσ

′
kl) = −η ωkl σ

2
kl .

The proof is completed. �

5. Dual Jacobian of a doubly truncated hyperbolic tetrahedron

Let us consider the case when T is a (mildly) doubly truncated tetrahedron depicted in
Fig. 2 with dihedral angles θi and edge lengths �i , i ∈ {1, 2, 3, 4, 5, 6}. We suppose that the
vertices cut off by the respective polar planes are v1 and v2.

If T is mildly truncated then the formula from Theorem 6 applies. If T is a prism
truncated tetrahedron, as in Fig. 3, with dihedral angles μ, θi and edge lengths �, �i ,
i ∈ {1, 2, 3, 5, 6} then its Gram matrix is given by

G =

⎛
⎜⎜⎝

1 − cos θ1 − cos θ5 − cos θ3

− cos θ1 1 − cos θ6 − cos θ2

− cos θ5 − cos θ6 1 − cosh �

− cos θ3 − cos θ2 − cosh � 1

⎞
⎟⎟⎠ ,

which is a slightly different notation compared to [12, 13].

FIGURE 2. Doubly truncated tetrahedron (mild truncation)
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FIGURE 3. Doubly truncated tetrahedron (prism truncation)

Each link L(vk), k = 1, 2, is a hyperbolic quadrilateral with two right same-side angles,
which can be seen as a hyperbolic triangle with a single truncated vertex. Each link L(vk),

k = 3, 4, is a spherical triangle. In the definitions of Section 2 we change each bi
1j , with i, j ∈

{2, 3, 4}, i �= j , for bi
1j + √−1π

2 and each bi
2j , with i, j ∈ {1, 3, 4}, i �= j , for bi

2j + √−1π
2 .

Thus, some of the vertex and face momenta become complex numbers. All the trigonometric
rules of Section 2 still hold grace to [2, Section 4.3]. Computing the respective derivatives in
a complete analogy to the proof of Theorem 6, we obtain the following statement.

THEOREM 7. Let T be a prism truncated tetrahedron depicted in Fig. 3. Then by

means of the analytic continuation a12 := √−1 �, �12 = √−1 μ we have

Jac�(T ) := ∂(μ, �1, �2, �3, �5, �6)

∂(�, θ1, θ2, θ3, θ5, θ6)
= ∂(�12, �34, �13, �23, �24, �14)

∂(a12, a34, a13, a23, a24, a14)
.

6. Volume of a hyperbolic prism

Let �αn denote the n-tuple (α1, . . . , αn) with 0 < αk < π , k = 1, . . . , n. Let �βn and �γn

be analogous n-tuples. Let �n := �n(�αn, �βn, �γn) be the hyperbolic n-sided prism depicted
in Fig. 4, with the respective dihedral angles, as shown in the picture.

Let Sk , k = 1, . . . , n, be the supporting hyperplane for the k-th side face of the prism
�n (we start numbering the faces anti-clockwise from the side face adjacent to the angles α1,
β1 and γ1, γ2), and let S0 and Sn+1 be those of the top and the bottom face, correspondingly.
For each Sk , k = 0, . . . , n + 1, let S+

k be the respective half-space containing the unit outer

normal to it. Let S−
k = H3 \ S+

k . Then �n = ⋂n+1
i=0 S−

i .

Let T := T (α, α′, β, β ′, γ ; �) be the prism truncated tetrahedron depicted in Fig. 5. Here
α, α′, β, β ′ and γ are the respective dihedral angles, � is the length of the respective edge. The



56 ALEXANDER KOLPAKOV AND JUN MURAKAMI

FIGURE 4. The prism �n(�αn, �βn, �γn)

FIGURE 5. The prism truncated tetrahedron T (α, α′, β, β′, γ ; �)

volume Vol T of the tetrahedron T is given by [12, Theorem 1]1. Let v(α, α′, β, β ′, γ ; �) :=
Vol T (α, α′, β, β ′, γ ; �) denote the respective volume function.

Let p0pn+1 be the common perpendicular to S0 and Sn+1. Let also define k ⊕ m :=
(k + m) mod n, for k,m ∈ N. Then we can state the main theorem of this section.

THEOREM 8. Let �n = �n(�αn, �βn, �γn) be a hyperbolic n-sided prism, as in Fig. 4. If

1In Section 7 we give a simplified formula for the volume of T .
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FIGURE 6. The decomposition of �n (top view, on the left) and the prism truncated tetrahedron Tk (on the right)

p0pn+1 ⊂ �n, then the volume of �n is given by the formula

Vol �n =
n∑

k=1

v(αk, αk⊕1, βk, βk⊕1, γk⊕1; ��) ,

where �� is the unique solution to the equation ∂�
∂�

(�) = 0, with

�(�) := π� +
n∑

k=1

v(αk, αk⊕1, βk, βk⊕1, γk⊕1; �) .

Let Pk , k = 1, . . . , n, be the plane containing p0pn+1 and orthogonal to Sk . First, we
consider the case when p0pn+1 lies inside the prism �n and the planes Pk , k = 1, . . . , n,
divide the prism �n into n prism truncated tetrahedra, as shown in Fig. 6.

Then each Pk meets the k-th side face of the prism �n. Thus, the planes S0, Sk , Sk⊕1

and Sn+1 together with Pk and Pk⊕1 become the supporting planes for the faces of a prism
truncated tetrahedron, which we denote by Tk . Each Pk is orthogonal to Sk , S0 and Sn+1. The
dihedral angles of Tk inherited from the prism �n are easily identifiable. Let μk denote
the dihedral angle along the edge p0pn+1 and let �� be its length. Then we have Tk =
T (αk, αk⊕1, βk, βk⊕1, γk⊕1; ��), k = 1, . . . , n. Clearly,

Vol �n =
n∑

k=1

Vol Tk =
n∑

k=1

v(αk, αk⊕1, βk, βk⊕1, γk⊕1; ��) .

Thus, we have to prove only the following statement.
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PROPOSITION 1. If the common perpendicular p0pn+1 is inside the prism �n and

each Pk meets the respective side also inside �n, k = 1, . . . , n, then the equation ∂�
∂�

= 0 has

a unique solution � = ��, the length of p0pn+1.

PROOF. Let us consider the collection of prism truncated tetrahedra Tk =
T (αk, αk⊕1, βk, βk⊕1, γk⊕1; �), k = 1, . . . , n. Each pair {Tk, Tk⊕1} of them has an isometric
face corresponding to the plane Pk⊕1. Indeed, each such face is completely determined by
the plane angles (two right angles at the side of length �, the angles αk and βk at the opposite

side) and one side length. We obtain the prism �n(�αn, �βn, �γn) by glueing the tetrahedra Tk to-
gether along the faces Pk , k = 1, . . . , n, in the respective order. Their edges of length � match
together, and one obtains a prism if the angle sum of the dihedral angles μk , k = 1, . . . , n,
along them equals 2π . We have that

∂�

∂�
= π +

n∑
k=1

∂v

∂�
(αk, αk⊕1, βk, βk⊕1, γk⊕1; �) .

Since v is the volume function from [12, Theorem 1], then by applying the Schläfli for-
mula [16, Equation 1] one obtains

∂�

∂�
= π − 1

2

n∑
k=1

μk .

Thus, whenever the tetrahedra Tk constitute a prism, we have
∑n

k=1 μk = 2π or, equivalently,
∂�
∂�

= 0. The length � in this case is exactly the length of the common perpendicular p0pn+1

to the planes S0 and Sn+1.
The rest is to prove that � = �� is a unique solution. In order to do so, we shall show

that ∂μk

∂�
> 0, k = 1, . . . , n. By using Theorem 7 we get the following formulae for a prism

truncated tetrahedron (as depicted in Fig. 3):

∂�2

∂�
= −η sin μk sinh �6 cosh �2,

∂�3

∂�
= −η sin μk sinh �5 cosh �3 ,

∂�5

∂�
= −η sin μk sinh �3 cosh �5,

∂�6

∂�
= −η sin μk sinh �2 cosh �6 .

Note that the above derivatives are all negative. In our present notation it means that for each
prism truncated tetrahedron Tk , k = 1, . . . , n, the edges of the top and bottom faces inherited
from the prism �n diminish their length if we increase solely the parameter �. Recall that
Tk = T (αk, αk⊕1, βk, βk⊕1, γk⊕1; �), and let us denote T ′

k := T (αk, αk⊕1, βk, βk⊕1, γk⊕1; �′)
with �′ > �.

Let ABCD be the top (equiv., bottom) face of Tk , as shown in Fig. 7, and A′B ′C′D′ be
the top (equiv., bottom) face of T ′

k . Since the dihedral angles accept for μk and μ′
k remain

the same, the plane angles of ABCD at A, B, C and those of A′B ′C′D′ at A′, B ′ and C′ are
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FIGURE 7. Prisms Tk and T ′
k with top faces marked

respectively equal. One sees easily that we can match then ABCD and A′B ′C′D′ such that B

and B ′ coincide, the sides AB and A′B ′, BC and B ′C′ overlap and the point D′ lies inside the
quadrilateral ABCD. Then the area of A′B ′C′D′ is less than that of ABCD. Equivalently,

by the angle defect formula [1, Theorem 1.1.7], μ′
k > μk . Thus, ∂μk

∂�
> 0, k = 1, . . . , n, and

the proposition follows. �

However, there is a possibility that, although the common perpendicular p0pn+1 is en-
tirely inside the prism �n, one (or several) of the planes Pk meets the respective Sk partially
outside of the face Sk .

First we consider the case when a single plane Pk meets Sk entirely outside, as depicted
in Fig. 8. Like this, we obtain the figure shaded in grey, that consists of two triangular prisms
sharing an edge.

Second we consider the case when a single plane Pk meets Sk partially outside, as de-
picted in Fig. 9. Like this, we obtain a more complicated figure that consists of two tetrahedra
sharing an edge (one of which has two truncated vertices).

Thus the planes S0, Pk , Pk⊕1, Sk , Sk⊕1 and Sn+1 bound a “butterfly” prism. We put
k = 1, for clarity. In the general case, k ≥ 2, one uses induction on the number of planes Pk

meeting Sk outside of �n. Here, some other cases of “butterfly” prisms are possible.

PROPOSITION 2. If the common perpendicular p0pn+1 is completely inside the prism
�n, the plane P1 meets the plane S1 outside of �n, and all other Pk , k = 2, . . . , n, meet the



60 ALEXANDER KOLPAKOV AND JUN MURAKAMI

FIGURE 8. The decomposition of �n (top view, on the left) and the “butterfly” prism
truncated tetrahedron Tk (on the right)

FIGURE 9. Another “butterfly” prism truncated tetrahedron Tk

respective side faces inside �n, then the volume of the prism equals

Vol �n =
n∑

k=1

v(αk, αk⊕1, βk, βk⊕1, γk⊕1; ��) ,

where �� is the unique solution to the equation ∂�
∂�

(�) = 0, with

�(�) := π� +
n∑

k=1

v(αk, αk⊕1, βk, βk⊕1, γk; �) .
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PROOF. We start with the case of a “butterfly” prism depicted in Fig. 8. Let us observe
that the “butterfly” prism T1 overlaps with the subsequent prism truncated tetrahedron T2

exactly on its part T
(o)

1 outside of �n. The part of T1 inside �n, called T
(i)

1 , contributes to the

total volume of the prism. The volume of T
(o)

1 is excessive in the respective volume formula
and should be subtracted. In fact, we prove that

v(α1, α2, β1, β2, γ2; ��) = V := Vol T (i)
1 − Vol T (o)

1 ,

which implies that the excess in volume brought by T2 is eliminated by the term “−Vol T (o)
1 ”.

In order to do so, let us denote by θ the dihedral angle along the common edge of the

triangular prisms T
(o)
1 and T

(i)
1 . Let �θ be the length of this edge. Let γ := γ2 and let �γ

be the length of the vertical edge with dihedral angle γ . We know that ∂V
∂γ

= − 1
2 �γ , by

the structure of the volume formula for a prism truncated tetrahedron. Indeed, the function V

does not correspond to the volume of a real prism truncated tetrahedron any more, however all
the metric relations defining the dihedral angles between the respective planes are preserved.

Thus, after computing the derivative ∂V
∂�

analogous to [12], we obtain the latter equality. Now
we compute the respective derivatives for the parts of the “butterfly” prism T1.

Observe that the parameter θ depends on γ , while we vary γ and keep all other dihedral
angles fixed. Let us denote γ̂ = π − γ for brevity. We have that

∂Vol T (o)
1

∂γ̂
= −�γ

2
− �θ

2

∂θ

∂γ̂

and

∂Vol T (i)
1

∂γ
= −�θ

2

∂θ

∂γ
,

by the Schläfli formula [16, Equation 1].

The above identities together with the fact that ∂
∂γ̂

= − ∂
∂γ

imply that

∂

∂γ2
v(α1, α2, β1, β2, γ2; ��) = ∂V

∂γ2
.

By analogy, we can prove that

∂

∂ξ
v(α1, α2, β1, β2, γ2; ��) = ∂V

∂ξ
,

for any ξ ∈ {α1, αn, β1, βn, μ1}. The volume formula for a prism truncated tetrahedron
implies that by setting α1 = αn = π/2 and β1 = βn = π/2 we get v(α1, αn, β1, βn, γ2; ��) =
0. In the case of a “butterfly” prism T1, under the same assignment of dihedral angles, we have

that the bases of the two triangular prisms become orthogonal to their lateral sides. Thus T
(i)
1
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FIGURE 10. Parametrising the “butterfly” prism depicted in Fig. 8

and T
(o)

1 degenerate into Euclidean prisms, which means that their volumes tend to zero.
Thus, we obtain the identity v(α1, αn, β1, βn, γ2; ��) = V .

The proof of the monotonicity for the function ∂�
∂�

(�) is analogous to that in Proposi-

tion 1. However, since the part T
(o)

1 contributes to the function v(α1, αn, β1, βn, γ2; �) with
the negative sign, we have to replace the edge lengths �3 and �5 with −�3 and −�5, respec-
tively, as shown in Fig. 10. Then we recompute the respective derivatives of the lengths of
the horizontal edges according to Theorem 7. We obtain that the lengths �2 and �6 diminish,
as before, the lengths �3 and �5 increase. This implies that the upper (resp., lower) triangular

base of T
(i)′
1 can be placed entirely inside the upper (resp. lower) triangular base of T

(i)
1 . By

the area comparison argument, we have that μ′
1 > μ1. The inequality ∂μ1

∂�
> 0 follows.

All other cases of “butterfly prisms” (e.g. that in Fig. 9) can be considered by analogy.
�

REMARK. In the general case, when the common perpendicular p0pn+1 does not lie
entirely inside the prism �n, we expect that an analogue to Theorem 8 holds with an exception

that the equation ∂�
∂�

(�) = 0 may have several solutions. However, one of these solutions is
geometric and yields the volume of �n.

7. Modified volume formula

We modify the volume formula for a prism truncated tetrahedron from [12], in order to
reduce it to a simpler form. Indeed, the formula in [12, Theorem 1] uses analytic continuation

and accounts for possible branching with respect to any variable aj = e�, with some j ∈
{1, 2, . . . , 6}, and ak = ei θk , for any k ∈ {1, 2, . . . , 6} \ {j }. Usually, we put j = 4 for
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simplicity. However, the formula allows for intense truncation at any edge, since it is invariant
under a permutation of the variables al , l ∈ {1, . . . , 6}.

In our case, given a prism �n and its decomposition into prism truncated tetrahedra Ti ,
i ∈ {1, . . . , n}, we know that only the common perpendicular p0pn+1 is produced by an
intense truncation. Thus, we can always put j = 4 and, moreover, the variable a4 will be the
only one that might cause branching.

In this case, we suggest a simplified version of the formula from [12, Theorem 1]. This
formula also has less numeric discrepancies and performs faster, if used for an actual compu-
tation.

Let us put ak := ei θk , k ∈ {1, 2, 3, 5, 6}, a4 := e�, and let U =
U (a1, a2, a3, a4, a5, a6, z) denote

U := Li2(z) + Li2(a1a2a4a5z) + Li2(a1a3a4a6z) + Li2(a2a3a5a6z)

−Li2(−a1a2a3z) − Li2(−a1a5a6z) − Li2(−a2a4a6z) − Li2(−a3a4a5z) ,

where Li2(◦) is the dilogarithm function.

Let z− and z+ be two solutions to the equation ez ∂U
∂z = 1 in the variable z. According

to [12, 20], these are

z− :=
−q1 −

√
q2

1 − 4q0q2

2q2
and z+ :=

−q1 +
√

q2
1 − 4q0q2

2q2
,

where

q0 := 1 + a1a2a3 + a1a5a6 + a2a4a6 + a3a4a5 + a1a2a4a5 + a1a3a4a6 + a2a3a5a6 ,

q1 := −a1a2a3a4a5a6

((
a1 − 1

a1

)(
a4 − 1

a4

)
+
(

a2 − 1

a2

)(
a5 − 1

a5

)

+
(

a3 − 1

a3

)(
a6 − 1

a6

))
,

q2 := a1a2a3a4a5a6(a1a4 + a2a5 + a3a6 + a1a2a6 + a1a3a5 + a2a3a4

+a4a5a6 + a1a2a3a4a5a6) .

Given a function f (x, y, . . . , z), let f (x, y, . . . , z) |z=z−
z=z+ denote the difference

f (x, y, . . . , z−) − f (x, y, . . . , z+). Now we define the following function V =
V (a1, a2, a3, a4, a5, a6, z) by means of the equality

V := i

4

(
U (a1, a2, a3, a4, a5, a6, z) − z

∂U

∂z
log z

) ∣∣∣∣z=z−

z=z+
.
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PROPOSITION 3. The volume of a prism truncated tetrahedron T is given by

Vol T = �
(

−V + a4
∂V

∂a4
log a4

)
.

PROOF. Let us denote

f (T ) = �
(

−V + a4
∂V

∂a4
log a4

)
,

and compute the derivative

∂

∂�

(
f (T ) + μ �

2

)
= a4

∂

∂a4

(
f (T ) + μ log a4

2

)

= a4
∂

∂a4

(
�
(
−V +

(
a4

∂V

∂a4
+ μ

2

)
log a4

))
.

The function �
(
a4

∂V
∂a4

+ μ
2

)
has an a.e. vanishing derivative, c.f. the note in [12] after

Theorem 1 saying that μ ≡ −2 �(a4
∂V
∂a4

) mod π . Hence,

∂

∂�

(
f (T ) + μ �

2

)
= a4

∂

∂a4

(
�
(

−V +
(

a4
∂V

∂a4
+ μ

2

)
log a4

))

(1)︷︸︸︷= �
(

−a4
∂V

∂a4
+ a4

∂V

∂a4
+ μ

2

)
= μ

2
.

The equality (1) holds because of the commutativity of the operations � and ∂
∂a4

for the

function −V +
(
a4

∂V
∂a4

+ μ
2

)
log a4. The latter holds since a4 = e� is a real parameter.

This implies that ∂f (T )
∂μ

= − �
2 . By analogy to the proof of [12, Theorem 1], we can show

that ∂f (T )
∂θk

= − �k

2 , and that if T degenerates into a right Euclidean prism, then f (T ) → 0.

Thus, Vol T = f (T ) and the proposition follows. �

Also, we have the following way to determine the dihedral angle μ along the length �

edge coming from the intense truncation.

PROPOSITION 4. The angle μ is given by

μ ≡ −�
(

i a4

2

∂U (a1, . . . , a6, z)

∂a4

∣∣∣∣z=z−

z=z+

)
mod π .

PROOF. We have μ ≡ −2�
(
a4

∂V
∂a4

)
mod π , where 0 < μ < π and has an a.e.

vanishing derivative.



DUAL JACOBIAN OF A GENERALISED HYPERBOLIC TETRAHEDRON 65

Then we compute

∂U (a1, . . . , a6, z±(a1, . . . , a6))

∂a4
− ∂

∂a4

(
z±

∂U (a1, . . . , a6, z±)

∂z
log z±

)

= ∂U (a1, . . . , a6, z±)

∂a4
+ ∂z±

∂a4

∂U (a1, . . . , a6, z±)

∂z

−∂z±
∂a4

∂U (a1, . . . , a6, z±)

∂z

= ∂U (a1, . . . , a6, z±)

∂a4
,

since, for some m ∈ Z,

z±
∂U (a1, . . . , a6, z±)

∂z
= 2π i m ,

by the definition of z− and z+.
Therefore, we obtain

μ ≡ −2�
(
a4

∂V

∂a4

)
mod π ≡ −�

(
i a4

2

∂U (a1, . . . , a6, z)

∂a4

∣∣∣∣z=z−

z=z+

)
mod π ,

where 0 < μ < π . �

8. Numerical examples

Finally, we produce some numerical examples concerning an n-gonal (n ≥ 5) prism �n

with the following distribution of dihedral angles: the angles along the vertical edges are 2π
5 ,

the angles adjacent to the bottom face are π
3 , and those adjacent to the top face are π

2 . Indeed,
such a prism �n exists due to [8, Theorem 1.1]. Then we apply Theorem 8 for the cases
n = 5, 6, 7, and perform all necessary numeric computations with Wolfram Mathematica R©.

In order to avoid excessive branching in numerical computations, we use the modified
parameters

q ′
i := qi

�6
k=1 ak

and z± :=
−q ′

1 −
√

q ′2
1 ± 4q ′

0q
′
2

2q ′
2

.

in the formulae for U and V from Section 7.
It follows from the definition of q ′

i , i = 1, 2, 3, above that the quantity q ′2
1 − 4q ′

0q
′
2 is

a real number, c.f. [20, Section 1.1, Lemma]. This fact prevents computational discrepancies
and simplifies any further numerical analysis of the volume formula.

Each of the above prisms �n can be subdivided into n isometric copies of a prism trun-

cated tetrahedron Tn. Indeed, Tn is a prism truncated tetrahedron with angles θ1 = 2π
5 ,
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TABLE 1. Left: parameters (��, μ) of Tn, right: volume of �n

n (��, μ) Vol �n

5 (0.50672, 2π/5) 2.63200
6 (0.38360, π/3) 3.43626
7 (0.312595, 2π/7) 4.19077

FIGURE 11. Left: Vol T5, right: ∂�
∂�

, both as functions of �

θ2 = θ3 = π
2 , θ5 = θ6 = π

3 , and μ = 2π
n

. By rotating it along the edge with dihedral angle μ,
we compose the desired prism �n.

The graph of Vol Tn, with n = 5, as a function of �, is shown in Fig. 11 on the left. The

graph of ∂�
∂�

(�) for the same prism truncated tetrahedron Tn is depicted in Fig. 11 on the right.

We observe that the function ∂�
∂�

(�) is indeed monotone and has a single zero �� ≈ 0.50672....

The volume of T5 with θ1 = 2π
5 , θ2 = θ3 = π

2 , θ5 = θ6 = π
3 and �� ≈ 0.50672... equals

∼ 0.52639... by Proposition 3. Thus, we can see that Vol �5 = 5 · Vol T5 in accordance with

Theorem 8, and from Proposition 4 μ = 1.25664... ≈ 2π
5 .
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