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Abstract. The purpose of this paper is to construct infinite families of real abelian number fields K of degree
four with λ2(K) = μ2(K) = 0 and ν2(K) > 0.

1. Introduction

Let K be a finite extension of the field of rational numbers Q, l a prime number, and
K∞ a Zl -extension of K , where Zl is the ring of l-adic integers. For each integer n ≥ 0,
K∞ has a unique subfield Kn which is a cyclic extension of degree ln over K . Let len be the
highest power of l dividing the class number of Kn. The following theorem is well-known as
Iwasawa’s class number formula.

THEOREM 1.1 (Iwasawa). There exist integers λ(K∞/K), μ(K∞/K) ≥ 0,
ν(K∞/K), and an integer n0 such that

en = λ(K∞/K)n+ μ(K∞/K)ln + ν(K∞/K)

for all n ≥ n0.

The integers λ(K∞/K), μ(K∞/K) and ν(K∞/K) are called Iwasawa invariants of
K∞. In particular, if K∞/K is the cyclotomic Zl-extension, we denote Iwasawa invariants of
K∞/K by λl(K), μl(K) and νl(K).

Greenberg [4] conjectured that ifK is a totally real number field, then λl(K) = μl(K) =
0. This is often called Greenberg’s conjecture. If K is an abelian field, it is known that
μl(K) = 0 by Ferrero and Washington [2]. Ozaki and Taya [9] constructed infinitely many
real quadratic fields with λ2(K) = μ2(K) = 0 as follows:

THEOREM 1.2 (Ozaki and Taya). Let K = Q(
√
m) or Q(

√
2m). Suppose that m is

one of the the following:

(1) m = p, p ≡ 3 (mod 4),
(2) m = p, p ≡ 5 (mod 8),
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(3) m = p, p ≡ 9 (mod 16),

(4) m = p, p ≡ 1 (mod 16), 2
p−1

4 ≡ −1 (mod p),
(5) m = pq, p ≡ q ≡ 3 (mod 8),
(6) m = pq, p ≡ 3, q ≡ 5 (mod 8),
(7) m = pq, p ≡ 5, q ≡ 7 (mod 8),
(8) m = pq, p ≡ q ≡ 5 (mod 8),

where p and q are distinct prime numbers. Then λ2(K) = μ2(K) = 0.

After the work of Ozaki and Taya, Fukuda and Komatsu gave the following criteria for
λ2(Q(

√
p)).

THEOREM 1.3 (Fukuda and Komatsu [3]). Let p be any prime number with p ≡ 1
(mod 16), ε0 the fundamental unit of Q(

√
p), and ε′0 = a + b

√
2p the fundamental unit of

Q(
√

2p), where a is a positive rational integer and b ∈ Z. Let 2s be the highest power of 2
which divides p−1. Then we have the following criteria concerning the Iwasawa λ-invariant
λ2(Q(

√
p)):

(1) If a ≡ 1 (mod p), then λ2(Q(
√
p)) ≤ 2s−2 − 3.

(2) If a2 ≡ −1 (mod p) and ε2
0 	≡ 1 (mod 32), then λ2(Q(

√
p)) = 0.

In this paper, we show the following theorem using the method for proving Theorem 1.3.

THEOREM 1.4. Let K be a totally real abelian number field satisfying the following
conditions:

(1) The prime number 2 splits completely in K .

(2) λ−
2 (K(

√−1)) = [K : Q] − 1, where we put λ−
2 (K(

√−1)) := λ2(K(
√−1))− λ2(K).

Then, we have λ2(K) = μ2(K) = 0.

The purpose of this paper is to construct infinite families of real abelian 2-extensions
K/Q with λ2(K) = μ2(K) = 0 and ν2(K) > 0 by using Theorem 1.4. Our main theorem is
the following.

THEOREM 1.5. Let p, q and r be distinct prime numbers with p ≡ q ≡ r ≡ 5
(mod 8).

(1) Let K/Q be a real cyclic extension of degree four such that the conductor of K/Q is
pq and the prime number 2 splits completely inK . Then we have λ2(K) = μ2(K) = 0
and ν2(K) > 0.

(2) Let K = Q(
√
pq,

√
pr). Then we have λ2(K) = μ2(K) = 0 and ν2(K) > 0.

Here we note that Taya and Yamamoto [10] determined all real abelian 2-extensionsK/Q
with λ2(K) = μ2(K) = ν2(K) = 0. These fields are classified by the biquadratic residue
character (cf. [10, Theorem 2.4]). Then we classify all real abelian extensions of degree four
satisfying all conditions of Theorem 1.4 and have the above result not contained in [10]. We
note that it holds that ν2(K) > 0 for the above extensionsK/Q if and only if these extensions
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satisfy one of the two conditions of Theorem 1.5. There arises the following question: Is the
degree of a real abelian extension K/Q satisfying all conditions of Theorem 1.4 bounded,
independent of K? The answer is partially given by the following proposition.

PROPOSITION 1.6. LetK/Q be a real abelian 2-extension such that the prime number

2 splits completely in K . If 8 | [K : Q], then we have λ−
2 (K(

√−1)) ≥ [K : Q] + 1.

Therefore, if K/Q is a real abelian 2-extension with 8 | [K : Q], our criterion Theo-
rem 1.4 does not work to verify Greenberg’s conjecture.

2. The proof of Theorem 1.4

In this section, we will give a proof of Theorem 1.4. Throughout this section, let K be a
totally real abelian number field such that the prime number 2 splits completely inK . LetK∞
be the cyclotomic Z2-extension ofK . Let L∞ be the maximal unramified abelian 2-extension
of K∞ and L0 the maximal unramified abelian 2-extension of K . Let M∞ be the maximal
abelian 2-extension of K∞ unramified outside 2 and M0 the maximal abelian 2-extension of
K unramified outside 2.

LEMMA 2.1. The Galois group Gal(M∞/K∞) is a free Z2-module of rank

λ−
2 (K(

√−1)).

PROOF. See [9, p.442] and [1, Proposition 2.9]. �

Throughout this section, we denote by t the degree of K/Q and by {p1, . . . , pt } the set
of all prime ideals of K dividing 2. For i ∈ {1, . . . , t}, we also denote a prime ideal of M0

dividing pi by Pi . By [11, Corollary 5.32] and [4, p.266], we have the following lemma.

LEMMA 2.2. The extension M0/K∞ is finite.

We denote by IM0/K∞(Pi ) the inertia group of Pi in Gal(M0/K∞).

LEMMA 2.3. For any integer i with 1 ≤ i ≤ t , it holds that

IM0/K∞(Pi ) ⊂ Gal(M0/M0 ∩ L∞) .

PROOF. This follows from the definition of IM0/K∞(Pi ). �

For i ∈ {1, . . . , t}, we consider the completion Kpi of K with respect to pi . For i ∈
{1, . . . , t}, we denote the local unit group of Kpi by Upi and denote the local principal unit
group of Kpi by U1,pi . We put

U :=
t∏

i=1

Upi , U1 :=
t∏

i=1

U1,pi .

We may embed the global units E in U :

E ↪→ U, ε → (ε, . . . , ε) .
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Let Ē denote the topological closure of E in U .
By class field theory, we have the following lemma.

LEMMA 2.4 ([8, Chapter 4, Theorem 7.8]). The Artin map induces the following
topological isomorphism:

U1/U1 ∩ Ē � Gal(M0/L0) .

Throughout the following, we denote by f the above isomorphism from U1/U1 ∩ Ē to
Gal(M0/L0). Since U1 is a finitely generated Z2-module of rank [K : Q], Gal(M0/L0) is
also a finitely generated Z2-module.

LEMMA 2.5. Let TZ2(Gal(M0/L0)) be the torsion part of Gal(M0/L0) .
Then

TZ2(Gal(M0/L0)) = Gal(M0/L0K∞) .

PROOF. Since TZ2(Gal(M0/L0)) is a finite group and Gal(M0/L0) is a profinite group,
TZ2(Gal(M0/L0)) is a closed subgroup of Gal(M0/L0). By Galois theory, there exists a
subfield F of M0 such that F ⊃ L0 and TZ2(Gal(M0/L0)) = Gal(M0/F ). By Lemma 2.2,
Gal(M0/L0K∞) is a finite group. Therefore,

Gal(M0/L0K∞) ⊂ TZ2(Gal(M0/L0)) .

By Galois theory, L0 ⊂ F ⊂ L0K∞ . Since L0 ∩K∞ = K ,

Gal(L0K∞/L0) � Gal(K∞/K) � Z2 .

Since [L0K∞ : F ] < +∞, F is equal to L0K∞(see [11, Proposition 13.1]). �

Let A be the subgroup of U1/U1 ∩ Ē generated by (k1, k2, . . . , kt ) mod U1 ∩ Ē (ki ∈
{±1}).

LEMMA 2.6. f (A) ⊂ Gal(M0/M0 ∩ L∞).

PROOF. We denote by IM0/K(Pi ) the inertia group of Pi in Gal(M0/K). By the defi-

nition of f , f ((−1, 1, . . . , 1) mod U1 ∩ Ē) belongs to IM0/K(P1). By Lemma 2.5,

f ((−1, 1, . . . , 1) mod U1 ∩ Ē) ∈ Gal(M0/L0K∞) ⊂ Gal(M0/K∞) .

Consequently,

f ((−1, 1, . . . , 1) mod U1 ∩ Ē) ∈ IM0/K∞(P1) .

By Lemma 2.3,

f ((−1, 1, . . . , 1) mod U1 ∩ Ē) ∈ Gal(M0/M0 ∩ L∞) .

We obtain similarly that

f ((1,−1, 1, . . . , 1) mod U1 ∩ Ē) ∈ IM0/K∞(P2) ⊂ Gal(M0/M0 ∩ L∞) .



GREENBERG’S CONJECTURE 5

Consequently, it follows that

f (A) ⊂ Gal(M0/M0 ∩ L∞) .

�

LEMMA 2.7. Define a map ψ : (Z/2Z)⊕t−1 −→ A by

(Z/2Z)⊕t−1 −→ A , ([x1], [x2], . . . , [xt−1]) −→ [((−1)x1, (−1)x2, . . . , (−1)xt−1, 1)] .
Then ψ is an injective group homomorphism.

PROOF. Put

E1 := U1 ∩ E , Ē1 := U1 ∩ Ē .
We denote the torsion part of Ē1 by (Ē1)tors. Leopoldt’s conjecture holds for K since K
is an abelian number field (see [11, Corollary 5.32]). Therefore, it follows the following
isomorphism as Z2-modules:

Ē1 � E1 ⊗Z Z2 .

Since K is a totally real number field and [E : E1] < +∞, we have E1 � Z/2Z ⊕ Z⊕t−1.

Hence E1 ⊗Z Z2 � Z2/2Z2 ⊕ Z⊕t−1
2 . It follows that (Ē1)tors = {±1}. For any

([x1], [x2], . . . , [xt−1]) ∈ Kerψ , we have ((−1)x1, (−1)x2, . . . , (−1)xt−1, 1) ∈ (Ē1)tors.
Therefore, we have that xi ≡ 0 (mod 2) (i = 1, 2, . . . , t − 1). This completes the proof. �

By Lemma 2.6 and Lemma 2.7, we have the following key lemma.

LEMMA 2.8.

rankZ/2Z(Gal(M0/M0 ∩ L∞)/Gal(M0/M0 ∩ L∞)2) ≥ t − 1 .

Now, we prove Theorem 1.4.

PROOF OF THEOREM 1.4. By Lemma 2.1, the Galois group Gal(M∞/K∞) is a free

Z2-module of rank λ−
2 (K(

√−1)). Since λ−
2 (K(

√−1)) is equal to [K : Q] − 1, the rank of
Gal(M∞/K∞) is equal to [K : Q]−1. We have the following exact sequence of Z2-modules:

1 −→ Gal(M∞/L∞)
inc.−→ Gal(M∞/K∞)

res.−→ Gal(L∞/K∞) −→ 1 .

Therefore, it follows the following equation:

rankZ2Gal(M∞/K∞) = rankZ2Gal(M∞/L∞)+ rankZ2Gal(L∞/K∞) .

Since Gal(M∞/K∞) is a free Z2-module, Gal(M∞/L∞) is also a free Z2-module.
By Lemma 2.8, we have the following inequality:

rankZ/2Z(Gal(M0L∞/L∞)/Gal(M0L∞/L∞)2) ≥ [K : Q] − 1 .

We have rankZ2 Gal(M∞/L∞) = [K : Q] − 1 and also have rankZ2Gal(L∞/K∞) = 0.
Therefore Gal(L∞/K∞) is a finite group. This completes the proof. �
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We also have the following corollary.

COROLLARY 2.9. Let K be a totally real abelian number field such that the prime

number 2 splits completely in K . Then, we have λ−
2 (K(

√−1)) ≥ [K : Q] − 1.

3. Applications of Theorem 1.4

We prepare the following notations to prove Theorem 1.5 and Proposition 1.6. For a finite
Galois extension F/K of number fields and a prime ideal P of F , we denote by DF/K(P)
the decomposition subgroup of Gal(F/K) for P and by IF/K(P) the inertia subgroup of
Gal(F/K) for P. We also denote by fF/K(P) the inertial degree of F/K with respect to P

and by eF/K(P) the ramification index. In particular, if F/K is an abelian extension, we put
eF/K(p) := eF/K(P), where p = P∩K . For a natural number n, we denote by ζn a primitive
n-th root of unity.

For a number field F , we denote by F∞ the cyclotomic Z2-extension of F and by Fn the
unique intermediate field of F∞/F with degree 2n over F . We also denote by hF the class
number of F and by d(F ) the discriminant of F . For an odd prime number p, we denote by
Sp(F ) the set of all prime ideals of F dividing p. We denote by T (F ) the set of all prime
numbers dividing d(F ). For a finite set X, we denote the order of X by #X. For an odd prime
number p, let ep be a non-negative integer satisfying the following conditions:

• If p ≡ 1 (mod 4), then 2ep+2 || p − 1.
• If p ≡ −1 (mod 4), then 2ep+2 || p + 1.

The following theorem is often called Kida’s formula.

LEMMA 3.1 (Kida [7, Theorem 3]). Let F and K be CM-fields such that K/F is a

finite Galois 2-extension and μ−
2 (F ) = 0. Then

λ−
2 (K)− δ(K) = [K∞ : F∞] · {λ−

2 (F )− δ(F )} +
∑

(e(P)− 1)−
∑

(e(P+)− 1) ,

where e(P) (resp. e(P+)) is the ramification index in K∞/F∞ (resp. K+∞/F+∞) of a finite
prime P ofK∞ (resp. P+ ofK+∞), the sums are taken over all P and P+ which do not divide
2 respectively and δ(K) (resp. δ(F )) is 1 or 0 according to whether or not K∞ (resp. F∞)
contains a primitive 4-th root of unity.

Throughout this section, letm be a non-negative integer andL/Q a real abelian extension
of degree 2m such that the prime number 2 splits completely in L. We prepare some lemmas
for proving Theorem 1.5 and Proposition 1.6.

LEMMA 3.2. For any odd prime number p and integer n ≥ ep + 1, it follows the
following equation:

#Sp(Ln(
√−1))− #Sp(Ln) = #Sp(Ln) .
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PROOF. For any element P of Sp(Qep+1(
√−1)), put p := P ∩ Qep+1. By the

definition of ep, we have fQep+1/Qep
(p) = 2. We also have #DQep+1(

√−1)/Qep
(P) 	= 1.

Since P is unramified in Qep+1(
√−1)/Qep , DQep+1(

√−1)/Qep
(P) is a cyclic subgroup of

Gal(Qep+1(
√−1)/Qep ). Since Gal(Qep+1(

√−1)/Qep ) � (Z/2Z)⊕2, we have
#DQep+1(

√−1)/Qep
(P) 	= 4. Hence #DQep+1(

√−1)/Qep
(P) = 2. Since fQep+1/Qep

(p) = 2,

we have #DQep+1(
√−1)/Qep+1

(P) = 1. Let n be a natural number n ≥ ep + 1 and Q an el-

ement of Sp(Ln(
√−1)). Put q := Q ∩ Qep+1(

√−1). Since #DQep+1(
√−1)/Qep+1

(q) = 1,

we have #DQn(
√−1)/Qn

(Q ∩ Qn(
√−1)) = 1. We also have #DLn(

√−1)/Ln(Q) = 1

since #DQn(
√−1)/Qn

(Q ∩ Qn(
√−1)) = 1. Therefore it follows that #Sp(Ln(

√−1)) =
2#Sp(Ln). �

LEMMA 3.3. We assume that an odd prime number p is unramified in L/Q. Then for
any natural number n ≥ ep +m, we have #Sp(Ln) = 2ep+m.

PROOF. We show that the statement of Lemma 3.3 is true by induction on m. If
m = 0, then it follows easily that #Sp(Qn) = 2ep for any n ≥ ep. We assume that
the statement is true for any i ∈ {0, . . . ,m}. Let L/Q be a real abelian extension of de-
gree 2m+1 such that the prime number 2 splits completely in L and an odd prime num-
ber p is unramified in L/Q. Let K/Q be a subfield of L/Q with [K : Q] = 2m.
Since the prime number 2 also splits completely in K , by the assumption it follows that
#Sp(Kn) = 2ep+m for any n ≥ ep + m. We also have #Sp(Qn) = 2ep . Let P

be any element of Sp(Lep+m+1). put p := P ∩ Kep+m+1 and p0 := P ∩ Qep+m+1.
By the definition of ep, we have fQep+m+1/Qep+m(p0) = 2. Since #Sp(Kep+m) =
2ep+m and #Sp(Qep+m) = 2ep , it follows that fKep+m/Qep+m(p ∩ Kep+m) = 1. Hence

fKep+m+1/Qep+m+1(p) = 1. Since fKep+m+1/Qep+m(p) = 2, we have fKep+m+1/Kep+m(p) =
2. Therefore we have #DLep+m+1/Kep+m(P) 	= 1. Since Gal(Lep+m+1/Kep+m) �
(Z/2Z)⊕2 and DLep+m+1/Kep+m(P) is a cyclic subgroup of Gal(Lep+m+1/Kep+m), we have

#DLep+m+1/Kep+m(P) 	= 4. We also have fLep+m+1/Kep+m+1(P) = 1. It follows that

#Sp(Lep+m+1) = 2#Sp(Kep+m+1) = 2ep+m+1. We also have #Sp(Ln) = 2#Sp(Kn) =
2ep+m+1 for any n ≥ ep + m + 1. The statement of Lemma 3.3 is true for m + 1. This
completes the proof. �

By Lemma 3.3, we have the following lemma.

LEMMA 3.4. Suppose p is an odd prime number and n is a natural number satisfying
n ≥ ep +m. Then ,

#Sp(Ln) = 2ep+m(eL/Q(pZ))−1 .

PROOF. Let P be any element of Sp(L). Let F be the subfield of L such that
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IL/Q(P) = Gal(L/F). Since #IL/Q(P) = eL/Q(pZ), [F : Q] = 2m(eL/Q(pZ))−1. Let
n be a natural number satisfying n ≥ ep +m and p any element of Sp(Fn). Since P is totally
ramified in L/F , p is also totally ramified in Ln/Fn. Therefore we have #Sp(Ln) = #Sp(Fn).

Since pZ is unramified in F/Q, we have #Sp(Fn) = 2ep+m(eL/Q(pZ))−1 by Lemma 3.3.
The proof is complete. �

LEMMA 3.5.

λ−
2 (Q(

√−1)) = 0 .

PROOF. This follows from [11, Corollary 10.5]. �

Now, we prove Theorem 1.5.

PROOF OF THEOREM 1.5. Proof of (1): Let p and q be distinct prime numbers with
p ≡ q ≡ 5 (mod 8). Let Fp be the subfield of Q(ζp) satisfying [Fp : Q] = 4 and Fq the
subfield of Q(ζq) satisfying [Fq : Q] = 4. We note that since Q(ζp)/Q is a cyclic extension
of degree p − 1, an extension Fp/Q is a unique cyclic subextension of Q(ζp)/Q such that
[Fp : Q] = 4. We also note that since p ≡ 5 (mod 8), Fp is a totally imaginary number
field. We denote the composite field of Fp and Fq by F . We denote by P a prime ideal of F
dividing 2. Put p := P ∩ Fp. We note that since p ≡ 5 (mod 8), fQ(

√
p)/Q(2Z) = 2. Since

Fp/Q is a cyclic extension and Q(
√
p) is a subfield of Fp, we have fFp/Q(p) = 4. Let k be

the subfield of F such that DF/Q(P) = Gal(F/k). Since 2Z is unramified in F , DF/Q(P)

is a cyclic subgroup of Gal(F/Q). Since Gal(F/Q) � (Z/4Z)⊕2, we have #DF/Q(P) = 4.
Therefore K is an abelian number field of degree four. By the definition of k, the prime
number 2 splits completely in k. We show that k is a totally real number field. Let H/k be
the subextension of F/k satisfying [H : k] = 2. Let Hp/Fp be the subextension of F/Fp
satisfying [Hp : Fp] = 2 and Hq/Fq the subextension of F/Fq satisfying [Hq : Fq ] = 2. We
note that H and Hp and Hq are distinct subfields of F . Since 4 || p − 1, we have Fp 	⊂ R.
Therefore it follows that Hp 	⊂ R. Similarly we also have Hq 	⊂ R. Since the number of

subgroups of order 2 in (Z/4Z)⊕2 is equal to 3, it follows that H = F ∩ R. Therefore k
is a totally real number field. Q(

√
p) and Q(

√
q) and Q(

√
pq) are all quadratic subfields

of F . Since the prime number 2 splits completely in k and p ≡ q ≡ 5 (mod 8), it follows
that Q(

√
p) 	⊂ k and Q(

√
q) 	⊂ k. Therefore k/Q is a real cyclic extension of degree four.

Consequently, k/Q is a real cyclic extension of degree four such that the conductor of k/Q
is pq and the prime number 2 splits completely in k. Since p ≡ q ≡ 5 (mod 8), we have

ep = eq = 0. We apply Kida’s formula to an extension k(
√−1)/Q(

√−1) of CM-fields and
it holds that

λ−
2 (k(

√−1))− 1 = 4(λ−
2 (Q(

√−1))− 1)+ 2ep (4 − 1)+ 2eq (4 − 1) .

Hence it follows that

λ−
2 (k(

√−1)) = 1 − 4 + (4 − 1)+ (4 − 1) = 3 .
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By Theorem 1.4, we have λ2(k) = μ2(k) = 0. Finally, we show ν2(k) > 0. Since p ≡ 1
(mod 4) and q ≡ 1 (mod 4), Q(

√
p,

√
q)/Q(

√
pq) is an unramified quadratic extension.

Since Q(
√
pq) ⊂ k and p is totally ramified in k, we have Q(

√
p,

√
q) ∩ k = Q(

√
pq).

Therefore Q(
√
p,

√
q)k/k is an unramified quadratic extension. We have 2 | hk . Hence it

follows that ν2(k) > 0.
Proof of (2): Let p, q and r be distinct prime numbers with p ≡ q ≡ r ≡ 5 (mod 8).

Put k := Q(
√
pq,

√
pr). Since pq ≡ pr ≡ 1 (mod 8), the prime number 2 splits completely

in Q(
√
pq) and Q(

√
pr). Therefore the prime number 2 splits completely in k. Since p ≡

q ≡ r ≡ 5 (mod 8), we have ep = eq = er = 0. We apply Kida’s formula to an extension

k(
√−1)/Q(

√−1) of CM-fields and it holds that

λ−
2 (k(

√−1))− 1 = 4(λ−
2 (Q(

√−1))− 1)+ 2ep+1(2 − 1)+ 2eq+1(2 − 1)+ 2er+1(2 − 1) .

Hence λ−
2 (k(

√−1)) = 3. By Theorem 1.4, we have λ2(k) = μ2(k) = 0. It also follows that
ν2(k) > 0 easily. �

We will give a proof of Proposition 1.6.

PROPOSITION 3.6. We assume that Gal(L/Q) � Z/8Z. Then, λ−
2 (L(

√−1)) ≥ 9.

PROOF. Let K/Q be the subextension of L/Q with [K : Q] = 2. We note that since
L/Q is a cyclic extension any element s of T (K) is totally ramified in L. We prove this
proposition by splitting into 5 cases.

(1) Suppose that #T (K) ≥ 3. Let p, q and r be distinct elements of T (K). We apply

Kida’s formula to an extension L(
√−1)/Q(

√−1) of CM-fields and it holds that

λ−
2 (L(

√−1))− 1

= −8 +
∑

s∈T (K)
2es (8 − 1)+

∑

s∈T (L)\T (K)
2es+3(eL/Q(sZ))−1(eL/Q(sZ)− 1)

≥ −8 + 2ep (8 − 1)+ 2eq (8 − 1)+ 2er (8 − 1)

≥ −8 + (8 − 1)+ (8 − 1)+ (8 − 1) .

Hence we have λ−
2 (L(

√−1)) ≥ 14 ≥ 9.
(2) Suppose that #T (K) = 2 and T (L) \ T (K) 	= ∅. Let p and q be distinct ele-

ments of T (K) and r an element of T (L) \ T (K). We apply Kida’s formula to an extension

L(
√−1)/Q(

√−1) of CM-fields and it holds that

λ−
2 (L(

√−1))− 1

≥ −8 + 2ep (8 − 1)+ 2eq (8 − 1)+ 2er+3(eL/Q(rZ))−1(eL/Q(rZ)− 1)

≥ −8 + 7 + 7 + 2er+3(eL/Q(rZ))
−1

≥ 6 + 2er+1 .
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Hence we have λ−
2 (L(

√−1)) ≥ 9.
(3) Suppose that #T (K) = 2 and T (L) = T (K). Let p and q be distinct elements

of T (K). By Kronecker–Weber’s theorem, there exist natural numbers e and r such that
L ⊂ Q(ζpeqr ). Since p and q are odd prime numbers and L/Q is a 2-extension, it follows
that L ⊂ Q(ζpq). Since Gal(Q(ζpq)/Q) � (Z/(p−1)Z)⊕ (Z/(q−1)Z) and L/Q is a cyclic
extension of degree 8, we have 8 | p − 1 or 8 | q − 1. Hence ep ≥ 1 or eq ≥ 1. We apply

Kida’s formula to an extension L(
√−1)/Q(

√−1) of CM-fields and it holds that

λ−
2 (L(

√−1))− 1 = −8 + 2ep (8 − 1)+ 2eq (8 − 1) ≥ −8 + 2(8 − 1)+ (8 − 1) = 13 .

Hence we have λ−
2 (L(

√−1)) ≥ 14 ≥ 9.
(4) Suppose that #T (K) = 1 and T (L) \ T (K) 	= ∅. Let p be an element of T (K) and

q an element of T (L) \ T (K). Since d(K) = p and the prime number 2 splits completely
in K , we have p ≡ 1 (mod 8). Hence ep ≥ 1. We apply Kida’s formula to an extension

L(
√−1)/Q(

√−1) of CM-fields and it holds that

λ−
2 (L(

√−1))− 1

≥ −8 + 2ep (8 − 1)+ 2eq+3(eL/Q(qZ))−1(eL/Q(qZ)− 1)

≥ −8 + 14 + 2eq+3(eL/Q(qZ))−1

≥ 6 + 2eq+1 .

Hence we have λ−
2 (L(

√−1)) ≥ 9.
(5) Suppose that #T (K) = 1 and T (L) = T (K). Let p be an element of T (K). By

Kronecker–Weber’s theorem, we have L ⊂ Q(ζp). We denote by Q(ζp)+ the maximal real

subfield of Q(ζp). Since L is a totally real number field, we have L ⊂ Q(ζp)+. Since

[L : Q] = 8 and [Q(ζp)+ : Q] = p−1
2 , we have 8 | p−1

2 . Hence ep ≥ 2. We apply Kida’s

formula to an extension L(
√−1)/Q(

√−1) of CM-fields and it holds that

λ−
2 (L(

√−1))− 1 = −8 + 2ep (8 − 1) ≥ −8 + 4(8 − 1) .

Hence we have λ−
2 (L(

√−1)) ≥ 9. The proof is complete. �

PROPOSITION 3.7. We assume Gal(L/Q) � (Z/2Z)⊕3. Then, λ−
2 (L(

√−1)) ≥ 9.

PROOF. For any odd prime number q , we denote by q̃ a prime ideal of L dividing q .
We note that d(L) 	= ±1. Let p be a prime number dividing d(L). Since p � [L : Q], IL/Q(p̃)
is a cyclic subgroup of Gal(L/Q). Since Gal(L/Q) � (Z/2Z)⊕3, we have #IL/Q(p̃) = 2.
By Galois theory, there exists a subfield K of L of degree four over Q such that IL/Q(p̃) =
Gal(L/K). Since the prime number 2 splits completely in K , We have λ−

2 (K(
√−1)) ≥ 3 by

Corollary 2.9. We apply Kida’s formula to an extension L(
√−1)/K(

√−1) of CM-fields and
it holds that

λ−
2 (L(

√−1))− 1
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= 2(λ−
2 (K(

√−1))− 1)+
∑

s∈T (L)
#Ss(Les+3)(eL/K(s̃)− 1)

≥ 2(3 − 1)+ 2ep+2(2 − 1) .

Hence we have λ−
2 (L(

√−1)) ≥ 9. �

PROPOSITION 3.8. We assume that Gal(L/Q) � (Z/2Z)⊕ (Z/4Z). Then,

λ−
2 (L(

√−1)) ≥ 9.

PROOF. If there exists an element p of T (L) such that eL/Q(pZ) = 2, by a similar

argument in Proposition 3.7 we have λ−
2 (L(

√−1)) ≥ 9. We give a proof in the case that
eL/Q(pZ) is not equal to 2 for any element p of T (L). For any element p of T (L), let p̃
be a prime ideal of L dividing p. We have eL/Q(p̃) 	= 8 since IL/Q(p̃) is a cyclic group.
Therefore we have eL/Q(pZ) = 4. We assume that #T (L) = 1. Let p be the element of
T (L). There exists a subfield K of L of degree 2 over Q such that IL/Q(p̃) = Gal(L/K).
Since #T (L) = 1, K/Q is an unramified extension. This contradicts hQ = 1. Therefore we
have #T (L) ≥ 2. Here we prove this proposition by splitting into two cases.

(1) Suppose that #T (L) = 2. Let p and q be distinct elements of T (L). There exists a
subfield K of L of degree 2 over Q such that IL/Q(p̃) = Gal(L/K). Since p is unramified
in K/Q and d(L) 	= ±1, we have d(K) = q . Since the prime number 2 splits completely
in K , we have q ≡ 1 (mod 8). Hence eq ≥ 1. We apply Kida’s formula to an extension

L(
√−1)/Q(

√−1) of CM-fields and it holds that

λ−
2 (L(

√−1))− 1

= −8 + 2ep+1(4 − 1)+ 2eq+1(4 − 1)

≥ −8 + 6 + 12 .

Hence we have λ−
2 (L(

√−1)) ≥ 11 ≥ 9.
(2) Suppose that #T (L) ≥ 3. Let p, q and r be distinct elements of T (L). We apply

Kida’s formula to an extension L(
√−1)/Q(

√−1) of CM-fields and it holds that

λ−
2 (L(

√−1))− 1

= −8 + 2ep+1(4 − 1)+ 2eq+1(4 − 1)+ 2er+1(4 − 1)

≥ −8 + 6 + 6 + 6 .

Hence we have λ−
2 (L(

√−1)) ≥ 11 ≥ 9. The proof is complete. �

From the above propositions, we have the following proposition.

PROPOSITION 3.9. If [L : Q] = 8, then λ−
2 (L(

√−1)) ≥ 9.

Using Proposition 3.9, we prove Proposition 1.6.
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PROOF OF PROPOSITION 1.6. LetK/Q be a real abelian extension of degree 2m such
that the prime number 2 splits completely in K . We assume that 8 | [K : Q]. Let F be a

subfield of K of degree 8 over Q. By Proposition 3.9, we have λ−
2 (F (

√−1)) ≥ [F : Q] + 1.
For any odd prime number p, we denote by p̃ a prime ideal ofK dividing p. We apply Kida’s

formula to an extensionK(
√−1)/F (

√−1) of CM-fields and it holds that

λ−
2 (K(

√−1))− 1

= [K : F ](λ−
2 (F (

√−1))− 1)+
∑

p∈T (K)
#Sp(Kep+m)(eK/F (p̃)− 1)

≥ [K : F ]([F : Q] + 1 − 1) .

Hence we have λ−
2 (K(

√−1)) ≥ [K : Q] + 1. �

We classify all real abelian extensions of degree four satisfying all conditions of Theo-
rem 1.4.

PROPOSITION 3.10. We assume Gal(L/Q) � (Z/2Z)⊕2 and #T (L) ≥ 4. Then, we

have λ−
2 (L(

√−1)) ≥ 5.

PROOF. We note that for any element l of T (L), eL/Q(lZ) = 2. Let p, q , r and s be

distinct elements of T (L). We apply Kida’s formula to an extension L(
√−1)/Q(

√−1) of
CM-fields and it holds that

λ−
2 (L(

√−1))− 1

≥ −4 + 2ep+1(2 − 1)+ 2eq+1(2 − 1)+ 2er+1(2 − 1)+ 2es+1(2 − 1)

≥ −4 + 2 + 2 + 2 + 2 .

Hence we have λ−
2 (L(

√−1)) ≥ 5. �

PROPOSITION 3.11. We assume Gal(L/Q) � (Z/2Z)⊕2 and #T (L) = 2. Then, we

have λ−
2 (L(

√−1)) ≥ 5.

PROOF. Let p and q be distinct elements of T (L). We denote by p̃ a prime ideal
of L dividing p. Let K be the subfield of L such that IL/Q(p̃) = Gal(L/K). Since
#IL/Q(p̃) = 2, K is a quadratic field. Since p is unramified in K/Q and d(K) 	= ±1,
we have d(K) = q . Since the prime number 2 splits completely in K , we have q ≡ 1
(mod 8). Hence eq ≥ 1. By a similar argument, we have ep ≥ 1. We apply Kida’s formula to

an extension L(
√−1)/Q(

√−1) of CM-fields and it holds that

λ−
2 (L(

√−1))− 1

≥ −4 + 2ep+1(2 − 1)+ 2eq+1(2 − 1)

≥ −4 + 4 + 4 .
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Hence we have λ−
2 (L(

√−1)) ≥ 5. �

LEMMA 3.12. We assume Gal(L/Q) � (Z/2Z)⊕2 and #T (L) = 3. Let p and q and

r be distinct elements of T (L). If λ−
2 (L(

√−1)) = 3, then it follows ep = eq = er = 0.

PROOF. We assume ep ≥ 1. We apply Kida’s formula to L(
√−1)/Q(

√−1) and it
holds that

λ−
2 (L(

√−1))− 1

≥ −4 + 2ep+1(2 − 1)+ 2eq+1(2 − 1)+ 2er+1(2 − 1)

≥ −4 + 4 + 2 + 2 .

We have λ−
2 (L(

√−1)) ≥ 5. This contradicts to our assumption that λ−
2 (L(

√−1)) = 3.
Therefore we have ep = 0. By a similar argument, we also have eq = er = 0. �

PROPOSITION 3.13. We assume Gal(L/Q) � (Z/2Z)⊕2 and #T (L) = 3. Let p and

q and r be distinct elements of T (L). If λ−
2 (L(

√−1)) = 3, then the following statements are
true:

(1) L = Q(
√
pq,

√
qr).

(2) p ≡ q ≡ r ≡ 5 (mod 8) or p ≡ q ≡ r ≡ 3 (mod 8).

PROOF. Let P be a prime ideal of L dividing p. We denote by K the subfield of L
such that IL/Q(P) = Gal(L/K). We note that K is a quadratic field. Since hQ = 1, we
have #T (K) ≥ 1. We assume #T (K) = 1. We denote by s the element of T (K). It follows
that d(K) = s. Since the prime number 2 splits completely in K , we have es ≥ 1. This
contradicts Lemma 3.12. Hence we have #T (K) = 2 and d(K) = qr . Since the prime
number 2 splits completely in K , it follows that qr ≡ 1 (mod 8). Since eq = er = 0 by
Lemma 3.12, it follows that q ≡ r ≡ 5 (mod 8) or q ≡ r ≡ 3 (mod 8). By a similar
argument, we have p ≡ r ≡ 5 (mod 8) or p ≡ r ≡ 3 (mod 8). If r ≡ 5 (mod 8), we have
p ≡ q ≡ r ≡ 5 (mod 8). If r ≡ 3 (mod 8), we have p ≡ q ≡ r ≡ 3 (mod 8). We also
have L = Q(

√
pq,

√
qr) easily. This completes the proof. �

PROPOSITION 3.14. We assume Gal(L/Q) � Z/4Z. Let K be the quadratic subfield
of L. Then, the following statements are true:

(1) If #T (K) ≥ 3, then λ−
2 (L(

√−1)) ≥ 5.

(2) If #T (K) = 2 and T (L) \ T (K) 	= ∅, then λ−
2 (L(

√−1)) ≥ 5.
(3) We assume #T (K) = 2 and T (L) = T (K). Let p and q be distinct elements of T (L).

If λ−
2 (L(

√−1)) = 3, then it follows that L ⊂ Q(ζpq) and p ≡ q ≡ 5 (mod 8).

(4) If #T (K) = 1 and T (L) \ T (K) 	= ∅, then λ−
2 (L(

√−1)) ≥ 5.
(5) We assume #T (K) = 1 and T (L) = T (K). Let p be the element of T (L). If

λ−
2 (L(

√−1)) = 3, then it follows that L ⊂ Q(ζp) and p ≡ 9 (mod 16) and 2
p−1

4 ≡ 1
(mod p).
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PROOF. We note that for any s ∈ T (K), s is totally ramified in L/Q.

(1) We apply Kida’s formula to L(
√−1)/Q(

√−1) and it holds that

λ−
2 (L(

√−1))− 1 ≥ −4 + 3(4 − 1) ≥ −4 + 9 .

Hence we have λ−
2 (L(

√−1)) ≥ 6 ≥ 5 .

(2) We apply Kida’s formula to L(
√−1)/Q(

√−1) and it holds that

λ−
2 (L(

√−1))− 1 ≥ −4 + 2(4 − 1)+ 2(2 − 1) ≥ −4 + 6 + 2 .

Hence we have λ−
2 (L(

√−1)) ≥ 5.

(3) We assume ep ≥ 1. We apply Kida’s formula to L(
√−1)/Q(

√−1) and it holds that

λ−
2 (L(

√−1))− 1 = −4 + 2ep (4 − 1)+ 2eq (4 − 1) ≥ −4 + 6 + 3 .

We have λ−
2 (L(

√−1)) ≥ 6. This contradicts to our assumption that λ−
2 (L(

√−1)) = 3.
Therefore we have ep = 0. Similarly, we have eq = 0. Since d(K) = pq and the prime
number 2 splits completely in K , we have pq ≡ 1 (mod 8). Since eq = eq = 0, it follows
that p ≡ q ≡ 5 (mod 8) or p ≡ q ≡ 3 (mod 8). By Kronecker–Weber’s theorem, it follows
that L ⊂ Q(ζpq). Since Gal(Q(ζpq)/Q) � (Z/(p−1)Z)⊕ (Z/(q−1)Z) and L/Q is a cyclic
extension of degree four, it follows that 4 | p − 1 or 4 | q − 1. Hence we have p ≡ q ≡ 5
(mod 8) .
(4) Let p be the element of T (K) and q an element T (L) \ T (K). We have p ≡ 1 (mod 8)

as usual. Hence ep ≥ 1. We apply Kida’s formula to L(
√−1)/Q(

√−1) and it holds that

λ−
2 (L(

√−1))− 1 ≥ −4 + 2(4 − 1)+ 2(2 − 1) ≥ −4 + 6 + 2 .

Hence we have λ−
2 (L(

√−1)) ≥ 5.
(5) We have p ≡ 1 (mod 8) as usual. We assume ep ≥ 2. We apply Kida’s formula to

L(
√−1)/Q(

√−1) and it holds that

λ−
2 (L(

√−1))− 1 = −4 + 2ep (4 − 1) ≥ −4 + 12 .

This contradicts to our assumption that λ−
2 (L(

√−1)) = 3. Therefore we have ep = 1. We
also have p ≡ 9 (mod 16). By Kronecker–Weber’s theorem, it follows that L ⊂ Q(ζp).

Since the prime number 2 splits completely in L, we have 2
p−1

4 ≡ 1 (mod p) easily. The
proof is complete. �
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