A Study of Submanifolds of the Complex Grassmannian Manifold with Parallel Second Fundamental Form

Isami KOGA and Yasuyuki NAGATOMO

Kyushu University and Meiji University
(Communicated by M. Tanaka Sumi)

Abstract

We prove an extension of a theorem of A. Ros on a characterization of seven compact Kaehler submanifolds by holomorphic pinching [5] to certain submanifolds of the complex Grassmannian manifolds.

1. Introduction

Let $\mathbf{C} P^{n}(1)$ be the n-dimensional complex projective space with the constant holomorphic sectional curvature 1 and M^{m} an m-dimensional compact Kähler submanifold immersed in $\mathbf{C} P^{n}(1)$. In [5] Ros has proved that the holomorphic sectional curvature of M is greater than or equal to $\frac{1}{2}$ if and only if M has the parallel second fundamental form. Our goal in the present paper is to extend this result to submanifolds immersed in the complex Grassmannian manifold.

Let $G r_{p}\left(\mathbf{C}^{n}\right)$ be the complex Grassmannian manifold of complex p-planes in \mathbf{C}^{n}. Since the tautological bundle $S \rightarrow G r_{p}\left(\mathbf{C}^{n}\right)$ is a subbundle of a trivial bundle $G r_{p}\left(\mathbf{C}^{n}\right) \times \mathbf{C}^{n} \rightarrow$ $G r_{p}\left(\mathbf{C}^{n}\right)$, we obtain the quotient bundle $Q \rightarrow G r_{p}\left(\mathbf{C}^{n}\right)$. This is called the universal quotient bundle. We notice the fact that the holomorphic tangent bundle $T_{1,0} M$ over $G r_{p}\left(\mathbf{C}^{n}\right)$ can be identified with the tensor product of holomorphic vector bundles S^{*} and Q, where $S^{*} \rightarrow$ $G r_{p}\left(\mathbf{C}^{n}\right)$ is the dual bundle of $S \rightarrow G r_{p}\left(\mathbf{C}^{n}\right)$. If \mathbf{C}^{n} has a Hermitian inner product, S, Q have Hermitian metrics and Hermitian connections and so $G r_{p}\left(\mathbf{C}^{n}\right)$ has a Hermitian metric induced by the identification of $T_{1,0} G r$ and $S^{*} \otimes Q$, which is called the standard metric on $G r_{p}\left(\mathbf{C}^{n}\right)$. In the present paper, we prove the following theorem:

Theorem 1. Let $\operatorname{Gr}_{p}\left(\mathbf{C}^{n}\right)$ be the complex Grassmannian manifold of complex pplanes in \mathbf{C}^{n} with the standard metric $h_{G r}$ induced from a Hermitian inner product on \mathbf{C}^{n} and f a holomorphic isometric immersion of a compact Kähler manifold (M, h_{M}) with a Hermitian metric h_{M} into $G r_{p}\left(\mathbf{C}^{n}\right)$. We denote by $Q \rightarrow G r_{p}\left(\mathbf{C}^{n}\right)$ the universal quotient bundle over $G r_{p}\left(\mathbf{C}^{n}\right)$ of rank $q(:=n-p)$. We assume that the pull-back bundle of $Q \rightarrow G r_{p}\left(\mathbf{C}^{n}\right)$
is projectively flat. Then the holomorphic sectional curvature of M is greater than or equal to $\frac{1}{q}$ if and only if f has parallel second fundamental form.

We regard $G r_{n-1}\left(\mathbf{C}^{n}\right)$ as the complex projective space. When we consider a holomorphic map $f: M \rightarrow G r_{n-1}\left(\mathbf{C}^{n}\right)$ of a compact complex manifold into the complex projective space, then the pull-back bundle of $Q \rightarrow G r_{n-1}\left(\mathbf{C}^{n}\right)$ is projectively flat since the rank of Q is 1 . Thus a holomorphic map of a compact complex manifold into the complex Grassmannian manifold which satisfies the condition that the pull-back bundle of the universal quotient bundle is projectively flat is a kind of generalization of a holomorphic map into the complex projective space. In the case that $p<n-1$, see the latter part of Section 2.

It is why Theorem 1 is an extension of a theorem of Ros in [5]. In the case that $p=n-1$, the sufficient condition in our theorem is that the holomorphic sectional curvature is greater than or equal to 1 , which is distinct from $\frac{1}{2}$ in a theorem of Ros. This is because we take a metric of Fubini-Study type with constant holomorphic sectional curvature 2 .

REMARK 1. We can suppose that $p \geq q$ without loss of generality. In fact we can show that there is no immersion satisfying projectively flatness in the case that $p<q$. (See Remark 4.)

2. Preliminaries

Let $G r_{p}\left(\mathbf{C}^{n}\right)$ be the complex Grassmannian manifold of complex p-planes in \mathbf{C}^{n} with a standard metric $h_{G r}$ induced from a Hermitian inner product on \mathbf{C}^{n}. We denote by $S \rightarrow$ $G r_{p}\left(\mathbf{C}^{n}\right)$ the tautological vector bundle over $G r_{p}\left(\mathbf{C}^{n}\right)$. Since $S \rightarrow G r_{p}\left(\mathbf{C}^{n}\right)$ is a subbundle of a trivial vector bundle $\underline{\mathbf{C}^{n}}=G r_{p}\left(\mathbf{C}^{n}\right) \times \mathbf{C}^{n} \rightarrow G r_{p}\left(\mathbf{C}^{n}\right)$, we obtain a holomorphic vector bundle $Q \rightarrow G r_{p}\left(\mathbf{C}^{n}\right)$ as a quotient bundle. This is called the universal quotient bundle over $G r_{p}\left(\mathbf{C}^{n}\right)$. For simplicity, it is called the quotient bundle. Consequently we have a short exact sequence of vector bundles:

$$
0 \rightarrow S \rightarrow \underline{\mathbf{C}^{n}} \rightarrow Q \rightarrow 0
$$

Taking the orthogonal complement of S in $\underline{\mathbf{C}}^{n}$ with respect to the Hermitian inner product on \mathbf{C}^{n}, we obtain a complex subbundle $S^{\perp} \rightarrow G r_{p}\left(\mathbf{C}^{n}\right)$ of $\underline{\mathbf{C}^{n}}$. As C^{∞} complex vector bundle, Q is naturally isomorphic to S^{\perp}. Consequently, the vector bundle $S \rightarrow G r_{p}\left(\mathbf{C}^{n}\right)$ (resp. $Q \rightarrow G r_{p}\left(\mathbf{C}^{n}\right)$) is equipped with a Hermitian metric $h_{S}\left(\right.$ resp. h_{Q}) and so a Hermitian connection $\nabla^{S}\left(\right.$ resp. $\left.\nabla^{Q}\right)$. The holomorphic tangent bundle $T_{1,0} G r_{p}\left(\mathbf{C}^{n}\right)$ over $G r_{p}\left(\mathbf{C}^{n}\right)$ is identified with $S^{*} \otimes Q \rightarrow G r_{p}\left(\mathbf{C}^{n}\right)$ and the Hermitian metric on the holomorphic tangent bundle is induced from the tensor product $h_{S^{*}} \otimes h_{Q}$ of $h_{S^{*}}$ and h_{Q}.

Let w_{1}, \ldots, w_{n} be a unitary basis of \mathbf{C}^{n}. We denote by \mathbf{C}^{p} the subspace of \mathbf{C}^{n} spanned by w_{1}, \ldots, w_{p} and by \mathbf{C}^{q} the orthogonal complement of \mathbf{C}^{p}, where $q=n-p$. The orthogonal projection to $\mathbf{C}^{p}, \mathbf{C}^{q}$ is denoted by π_{p}, π_{q} respectively. Let G be the special unitary group $S U(n)$ and P the subgroup $S(U(p) \times U(q))$ of $S U(n)$ according to the decomposition. Then $G r_{p}\left(\mathbf{C}^{n}\right) \cong G / P$. The vector bundles S, Q are identified with $G \times{ }_{P} \mathbf{C}^{p}$,
$G \times{ }_{P} \mathbf{C}^{q}$ respectively. We denote by $\Gamma(S), \Gamma(Q)$ spaces of sections of S, Q respectively. Let $\pi_{Q}: \mathbf{C}^{n} \rightarrow \Gamma(Q)$ be a linear map defined by

$$
\pi_{Q}(w)([g]):=\left[g, \pi_{q}\left(g^{-1} w\right)\right] \in G \times_{P} \mathbf{C}^{q}, \quad w \in \mathbf{C}^{n}, g \in G .
$$

The bundle injection $i_{Q}: Q \rightarrow \underline{\mathbf{C}^{n}}$ can be expressed as the following:

$$
i_{Q}([g, v])=([g], g v), \quad v \in \mathbf{C}^{q}, \quad g \in G, \quad[g] \in G r_{p}\left(\mathbf{C}^{n}\right) \cong G / P
$$

Let t be a section of $Q \rightarrow G r_{p}\left(\mathbf{C}^{n}\right)$. Since $i_{Q}(t)$ can be regarded as a \mathbf{C}^{n}-valued function $t: G r_{p}\left(\mathbf{C}^{n}\right) \rightarrow \mathbf{C}^{n}, \pi_{Q} d\left(i_{Q}(t)\right)$ defines a connection on Q. This is nothing but ∇^{Q}.

Similarly, we can write a bundle injection $i_{S}: S \rightarrow \underline{\mathbf{C}^{n}}$ and a linear map $\pi_{S}: \mathbf{C}^{n} \rightarrow$ $\Gamma(S)$:

$$
\begin{aligned}
i_{S}([g, u]) & =([g], g u), & & u \in \mathbf{C}^{p}, \\
\pi_{S}(w)([g]): & =\left[g, \pi_{p}\left(g^{-1} w\right)\right], \quad[g] \in G / P, & & w \in \mathbf{C}^{n},
\end{aligned}
$$

The connection $\pi_{S} d\left(i_{S}(s)\right)$ on S is nothing but ∇^{S}.
We introduce the second fundamental form H in the sense of Kobayashi [1], which is a (1,0)-form with values in $\operatorname{Hom}(S, Q) \cong S^{*} \otimes Q$:

$$
\begin{equation*}
d i_{S}(s)=\nabla^{S} s+H(s), \quad H(s)=\pi_{Q} d\left(i_{S}(s)\right), \quad s \in \Gamma(S) . \tag{1}
\end{equation*}
$$

Similarly, we introduce the second fundamental form K, which is a (0,1)-form with values in $\operatorname{Hom}(Q, S) \cong Q^{*} \otimes S$:

$$
\begin{equation*}
d i_{Q}(t)=K(t)+\nabla Q_{t}, \quad K(t)=\pi_{S} d\left(i_{Q}(t)\right), \quad t \in \Gamma(Q) . \tag{2}
\end{equation*}
$$

Lemma 1 ([1]). The second fundamental forms H and K satisfy

$$
h_{Q}\left(H_{U} s, t\right)=-h_{S}\left(s, K_{\bar{U}} t\right), \quad s \in S_{x}, \quad t \in Q_{x}, \quad U \in T_{1,0_{x}} G r_{p}\left(\mathbf{C}^{n}\right),
$$

for any $x \in G r_{p}\left(\mathbf{C}^{n}\right)$.
For a proof, See [1].
Lemma 2. For a vector $w \in \mathbf{C}^{n}$, set $s=\pi_{S}(w)$ and $t=\pi_{Q}(w)$. Then

$$
\nabla \frac{S}{U} s=-K_{\bar{U}}(t), \quad \nabla_{U}^{Q} t=-H_{U}(s), \quad\left(U \in T_{1,0} G r_{p}\left(\mathbf{C}^{n}\right)\right) .
$$

Proof. Since $i_{S}(s)+i_{Q}(t)=([g], w)$, we have

$$
0=\pi_{S}\left(d i_{S}(s)+d i_{Q}(t)\right)=\nabla^{S}(s)+K(t) .
$$

Thus $\nabla^{S} s=-K(t)$. Similarly $\nabla^{Q_{t}}=-H(s)$.
Since H is a $(1,0)$-form with values in $S^{*} \otimes Q$, then H can be regarded as a section of $T_{1,0} G r_{p}\left(\mathbf{C}^{n}\right)^{*} \otimes T_{1,0} G r_{p}\left(\mathbf{C}^{n}\right)$.

Proposition 1 ([3]). The second fundamental form H can be regarded as the identity transformation of $T_{1,0} G r_{p}\left(\mathbf{C}^{n}\right)$.

The unitary basis w_{1}, \ldots, w_{n} of \mathbf{C}^{n} provides us with the corresponding sections

$$
s_{A}=\pi_{S}\left(w_{A}\right) \in \Gamma(S), \quad t_{A}=\pi_{Q}\left(w_{A}\right) \in \Gamma(Q), \quad A=1, \ldots, n .
$$

Proposition 2 ([3]). For arbitrary (1,0)-vectors U and V on $G r_{p}\left(\mathbf{C}^{n}\right)$, we have

$$
h_{G r}(U, V)=\sum_{A=1}^{n} h_{S}\left(K_{\bar{V}} t_{A}, K_{\bar{U}} t_{A}\right)=\sum_{A=1}^{n} h_{Q}\left(H_{U} s_{A}, H_{V} s_{A}\right) .
$$

Proposition 1 and Proposition 2 were proved by the second author in [3].
Remark 2. Let U, V be (1,0)-vectors on $G r_{p}\left(\mathbf{C}^{n}\right)$ at $x \in G r_{p}\left(\mathbf{C}^{n}\right)$. From Lemma 1 and Proposition 2, we have

$$
\begin{equation*}
h_{G r}(U, V)=-\operatorname{trace}_{Q} H_{U} K_{\bar{V}}=-\overline{\operatorname{trace}_{S} K_{\bar{V}} H_{U}}, \tag{3}
\end{equation*}
$$

where trace $Q_{Q} H_{U} K_{\bar{V}}$ is the trace of the endomorphism $H_{U} K_{\bar{V}}$ of Q_{x} and trace $K_{\bar{V}} H_{U}$ is the trace of the endomorphism $K_{\bar{V}} H_{U}$ of S_{x}.

Since any vectors in S_{x} (resp. Q_{x}) can be expressed by a linear combination of $s_{1}(x), \ldots, s_{n}(x)$ (resp. $t_{1}(x), \ldots, t_{n}(x)$), it follows from Lemma 2 that the curvature R^{S} of ∇^{S} and R^{Q} of ∇^{Q} are expressed by the following:

$$
\begin{align*}
& R^{S}(U, \bar{V}) s_{A}=\nabla_{U}^{S}\left(\nabla^{S} s_{A}\right)(\bar{V})-\nabla \frac{S}{V}\left(\nabla^{S} s_{A}\right)(U)=K_{\bar{V}} H_{U} s_{A}, \tag{4}\\
& R^{Q}(U, \bar{V}) t_{A}=\nabla_{U}^{Q}\left(\nabla^{Q} t_{A}\right)(\bar{V})-\nabla \frac{Q}{V}\left(\nabla^{Q} t_{A}\right)(U)=-H_{U} K_{\bar{V}} t_{A} . \tag{5}
\end{align*}
$$

It follows from $h_{G r}=h_{s^{*}} \otimes h_{Q}$ that the curvature $R^{G r}$ of $G r_{p}\left(\mathbf{C}^{n}\right)$ can be expressed as $R^{S^{*}} \otimes \operatorname{Id}_{Q}+\operatorname{Id}_{S^{*}} \otimes R^{Q}$. Thus we can compute $R^{G r}$ as follows:

$$
\begin{equation*}
R^{G r}(U, \bar{V}) Z=-H_{Z} K_{\bar{V}} H_{U}-H_{U} K_{\bar{V}} H_{Z} \tag{6}
\end{equation*}
$$

for (1, 0)-vectors U, V, Z.
REMARK 3. Let us compute the holomorphic sectional curvature of $G r_{n-1}\left(\mathbf{C}^{n}\right)$. Since the quotient bundle over $G r_{n-1}\left(\mathbf{C}^{n}\right)$ is of rank 1, then it follows from the equations (3) and (6) that

$$
R^{G r}(U, \bar{V}) Z=-H_{Z} K_{\bar{V}} H_{U}-H_{U} K_{\bar{V}} H_{Z}=h_{G r}(Z, V) U+h_{G r}(U, V) Z,
$$

where U, V is $(1,0)$-vectors. Thus for any unit $(1,0)$-vector U we obtain

$$
\operatorname{Hol}^{G r}(U)=h_{G r}\left(R^{G r}(U, \bar{U}) U, U\right)=h_{G r}(2 U, U)=2,
$$

where $\operatorname{Hol}^{G r}(U)$ is the holomorphic sectional curvature along U of $G r_{n-1}\left(\mathbf{C}^{n}\right)$.

From now on, we introduce a relation between holomorphic vector bundles over a compact complex manifold and holomorphic maps into the complex Grassmannian manifold. For a detail, see [3].

Let M be a compact complex manifold and $V \rightarrow M$ a holomorphic vector bundle with Hermitian metric and Hermitian connection ∇^{V}. We denote by $\left(W,(\cdot, \cdot)_{W}\right)$ the space of holomorphic sections of $V \rightarrow M$ with L_{2}-Hermitian inner product. Assume that the bundle homomorphism, which is called an evaluation map,

$$
e v: M \times W \longrightarrow V:(x, t) \longmapsto t(x)
$$

is surjective. In this case $V \rightarrow M$ is called globally generated by W. Then the linear map $e v_{x}: W \rightarrow V_{x}: t \mapsto t(x)$ is surjective for each $x \in M$. Then we obtain complex vector subspace Ker $e v_{x}$ of W for each $x \in M$. We denoted by p the dimension of Ker $e v_{x}$, which is not depend on $x \in M$. Therefore we obtain a holomorphic map

$$
f_{0}: M \longrightarrow G r_{p}(W): x \longmapsto \operatorname{Ker} e v_{x}
$$

This is called the standard map induced by $V \rightarrow M$.
Conversely, let M be a compact Kähler manifold and $f: M \rightarrow G r_{p}\left(\mathbf{C}^{n}\right)$ a holomorphic isometric immersion. It follows from a Borel-Weil Theorem that \mathbf{C}^{n} can be regarded as the space of holomorphic sections of $Q \rightarrow G r$. By restricting each sections of $Q \rightarrow G r$ to M , we obtain a linear map from \mathbf{C}^{n} to the space of holomorphic sections of $f^{*} Q \rightarrow M$. Then we obtain an evaluation map

$$
e v_{\mathbf{C}}: M \times \mathbf{C}^{n} \longrightarrow f^{*} Q:(x, t) \longmapsto t(x), \quad \text { for } x \in M, t \in \mathbf{C}^{n}
$$

The bundle isomorphism $e v_{\mathbf{C}}$ is surjective and we have Ker $e v_{\mathbf{C}_{x}}=S_{f(x)}=f(x)$. Therefore by using $e v_{\mathbf{C}}, f$ is expressed that $f(x)=\operatorname{Ker} e v_{\mathbf{C}_{x}}$.

Here we assume that $f^{*} Q \rightarrow M$ is projectively flat. It follows from the holonomy theorem and $(*)$ in Section 3 that there exists a holomorphic line bundle $L \rightarrow M$ such that $f^{*} Q \rightarrow M$ is decomposed to orthogonal direct sum of q-copies of $L \rightarrow M$, where $q=n-p$. We denote by $\tilde{L} \rightarrow M$ the orthogonal direct sum bundle of q-copies of $L \rightarrow M$ and also denote by W and \tilde{W} the space of holomorphic sections of $L \rightarrow M$ and $\tilde{L} \rightarrow M$ respectively. We fix an L_{2}-Hermitian inner product $(\cdot, \cdot)_{W}$ and $(\cdot, \cdot)_{\tilde{W}}$ of W and \tilde{W} respectively. Then \tilde{W} is regarded as the orthogonal q-direct sum of W. Let $f_{0}: M \rightarrow G r_{N-1}(W)$ be the standard map induced by $L \rightarrow M$, where N is the dimension of W. When we denote by $\tilde{f}: M \rightarrow G r_{q(N-1)}(\tilde{W})$ the standard map induced by $\tilde{L} \rightarrow M, \tilde{f}$ can be expressed as

$$
\tilde{f}(x)=f_{0}(x) \oplus \cdots \oplus f_{0}(x) \subset W \oplus \cdots \oplus W . \quad \text { for } x \in M
$$

Since $f^{*} Q \rightarrow M$ is isomorphic to $\tilde{L} \rightarrow M$ with metrics and connections, we have a linear map $\iota: \mathbf{C}^{n} \rightarrow \tilde{W}$. We assume that ι is injective. Then it follows from Theorem 5.5 in [3] that there exists a semi-positive Hermitian endomorphism T of \tilde{W} such that $f: M \rightarrow$
$G r_{p}\left(\mathbf{C}^{n}\right)$ can be expressed as

$$
f(x)=\left(\iota^{*} T \iota\right)^{-1}\left(\tilde{f}(x) \cap \iota\left(\mathbf{C}^{n}\right)\right)
$$

where $\iota^{*}: \tilde{W} \rightarrow \mathbf{C}^{n}$ is the adjoint linear map of ι.
Consequently, if $f: M \rightarrow G r_{p}\left(\mathbf{C}^{n}\right)$ is holomorphic isometric immersion with the condition that $f^{*} Q \rightarrow M$ is projectively flat, then f can be expressed by using a holomorphic map into the complex projective space and a semi-positive Hermitian endomorphism.

3. Proof of Theorem 1

Let M be a compact Kähler manifold and $f: M \rightarrow G r_{p}\left(\mathbf{C}^{n}\right)$ a holomorphic isometric immersion, where $G r_{p}\left(\mathbf{C}^{n}\right)$ has the metric $h_{G r}$ induced by the Hermitian inner product of \mathbf{C}^{n}. We denote by ∇^{M} and $\nabla^{G r}$ the Hermitian connections of M and $G r_{p}\left(\mathbf{C}^{n}\right)$ respectively. We have a short exact sequence of holomorphic vector bundles:

$$
\left.0 \rightarrow T_{1,0} M \rightarrow T_{1,0} G r\right|_{M} \rightarrow N \rightarrow 0
$$

where $\left.T_{1,0} G r\right|_{M}$ is a holomorphic vector bundle induced by f from the holomorphic tangent bundle over $G r_{p}\left(\mathbf{C}^{n}\right)$ and N is a quotient bundle. In the same manner as in the previous section, we obtain second fundamental forms σ and A of $T M$ and N :

$$
\begin{array}{lll}
\nabla_{U}^{G r} V=\nabla_{U}^{M} V+\sigma(U, V), & & U \in T_{\mathbf{C}} M,
\end{array} \begin{aligned}
& V \in \Gamma\left(T_{1,0} M\right), \\
& \nabla_{U}^{G r} \xi=-A_{\xi} U+\nabla_{U}^{N} \xi, \tag{8}
\end{aligned}
$$

For each point $x \in M, \sigma: T_{1,0_{x}} M \times T_{1,0_{x}} M \rightarrow N_{x}$ is a symmetric bilinear mapping. This is called the second fundamental form of f. The second fundamental form $A: N_{x} \times T_{0,1_{x}} M \rightarrow$ $T_{1,0_{x}} M$ is a bilinear mapping. This is called the shape operator of f. We follow a convention of submanifold theory to define the shape operator.

Throughout this section, the symbol ∇ means the suitable connection of covariant tensor fields induced by $\nabla^{M}, \nabla^{G r}$ and ∇^{N}. Second fundamental forms σ and A satisfy the following formulas.

Formulas 1. For any $U, V, Z, W \in T_{1,0_{x}} M$, we have

- $\sigma(\bar{U}, V)=0, \quad A_{\xi} U=0$,
- $h_{G r}(\sigma(U, V), \xi)=h_{G r}\left(V, A_{\xi} \bar{U}\right)$,
- $h_{G r}\left(R^{M}(U, \bar{V}) Z, W\right)=h_{G r}\left(R^{G r}(U, \bar{V}) Z, W\right)-h_{G r}(\sigma(U, Z), \sigma(V, W))$,
- $h_{G r}\left(R^{N}(U, \bar{V}) \xi, \eta\right)=h_{G r}\left(R^{G r}(U, \bar{V}) \xi, \eta\right)+h_{G r}\left(A_{\xi} \bar{V}, A_{\eta} \bar{U}\right)$,
- $\left(\nabla_{V} \sigma\right)(U, Z)=\left(\nabla_{U} \sigma\right)(V, Z)$,
- $\left(\nabla_{\bar{V}} \sigma\right)(U, Z)=-\left(R^{G r}(U, \bar{V}) Z\right)^{\perp}$.

Note that the quotient bundle N is isomorphic to the orthogonal complement bundle $T_{1,0}^{\perp} M$ as a C^{∞} complex vector bundle. The third, fourth and fifth formulas are called the
equation of Gauss, the equation of Ricci and the equation of Codazzi respectively. From the equation of Codazzi,

$$
\nabla \sigma: T_{1,0_{x}} M \otimes T_{1,0_{x}} M \otimes T_{1,0_{x}} M \longrightarrow N_{x}
$$

is a symmetric tensor for any $x \in M$.
We assume that $f^{*} Q \rightarrow M$ is projectively flat. The vector bundle $f^{*} Q \rightarrow M$ is projectively flat if and only if

$$
R^{f^{*} Q}(U, \bar{V})=\alpha(U, \bar{V}) \operatorname{Id}_{Q_{f(x)}}, \quad \text { for } U, V \in T_{1,0_{x}} M
$$

where α is a complex 2 -form on M. Since $R^{f^{*} Q}$ is a (1,1)-form, so is α. It follows from the equation (3) that

$$
h_{M}(U, V)=\operatorname{trace} R^{Q}(U, \bar{V})=q \cdot \alpha(U, \bar{V})
$$

Therefore, $f^{*} Q \rightarrow M$ is projectively flat if and only if

$$
\begin{equation*}
\left.R^{f^{*} Q_{(U,}} \bar{V}\right)=\frac{1}{q} h_{M}(U, V) \operatorname{Id}_{Q_{f(x)}}, \quad \text { for } U, V \in T_{1,0_{x}} M \tag{*}
\end{equation*}
$$

REMARK 4. It follows from the equation (5) that

$$
R^{\left.f^{*} Q_{(U, \bar{V}}\right)=-H_{U} K_{\bar{V}}: Q_{x} \longrightarrow S_{x} \longrightarrow Q_{x} . . . ~}
$$

Therefore, if an immersion f satisfies the equation $(*)$, the rank of S is greater than or equal to that of Q.

We denote by Hol the holomorphic sectional curvature of a Kähler manifold. By the equation of Gauss, if U is a unit $(1,0)$-vector on M, then

$$
\begin{align*}
\operatorname{Hol}^{M}(U)=h_{M}\left(R^{M}(U, \bar{U}) U, U\right) & =h_{G r}\left(R^{G r}(U, \bar{U}) U, U\right)-\|\sigma(U, U)\|^{2} \\
& =\operatorname{Hol}^{G r}(U)-\|\sigma(U, U)\|^{2} \tag{9}
\end{align*}
$$

LEMMA 3. Under the assumption of Theorem 1 , for any unit (1, 0)-vector U on M we have

$$
\mathrm{Hol}^{G r}(U)=\frac{2}{q}
$$

Proof. Let U be a unit (1,0)-vector at $x \in M$. By the equation $(*)$, we have

$$
\begin{equation*}
\left.-H_{U} K_{\bar{U}}=R^{f^{*} Q_{(U,}} \bar{U}\right)=\frac{1}{q} \operatorname{Id}_{Q_{x}} \tag{10}
\end{equation*}
$$

It follows from equations (6) and (10) that

$$
\begin{aligned}
\operatorname{Hol}^{G r}(U) & =h_{G r}\left(R^{G r}(U, \bar{U}) U, U\right)=-2 h_{S^{*} \otimes Q}\left(H_{U} K_{\bar{U}} H_{U}, H_{U}\right) \\
& =\frac{2}{q} h_{S^{*} \otimes Q}\left(H_{U}, H_{U}\right)=\frac{2}{q}
\end{aligned}
$$

Lemma 4. Under the assumption of Theorem 1 , for any $(0,1)$-vector \bar{V} on M we have

$$
\nabla_{\bar{V}} \sigma=0
$$

PRoof. It follows from equation (6) and ($*$) that

$$
\begin{align*}
R^{G r}(U, \bar{V}) Z & =-H_{Z} K_{\bar{V}} H_{U}-H_{U} K_{\bar{V}} H_{Z} \\
& =\frac{1}{q} h_{G r}(Z, V) U+\frac{1}{q} h_{G r}(U, V) Z, \tag{11}
\end{align*}
$$

where U, V, Z are $(1,0)$-vectors on M. By the equation of Codazzi, we have

$$
\nabla_{\bar{V}} \sigma(U, Z)=-\left(R^{G r}(U, \bar{V}) Z\right)^{\perp}=0 .
$$

In [5] A. Ros has proved the following Lemma.
Lemma 5 (A. Ros [5]). Let T be a k-covariant tensor on a compact Riemannian manifold M. Then

$$
\int_{U M}(\nabla T)(X, \ldots, X) d X=0,
$$

where $U M$ is the unit tangent bundle of M and $d X$ is the canonical measure of $U M$ induced by the Riemannian metric on M.

For a proof, see [5].
We use the complexification of the above Lemma.
Lemma 6. Let T be a (p, q)-covariant tensor on an m-dimensional compact Kähler manifold $\left(M, h_{M}\right)$. We consider M as an $2 m$-dimensional real manifold with the almost complex structure J. We denote by g_{M} the Riemannian metric induced by h_{M}. Then we have the canonical measure $d X$ of $U M$. We obtain the following equality:

$$
\int_{U M}(\nabla T)\left(\overline{U_{X}}, U_{X}, \ldots, U_{X}, \overline{U_{X}}, \ldots, \overline{U_{X}}\right) d X=0
$$

where $U_{X}=\frac{1}{\sqrt{2}}(X-\sqrt{-1} J X)$ and $\overline{U_{X}}=\frac{1}{\sqrt{2}}(X+\sqrt{-1} J X)$ and X is a real tangent vector on M.

Proof. We define real valued k-covariant tensors on Riemannian manifold (M, g_{M}) by

$$
\begin{aligned}
2 K\left(X_{1}, \ldots, X_{k}\right)= & T\left(U_{1}, \ldots, U_{p}, \overline{U_{p+1}}, \ldots, \overline{U_{k}}\right)+\overline{T\left(U_{1}, \ldots, U_{p}, \overline{U_{p+1}}, \ldots, \overline{U_{k}}\right.}, \\
2 L\left(X_{1}, \ldots, X_{k}\right)= & \sqrt{-1}\left\{T\left(U_{1}, \ldots, U_{p}, \overline{U_{p+1}}, \ldots, \overline{U_{k}}\right)\right. \\
& \left.-\overline{T\left(U_{1}, \ldots, U_{p}, \overline{U_{p+1}}, \ldots, \overline{U_{k}}\right)}\right\}
\end{aligned}
$$

where $k=p+q, U_{i}=U_{X_{i}}$ for $i=1, \ldots, k$. Then T, K and L satisfy the following equation:

$$
T\left(U_{1}, \ldots, U_{p}, \overline{U_{p+1}}, \ldots, \overline{U_{k}}\right)=K\left(X_{1}, \ldots, X_{k}\right)-\sqrt{-1} L\left(X_{1}, \ldots, X_{k}\right)
$$

We get the covariant derivative of both sides of this equation:

$$
\begin{align*}
\left(\nabla_{\bar{U}_{X}} T\right)\left(U_{X}, \ldots, \bar{U}_{X}, \ldots\right)= & \frac{1}{\sqrt{2}}\left(\nabla_{X+\sqrt{-1} J X} K\right)(X, \ldots, X) \\
& -\frac{\sqrt{-1}}{\sqrt{2}}\left(\nabla_{X+\sqrt{-1} J X} L\right)(X, \ldots, X) . \tag{12}
\end{align*}
$$

Since the covariant derivative is linear, then

$$
\begin{equation*}
\left(\nabla_{X+\sqrt{-1} J X} K\right)(X, \ldots, X)=\left(\nabla_{X} K\right)(X, \ldots, X)+\sqrt{-1}\left(\nabla_{J X} K\right)(X, \ldots, X) . \tag{13}
\end{equation*}
$$

Consequently it follows from Lemma 5 that we obtain

$$
\begin{aligned}
\int_{U M}(\nabla T)\left(\overline{U_{X}}, U_{X}, \ldots, U_{X}, \overline{U_{X}}, \ldots, \overline{U_{X}}\right) d X= & \frac{\sqrt{-1}}{\sqrt{2}} \int_{U M}\left(\nabla_{J X} K\right)(X, \ldots, X) d X \\
& +\frac{1}{\sqrt{2}} \int_{U M}\left(\nabla_{J X} L\right)(X, \ldots, X) d X
\end{aligned}
$$

For the covariant tensor field K, we define a new covariant tensor fields \tilde{K} by

$$
\tilde{K}\left(X_{1}, \ldots, X_{k}\right)=K\left(J X_{1}, \ldots, J K_{k}\right), \quad \text { for } X_{1}, \ldots, X_{k} \in T_{x} M(x \in M) .
$$

Since the almost complex structure J is parallel and preserves the inner product and orientation of each tangent space of M, it follows that

$$
\begin{aligned}
\int_{U M}\left(\nabla_{J X} K\right)(X, \ldots, X) d X & =(-1)^{k} \int_{U M}\left(\nabla_{J X} K\right)(J(J X), \ldots, J(J X)) d X \\
& =(-1)^{k} \int_{U M}\left(\nabla_{J X} \tilde{K}\right)(J X, \ldots, J X) d X \\
& =(-1)^{k} \int_{U M}\left(\nabla_{X} \tilde{K}\right)(X, \ldots, X) d X \\
& =0 .
\end{aligned}
$$

The last equation follows from Lemma 5. Similarly we have

$$
\int_{U M}\left(\nabla_{J X} L\right)(X, \ldots, X) d X=0 .
$$

Therefore we obtain the equality in Lemma 6.
Proof of Theorem 1. We define a (2,2)-covariant tensor T on M by

$$
\begin{equation*}
T(U, V, \bar{Z}, \bar{W})=h_{G r}(\sigma(U, V), \sigma(Z, W)), \tag{14}
\end{equation*}
$$

where U, V, Z, W are (1,0)-vectors on M. Using the equation of Ricci and the equation of Codazzi, we obtain

$$
\left(\nabla^{2} T\right)(\bar{U}, U, U, U, \bar{U}, \bar{U})=h_{M}\left(\left(\nabla^{2} \sigma\right)(\bar{U}, U, U, U), \sigma(U, U)\right)+\|(\nabla \sigma)(U, U, U)\|^{2} .
$$

Using the Ricci identity, we obtain
$\left(\nabla^{2} \sigma\right)(U, \bar{U}, U, U)-\left(\nabla^{2} \sigma\right)(\bar{U}, U, U, U)=R^{N}(U, \bar{U})(\sigma(U, U))-2 \sigma\left(R^{M}(U, \bar{U}) U, U\right)$.
It follows from Lemma 4 that

$$
\left(\nabla^{2} \sigma\right)(\bar{U}, U, U, U)=-R^{N}(U, \bar{U})(\sigma(U, U))+2 \sigma\left(R^{M}(U, \bar{U}) U, U\right)
$$

Therefore, we obtain

$$
\begin{align*}
\left(\nabla^{2} T\right)(\bar{U}, U, U, U, \bar{U}, \bar{U})= & -h_{G r}\left(R^{N}(U, \bar{U})(\sigma(U, U)), \sigma(U, U)\right) \\
& +2 h_{G r}\left(\sigma\left(R^{M}(U, \bar{U}) U, U\right), \sigma(U, U)\right) \tag{15}\\
& +\|(\nabla \sigma)(U, U, U)\|^{2} .
\end{align*}
$$

From the equation of Ricci and (6), we have

$$
\begin{align*}
h_{G r}\left(R^{N}(U, \bar{U})(\sigma(U, U)), \sigma(U, U)\right)= & h_{G r}\left(R^{G r}(U, \bar{U})(\sigma(U, U)), \sigma(U, U)\right) \\
& +\left\|A_{\sigma(U, U)} \bar{U}\right\|^{2} . \\
= & h_{G r}\left(-H_{\sigma(U, U)} K_{\bar{U}} H_{U}, H_{\sigma(U, U)}\right) \\
& +h_{G r}\left(-H_{U} K_{\bar{U}} H_{\sigma(U, U)}, H_{\sigma(U, U)}\right) \tag{16}\\
& +\left\|A_{\sigma(U, U)} \bar{U}\right\|^{2} .
\end{align*}
$$

In the following calculation, we extend (1,0)-vectors to local holomorphic vector fields if necessary.

Lemma 7. For any $(1,0)$-vectors U, V, Z on M, we have

$$
-H_{\sigma(U, Z)} K_{\bar{V}}=\left(\nabla_{Z} R^{f^{*} Q}\right)(U, \bar{V}) .
$$

Proof. We have

$$
\left(\nabla_{Z} R^{f^{*} Q}\right)(U, \bar{V})=-\nabla_{Z}\left(H_{U} K_{\bar{V}}\right)+H_{\nabla_{Z} U} K_{\bar{V}}=-\left(\nabla_{Z} H\right)(U) K_{\bar{V}} .
$$

Since we can easily show that $H_{\sigma(U, Z)}=\left(\nabla_{U} H\right)(Z)$, we obtain

$$
-H_{\sigma(U, Z)} K_{\bar{V}}=\left(\nabla_{U} H\right)(Z) K_{\bar{V}}=\left(\nabla_{Z} R^{f^{*} Q}\right)(U, \bar{V})
$$

It follows from (*) in Section 3 that

$$
\begin{aligned}
\left(\nabla_{Z} R^{f^{*} Q}\right)(U, \bar{V}) & =\nabla_{Z}^{f^{*} Q}\left(R^{f^{*} Q}(U, \bar{V})\right)-R^{f^{*} Q}\left(\nabla_{Z}^{M} U, \bar{V}\right) \\
& =\frac{1}{q} \nabla_{Z}^{M}\left(h_{M}(U, V)\right) \operatorname{Id}_{Q}-\frac{1}{q} h_{M}\left(\nabla_{Z}^{M} U, V\right) \operatorname{Id}_{Q}=0
\end{aligned}
$$

where U, V, Z are (1,0)-vectors on M. Then it follows from Lemma 7, the equations (10) and (16) that

$$
\begin{align*}
h_{G r}\left(R^{N}(U, \bar{U})(\sigma(U, U)), \sigma(U, U)\right)= & h_{G r}\left(-H_{U} K_{\bar{U}} H_{\sigma(U, U)}, H_{\sigma(U, U)}\right) \\
& +\left\|A_{\sigma(U, U)} \bar{U}\right\|^{2} \tag{17}\\
= & \frac{1}{q}\|\sigma(U, U)\|^{2}+\left\|A_{\sigma(U, U)} \bar{U}\right\|^{2} .
\end{align*}
$$

Using the equation of Gauss and the equation (11), we have

$$
\begin{align*}
h_{G r}\left(\sigma\left(R^{M}(U, \bar{U}) U, U\right), \sigma(U, U)\right) & =h_{G r}\left(R^{M}(U, \bar{U}) U, A_{\sigma(U, U)} \bar{U}\right) \\
& =h_{G r}\left(R^{G r}(U, \bar{U}) U, A_{\sigma(U, U)} \bar{U}\right)-\left\|A_{\sigma(U, U)} \bar{U}\right\|^{2} \\
& =-2 h_{G r}\left(H_{U} K_{\bar{U}} H_{U}, H_{A_{\sigma(U, U)}}\right)-\left\|A_{\sigma(U, U)} \bar{U}\right\|^{2} \\
& =\frac{2}{q}\|\sigma(U, U)\|^{2}-\left\|A_{\sigma(U, U)} \bar{U}\right\|^{2} . \tag{18}
\end{align*}
$$

Combining the equations (17) and (18) with (15), we obtain

$$
\begin{align*}
\left(\nabla^{2} T\right)(\bar{U}, U, U, U, \bar{U}, \bar{U})= & -\left(\frac{1}{q}\|\sigma(U, U)\|^{2}+\left\|A_{\sigma(U, U)} \bar{U}\right\|^{2}\right) \\
& +2\left(\frac{2}{q}\|\sigma(U, U)\|^{2}-\left\|A_{\sigma(U, U)} \bar{U}\right\|^{2}\right)+\|(\nabla \sigma)(U, U, U)\|^{2} \\
= & \frac{3}{q}\left(\|\sigma(U, U)\|^{2}-q\left\|A_{\sigma(U, U)} \bar{U}\right\|^{2}\right)+\|(\nabla \sigma)(U, U, U)\|^{2} \tag{19}
\end{align*}
$$

By integrating both sides of the equation (19) $\left(U=U_{X}\right)$, Lemma 6 yields

$$
\begin{gather*}
\frac{3}{q} \int_{U M}\left(\left\|\sigma\left(U_{X}, U_{X}\right)\right\|^{2}-q\left\|A_{\sigma\left(U_{X}, U_{X}\right)} \overline{U_{X}}\right\|^{2}\right) d X \tag{20}\\
\quad+\int_{U M}\left\|(\nabla \sigma)\left(U_{X}, U_{X}, U_{X}\right)\right\|^{2} d X=0
\end{gather*}
$$

From now on we assume that the holomorphic sectional curvature of M is greater than or equal to $\frac{1}{q}$. Let us compute the first term of the left hand side of the equation (20). We define $\xi \in N$ as $\sigma(U, U)=\|\sigma(U, U)\| \xi$. Then we have

$$
A_{\sigma(U, U)} \bar{U}=\|\sigma(U, U)\| A_{\xi} \bar{U} .
$$

We denote by τ the involutive anti-holomorphic transformation of the complexification $T_{\mathbf{C}} M$ of $T M$ having $T M$ as the fixed point set. Let $B:=A_{\xi} \circ \tau . B$ is an anti-linear transformation
and satisfies the following equation:

$$
h_{G r}(B U, V)=h_{G r}(B V, U), \quad \text { for } U, V \in T_{1,0_{x}} M, \quad x \in M .
$$

If we regard B as a real linear transformation on the real vector space with an inner product $\mathfrak{R e}\left(h_{G r}(\cdot, \cdot)\right)$, then B is a symmetric transformation. Let λ be the eigenvalue of B whose absolute value is maximum and e the corresponding unit eigenvector. By Cauchy-Schwarz inequality, we have

$$
\lambda=h_{G r}(B e, e)=h_{G r}\left(A_{\xi} \bar{e}, e\right)=h_{G r}(\xi, \sigma(e, e)) \leq\|\sigma(e, e)\| .
$$

It follows from the equation (9), Lemma 3 and the hypothesis that

$$
\left\|A_{\xi} \bar{U}\right\|^{2} \leq \lambda^{2} \leq\|\sigma(e, e)\|^{2} \leq \frac{1}{q}
$$

It follows that

$$
\begin{aligned}
\|\sigma(U, U)\|^{2}-q\left\|A_{\sigma(U, U)} \bar{U}\right\|^{2} & =\|\sigma(U, U)\|^{2}\left(1-q\left\|A_{\xi} \bar{U}\right\|^{2}\right) \\
& \geq\|\sigma(U, U)\|^{2}\left(1-q \cdot \frac{1}{q}\right)=0 .
\end{aligned}
$$

Thus it follows from the equation (20) that

$$
\|(\nabla \sigma)(U, U, U)\|^{2}=0
$$

Since $\nabla \sigma$ is a symmetric tensor, $\nabla \sigma$ vanishes.
Conversely, we assume that M has parallel second fundamental form. From the equation (9) and Lemmas 3 and 4, it is enough to prove that $\|\sigma(U, U)\|^{2} \leq \frac{1}{q}$, where U is an arbitrary unit (1, 0)-vector on M. Let T be a (2, 2)-covariant tensor on M defined by the equation (14). Since the second fundamental form σ is parallel, T is also parallel and so $\nabla^{2} T=0$. It follows from the equation (19) that

$$
\begin{equation*}
\|\sigma(U, U)\|^{2}-q\left\|A_{\sigma(U, U)} \bar{U}\right\|^{2}=0 \tag{21}
\end{equation*}
$$

The Cauchy-Schwarz inequality and the equation (21) imply that

$$
\begin{aligned}
\|\sigma(U, U)\|^{2} & =h_{G r}(\sigma(U, U), \sigma(U, U))=h_{G r}\left(U, A_{\sigma(U, U)} \bar{U}\right) \\
& \leq\left\|A_{\sigma(U, U)} \bar{U}\right\|=\frac{1}{\sqrt{q}}\|\sigma(U, U)\|
\end{aligned}
$$

Therefore, $\|\sigma(U, U)\|^{2} \leq \frac{1}{q}$.

References

[1] S. Kobayashi, Differential geometry of Complex Vector Bundles, Iwanami Shoten and Princeton University, Tokyo (1987).
[2] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry Volume1 and Volume2, Wiley Classics Library, US (1996).
[3] Y. Nagatomo, Harmonic maps into Grassmannian manifolds, a preprint.
[4] H. NAKAGAWA and R. TAKAGI, On locally symmetric Kaehler submanifolds in a complex projective space, J. Math. Soc. Japan 28 (1976), 638-667.
[5] A. Ros, A characterization of seven compact Kaehler submanifolds by holomorphic pinching, Annals of Mathematics 121 (1985), 377-382.

Present Addresses:

IsAmi Koga
Graduate School of Mathematics,
Kyushu University,
744 Motooka, Nishi-Ku, FuKuoka 819-0366, JAPAN.
e-mail: i-koga@math.kyushu-u.ac.jp
Yasuyuki Nagatomo
Department of Mathematics,
Meiji University,
Higashi-Mita, TAMA-KU, KAWASAKI-Shi, KANAGAWA 214-8571, JAPAN.
e-mail: yasunaga@meiji.ac.jp

