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Abstract. We prove an extension of a theorem of A. Ros on a characterization of seven compact Kaehler
submanifolds by holomorphic pinching [5] to certain submanifolds of the complex Grassmannian manifolds.

1. Introduction

Let CPn(1) be the n-dimensional complex projective space with the constant holomor-
phic sectional curvature 1 and Mm an m-dimensional compact Kähler submanifold immersed
in CPn(1). In [5] Ros has proved that the holomorphic sectional curvature of M is greater

than or equal to 1
2 if and only if M has the parallel second fundamental form. Our goal in the

present paper is to extend this result to submanifolds immersed in the complex Grassmannian
manifold.

Let Grp(Cn) be the complex Grassmannian manifold of complex p-planes in Cn. Since
the tautological bundle S → Grp(Cn) is a subbundle of a trivial bundle Grp(Cn) × Cn →
Grp(Cn), we obtain the quotient bundle Q → Grp(Cn). This is called the universal quotient
bundle. We notice the fact that the holomorphic tangent bundle T1,0M over Grp(Cn) can
be identified with the tensor product of holomorphic vector bundles S∗ and Q, where S∗ →
Grp(Cn) is the dual bundle of S → Grp(Cn). If Cn has a Hermitian inner product, S, Q

have Hermitian metrics and Hermitian connections and so Grp(Cn) has a Hermitian metric
induced by the identification of T1,0Gr and S∗ ⊗ Q, which is called the standard metric on
Grp(Cn). In the present paper, we prove the following theorem:

THEOREM 1. Let Grp(Cn) be the complex Grassmannian manifold of complex p-
planes in Cn with the standard metric hGr induced from a Hermitian inner product on Cn and
f a holomorphic isometric immersion of a compact Kähler manifold (M, hM) with a Her-
mitian metric hM into Grp(Cn). We denote by Q → Grp(Cn) the universal quotient bundle
over Grp(Cn) of rank q(:= n − p). We assume that the pull-back bundle of Q → Grp(Cn)
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is projectively flat. Then the holomorphic sectional curvature of M is greater than or equal to
1
q

if and only if f has parallel second fundamental form.

We regard Grn−1(Cn) as the complex projective space. When we consider a holomor-
phic map f : M → Grn−1(Cn) of a compact complex manifold into the complex projective
space, then the pull-back bundle of Q → Grn−1(Cn) is projectively flat since the rank of Q

is 1. Thus a holomorphic map of a compact complex manifold into the complex Grassman-
nian manifold which satisfies the condition that the pull-back bundle of the universal quotient
bundle is projectively flat is a kind of generalization of a holomorphic map into the complex
projective space. In the case that p < n − 1, see the latter part of Section 2.

It is why Theorem 1 is an extension of a theorem of Ros in [5]. In the case that p = n−1,
the sufficient condition in our theorem is that the holomorphic sectional curvature is greater

than or equal to 1, which is distinct from 1
2 in a theorem of Ros. This is because we take a

metric of Fubini-Study type with constant holomorphic sectional curvature 2.

REMARK 1. We can suppose that p ≥ q without loss of generality. In fact we can
show that there is no immersion satisfying projectively flatness in the case that p < q . (See
Remark 4.)

2. Preliminaries

Let Grp(Cn) be the complex Grassmannian manifold of complex p-planes in Cn with
a standard metric hGr induced from a Hermitian inner product on Cn. We denote by S →
Grp(Cn) the tautological vector bundle over Grp(Cn). Since S → Grp(Cn) is a subbundle
of a trivial vector bundle Cn = Grp(Cn) × Cn → Grp(Cn), we obtain a holomorphic vector
bundle Q → Grp(Cn) as a quotient bundle. This is called the universal quotient bundle over
Grp(Cn). For simplicity, it is called the quotient bundle. Consequently we have a short exact
sequence of vector bundles:

0 → S → Cn → Q → 0 .

Taking the orthogonal complement of S in Cn with respect to the Hermitian inner product

on Cn, we obtain a complex subbundle S⊥ → Grp(Cn) of Cn. As C∞ complex vector

bundle, Q is naturally isomorphic to S⊥. Consequently, the vector bundle S → Grp(Cn)

(resp. Q → Grp(Cn)) is equipped with a Hermitian metric hS (resp.hQ) and so a Hermitian

connection ∇S (resp.∇Q). The holomorphic tangent bundle T1,0Grp(Cn) over Grp(Cn) is
identified with S∗ ⊗ Q → Grp(Cn) and the Hermitian metric on the holomorphic tangent
bundle is induced from the tensor product hS∗ ⊗ hQ of hS∗ and hQ.

Let w1, . . . , wn be a unitary basis of Cn. We denote by Cp the subspace of Cn spanned
by w1, . . . , wp and by Cq the orthogonal complement of Cp, where q = n − p. The orthog-
onal projection to Cp, Cq is denoted by πp, πq respectively. Let G be the special unitary
group SU(n) and P the subgroup S (U(p) × U(q)) of SU(n) according to the decompo-
sition. Then Grp(Cn) ∼= G/P . The vector bundles S, Q are identified with G ×P Cp,



SUBMANIFOLDS OF THE COMPLEX GRASSMANNIAN 175

G ×P Cq respectively. We denote by Γ (S), Γ (Q) spaces of sections of S, Q respectively.
Let πQ : Cn → Γ (Q) be a linear map defined by

πQ(w)([g]) := [g, πq(g−1w)] ∈ G ×P Cq , w ∈ Cn, g ∈ G .

The bundle injection iQ : Q → Cn can be expressed as the following:

iQ([g, v]) = ([g], gv) , v ∈ Cq , g ∈ G , [g] ∈ Grp(Cn) ∼= G/P .

Let t be a section of Q → Grp(Cn). Since iQ(t) can be regarded as a Cn-valued function

t : Grp(Cn) → Cn, πQd(iQ(t)) defines a connection on Q. This is nothing but ∇Q.
Similarly, we can write a bundle injection iS : S → Cn and a linear map πS : Cn →

Γ (S):

iS([g, u]) = ([g], gu) , u ∈ Cp , g ∈ G , [g] ∈ G/P ,

πS(w)([g]) : = [g, πp(g−1w)] , w ∈ Cn , g ∈ G .

The connection πSd(iS(s)) on S is nothing but ∇S .
We introduce the second fundamental form H in the sense of Kobayashi [1], which is a

(1,0)-form with values in Hom(S,Q) ∼= S∗ ⊗ Q :

diS(s) = ∇Ss + H(s) , H(s) = πQd(iS(s)) , s ∈ Γ (S) . (1)

Similarly, we introduce the second fundamental form K , which is a (0,1)-form with values in
Hom(Q, S) ∼= Q∗ ⊗ S:

diQ(t) = K(t) + ∇Qt , K(t) = πSd(iQ(t)) , t ∈ Γ (Q) . (2)

LEMMA 1 ([1]). The second fundamental forms H and K satisfy

hQ(HUs, t) = −hS(s,KU t) , s ∈ Sx , t ∈ Qx , U ∈ T1,0x
Grp(Cn) ,

for any x ∈ Grp(Cn).

For a proof, See [1].

LEMMA 2. For a vector w ∈ Cn, set s = πS(w) and t = πQ(w). Then

∇S

U
s = −KU(t) , ∇Q

U t = −HU(s) , (U ∈ T1,0Grp(Cn)) .

PROOF. Since iS(s) + iQ(t) = ([g], w), we have

0 = πS

(
diS(s) + diQ(t)

) = ∇S(s) + K(t) .

Thus ∇Ss = −K(t). Similarly ∇Qt = −H(s). �

Since H is a (1, 0)-form with values in S∗ ⊗ Q, then H can be regarded as a section of
T1,0Grp(Cn)∗ ⊗ T1,0Grp(Cn).
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PROPOSITION 1 ([3]). The second fundamental form H can be regarded as the iden-
tity transformation of T1,0Grp(Cn).

The unitary basis w1, . . . , wn of Cn provides us with the corresponding sections

sA = πS(wA) ∈ Γ (S) , tA = πQ(wA) ∈ Γ (Q) , A = 1, . . . , n .

PROPOSITION 2 ([3]). For arbitrary (1, 0)-vectors U and V on Grp(Cn), we have

hGr(U, V ) =
n∑

A=1

hS(KV tA,KU tA) =
n∑

A=1

hQ(HUsA,HV sA) .

Proposition 1 and Proposition 2 were proved by the second author in [3].

REMARK 2. Let U , V be (1,0)-vectors on Grp(Cn) at x ∈ Grp(Cn). From Lemma 1
and Proposition 2, we have

hGr(U, V ) = −traceQHUKV = −traceSKV HU , (3)

where traceQHUKV is the trace of the endomorphism HUKV of Qx and traceSKV HU is the
trace of the endomorphism KV HU of Sx .

Since any vectors in Sx (resp. Qx) can be expressed by a linear combination of

s1(x), . . . , sn(x) (resp. t1(x), . . . , tn(x)), it follows from Lemma 2 that the curvature RS

of ∇S and RQ of ∇Q are expressed by the following:

RS(U, V )sA = ∇S
U (∇SsA)(V ) − ∇S

V
(∇SsA)(U) = KV HUsA , (4)

RQ(U, V )tA = ∇Q
U (∇QtA)(V ) − ∇Q

V
(∇QtA)(U) = −HUKV tA . (5)

It follows from hGr = hs∗ ⊗ hQ that the curvature RGr of Grp(Cn) can be expressed as

RS∗ ⊗ IdQ + IdS∗ ⊗ RQ. Thus we can compute RGr as follows:

RGr(U, V )Z = −HZKV HU − HUKV HZ , (6)

for (1, 0)-vectors U , V , Z.

REMARK 3. Let us compute the holomorphic sectional curvature of Grn−1(Cn). Since
the quotient bundle over Grn−1(Cn) is of rank 1, then it follows from the equations (3) and
(6) that

RGr(U, V )Z = −HZKV HU − HUKV HZ. = hGr(Z, V )U + hGr(U, V )Z ,

where U,V is (1,0)-vectors. Thus for any unit (1,0)-vector U we obtain

HolGr(U) = hGr(R
Gr(U,U)U,U) = hGr(2U,U) = 2 ,

where HolGr(U) is the holomorphic sectional curvature along U of Grn−1(Cn).
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From now on, we introduce a relation between holomorphic vector bundles over a com-
pact complex manifold and holomorphic maps into the complex Grassmannian manifold. For
a detail, see [3].

Let M be a compact complex manifold and V → M a holomorphic vector bundle with
Hermitian metric and Hermitian connection ∇V . We denote by (W, (·, ·)W ) the space of
holomorphic sections of V → M with L2-Hermitian inner product. Assume that the bundle
homomorphism, which is called an evaluation map,

ev : M × W −→ V : (x, t) �−→ t (x)

is surjective. In this case V → M is called globally generated by W . Then the linear map
evx : W → Vx : t �→ t (x) is surjective for each x ∈ M . Then we obtain complex vector
subspace Ker evx of W for each x ∈ M . We denoted by p the dimension of Ker evx , which is
not depend on x ∈ M . Therefore we obtain a holomorphic map

f0 : M −→ Grp(W) : x �−→ Ker evx .

This is called the standard map induced by V → M .
Conversely, let M be a compact Kähler manifold and f : M → Grp(Cn) a holomorphic

isometric immersion. It follows from a Borel-Weil Theorem that Cn can be regarded as the
space of holomorphic sections of Q → Gr . By restricting each sections of Q → Gr to M,
we obtain a linear map from Cn to the space of holomorphic sections of f ∗Q → M . Then
we obtain an evaluation map

evC : M × Cn −→ f ∗Q : (x, t) �−→ t (x) , for x ∈ M, t ∈ Cn .

The bundle isomorphism evC is surjective and we have Ker evCx = Sf (x) = f (x). Therefore
by using evC, f is expressed that f (x) = Ker evCx .

Here we assume that f ∗Q → M is projectively flat. It follows from the holonomy
theorem and (∗) in Section 3 that there exists a holomorphic line bundle L → M such that
f ∗Q → M is decomposed to orthogonal direct sum of q-copies of L → M , where q = n−p.

We denote by L̃ → M the orthogonal direct sum bundle of q-copies of L → M and also

denote by W and W̃ the space of holomorphic sections of L → M and L̃ → M respectively.

We fix an L2-Hermitian inner product (·, ·)W and (·, ·)W̃ of W and W̃ respectively. Then

W̃ is regarded as the orthogonal q-direct sum of W . Let f0 : M → GrN−1(W) be the
standard map induced by L → M , where N is the dimension of W . When we denote by

f̃ : M → Grq(N−1)(W̃ ) the standard map induced by L̃ → M , f̃ can be expressed as

f̃ (x) = f0(x) ⊕ · · · ⊕ f0(x) ⊂ W ⊕ · · · ⊕ W . for x ∈ M .

Since f ∗Q → M is isomorphic to L̃ → M with metrics and connections, we have a

linear map ι : Cn → W̃ . We assume that ι is injective. Then it follows from Theorem 5.5

in [3] that there exists a semi-positive Hermitian endomorphism T of W̃ such that f : M →
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Grp(Cn) can be expressed as

f (x) = (ι∗T ι)−1(f̃ (x) ∩ ι(Cn)) ,

where ι∗ : W̃ → Cn is the adjoint linear map of ι.
Consequently, if f : M → Grp(Cn) is holomorphic isometric immersion with the

condition that f ∗Q → M is projectively flat, then f can be expressed by using a holomorphic
map into the complex projective space and a semi-positive Hermitian endomorphism.

3. Proof of Theorem 1

Let M be a compact Kähler manifold and f : M → Grp(Cn) a holomorphic isometric
immersion, where Grp(Cn) has the metric hGr induced by the Hermitian inner product of Cn.

We denote by ∇M and ∇Gr the Hermitian connections of M and Grp(Cn) respectively. We
have a short exact sequence of holomorphic vector bundles:

0 → T1,0M → T1,0Gr|M → N → 0 ,

where T1,0Gr|M is a holomorphic vector bundle induced by f from the holomorphic tangent
bundle over Grp(Cn) and N is a quotient bundle. In the same manner as in the previous
section, we obtain second fundamental forms σ and A of T M and N :

∇Gr
U V = ∇M

U V + σ(U, V ) , U ∈ TCM , V ∈ Γ (T1,0M) , (7)

∇Gr
U ξ = −AξU + ∇N

U ξ , U ∈ TCM , ξ ∈ Γ (N) . (8)

For each point x ∈ M , σ : T1,0x
M × T1,0x

M → Nx is a symmetric bilinear mapping. This is
called the second fundamental form of f . The second fundamental form A : Nx ×T0,1x

M →
T1,0x

M is a bilinear mapping. This is called the shape operator of f . We follow a convention
of submanifold theory to define the shape operator.

Throughout this section, the symbol ∇ means the suitable connection of covariant tensor
fields induced by ∇M , ∇Gr and ∇N . Second fundamental forms σ and A satisfy the following
formulas.

FORMULAS 1. For any U,V,Z,W ∈ T1,0x
M , we have

• σ(U, V ) = 0, AξU = 0,

• hGr (σ (U, V ), ξ) = hGr

(
V,AξU

)
,

• hGr

(
RM(U,V )Z,W

) = hGr

(
RGr(U, V )Z,W

) − hGr (σ (U,Z), σ (V,W)) ,

• hGr

(
RN(U, V )ξ, η

) = hGr

(
RGr(U, V )ξ, η

) + hGr

(
AξV ,AηU

)
,

• (∇V σ) (U,Z) = (∇Uσ) (V,Z),

• (∇V σ
)
(U,Z) = − (

RGr(U, V )Z
)⊥

.

Note that the quotient bundle N is isomorphic to the orthogonal complement bundle
T ⊥

1,0M as a C∞ complex vector bundle. The third, fourth and fifth formulas are called the
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equation of Gauss, the equation of Ricci and the equation of Codazzi respectively. From the
equation of Codazzi,

∇σ : T1,0x
M ⊗ T1,0x

M ⊗ T1,0x
M −→ Nx

is a symmetric tensor for any x ∈ M .
We assume that f ∗Q → M is projectively flat. The vector bundle f ∗Q → M is

projectively flat if and only if

Rf ∗Q(U, V ) = α(U, V )IdQf(x)
, for U,V ∈ T1,0x

M ,

where α is a complex 2-form on M . Since Rf ∗Q is a (1,1)-form, so is α. It follows from the
equation (3) that

hM(U, V ) = traceRQ(U, V ) = q · α(U, V ) .

Therefore, f ∗Q → M is projectively flat if and only if

Rf ∗Q(U, V ) = 1

q
hM(U, V )IdQf (x)

, for U,V ∈ T1,0x
M . (∗)

REMARK 4. It follows from the equation (5) that

Rf ∗Q(U, V ) = −HUKV : Qx −→ Sx −→ Qx .

Therefore, if an immersion f satisfies the equation (∗), the rank of S is greater than or equal
to that of Q.

We denote by Hol the holomorphic sectional curvature of a Kähler manifold. By the
equation of Gauss, if U is a unit (1,0)-vector on M , then

HolM(U) = hM(RM(U,U)U,U) = hGr(R
Gr (U,U)U,U) − ‖σ(U,U)‖2

= HolGr(U) − ‖σ(U,U)‖2 .
(9)

LEMMA 3. Under the assumption of Theorem 1, for any unit (1, 0)-vector U on M

we have

HolGr(U) = 2

q
.

PROOF. Let U be a unit (1,0)-vector at x ∈ M . By the equation (∗), we have

−HUKU = Rf ∗Q(U,U) = 1

q
IdQx . (10)

It follows from equations (6) and (10) that

HolGr(U) = hGr(R
Gr(U,U)U,U) = −2hS∗⊗Q(HUKUHU,HU)

= 2

q
hS∗⊗Q(HU,HU) = 2

q
. �
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LEMMA 4. Under the assumption of Theorem 1, for any (0, 1)-vector V on M we
have

∇V σ = 0 .

PROOF. It follows from equation (6) and (∗) that

RGr(U, V )Z = −HZKV HU − HUKV HZ

= 1

q
hGr(Z, V )U + 1

q
hGr(U, V )Z , (11)

where U,V,Z are (1, 0)-vectors on M . By the equation of Codazzi, we have

∇V σ(U,Z) = −(RGr(U, V )Z)⊥ = 0 .

�

In [5] A. Ros has proved the following Lemma.

LEMMA 5 (A. Ros [5]). Let T be a k-covariant tensor on a compact Riemannian
manifold M . Then

∫

UM

(∇T )(X, . . . , X)dX = 0 ,

where UM is the unit tangent bundle of M and dX is the canonical measure of UM induced
by the Riemannian metric on M .

For a proof, see [5].
We use the complexification of the above Lemma.

LEMMA 6. Let T be a (p, q)-covariant tensor on an m-dimensional compact Kähler
manifold (M, hM). We consider M as an 2m-dimensional real manifold with the almost
complex structure J . We denote by gM the Riemannian metric induced by hM . Then we have
the canonical measure dX of UM . We obtain the following equality:

∫

UM

(∇T )(UX,UX, . . . , UX,UX, . . . , UX)dX = 0 ,

where UX = 1√
2
(X − √−1JX) and UX = 1√

2
(X + √−1JX) and X is a real tangent vector

on M .

PROOF. We define real valued k-covariant tensors on Riemannian manifold (M, gM)

by

2K(X1, . . . , Xk) = T (U1, . . . , Up,Up+1, . . . , Uk) + T (U1, . . . , Up,Up+1, . . . , Uk),

2L(X1, . . . , Xk) = √−1{T (U1, . . . , Up,Up+1, . . . , Uk)

− T (U1, . . . , Up,Up+1, . . . , Uk)} ,
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where k = p + q , Ui = UXi for i = 1, . . . , k. Then T , K and L satisfy the following
equation:

T (U1, . . . , Up,Up+1, . . . , Uk) = K(X1, . . . , Xk) − √−1L(X1, . . . , Xk) .

We get the covariant derivative of both sides of this equation:

(∇UX
T )(UX, . . . , UX, . . . ) = 1√

2
(∇X+√−1JXK)(X, . . . , X)

−
√−1√

2
(∇X+√−1JXL)(X, . . . , X) .

(12)

Since the covariant derivative is linear, then

(∇X+√−1JXK)(X, . . . , X) = (∇XK)(X, . . . , X) + √−1(∇JXK)(X, . . . , X) . (13)

Consequently it follows from Lemma 5 that we obtain
∫

UM

(∇T )(UX,UX, . . . , UX,UX, . . . , UX)dX =
√−1√

2

∫

UM

(∇JXK)(X, . . . , X)dX

+ 1√
2

∫

UM

(∇JXL)(X, . . . , X)dX .

For the covariant tensor field K , we define a new covariant tensor fields K̃ by

K̃(X1, . . . , Xk) = K(JX1, . . . , JKk) , for X1, . . . , Xk ∈ TxM (x ∈ M) .

Since the almost complex structure J is parallel and preserves the inner product and orienta-
tion of each tangent space of M , it follows that

∫

UM

(∇JXK)(X, . . . , X)dX = (−1)k
∫

UM

(∇JXK)(J (JX), . . . , J (JX))dX

= (−1)k
∫

UM

(∇JXK̃)(JX, . . . , JX)dX

= (−1)k
∫

UM

(∇XK̃)(X, . . . , X)dX

= 0 .

The last equation follows from Lemma 5. Similarly we have
∫

UM

(∇JXL)(X, . . . , X)dX = 0 .

Therefore we obtain the equality in Lemma 6. �

PROOF OF THEOREM 1. We define a (2,2)-covariant tensor T on M by

T (U, V,Z,W) = hGr (σ (U, V ), σ (Z,W)) , (14)
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where U , V , Z, W are (1,0)-vectors on M . Using the equation of Ricci and the equation of
Codazzi, we obtain

(∇2T )(U,U,U,U,U,U) = hM

(
(∇2σ)(U,U,U,U), σ (U,U)

) + ‖(∇σ)(U,U,U)‖2 .

Using the Ricci identity, we obtain

(∇2σ)(U,U,U,U) − (∇2σ)(U,U,U,U) = RN(U,U)
(
σ(U,U)

) − 2σ
(
RM(U,U)U,U

)
.

It follows from Lemma 4 that

(∇2σ)(U,U,U,U) = −RN(U,U)
(
σ(U,U)

) + 2σ
(
RM(U,U)U,U

)
.

Therefore, we obtain

(∇2T )(U,U,U,U,U,U) = −hGr

(
RN(U,U)(σ (U,U)), σ (U,U)

)

+ 2hGr

(
σ(RM(U,U)U,U), σ (U,U)

)

+ ‖(∇σ)(U,U,U)‖2 .

(15)

From the equation of Ricci and (6), we have

hGr

(
RN(U,U)(σ (U,U)), σ (U,U)

) = hGr

(
RGr(U,U)(σ (U,U)), σ (U,U)

)

+ ‖Aσ(U,U)U‖2.

= hGr(−Hσ(U,U)KUHU,Hσ(U,U))

+ hGr(−HUKUHσ(U,U),Hσ(U,U))

+ ‖Aσ(U,U)U‖2 .

(16)

In the following calculation, we extend (1,0)-vectors to local holomorphic vector fields if
necessary.

LEMMA 7. For any (1, 0)-vectors U, V, Z on M , we have

−Hσ(U,Z)KV = (∇ZRf ∗Q)
(U, V ) .

PROOF. We have
(∇ZRf ∗Q)

(U, V ) = −∇Z(HUKV ) + H∇ZUKV = −(∇ZH)(U)KV .

Since we can easily show that Hσ(U,Z) = (∇UH)(Z), we obtain

−Hσ(U,Z)KV = (∇UH)(Z)KV = (∇ZRf ∗Q)
(U, V ). �

It follows from (∗) in Section 3 that
(∇ZRf ∗Q)

(U, V ) = ∇f ∗Q
Z

(
Rf ∗Q(U, V )

) − Rf ∗Q(∇M
Z U,V )

= 1

q
∇M

Z

(
hM(U, V )

)
IdQ − 1

q
hM(∇M

Z U,V )IdQ = 0
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where U , V , Z are (1,0)-vectors on M . Then it follows from Lemma 7, the equations (10)
and (16) that

hGr

(
RN(U,U)(σ (U,U)), σ (U,U)

) = hGr(−HUKUHσ(U,U),Hσ(U,U))

+ ‖Aσ(U,U)U‖2

= 1

q
‖σ(U,U)‖2 + ‖Aσ(U,U)U‖2 .

(17)

Using the equation of Gauss and the equation (11), we have

hGr

(
σ(RM(U,U)U,U), σ (U,U)

) = hGr

(
RM(U,U)U,Aσ(U,U)U

)

= hGr

(
RGr(U,U)U,Aσ(U,U)U

) − ‖Aσ(U,U)U‖2

= −2hGr(HUKUHU,HAσ(U,U)U
) − ‖Aσ(U,U)U‖2

= 2

q
‖σ(U,U)‖2 − ‖Aσ(U,U)U‖2 .

(18)

Combining the equations (17) and (18) with (15), we obtain

(∇2T )(U,U,U,U,U,U) = −
(

1

q
‖σ(U,U)‖2 + ‖Aσ(U,U)U‖2

)

+ 2

(
2

q
‖σ(U,U)‖2 − ‖Aσ(U,U)U‖2

)
+ ‖(∇σ)(U,U,U)‖2

= 3

q

(‖σ(U,U)‖2 − q‖Aσ(U,U)U‖2) + ‖(∇σ)(U,U,U)‖2 .

(19)

By integrating both sides of the equation (19) (U = UX), Lemma 6 yields

3

q

∫

UM

(‖σ(UX,UX)‖2 − q‖Aσ(UX,UX)UX‖2)dX

+
∫

UM

‖(∇σ)(UX,UX,UX)‖2dX = 0 .

(20)

From now on we assume that the holomorphic sectional curvature of M is greater than

or equal to 1
q

. Let us compute the first term of the left hand side of the equation (20). We

define ξ ∈ N as σ(U,U) = ‖σ(U,U)‖ξ. Then we have

Aσ(U,U)U = ‖σ(U,U)‖AξU .

We denote by τ the involutive anti-holomorphic transformation of the complexification TCM

of T M having T M as the fixed point set. Let B := Aξ ◦ τ . B is an anti-linear transformation
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and satisfies the following equation:

hGr(BU,V ) = hGr(BV,U) , for U,V ∈ T1,0x
M , x ∈ M .

If we regard B as a real linear transformation on the real vector space with an inner product
Re(hGr(·, ·)), then B is a symmetric transformation. Let λ be the eigenvalue of B whose
absolute value is maximum and e the corresponding unit eigenvector. By Cauchy-Schwarz
inequality, we have

λ = hGr(Be, e) = hGr(Aξe, e) = hGr(ξ, σ (e, e)) ≤ ‖σ(e, e)‖ .

It follows from the equation (9), Lemma 3 and the hypothesis that

‖AξU‖2 ≤ λ2 ≤ ‖σ(e, e)‖2 ≤ 1

q
.

It follows that

‖σ(U,U)‖2 − q‖Aσ(U,U)U‖2 = ‖σ(U,U)‖2(1 − q‖AξU‖2)

≥ ‖σ(U,U)‖2
(

1 − q · 1

q

)
= 0 .

Thus it follows from the equation (20) that

‖(∇σ)(U,U,U)‖2 = 0 .

Since ∇σ is a symmetric tensor, ∇σ vanishes.
Conversely, we assume that M has parallel second fundamental form. From the equation

(9) and Lemmas 3 and 4, it is enough to prove that ‖σ(U,U)‖2 ≤ 1
q

, where U is an arbitrary

unit (1, 0)-vector on M . Let T be a (2, 2)-covariant tensor on M defined by the equation (14).
Since the second fundamental form σ is parallel, T is also parallel and so ∇2T = 0. It follows
from the equation (19) that

‖σ(U,U)‖2 − q‖Aσ(U,U)U‖2 = 0 . (21)

The Cauchy-Schwarz inequality and the equation (21) imply that

‖σ(U,U)‖2 = hGr

(
σ(U,U), σ (U,U)

) = hGr

(
U,Aσ(U,U)U

)

≤ ‖Aσ(U,U)U‖ = 1√
q

‖σ(U,U)‖ .

Therefore, ‖σ(U,U)‖2 ≤ 1
q

. �
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