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Abstract. Let X, Y be locally compact Hausdorff spaces, A be a complex subspace of C0(X) and T : A →
C0(Y ) be a real-linear isometry, whose range is not assumed to be a complex subspace of C0(Y ). In this paper,
using the set Θ(A) and τ (A) consisting of all extremely strong boundary points and strong boundary points of A,
respectively we introduce appropriate subsets Y0 and Y1 of Y and give a description of T on these sets. More
precisely, we show that there exist continuous functions Φ : Y0 → Θ(A), α : Y0 → [−1, 1] and w : Y0 → T, where
T is the unit circle, such that

Tf (y) = w(y) · (Re(f (Φ(y))) + α(y)i Im(f (Φ(y)))

for all f ∈ A and y ∈ Y0. The result is improved in the case where either
i) T (A) is a complex subspace of C0(Y ) and Θ(A) = ch(A), where ch(A) is the Choquet boundary of A or
ii) T (A) satisfies a certain separating property.
In the first case we show that there exists a clopen subset K of Y0 such that

(Tf )(y) = w(y)

{
f (Φ(y)) y ∈ K,

f (Φ(y)) y /∈ K,

for each f ∈ A and y ∈ Y0. In the second case we obtain similar results for τ (A) ∩ ch(A) and Y1 instead of Θ(A)

and Y0.

1. Introduction

For a compact (resp. locally compact) Hausdorff space X, let C(X) (resp. C0(X)) denote
the Banach space of all complex-valued continuous functions on X (resp. complex-valued
continuous functions on X vanishing at infinity) endowed with the supremum norm ‖.‖∞. By
the classical Banach-Stone Theorem, every linear isometry T from C(X) onto C(Y ), where
X,Y are compact Hausdorff spaces, is a weighted composition operator of the form Tf (y) =
h(y)f (Φ(y)) for all y ∈ Y and f ∈ C(X), where h ∈ C(Y ) is unimodular and Φ : Y → X is
a homeomorphism. Linear (not necessarily surjective) isometries between certain subspaces
of continuous functions have been studied extensively. For instance, in [12] Novinger gave a
description of a linear isometry T : A → C0(Y ) on the Choquet boundary of its range, where
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A is a subspace of C(X), for some compact Hausdorff space X, which contains the constant
and separates the points of X and Y is a locally compact Hausdorff space. In [1], linear
isometries between strongly separating subspaces of C0(X), for locally compact Hausdorff
space X, have been studied and the general form of such isometries have been characterized.
Here a subspace A of C0(X) is strongly separating if for distinct points x, y ∈ X there exists
f ∈ A with |f (x)| �= |f (y)|. A well-known generalization of the Banach-Stone theorem
given by de Leeuw, Rudin and Wermer in [9] states that a linear surjective isometry between
closed separating unital subalgebras of continuous functions on a compact Hausdorff space X

(called uniform algebras on X) is a multiple by a unimodular continuous function of an algebra
isomorphism. For a uniform algebra A on a compact Hausdorff space X and strictly positive
function f ∈ C(X), linear isometries and A-module isometries between closed subspaces of
the form Af have been discussed in [2].

Since, by the Mazur-Ulam theorem, every surjective isometry between normed spaces is
real-linear up to a translation, it may be interesting to consider real-linear isometries between
various normed spaces, particularly, on subspaces of continuous functions. For instance in
[5] Ellis considered real-linear isometries in the case where the underlying topological spaces
are the Shilov boundaries of subspaces under consideration. In [16] Tonev and Yates proved
that, under some additional assumptions, a surjective map T : A → B between uniform
algebras A and B on compact Hausdorff spaces X and Y , satisfying ‖T (f ) + T (g)‖∞ =
‖f + g‖∞, for all f, g ∈ A, (which means that T is a real-linear isometry) is an isometric
algebra isomorphism which induces a homeomorphism between the Choquet boundaries of
A and B. In [6] Hatori and et al. considered a similar problem for maps between (unital)
semisimple commutative Banach algebras preserving additively the spectral radius of algebra
elements. For locally compact Hausdorff spaces X,Y , real-linear surjective isometries T :
A → B between strongly separating subalgebras A and B of C0(X) and C0(Y ) were studied
by Miura in [11] and it was shown that there exist a continuous function κ from the Choquet
boundary ch(B) of B to the unit circle, a clopen subset K of ch(B) and a homeomorphism

ϕ : ch(B) → ch(A) such that T (f ) = κ(f ◦ ϕ) on K and T (f ) = κ(f ◦ ϕ) on ch(B)\K . In
[7] the authors considered the compact case and (using a different method to [11]) showed that
if A is a uniform algebra on X (or a certain closed subspace of C(X)) a real-linear isometry
T : A → C(Y ), whose range need not be a complex subspace of C(Y ), has the following
description

Tf (y) = T 1(y)(Re(f ◦ Φ)(y) + α(y) i Im(f ◦ Φ)(y)))

for all f ∈ A and y ∈ Y0. Here Φ : Y0 → ch(A) and α : Y0 → [−1, 1] are continuous
functions, where Φ is surjective. In particular, if |T i| = 1 on Y0 (this happens, for example,
when T (A) is a complex subspace of C(Y )) then Y0 is a boundary for T (A) and α takes its
values in {−1, 1}.

In [8] surjective real-linear isometries between complex subspaces of continuous func-
tions on locally compact Hausdorff spaces have been studied. It is proven that, under some
additional assumptions on separating conditions, such isometries are weighted composition
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operators on Choquet boundaries.
In this paper, we consider locally compact Hausdorff spaces X and Y and a real-linear

isometry T : A → C0(Y ) for a complex subspace A of C0(X) (without any additional
assumption), and using the set of extremely strong boundary points of A we introduce a
subset Y0 of Y and give a description of T on Y0 (Theorem 3.5). We should note that here, the
range of T neither is a complex subspace nor satisfies any separating property. However, the
results are improved in Theorems 3.6 and 3.10 under each of the following conditions;

i) T (A) is a complex subspace of C0(Y ) and Θ(A) = ch(A) where Θ(A) and ch(A) are
the set of extremely strong boundary points and the Choquet boundary of A, respectively or

ii) T (A) satisfies a certain separating property.

2. Preliminaries

We recall that for a locally compact Hausdorff space X, C0(X) denotes the Banach
space of all complex-valued continuous functions on X vanishing at infinity, endowed with
the supremum norm ‖.‖∞. For each point x ∈ X, ex is the evaluation functional at x.

We use briefly the notations R-subspace, and C-subspace for a real subspace and a com-
plex subspace of C0(X), respectively. The complex dual of a C-subspace M of C0(X) (with
respect to the supremum norm) will be denoted by M∗

C
and, furthermore, ΣM

C
denotes the

closed unit ball of M∗
C

. Similarly for an R-subspace M of C0(X), M∗
R

and ΣM
R

denote the
real dual of M and the closed unit ball of M∗

R
. We also use the notation ext(·) for the set of

extreme points. It is well-known that for a C-subspace M of C0(X) every point in ext(ΣM
C

)

has the form αex for some α in the unit circle T and x ∈ X (see for instance [4, Page 441]).
A boundary for an R-subspace M of C0(X) is a subset E of X having a non-empty

intersection with the maximum set M(f ) = {x ∈ X : |f (x)| = ‖f ‖∞} of each f ∈ M . The
peripheral range of a function f ∈ C0(X) denoted by Rπ(f ) is the set {f (x) : x ∈ M(f )}.

Let M be a C-subspace of C0(X). The Choquet boundary of M , denoted by ch(M), is

defined as the set of all points x ∈ X such that ex ∈ ext(ΣM
C

). It is well-known that ch(M) is
a boundary for M (see [15, Page 184]). A point x ∈ X is called a strong boundary point of an
R-subspace M of C0(X) if for each neighborhood V of x there exists a function f ∈ M such
that |f (x)| = 1 = ‖f ‖∞ and |f | < 1 on X\V . Evidently, in the case that M is a C-subspace,
we may assume that the function f in the above definition satisfies f (x) = 1.

Following [3] a C-subspace M of C0(X) is called extremely regular if given 0 < ε < 1,
for each x ∈ X and a neighborhood V of x there exists a function f ∈ M with f (x) =
‖f ‖∞ = 1 and |f | < ε on X\V and extremely regular of type zero if for each x ∈ X and a
neighborhood V of x there exists a function f ∈ M with f (x) = ‖f ‖∞ = 1 and f = 0 on
X\V . Motivated by this, for an R-subspace M of C0(X) we call a point x ∈ X an extremely
strong boundary point of M if for each neighborhood V of x and 0 < ε ≤ 1 there exists
a function f ∈ M such that |f (x0)| = 1 = ‖f ‖∞ and |f | < ε on X\V . So that strong
boundary points of M are the points x ∈ X satisfying the above property for ε = 1.



480 ARYA JAMSHIDI AND FERESHTEH SADY

For an R-subspace M of C0(X) we denote the set of all extremely strong boundary
points of M by Θ(M) and the set of all its strong boundary points (possibly an empty set) by
τ (M). Clearly Θ(M) ⊆ τ (M) and, moreover, τ (M) = Θ(M) whenever M is a subalgebra
of C0(X). A uniform algebra on a locally compact Hausdorff space X is a closed subalgebra
A of C0(X) which separates the points of X and vanishing nowhere on X, in the sense that
for each x ∈ X there exists f ∈ A with f (x) �= 0. It is well-known that for a uniform algebra
A on a locally compact Hausdorff space X, ch(A) = τ (A) (see [10, Theorem 4.7.22] for
compact case and [14, Theorem 2.1] for locally compact case).

Clearly for a (unital) uniform algebra A on a compact Hausdorff space X and a strictly
positive function f0 ∈ C(X), Af0 is a closed subspace of C(X). By Lemma 3.2 in [2] for each
x0 ∈ ch(A) and strictly positive function p ∈ C(X) there exists f ∈ A with ff0(x0) = p(x0)

and |ff0| < p. This easily implies that every point in ch(A) is an extremely strong boundary
point of Af0, that is τ (A) = ch(A) ⊆ Θ(Af0). In particular, if A is regular, in the sense that
τ (A) = X, then Af0 is extremely regular.

3. Main Results

We begin this section with two lemmas, which will be used in Theorem 3.5.

LEMMA 3.1. Let X be a locally compact Hausdorff space and A be a C-subspace of
C0(X). Then Θ(A) ⊆ ch(A).

PROOF. Let x ∈ Θ(A) and assume that ex = l1+l2
2 for some l1, l2 ∈ ΣA

C
. Given

ε > 0, for each neighborhood U of x there exists, by hypothesis, a function f ∈ A such
that f (x) = 1 = ‖f ‖∞ and |f | < ε on X\U . Extending l1, l2 to continuous functionals
on C0(X) with the same norm, we can find complex regular Borel measures μ1, μ2 on X

satisfying

li(g) =
∫

X

gdμi (g ∈ A)

for i = 1, 2. Hence since ‖f ‖∞ = 1 it follows that

1 = f (x) =
∫
X

f dμ1 + ∫
X

f dμ2

2
=

∣∣∣∣
∫
X

f dμ1 + ∫
X

f dμ2

2

∣∣∣∣ ≤ ‖μ1‖ + ‖μ2‖
2

that is ‖μ1‖ = ‖μ2‖ = 1. Set μ = μ1+μ2
2 then μ is a complex measure representing ex on A,

i.e. g(x) = ∫
X
gdμ for all g ∈ A. Therefore,

1 =
∣∣∣∣
∫

X

f dμ

∣∣∣∣ ≤
∫

U

|f |d|μ| +
∫

X\U
|f |d|μ|

≤ |μ|(U) + ε|μ|(X\U)

and so 1 ≤ |μ|(U)+ε|μ|(X\U) for all 0 < ε < 1 which implies that |μ|(U) = 1. Since U is
an arbitrary neighborhood of x we conclude that |μ| is the point mass at x and consequently
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μ is a modulus one multiple of the point mass. Now since μ = μ1+μ2
2 and since the point

mass at x is an extreme point of the unit ball of C0(X)∗ we get μ1 = μ2. Therefore l1 = l2,
as desired. �

For a C-subspace A of C0(X) and x ∈ X we set Vx = {f ∈ A : f (x) = 1 = ‖f ‖∞}
which is clearly a nonempty set for each x ∈ τ (A). Next lemma states a similar additive
version of Bishop’s lemma given in [11, Lemma 3.14] and [16, Lemma 1] for the extremely
strong boundary points of C-subspaces of C0(X). The proof is basically the same (with a
minor modification) and for the sake of completeness we state it here.

LEMMA 3.2. Let A be a closed C-subspace of C0(X), x0 ∈ Θ(A) and f ∈ A with
‖f ‖∞ = 1 and f (x0) = 0. Then for each 0 < ε < 1 there exists u ∈ Vx0 such that

f + 1
1−ε

u ∈ 1
1−ε

Vx0 .

PROOF. As in [11] we consider the following closed subsets of X

F0 =
{
x ∈ X : |f (x)| ≥ 1

2

}
,

Fn =
{
x ∈ X : 1

2n+1 ≤ |f (x)| ≤ 1

2n

}
(n ∈ N) .

Since x0 /∈ Fn, n ≥ 0, and x0 is an extremely strong boundary point, it follows that for
0 < ε < 1 and n ≥ 1 we can find un ∈ A, such that un(x0) = 1 = ‖un‖∞ and |un| < ε on
F0 ∪ Fn. Setting u = Σ∞

n=1
un

2n we get a function u ∈ A satisfying u(x0) = 1 = ‖u‖∞, that is

u ∈ Vx0 . We now show that f + 1
1−ε

u ∈ 1
1−ε

Vx0 . For each x ∈ F0 clearly we have

∣∣∣∣f (x) + 1

1 − ε
u(x)

∣∣∣∣ ≤ |f (x)| + ε

1 − ε
≤ 1 + ε

1 − ε
= 1

1 − ε
.

Assume now that x ∈ Fn0 for some n0 ≥ 1, then |f (x)| ≤ 1
2n0 and

|u(x)| ≤ |un0(x)|
2n0

+ Σn�=n0

|un(x)|
2n

≤ ε

2n0
+ 1 − 1

2n0
= 1 + ε − 1

2n0

and therefore

|f (x) + 1

1 − ε
u(x)| ≤ 1

1 − ε
.

Finally for each x ∈ X\ ∪∞
n=0 Fn, we have f (x) = 0 and consequently |f (x) + 1

1−ε
u(x)| ≤

1
1−ε

. This argument shows that |f (x)+ 1
1−ε

u(x)| ≤ 1
1−ε

and since |f (x0)+ 1
1−ε

u(x0)| = 1
1−ε

it follows that u has the desired properties. �

In the sequel we assume that X,Y are locally compact Hausdorff spaces, A is a C-
subspace of C0(X) with Θ(A) �= ∅ and T : A → C0(Y ) is a real-linear isometry whose
range need not be a C-subspace of C0(Y ). We set B = T (A), which is clearly an R-subspace
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of C0(Y ). Since for each C-subspace M of C0(Y ), l → Re(l) is a surjective isometry from

M∗
C

onto M∗
R

, it follows that ext(ΣM
R

) ⊆ {Re(αex) : x ∈ X,α ∈ T}. Hence since the adjoint
T ∗ : B∗

R
→ A∗

R
of T : A → B is a surjective real-linear isometry, it follows that for each

x ∈ ch(A) there exist β ∈ T and y ∈ Y such that T ∗(Re(βey)) = Re(ex) which concludes

that Re(βTf (y)) = Re(f (x)) for all f ∈ A. Now for each x ∈ ch(A) we set

Hx = {y ∈ Y : T ∗(Re(βey)) = Re(ex) for some β ∈ T}
which is a nonempty subset of Y .

LEMMA 3.3. For distinct points x, x ′ ∈ Θ(A), we have Hx ∩ Hx ′ = ∅
PROOF. Let x, x ′ be distinct points of Θ(A) and assume on the contrary that there

exists y ∈ Hx ∩ Hx ′ . Then there are scalars β, γ ∈ T such that

T ∗(Re(βey)) = Re(ex) , T ∗(Re(γ ey)) = Re(ex ′) .

Hence for each f ∈ A,

Re(βTf (y)) = Re(f (x)) , Re(γ Tf (y)) = Re(f (x ′)) .

Since x ∈ Θ(A) and x �= x ′, for each 0 < ε < 1 we can find a function f0 ∈ A such that
f0(x) = 1 = ‖f0‖∞ and |f0(x

′)| < ε. Then clearly Tf0(y) = β, since ‖Tf0‖∞ = ‖f0‖∞ =
1, and |Re(γ Tf0(y))| < ε that is Re(γ β) < ε. Being ε > 0 arbitrary we get Re(γβ) = 0,
i.e. β = ±iγ . Assume without loss of generality that β = iγ , then

Re(βTf (y)) = Re(f (x)) , Re(iβTf (y)) = Re(f (x ′))

for all f ∈ A. Let 0 < ε < 1 be given and f0 ∈ A be as above, i.e. f0(x) = 1 = ‖f0‖∞
and |f0(x

′)| < ε and let F = {z ∈ X : |f0(z)| ≥ ε}. Then F is a nonempty closed subset of
X and since x ′ /∈ F we can find h ∈ A with h(x ′) = 1 = ‖h‖∞ and |h| < ε on F . It is now
easy to see that ‖f0 + h‖∞ < 1 + ε and since Tf0(y) = β, T h(y) = −iβ it follows that

|1−i|=|β−iβ|=|Tf0(y)+T h(y)|=|T (f0+h)(y)| ≤ ‖T (f0+h)‖∞ =‖f0+h‖∞ < 1+ε ,

which is impossible, since ε is arbitrary. �

Setting Y0 = ⋃
x∈Θ(A) Hx , the above lemma allows us to define a map Φ : Y0 → Θ(A)

such that for each y ∈ Y0, Φ(y) is the unique point x ∈ Θ(A) with y ∈ Hx . Clearly Φ is a
well-defined surjective map.

LEMMA 3.4. i) For each y ∈ Y0 and f ∈ A, f (Φ(y)) = 0 implies Tf (y) = 0.
ii) There exists a function α : Y0 → [−1, 1] such that

T (if )(y) = α(y)iTf (y) , (y ∈ Y0, f ∈ VΦ(y)) .

PROOF. i) Let y ∈ Y0 and f ∈ A with f (Φ(y)) = 0. Assume without loss of

generality that ‖f ‖∞ = 1. For ε = 1
2 and x = Φ(y) let u ∈ Vx be chosen as in Lemma
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3.2. Then since T (Vx) ⊆ {g ∈ C0(Y ) : ‖g‖∞ = 1, g(y) = β} for some β ∈ T, we have
T u(y) = β and T (f + 2u)(y) = 2β which implies that Tf (y) = 0.

ii) Let y ∈ Y0. Then there exists β ∈ T such that Re(βTf (y)) = Re(f (x)) for all f ∈
A, where x = Φ(y). Fixing a function f0 ∈ Vx we have Tf0(y) = β and Re(βT (if0))(y) = 0
and consequently T (if0)(y) = iα(y)β = iα(y)Tf0(y) for some α(y) ∈ [−1, 1]. The scalar
α(y) is independent of the function f0 in Vx , since for each f ∈ Vx , (f − f0)(x) = 0 =
i(f − f0)(x) and so, by (i), T (f − f0)(y) = 0 = T (if − if0)(y), that is Tf (y) = Tf0(y)

and T (if )(y) = T (if0)(y), as desired. �

THEOREM 3.5. Let X,Y be locally compact Hausdorff spaces, A be a C-subspace of
C0(X) with Θ(A) �= ∅. Then for a real-linear isometry T : A → C0(Y ) there exists a subset

Y0 of Y and continuous functions Φ : Y0 → Θ(A), α : Y0 → [−1, 1] and w : Y0 → T,
where Φ is surjective, such that

Tf (y) = w(y) · (Re(f (Φ(y))) + α(y)i Im(f (Φ(y))) (1)

for all f ∈ A and y ∈ Y0.

PROOF. Since T can be extended to a real-linear isometry from the closure A of A into
C0(Y ) we may assume without loss of generality that A is closed. Let B = T (A) and let the
subset Y0 of Y and the functions α : Y0 → [−1, 1] and Φ : Y0 → Θ(A) be defined as above.
By definition, Φ is surjective. For a given y ∈ Y0 let x = Φ(y) and set w(y) = T h(y) where
h ∈ Vx is an arbitrary function. As before w(y) does not depend on the function h in Vx and,
moreover, it follows from the definition of α that T (ih)(y) = α(y)iT h(y). Clearly (1) holds
for all f ∈ A with f (x) = 0. Hence for each f ∈ A, since the function g = f − f (x)h

satisfies g(x) = 0, it follows from Lemma 3.4(i) that T g(y) = 0 and so by the real-linearity
of T

Tf (y) = T (f (x)h)(y) = T (Re(f (x))h)(y) + T (Im(f (x))i h)(y)

= Re(f (x))T h(y) + Im(f (x))T (ih)(y)

= Re(f (x))T h(y) + Im(f (x))α(y)iT (h)(y)

= w(y) · (Re(f (x)) + α(y)i Im(f (x))) .

To prove the continuity of Φ, let y ∈ Y0 and U be a neighborhood of of Φ(y0) in Θ(A). Let
Ũ be a neighborhood in X with U = Ũ ∩ Θ(A) and for arbitrary 0 < r < 1 let f ∈ VΦ(y0)

such that |f | ≤ r on X\Ũ . Then O = {y ∈ Y0 : |Tf (y)| > r} is a neighborhood of y0 in
Y0, since f ∈ VΦ(y0) and T (VΦ(y0)) ⊆ β{g ∈ C0(Y ) : g(y0) = 1 = ‖g‖∞} for some β ∈ T.
Moreover, for each y ∈ O

|f (Φ(y))| ≥ |Re(f (Φ(y))) + α(y)i Im(f (Φ(y)))| = |Tf (y)| > r

that is, Φ(O) ⊆ Ũ ∩ Θ(A) and so Φ is continuous.
We now show that w is continuous. For this, suppose that {yλ} is a net in Y0 converging

to y0 ∈ Y0 and choose arbitrary functions h0 ∈ VΦ(y0) and hλ ∈ VΦ(yλ) for all λ. Then
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since (hλ − h0)(Φ(yλ)) = 1 − h0(Φ(yλ)) → 0, the given description of T shows that
T (hλ − h0)(yλ) → 0 which easily implies that w(yλ) → w(y0), that is w is continuous.

Now it suffices to show that α : Y0 → [−1, 1] is continuous. For this let y0 ∈ Y0 and let
f be an arbitrary function in VΦ(y0). Then since if (Φ(y0)) = i, there exists a neighborhood
U of y0 in Y0 such that Im(if (Φ(y))) �= 0 for all y ∈ U . Now since for each z ∈ Y0,
T (if )(z) = w(z) · (Re(if (Φ(z))) + α(z)iIm(if (Φ(z))) it follows that for each y ∈ U

α(y) = T (if )(y) − w(y) · Re(if (Φ(y)))

w(y)iIm(if (Φ(y)))

which implies that α is continuous. �

In the next theorem we improve the above description of T under the additional assump-
tions that T (A) is a C-subspace and Θ(A) = ch(A). This extends [7, Theorem 3.4] and [11,
Theorem 1.1]. On the other hand, since by [8, Proposition 4.1] each C-subspace A of C0(X)

with Θ(A) = ch(A) is strongly separating and strongly 0-separating in the sense which are
defined in [8], Theorem 1.1 in [8], in particular, gives a description of a surjective real-linear
isometry T : A → B between C-subspaces A and B such that Θ(A) = ch(A) and B is
strongly separating. Hence the following theorem may also be considered as a generalization
of this particular case of [8, Theorem 1.1] by removing the separating assumption on T (A).

THEOREM 3.6. Let X,Y be locally compact Hausdorff spaces, A be a C-subspace of
C0(X) such that Θ(A) = ch(A). If T : A → C0(Y ) is a real-linear isometry whose range
is a C-subspace of C0(Y ), then there are a subset Y0 of Y which is a boundary for T (A),
continuous functions Φ : Y0 → ch(A), w : Y0 → T, where Φ is surjective, and a clopen
subset K of Y0 such that

Tf (y) = w(y)

{
f (Φ(y)) y ∈ K ,

f (Φ(y)) y ∈ Y0\K ,

for each f ∈ A and y ∈ Y0.

PROOF. We first note that since ch(A) ⊇ Θ(A) ⊇ Θ(A) and clearly ch(A) = ch(A),

it follows from the hypotheses that Θ(A) = ch(A). Hence as before, by extending T on A,
we can assume that A is closed in C0(X). Let B = T (A) and let Y0,Φ,w and α be defined
as in Theorem 3.5. Then

Tf (y) = w(y) · (Re(f (Φ(y))) + α(y)i Im(f (Φ(y)))

for all f ∈ A and y ∈ Y0. Since B is assumed to be a C-subspace of C0(Y ), the definition

of Y0 shows that for each y ∈ Y0, ey ∈ ext(ΣB
C

) and hence Y0 ⊆ ch(B). We shall show that
α(y) ∈ {−1, 1} for all y ∈ Y0. Let y ∈ Y0. Then there exist β ∈ T and x ∈ Θ(A) such

that Re(βTf (y)) = Re(f (x)) for all f ∈ A. Let λ = iβ. Then since λey ∈ ext(ΣB
C

) and

ch(A) = Θ(A), there exists a point x ′ ∈ Θ(A) and γ ∈ T such that

Re(λTf (y)) = Re(γf (x ′))
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for all f ∈ A. We now show that x = x ′. Since β+λ√
2

ey ∈ ext(ΣB
C

), there exist an x ′′ ∈ Θ(A)

and a μ ∈ T such that Re((β + λ)Tf (y)) = √
2 Re(μf (x ′′)) for all f ∈ A. Hence

Re(f (x)) + Re(γf (x ′)) = √
2 Re(μf (x ′′))

for all f ∈ A. If x, x ′ and x ′′ are distinct, then there exists an f0 ∈ Vx such that |f0(x
′)| < 1/4

and
√

2 |f0(x
′′)| < 1/4. Therefore,

1 = Re(f0(x)) = √
2Re(μf0(x

′′)) − Re(γf0(x
′)) ≤ √

2 |f0(x
′′)| + |f0(x

′)| <
1

2
,

which is impossible. Consequently, one of the equalities x = x ′, x = x ′′ and x ′ = x ′′ is
true. To prove x = x ′, we consider only the case where x = x ′′. In this case Re(γf (x ′)) =
Re((

√
2 μ−1)f (x)) for all f ∈ A. If x �= x ′, then |(√2 μ−1)f0(x)| < 1 for some f0 ∈ Vx ′ .

Thus

1 = f0(x
′) = Re((

√
2 μ − 1)γ f0(x)) ≤ |(√2 μ − 1)f0(x)| < 1 ,

a contradiction. This shows that x = x ′. By the same reasoning, we see that if x ′ = x ′′, then
x = x ′.

Now, choosing f ∈ A with f (x) = 1 = ‖f ‖∞ (that is, f ∈ Vx) since x = x ′ we have

Re(λTf (y)) = Re(γ ) , Re(λT (if )(y)) = −Im(γ ) .

Therefore by the definition of α

λT (if )(y) = α(y)iλTf (y) = α(y)i(Re(γ ) + iIm(λTf (y)))

and so Im(γ ) = −Re(λT (if )(y)) = α(y)Im(λTf (y)). Thus

Re(λTf (y))2 + α(y)2Im(λTf (y))2 = Re(γ )2 + Im(γ )2 = 1

= |λTf (y)|2 = Re(λTf (y))2 + Im(λTf (y))2 .

Therefore α(y)2 = 1, since Im(λTf (y)) = Im(λβ) �= 0, that is α(y) ∈ {−1, 1}.
The above argument shows that the set K = {y ∈ Y0 : α(y) = 1} is a clopen subset of

Y0 and, moreover, for each y ∈ Y0 and f ∈ A

(Tf )(y) = (T 1)(y)

{
f (Φ(y)) y ∈ K ,

f (Φ(y)) y ∈ Y0\K .

Now since ch(A) is a boundary for A and φ : Y0 → ch(A) is surjective it follows that Y0 is a
boundary for B, as desired. �

COROLLARY 3.7. Let X,Y be compact Hausdorff spaces, A be a uniform algebra on
X and B be a C-subspace of C(Y ). If T : A → B is a surjective map satisfying Rπ(Tf +
T g) = Rπ(f + g) for all f, g ∈ A, then there are a subset Y0 of Y , which is a boundary for
B, and a continuous surjective map Φ : Y0 → ch(A) such that Tf (y) = f (Φ(y)) for all
f ∈ A and y ∈ Y0. In particular, T is complex-linear.
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PROOF. Using the Mazur-Ulam Theorem, the hypotheses imply that T is a real-linear
isometry from A onto B. We note that since A is a uniform algebra on X, Θ(A) = ch(A).
Let Y0, K and Φ : Y0 → ch(A) be as in the above theorem. Then since Rπ(T 1) = Rπ(1) =
{1} and |T 1| = 1 on Y0 we conclude that T 1 = 1 on Y0. The description of T given in
this theorem together with the fact that Rπ(T i) = Rπ(i) = {i} shows that K = Y0 and
consequently Tf (y) = f (Φ(y)) for all f ∈ A and y ∈ Y0. It is now easy to see that T is
complex-linear, since Y0 is a boundary for B. �

In the next theorem we give a description of a real-linear isometry T : A → C0(Y )

whenever the range of T satisfies a certain separating property which we call it T-separating
property.

DEFINITION 3.8. Let Y be a locally compact Hausdorff space. We say that an R-
subspaces B of C0(Y ) is T-separating if for distinct points y, y ′ ∈ Y and scalars λ, λ′ ∈ T

there exists a function g ∈ B such that ‖g‖∞ = 1, g(y) = λ, g(y ′) = λ′.

It is easy to see that every extremely regular C-subspace of C0(Y ) of type zero is T-
separating and hence every R-subspace of C0(Y ) containing such subspace is T-separating,
as well. By [3] if μ is a non-zero regular Borel measure on a locally compact Hausdorff
space Y which is continuous (i.e. the atomic part of μ is zero), then the kernel K(μ) of μ is
a (maximal) extremely regular subspace of type zero. Thus for each f0 ∈ C0(Y )\K(μ), the
real subspace generated by K(μ) and f0 is a T-separating R-subspace of C0(Y ).

We should note that if B is a T-separating subspace of C0(Y ), then given distinct points
y, y ′ ∈ Y and scalar β ∈ T we can find g ∈ B such that ‖g‖∞ = 1, g(y) = β and g(y ′) = 0.

In fact, it suffices to consider g = g1+g2
2 where g1, g2 ∈ B are norm one elements with

g1(y) = g2(y) = β, g1(y
′) = γ and g2(y

′) = −γ for γ ∈ T\{±β}.
LEMMA 3.9. Let X,Y be locally compact Hausdorff spaces, A be a C-subspace of

C0(X), B be a T-separating R-subspace of C0(Y ) and T : A → B be a surjective real-linear
isometry. Then for each x0 ∈ τ (A) ∩ ch(A), Hx0 is a singleton and Hx0 = ⋂

f∈Vx0
M(Tf ).

PROOF. Fix a point x0 ∈ τ (A) ∩ ch(A). We first show that Hx0 is a singleton. For

suppose that y1, y2 ∈ Hx0 be distinct and let β, γ ∈ T such that T ∗(Re(βey1)) = Re(ex0) and
T ∗(Re(γ ey2)) = Re(ex0). Then

Re(βTf (y1)) = Re(f (x0)) , Re(γ Tf (y2)) = Re(f (x0)) (1)

for all f ∈ A. Since B is T-separating there exists f ∈ A such that ‖Tf ‖∞ = 1 and

Tf (y1) = Tf (y2) = 1, so using (1) it follows that Re(γ )) = Re(β). Similarly there exists
f ′ ∈ A such that ‖Tf ′‖∞ = 1 and Tf ′(y1) = Tf ′(y2) = i which conclude that Im(γ ) =
Im(β). Therefore, γ = β and consequently Re(βTf (y1)) = Re(βTf (y2)) for all f ∈ A

which is impossible, since B is T-separating. Hence the set Hx0 is a singleton.
We now show that Hx0 = ⋂

f∈Vx0
M(Tf ). Setting Qx0 = ⋂

f ∈Vx0
M(Tf ) we have

clearly Hx0 ⊆ Qx0 . Let Hx0 = {y0} and y ∈ Qx0\Hx0 . Then there exists β ∈ T such that
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T ∗(Re(βey0)) = Re(ex0) and since B is T-separating we can find a function f ∈ A such
that ‖Tf ‖∞ = 1, Tf (y0) = β and Tf (y) = 0. Since ‖f ‖∞ = ‖Tf ‖∞ = 1 and 1 =
Re(βTf (y0)) = Re(f (x0)) it follows that f (x0) = 1 and hence f ∈ Vx0 while Tf (y) = 0
which contradicts to y ∈ Qx0 . Therefore, Hx0 = Qx0 . �

We should note that the notion of T-separating, defined above, implies the condition
which is considered in [8, Proposition 4.4]. By [8, Proposition 4.4 and Theorem 2.3] onto
real-linear isometries T : A → B between C-subspaces A and B are weighted composition
operators provided that A is strongly separating and satisfies this condition. However, in the
next theorem we obtain a similar description for T without any separating condition on A

whenever the range of T (as an R-subspace) is T-separating.

THEOREM 3.10. Let X,Y be locally compact Hausdorff spaces, A be a C-subspace
of C0(X) with τ (A)∩ ch(A) �= ∅, B be a T-separating R-subspace of C0(Y ) and T : A → B

be a surjective real-linear isometry. Then there exist a subset Y1 of τ (B), a clopen subset K of
Y1 and continuous functions Φ : Y1 → τ (A) ∩ ch(A) and w : Y1 :→ T, where Φ is bijective,
such that

(Tf )(y) = w(y)

{
f (Φ(y)) y ∈ K,

f (Φ(y)) y ∈ Y1\K,

for each f ∈ A and y ∈ Y1.

PROOF. We set Y1 = ⋃
x∈τ (A)∩ch(A) Hx . For each x ∈ τ (A)∩ch(A), Hx is a singleton,

by the above lemma. We first show that Y1 ⊆ τ (B). Let y0 ∈ Y1 and U be a neighborhood
of y0 in Y . Then y0 ∈ Hx0 for some x0 ∈ τ (A) ∩ ch(A), that is Hx0 = {y0}. Since Hx0 =⋂

f ∈Vx0
M(Tf ) it follows that ∩f ∈Vx0

M(Tf ) ∩ (Y∞\U) = ⋂
f∈Vx0

M(Tf ) ∩ (Y\U) = ∅
where Y∞ is the one-point compactification of Y . Therefore, there is n ∈ N and fi ∈ Vx0 ,

i = 1, . . . , n such that ∩n
i=1M(Tfi) ⊆ U . Set f = Σn

i=1
fi

n
, then clearly f ∈ Vx0 , |Tf (y0)| =

1 = ‖Tf ‖∞ and since for each i = 1, . . . , n, |Tfi | < 1 on Y\U we get |Tf | < 1 on Y\U
and hence y0 is a strong boundary point of B, that is Y1 ⊆ τ (B).

Using the T-separating property of B, the same argument as in the proof of [7, Theorem
3.8] can be applied to show that if x ∈ τ (A) ∩ ch(A) and f ∈ A such that f (x) = 0,
then Tf (y) = 0 where y is the unique point of Hx . We now show that for distinct points
x, x ′ ∈ τ (A) ∩ ch(A), Hx ∩ Hx ′ = ∅. Assume on the contrary that there exists a point
y ∈ Hx ∩ Hx ′ , that is Hx = Hx ′ = {y}. Then there exist scalars β, γ ∈ T such that

Re(βT h(y)) = Re(h(x)) and Re(γ T h(y)) = Re(h(x ′)) (1)

holds for all h ∈ A. Since x and x ′ are strong boundary points of A and A is a C-subspace we
can easily find an element h ∈ A such that h(x) = 0 and h(x ′) ∈ R\{0}. Therefore, by the
above argument T h(y) = 0 and this contradicts to (1). Hence, Hx ∩ Hx ′ = ∅. This allows us
to define a map Φ : Y1 → τ (A) ∩ ch(A) which associates to each y ∈ Y1 the unique point
x ∈ τ (A) ∩ ch(A) with Hx = {y}. Clearly Φ is a bijective map.
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Now as in the proof of Lemma 3.4 and Theorem 3.5, we can define continuous functions

α : Y1 → [−1, 1] and w : Y1 → T such that α(y) = T (if )(y)
iTf (y)

for all y ∈ Y1 and f ∈ VΦ(y)

and

Tf (y) = w(y) · (Re(f (Φ(y))) + α(y)i Im(f (Φ(y))))

for all f ∈ A and y ∈ Y1. So it suffices to show that α(y) ∈ {−1, 1} for all y ∈ Y1.
Given y ∈ Y1, let x = Φ(y). Since ex, iex ∈ ext(ΣA

C
) we have Re(ex), Re(iex) ∈ ext(ΣA

R
).

Therefore there exist y ∈ Y1, y ′ ∈ Y and β, γ ∈ T such that

T ∗(Re(βey)) = Re(ex) , T ∗(Re(γ ey ′)) = R(iex).

Since B is T-separating one can show easily that y = y ′ and consequently

Re(βTf (y)) = Re(f (x)) , Re(γ Tf (y)) = Re(if (x))

for all f ∈ A. Now since x is a strong boundary point of A we can find g ∈ A such that

g(x) = 1 = ‖g‖∞ and therefore Re(βT g(y)) = 1 and Re(γ T (ig)(y)) = −Re(g(x)) = −1.

Thus T g(y) = β and T (ig)(y) = −γ . This implies that α(y) = −γ
iβ

and so |α(y)| = 1, i.e.

α(y) ∈ {−1, 1}, as desired. �

THEOREM 3.11. Let I be an arbitrary set, X,Y be locally compact Hausdorff spaces,
A be a C-subspace of C0(X) with Θ(A) �= ∅ and B be an R-subspace of C0(Y ). Assume that
S1, S2 : I → A and T1, T2 : I → B are surjective maps satisfying

‖T1(λ) − T2(μ)‖∞ = ‖S1(λ) − S2(μ))‖∞ . (1)

Then there exist a subset Y0 of Y , a function p ∈ B and continuous functions Φ : Y0 → Θ(A),
α : Y0 → [−1, 1] and w : Y0 → T where Φ is surjective such that

Tk(λ)(y) = p(y) + w(y) · (Re(Sk(λ)(Φ(y))) + α(y)i Im(Sk(Φ(y))) (k = 1, 2)

for all f ∈ A and y ∈ Y0.

PROOF. Let T̃1 : A → B be defined by T̃1(f ) = T1(λ) where λ ∈ I is an arbitrary
element with S1(λ) = f . Since for λ,μ ∈ I with S1(λ) = S1(μ) = f , the norm condition
(1) implies that S2(μ

′) = S1(μ) where μ′ ∈ I satisfies T2(μ
′) = T1(μ) it follows easily that

T̃1 is well-defined. It is also easy to see that for f, g ∈ A

‖T̃1(f ) − T̃1(g)‖∞ = ‖f − g‖∞

that is, T̃1 is an isometry. Thus by the Mazur-Ulam Theorem T̃1 − T̃1(0) is real-linear. Hence
by Theorem 3.5 there exist a subset Y0 of Y and continuous functions Φ : Y0 → Θ(A),
α : Y0 → [−1, 1] and w : Y0 → T, where Φ is surjective, such that

T̃1(f )(y) − T̃1(0)(y) = w(y) · (Re(f (Φ(y))) + α(y)i Im(f (Φ(y))) .
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Setting p = T̃1(0) we get

T1(λ)(y) − p(y) = w(y) · (Re(S1(λ)(Φ(y))) + α(y)i Im(S1(λ)(Φ(y))) (2)

for all λ ∈ I and y ∈ Y0.
Now let T̃2 : A → B be the isometry defined by T̃2(f ) = T2(μ) where for f ∈ A,

μ is an element of I satisfying S2(μ) = f . Then the norm condition (1) easily implies that
T̃1(f ) = T̃2(f ) for all f ∈ A. Hence (2) holds for T2 and S2 instead of T1 and S1, respectively,
as desired. �
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